WO1997027841A1 - Use of compositions comprising stabilized biologically effective compounds - Google Patents

Use of compositions comprising stabilized biologically effective compounds Download PDF

Info

Publication number
WO1997027841A1
WO1997027841A1 PCT/EP1997/000507 EP9700507W WO9727841A1 WO 1997027841 A1 WO1997027841 A1 WO 1997027841A1 EP 9700507 W EP9700507 W EP 9700507W WO 9727841 A1 WO9727841 A1 WO 9727841A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
dispensing system
enzyme
biologically effective
effective compound
Prior art date
Application number
PCT/EP1997/000507
Other languages
English (en)
French (fr)
Inventor
Luppo Edens
Hong Sheng Tan
Johannes Wilhelmus Jacobus Lambers
Original Assignee
Gist-Brocades B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27443289&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997027841(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to MX9707487A priority Critical patent/MX9707487A/es
Priority to DK97904378T priority patent/DK0817613T3/da
Priority to AT97904378T priority patent/ATE291897T1/de
Priority to JP9527321A priority patent/JPH11503465A/ja
Priority to AU17216/97A priority patent/AU1721697A/en
Application filed by Gist-Brocades B.V. filed Critical Gist-Brocades B.V.
Priority to BRPI9702049-4A priority patent/BR9702049B1/pt
Priority to EP97904378A priority patent/EP0817613B1/en
Priority to CA002216169A priority patent/CA2216169C/en
Priority to US08/930,685 priority patent/US6117433A/en
Priority to DE69732881T priority patent/DE69732881T2/de
Publication of WO1997027841A1 publication Critical patent/WO1997027841A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1081Arrangements for pumping several liquids or other fluent materials from several containers, e.g. for mixing them at the moment of pumping
    • B05B11/1084Arrangements for pumping several liquids or other fluent materials from several containers, e.g. for mixing them at the moment of pumping each liquid or other fluent material being pumped by a separate pump

Definitions

  • the present invention relates to the field of application of compositions comprising stabilized biologically effective compounds by use of a multicomponent dispensing system.
  • an enzyme requires water to be active.
  • the mixing of an aqueous and an oily phase generally requires a relatively high energy input and cannot be achieved by simple hand-mixing.
  • the mixing of an aqueous composition and a hydrophobic enzyme-containing phase is expected to be very inefficient.
  • the above problems can be circumvented by using aqueous stabilized enzyme compositions for topical applications.
  • aqueous enzyme formulations require high concentrations of water-miscible stabilizers intended to lower the water activity of the formulation. Polyols are often used for this purpose and long-term stability can only be effected by polyol concentrations well above 40% (v/v) .
  • Another area in which enzymes can be advantageously used is the area of laundry hand wash applications. Although compared to machine washing the incidence of hand washing is very low in Europe and North America, hand washing remains popular as far as delicate fabrics are concerned. Of the delicate fabrics, the small category of woollen and silk items represents a particularly problematic area regarding stain removal, fabric depilling, colour revival and fabric shrinking.
  • This category of specific fabrics may require specific enzymes, such as proteases active around a neutral pH value and/or at a low temperature or sulphur bridge rearranging enzymes like protein disulfide isomerase to counteract wool deformation stresses exerted during washing (EP 276547) .
  • a disadvantage of such niche products is that they obviously cannot bear the cost of extensive detergent or enzyme formulation developments.
  • various biologically effective compounds other than enzymes which are unstable in aqueous end formulations, i.e. those formulations which are suitable for direct use in a specific application.
  • biologically effective compounds like enzymes, antibiotics, vitamins, polyunsaturated compounds and the like, loose their activity upon prolonged storage in aqueous compositions.
  • specific formulations are known in which said biologically effective compounds are stably incorporated, the latter formulations typically are not suitable for direct use in desired applications.
  • the present invention discloses a dispensing system separately containing a first and a second aqueous composition, said first composition being a composition comprising a biologically effective compound which is stably formulated, wherein said first and second composition generate a final composition when mixed upon dispensing, and wherein said final composition is effective to apply said biologically effective compound in an active form.
  • an aqueous composition comprising a stabilized biologically effective compound and an aqueous basic composition are separately contained.
  • simultaneous delivery of both aqueous compositions is allowed.
  • both compositions are mixed, resulting in a dilution of the composition comprising the stabilized biologically effective compound in the basic composition, generating a final composition suitable for direct application.
  • Preferred biologically effective compounds for use in the dispensing system of the present invention are enzymes, vitamins, polyene macrolide antibiotics, dihydroxyacetone, and aldehyde flavours.
  • the dispensing system of the present invention is especially suitable for topical application of a biologically effective compound.
  • an aqueous composition comprising a stably formulated biologically effective compound and an aqueous basic composition are separately contained.
  • aqueous composition comprising a stably formulated biologically effective compound (called the "effective composition” or “first composition” throughout the invention) and the aqueous basic composition (also called the “second composition”) is possible.
  • both aqueous compositions are mixed, either in si tu or in the dispensing system. Mixing of both compositions results in a final composition which contains an biologically effective compound in an active form and which additionally is suitable for direct use.
  • basic composition is used for a composition which produces in combination with the aqueous composition comprising the biologically effective compound a final composition which is suitable for direct application of the biologically effective compound.
  • the nature of the basic composition mainly will depend on the desired application.
  • Aqueous basic compositions are understood to include oil-in- water emulsions.
  • the aqueous basic composition is a composition suitable for topical, detergent or cleaning use. More preferably, the aqueous basic composition is a composition suitable for topical use. Most preferably, the aqueous basic composition is a composition suitable for cosmetic use.
  • the aqueous basic composition can be a cream, a gel, a shampoo, a cleansing fluid, a lotion, a liquid detergent, a hard surface cleaning composition, and the like.
  • Bioly effective compounds which are suitable for use in the dispenser of the present invention are those compounds which display a biological activity and which are unstable in the aqueous end formulation in which the biologically effective compound should be applied.
  • biologically effective compounds which are suitable for use in the dispenser of the present invention are those compounds for which a stable aqueous formulation is developed, which stable formulation is not suitable for direct use in the desired application.
  • the biologically effective compounds which are suitable for use in the dispenser of the present invention are distinguishable with respect to the source from which said compound is obtainable as well as with respect to the nature of said compound.
  • said compound is obtainable from an animal, a vegetable or a microbial source.
  • said compound is obtainable from a microbial or a vegetable source . More preferably, said compound is obtainable from a microbial source.
  • said compound is selected from the group of primary and secondary metabolites, preferably from the group of enzymes, antibiotics, (poly) unsaturated compounds, vitamins, flavours, dihydroxyacetone, more preferably from the group of enzymes, vitamines, polyene macrolide antibiotics, aldehyde flavour compounds and dihydroxyacetone.
  • the instability of a biologically effective compound in an aqueous environment may be of a chemical nature, for instance caused by structural deterioration (e.g. denaturation in case of enzymes and other proteins) , oxidative attack or other unfavorable conditions like non-optimal pH conditions.
  • Oxygen, as well as light and the presence of metal ions from traces of iron or copper are known for their detrimental oxidative effect on biologically effective compounds like vitamins, carotenoids, (poly)unsaturated oils and (poly) unsaturated fatty acids (see for example CRC Handbook of Food Additives, second edition) .
  • Instability may additionally be caused by microbial growth in an aqueous environment, or by physical instability of the aqueous composition containing the biologically effective compound.
  • stable aqueous formulations which are characterized by, for instance, one or more of the following conditions: a low water activity, a low or a high pH, a high concentration of an antioxidant, a high concentration of a sequestering agent, a high concentration of an antimicrobial agent, crystallinity of the biologically effective compound, a high concentration of a viscosifying agent.
  • said condition (s) necessary for stabilizing the biologically effective compound in an aqueous composition do(es) not allow the direct use of said aqueous composition.
  • the dispensing system of the invention enables the use of relatively high concentrations of chemical stabilizers to prepare stable formulations of inherently unstable biologically effective compounds, i.e. concentrations which can be much higher than those allowed in a final composition, since the stabilizers are diluted with an aqueous basic composition upon dispensing.
  • Suitable stabilizing agents include water activity lowering agents like salts or polyols, sequestering agents like EDTA, phytate or gluconate or antioxidants like sulphites, glutathion, cysteine or ascorbic acid.
  • the use of the dispensing system ensures that the effective concentration of a biologically effective compound is reached after dilution of the effective composition in the basic composition. Therefore, the biologically effective compound can be present in the effective composition in a considerably higher concentration than would be required for efficacy.
  • Several biologically effective compounds are insoluble in aqueous composition ' s in these higher concentrations. This implicates that the biologically effective compound can be present in a crystalline form. Said crystalline form is especially advantageous to ensure stability of the compound.
  • compositions comprising crystalline compounds comprising crystalline compounds
  • Said viscosifying agent preferably is able to form a three-dimensional network in an aqueous environment. More preferably, said viscosifying agent is selected from the group of xanthan, Carbopol ® or related resins, or carrageenan. Most preferably, said viscosifying agent is xanthan.
  • concentration of a suitable viscosifying agent mainly is determined by the weight and size of the particles to be kept in suspension. Conveniently, the concentration may range from 0.1-3%, preferably from 0.2-0.6%.
  • the dispensing system of the present invention allows for the dilution of the stabilizing agent present in the composition containing a biologically effective compound upon dispensing with the basic composition.
  • the dispensing system of the invention further allows for the dilution of the effective compound to its effective concentration.
  • the dilution factor of the composition containing a biologically effective compound (the effective composition) in the basic composition is adequately chosen, i.e. such that the end concentration of the stabilizing agent does not preclude application of the final composition and such that the biologically effective compound is present in the final composition in its appropriate effective concentration.
  • the dilution factor is determined by the ratio in which the effective composition and the basic composition are delivered by the dispensing system.
  • the ratio between the effective composition and the basic composition varies from 1:1 to 1:50, more preferably from 1:2 to 1:20, most preferably the ratio is 1:5 to 1:10.
  • the viscosity of the effective composition preferably has a value which is comparable to the viscosity of the basic composition which is applied simultaneously with the composition containing the biologically effective compound.
  • both compositions can have a lotion-like, a cream-like or a gel-like consistency.
  • the viscosity of the effective composition additionally will depend on the type of dispensing system which is used to deliver the compositions. For instance, the use of a tube requires a relatively high viscosity of both compositions.
  • the amount of viscosifying agent to be added to the effective composition will depend among others on the desired viscosity of said composition. Any viscosifying agent known to the skilled person which is compatible with the final composition as well as the desired application can be used. For mstance, for topical application its acceptability for topical use should be considered. Examples of viscosifying agents include carrageenans, cellulose derivatives, polyacrylic acids, clays, polyethylene glycols, hydrocolloids such as xanthan.
  • agents can be added to the effective composition and/or the basic composition, such that both composition have the same or have a different appearance.
  • a typical example of such an agent is a colourant .
  • the aqueous effective composition is understood to include oil- -water emulsions.
  • non-translucent packaging material with a low ingress of oxygen would be desirable.
  • the dispensing system of the present invention provides the option to pack the composition containing the biologically effectice compound m a compartment made from non-translucent material with very low oxygen permeation rates even under conditions of high humidity, to minimize the effect of light and ingress of oxygen.
  • Preferred packaging materials include PVdC, EVOH and alumina-coated polymers (see Food Manufacture, June 1991, pp 49-53) . If applied in larger volume dispensers, the use of an air-free lotion " pump to dispense the biologically effective compound is another requirement .
  • the dispensing sytem to be used in the method of the invention is not critical to the invention.
  • the present invention contemplates any system which allows for the separate containment of the stabilized effective composition and the basic composition. Separate containment is understood to include any form of separation which is able to prevent a substantial diffusion of water from one to the other composition.
  • a dispensing system can be selected from the multicomponent dispensing systems which have been developed for the packaging and delivery of non-compatible chemical compounds, i.e. chemical compounds which react with each other when brought into contact.
  • multicomponent dispensers are known from the field of adhesives.
  • the packaging of multicomponent adhesives requires complete separation of the resin and the hardener. Yet, convenience in use requires simultaneous delivery of the two components .
  • one pair of plastic pouches provides material for single use only.
  • the outlets of the two pouches are close to each other and discharge of the contents can be effectuated by tearing open the end pieces of the pouch (German patent application DE 3 630 849) .
  • the present invention also contemplates the formulation and storage of the stabilized effective composition and the basic composition in separate containers, which are put together and/or provided with a suitable dispenser by the user. It is also possible that a dispensing system already provided with a container containing one composition, e.g. the stabilized effective composition, is additionally provided with a container with the other composition, e.g. the basic composition.
  • the dispensing system of the present invention can be conveniently used for any application wherein the action of a labile biologically effective compound is desired.
  • the dispensing system of the invention provides a convenient and simple way for topical application of a biologically effective compound of interest. Topical application is understood to include application on skin and hair and application in the oral cavity, e.g. on teeth.
  • an aqueous enzyme composition is stabilized with a high concentration of a water activity lowering agent, such as a polyol or a salt.
  • a water activity lowering agent such as a polyol or a salt.
  • a polyol is used for stabilization.
  • the mixing of the enzyme and the basic composition results in an actual dilution of the enzyme composition in the basic composition.
  • the high concentration of for instance a polyol in the enzyme composition guarantees activity of an enzyme upon dilution, even after a prolonged storage period of the enzyme composition.
  • Said dilution of the enzyme composition results in a dilution of the polyol, which on its turn results in a reactivation of the enzyme.
  • enzyme reactivation can be expected to start at polyol concentrations below 40% w/w.
  • the ratio in which the enzyme composition and the basic composition are delivered by the dispensing system depends for instance on the concentration of the polyol in the enzyme composition, whereby the ratio should be adjusted in such a way to ensure reactivation of the enzyme. Furthermore, if topical use is desired, said ratio should be adjusted in such a way that the concentration level of the polyol, after mixing the enzyme with the basic composition, does not exceed the acceptable level for use in topical formulations.
  • the enzyme of interest belongs to the class of oxidoreductases, transferases, hydrolases or isomerases . More preferably, the enzyme is a glucose oxidase, peroxidase, lipoxygenase, superoxide dismutase, tyrosinase, protease, phosphatase, phytase, glycosidase, glucanase, mutanase ( ⁇ -1,3- glucanase) , dextranase, lysozy e, lipase, phospholipase, sulfatase, urease, transglutaminase or protein disulfide isomerase. It is also possible to apply a stabilized composition comprising a mixture of two or more enzymes. The concentration of the enzyme in the enzyme composition mainly will be determined by the type of
  • the present invention also envisages enzyme compositions in which the enzyme is formulated in a particle form.
  • Enzymes formulated as particulate matter greatly reduce the risk of sensitization which may occur upon potential inhalation of enzyme molecules when dried after application.
  • the enzyme is formulated as particles having a particle size of at least about 5-10 ⁇ m.
  • the upper limit of the particle size of the enzyme particles generally will be determined by the fact that larger particles will have an unfavourable surface loading and may produce a gritty feeling upon application to the skin. Conveniently, the upper limit of the particle size is about 100 ⁇ m.
  • One method to obtain enzyme particles of at least about 5-10 ⁇ m is to covalently immobilize the enzyme on a suitable carrier, as described in e.g. Methods in Enzymology, vol. 44 (1976) .
  • a suitable particle form is a so- called ChiroCLEC (Altus Biologies Inc., Cambridge, MA, USA) , which consists of cross-linked enzyme crystals.
  • ChiroCLEC Altus Biologies Inc., Cambridge, MA, USA
  • These cross- linked enzyme particles do not need the presence of ' high concentrations of a water activity lowering agent such as a polyol for stable formulation; they are chemically stable in an aqueous composition because of their crystalline form. Nevertheless, water activity lowering agents may still be added to improve microbiological stability of the aqueous composition.
  • polyol which is used to stabilize the enzyme composition is not critical for the invention. Any polyol which is known to the skilled person to effectively stabilize enzymes in aqueous solutions can be used. Polyol ⁇ that are particularly useful are polyols selected from the group of glycerol, sorbitol, propylene glycol, maltodextrins, or a sugar such as sucrose, lactose, glucose or trehalose. For topical applications, one should consider a polyol which is acceptable for topical use, i.e. glycerol, polyethylene glycol, butylene glycol, propylene glycol, trehalose or sorbitol.
  • the polyol is used in a high concentration, i.e. a concentration which results in a sufficiently low water activity in the enzyme composition to adequately stabilize the enzyme. It is known in the art that these concentrations may somewhat vary with the polyol used.
  • the polyol is used in a concentration of 20-90%, more preferably in a concentration of 30-90%, even more preferably in a concentration of 40-90%, even more preferably in a concentration of 50-90%, most preferably in a concentration of 60-80%.
  • a low water activity in an aqueous composition is also advantageous for preventing microbial growth in the composition.
  • a salt such as NaCl may be used to enhance the stability of the enzyme during the product's shelf life.
  • low concentrations of enzyme stabilizers such as reducing agents, calcium salts or substrate or substrate-related ligands may be added (Gray, 1993, in: Thermostab. Enzymes, pp. 124-143. Narosa, New Delhi) .
  • a viscosifying agent may be added to the enzyme composition, in particular if the viscosity of the enzyme composition due to the polyol or other relevant components is not as high as is desirable.
  • the amount of viscosifying agent to be added to the enzyme composition will depend on the viscosifying properties of the polyol which is used for stabilization of the enzyme composition as well as on the desired viscosity of the enzyme composition.
  • the viscosity of the enzyme composition should be such that sedimentation of enzyme particles is prevented.
  • a viscosifying agent is used which is able to form a three-dimensional network in an aqueous composition.
  • the enzyme composition will be essentially simultaneously delivered with an appropriate aqueous basic composition.
  • the nature of this aqueous basic composition is not critical for the invention, but will mainly depend on the type of application which is desired.
  • the aqueous basic composition contains components that can be expected to inactivate enzymes instantaneously.
  • a typical example of a component expected to inactivate enzymes is ethanol in high concentrations.
  • the dispensing system of the present invention can be conveniently used for any application wherein the action of an enzyme is desired.
  • the dispensing system of the invention provides a convenient and simple way for topical application of an enzyme of interest.
  • a preferred enzyme for topical use of the dispenser of the invention is a protease.
  • the dispensing system of the invention is also suitable to simultaneously deliver an enzyme composition and a second composition comprising a proactive substrate, whereby the enzyme converts the proactive substrate into an active ingredient upon delivery and mixing of both compositions.
  • This embodiment of the invention is preferred when the active ingredient is unstable in a particular composition and the possibility exists to formulate a precursor of the active ingredient, the so-called proactive substrate, which is more stable.
  • vitamin E-acetate, vitamin A-acetate and vitamin A-palmitate represent precursor molecules typically " used to apply these unstable but desirable vitamins on the skin. Due to enzymatic activity in or on the skin, part of the precursor is believed to be slowly converted into the active compound (see for example: Boehnlein et al . , Pharmaceutical Research Vol. II, no. 8 (1994) , 1155 - 1159) . Following the enzyme dispensing method of the invention, combining such shelf stable precursors and the appropriate hydrolytic enzymes, active retinol or tocopherol could be released on the skin.
  • An important advantage of the use of the dispensing system of the invention is that the hydrolysis rate of the precursor molecules significantly is increased as compared to the situation where one depends on relevant enzymes which are present in the skin.
  • the benefits of an instantaneous release of the desired concentrations of vitamin A are evident (see for example Beijersbergen van Henegouwen et al, Fat Sc. Technol . 94 (1992) , 24-27) .
  • a suitable lipase is an obvious choice. It can be expected that many of the commercially available lipolytic enzymes will be able to hydrolyse these precursor molecules into the active vitamin and palmitic acid.
  • a lipase in cosmetic applications has some serious disadvantages including the breakdown of oils present in cosmetic compositions and the degradation of a considerable portion of the protective lipid compounds present on the human skin (Cosmetics & Toiletries 102 (1987) , 36-42) .
  • acetate rather than palmitate derivatives of the respective vitamins, enabling the use of enzymes which are capable to selectively remove the acetate moiety of the vitamin precursor without attacking skin lipids .
  • certain esterases/lipases have a preference for short-chain acyl groups (from 2 - 10 carbon atoms) and are not capable to hydrolyze longer ( ⁇ 16 carbon atoms) fatty acyl groups .
  • esterases are commercially available from for instance Recombinant Biocatalysis Inc. (Philadelphia, USA) .
  • xylan acetylesterase cf. EP 507369
  • rhamnogalacturan acetylesterase cf. WO 93/20190
  • esterase activity has also been attributed to certain serine proteases .
  • the use of a suitable serine protease in this application is advantageous because it allows the combination of a skin peeling effect with the simultaneous conversion of a selected vitamin precursor.
  • magnesium ascorbyl phosphate a stable and water- soluble ascorbic acid derivative, has been developed and commercialised by several companies. Due to the presence of fosfatase enzymes on the skin, magnesium ascorbyl phosphate can be converted in the active but unstable ascorbic acid in si tu . Unfortunately, the activity of fosfatase enzymes which naturally occur on the skin is rather low (Mima et al . Vitamins 41 (1970) , 387) .
  • the dispensing system of the invention enables the combination of ascorbyl phosphate and a suitable phosphatase to ensure rapid formation of ascorbic acid on the skin.
  • the enzyme phytase catalyzing the release of phosphate from inositol- hexakisphosphate (phytate) , in particular the phytase from Aspergillus niger, appears to be a very suitable phosphatase in this regard.
  • a stabilised laccase composition is combined with a suitable composition containing a colourant precursor, for example a mono- or polyphenolic compound (see e.g. FR 2,694,018; EP 504005) .
  • a colourant precursor for example a mono- or polyphenolic compound (see e.g. FR 2,694,018; EP 504005) .
  • the dispensing system of the invention is also advantageously used for the in si tu peroxidase-mediated formation of bactericidal compounds. Separate containment of the stabilized peroxidase on the one hand and suitable precursor molecules, optionally plus cleaning agents, on the other hand is essential for the application of certain bactericidal agents with a limited period of bacteriological activity (cf.
  • biocidal compounds are hypohalous acids produced by haloperoxidases from hydrogen peroxide plus halides and hypothiocyanate produced by lactoperoxidases from hydrogen peroxide plus thiocyanate. In all cases, hydrogen peroxide is an essential but rather unstable precursor.
  • Hydrogen peroxide solutions can be stably incorporated in the second aqueous composition in the dispensing system of the invention, by the use of stabilizers such as sodium stannate or phosphonic acid (e.g. Dequest 2010) .
  • stabilizers such as sodium stannate or phosphonic acid (e.g. Dequest 2010) .
  • These stabilizers preferably are combined with a suitable viscosifying agent like Carbopol 934 or Rheovis CRXCA (Allied Colloids) .
  • the first composition contains the stabilized enzyme and any hydrogen peroxide-incompatible chemicals.
  • the dispensing system of the invention also enables enzymatic in si tu generation of hydrogen peroxide by a hydrogen peroxide generating enzyme, for instance an alcohol oxidase.
  • a hydrogen peroxide generating enzyme for instance an alcohol oxidase.
  • Said hydrogen peroxide generating enzyme is incoporated in the same composition as the peroxidase.
  • This form of " mild disinfection, optionally combined with cleaning, is an issue not only in the field of topical application, to fight various forms of eczema or acne, but also in applications such as contact lens cleaning and household hard surface cleaners.
  • si tu generation of lipoperoxides is further example of the use of the dispenser of the invention.
  • a stabilized lipoxygenase composition and a linoleic acid- containing composition are separately contained and mixed upon dispensing. It is also possible to formulate the lipoxygenase and linoleic acid in one composition, since the high polyol concentration used to stabilize the enzyme additionally ensures inactivity of the enzyme.
  • si tu generated lipoperoxides are suitable for topical application, e.g. for dehairing or inhibition of hair growth (Puig Muset et al . , Arzneistoff &maschine, 10 (1960) , 234-239) .
  • a dispenser is used combining baking enzymes, e.g. amylases, hemicellulases, protein disulphide isomerase, lipoxygenase and other redox enzymes, on the one hand and additional components of a fluid bread improver on the other hand, whereby the suitable enzyme substrates are present in the dough.
  • baking enzymes e.g. amylases, hemicellulases, protein disulphide isomerase, lipoxygenase and other redox enzymes
  • a combination which may create synergy is the combination of a protease and a keratinolytic agent, such as an ⁇ -hydroxy acid.
  • a protease and a keratinolytic agent, such as an ⁇ -hydroxy acid.
  • the so-called fruitacids ( ⁇ -hydroxyacids or AHA's) have emerged in the cosmetic industry as agents that can induce skin peeling and thus achieve anti-aging benefits.
  • a disadvantage is that the low pH values required for high cell renewal rates are accompanied by irritation phenomena (see Smith, W.P., Cosmetics Sc Toiletries Vol 109, pp 41-48, 1994) .
  • one strategy can be to lower either the AHA concentration or to increase the pH of the cosmetic composition and to compensate for the reduced skin peeling effect by adding a proteolytic enzyme to the composition.
  • the enzyme dispensing method of the invention provides a convenient way to combine a fluoride-containing dentifrice with a polyol-stabilized polysaccharide degrading enzyme composition.
  • the dispensing system according to the invention can be advantageously used in other applications than topical use.
  • An example is in laundry hand wash applications for delicate fabrics, such as wool.
  • a simple liquid detergent and a stabilized enzyme composition are separately contained, to be simultaneously dispensed in the desired ratio.
  • natamycin has a relatively high solubility in organic solvents like dimethylformamide, DMSO, glycerol or propylene glycol, or in aqueous compositions at either a low or a high pH.
  • this antibiotic preferably is solubilized under acid or base conditions.
  • the stability of natamycin under these conditions is rather poor. Therefore, such natamycin preparations are preferably made just before use.
  • natamycin preparations are preferably made just before use.
  • Dutch patent application NL 7613253 the combination of natamycin with citric acid is described for the treatment of horses and cows suffering from trichophyton infections, whereby the solution for the treatment must be prepared just before use by adding an appropriate amount of water to a solid mixture of natamycin and citric acid.
  • the solid mixture of natamycin and citric acid is very hygroscopic and therefore also stable for only a rather short period.
  • Stable aqueous natamycin compositions are described in European Patent Application EP 678241 which is incorporated herein by reference.
  • the stable natamycin compositions disclosed in EP 678241 are suspensions of natamycin crystals in an aqueous medium, wherein sedimentation of the crystals is prevented by the addition of a suitable viscosifying agent.
  • Stable natamycin compositions for instance those disclosed in EP 678241 can be advantageously used in the dispensing system of the invention.
  • a simultaneous dosage of a stable natamycin suspension and a suitable basic composition is possible.
  • said suitable basic composition preferably is a composition having either a low or a high pH.
  • Fungal skin infections in humans also form a potential target for natamycin treatment, provided that a suitable formulation of natamycin is available.
  • suitable formulations of natamycin to fight these infections include compositions comprising a combination of natamycin with citric acid.
  • the use of a dispensing system according to the invention enables the combination of a stable aqueous natamycin suspension with a second citric acid containing composition.
  • Another example of a suitable basic (second) composition is an anti-dandruff shampoo.
  • DHA Dihydroxyacetone
  • Stable DHA solutions are obtained by adjusting the pH of a DHA solution to the lower ranges, preferably to a value below pH 3. As these acidic pH values are incompatible with topical use, it would be advantageous to incorporate a composition for topical use, e.g. a cosmetic composition, and the DHA-containing acidic composition in a dispensing system according to the invention.
  • the stable acidic DHA composition is neutralised upon mixing with a larger volume of a well buffered cosmetic composition.
  • Aldehyde flavour compounds are among the most unstable flavour compounds, especially under basic conditions. As a consequence, it is a main problem how to stably incorporate flavour aldehydes, like geranial, neral and citronellal, in personal care products with a basic character, like lotions, fluid soaps and shampoos.
  • the dispensing system of the invention conveniently ensures a separate containment of a flavour-containing composition and a suitable cosmetic composition, thus enabling application of desirable flavour compounds in personal care products .
  • Figure 1 shows the proteolytic activity of plain and diluted stabilized aqueous protease compositions. Proteolytic activity is measured as a clear spot on a gelatin covered film plate.
  • Figure 2 shows the proteolytic activity of different proteases at a pH of 4 and 7 and in the presence of ⁇ -hydroxy acids.
  • Figure 3 shows a dispensing pump in which two compositions are separately contained. The two compositions are simultaneously dispensed and can be mixed within the dispensing pump or can be delivered separately and mixed in si tu .
  • Example 1 Storage stability of proteases in compositions comprising different types of polyols
  • Serine protease powder from Bacill us licheniformis was obtained from Genencor International, Brughes, Belgium.
  • Neutral protease non-standardised metallo-protease from Bacillus a yloliquefaciens was obtained from Gist-brocades, Seclin, France.
  • Stabilized enzyme formulations containing either Serine protease or Neutral protease were prepared by dissolving the required quantities of enzyme powder in either 70% (w/w) butyleneglycol (1,3-butane diol; BG) , propylene glycol (1,2- propanediol; PG) or PEG 6000 (polyethylene glycol 6000; PEG) .
  • BG butyleneglycol
  • PG propylene glycol
  • PEG 6000 polyethylene glycol 6000
  • PEG polyethylene glycol 6000
  • Enzyme activities were determined following the Gist- brocades protocol for neutral protease activity. This procedure (ISL Method Number 61195) is available from Gist-brocades Delft upon request. Briefly, the procedure is as follows: A strongly diluted enzyme solution is added to a solution of 0.3% Hammersten casein at 40 "C, pH 7.0. After incubation during 60 minutes, protease activity is stopped by the addition of TCA. After thorough mixing and an additional incubation at 4 " C for 30 minutes, the samples are centrifuged. Extinction of the clear supernatant is measured at a wavelength of 275 nm against distilled water. By comparison with reference protease samples, the final protease activity is obtamed.
  • Serine protease dissolved in either 70% butylene glycol or propylene glycol is more stable than neutral protease.
  • Butylene glycol and propylene glycol are clearly superior to PEG 6000 in enzyme stabilization.
  • Neutral protease 25 mg Propylene Glycol 25.0 50% Hydroxypropyl Cellulose 0.75 1.5 (Klucel type H from Hercules) Preparation: after mixing the viscosifying agent hydroxypropyl cellulose with the propylene glycol, water in which the enzyme is dissolved is added and mixed overnight .
  • a non-stabilized enzyme preparation i.e. without propylene glycol, appeared to be inactive in about one week.
  • enzymes stabilized according to the invention are essentially inactive until reactivated by dilution with an
  • This example illustrates the efficacy of a number of protelytic enzymes under acid conditions and in the presence of ⁇ -hydroxyacids (AHA's) . Protelytic activity was assayed on photographic gelatin film.
  • Serine protease powder from Bacill us lichenifor is was obtained from Genencor International, Brughes, Belgium and dissolved in a mixture of 35% (w/w) butylene glycol, 35% (w/w/) 35 glycerol, 0.1% (w/w) Ca(Ac) 2 pH 6.0 and water. Enzyme activity in solution was adjusted to obtain an activity of approx. 500 Neutral Protease Units at 37'C, pH 7.0 (see Example 1) . Aspartic proteinase liquid from Rhizomucor miehei (210.000 milk clotting units/ml) was obtained from Gist-brocades, Seclin, France .
  • Cysteine proteinase powder from papaya fruits (60 million papain units/gram, assayed according to Food Chemical Codex III) was obtained from Gist-brocades, Seclin, France. Prior to use a solution of cysteine proteinase was freshly prepared by dissolving 20 mg of enzyme powder in 2 ml demin. water.
  • AHA stock solutions were prepared according to the following protocol. Five grams of 1-lactic acid (Boom Chemie, Netherlands) and five grams glycolic acid (Merck, Germany) were each dissolved in 80 ml water, adjusted to pH 4.0 with 25% NaOH after which water was added to 100 ml to give 5% solutions of 1-lactic acid and glycolic acid, respectively. Five grams of salicylic acid (Acros, Belgium) was dissolved in 80 ml water and adjusted to pH 4.4 (dissolution at pH 4.0 was not possible) with 25% NaOH after which water was added to 100 ml to give a 5% solution of salicylic acid.
  • Phosphate buffer pH 7.0 and citrate HCI buffer pH 4.0 were obtained from Merck, Germany.
  • aspartic proteinase was not active at pH 7.0 or at pH 4.4 in the presence of salicylic acid, the enzyme was fully active at pH 4.0 with or without 5% 1-lactic acid or 5% glycolic acid.
  • Cysteine proteinase is active at pH 7.0 and at lower pH values in the presence of either 1-lactic, glycolic or salicylic acid. Surprisingly low proteolytic activity was recorded at pH 4.0 in the absence of either one of the AHA's.
  • aspartic proteinases are preferred over serine proteases .
  • Cysteine proteinase from papaya exhibits proteolytic activity at both neutral and acidic pH values. Depending on the conditions, the most appropriate proteolytic enzyme should be selected.
  • Potato phosphatase (lyophilized powder) was obtained from Sig a.
  • phytase (NatuPhos ® 5000L, Gist-brocades, Delft, the Netherlands) is effective under application conditions.
  • 2 ml of 1% magnesium ascorbyl phosphate in 100 mM Na-acetate pH 6.0 was mixed with 200 ⁇ l enzyme solution.
  • the enzyme solution was obtained by diluting NatuPhos ® 5000L one to five in a solution containing 70% glycerol (to 5 obtain 377 U/g magnesium ascorbyl phosphate; 1 U is the amount of enzyme liberating 1 ⁇ mol phosphate per minute from 1 % vita ine C-phosphate at pH 6.0 and 30°C) .
  • Alcohol oxidase (Han ⁇ enula sp . from Sigma) powder with low concentrations of catalase was dissolved in water after which glycerol was added to obtain a final glycerol concentration of
  • the active biocidal compound is obtained upon mixing of the content of the two containers according to the method of the invention.
  • Piccantase concentrate (Rhizomucor miehei , containing approx. 30.000 BGLE/g) was obtained from Gist-brocades, Seclin, France) .
  • Maxatase pure (Bacillus subtilis, containing approx 2.16 BYU/kg) was obtained from Genencor International B.V., Delft, Netherlands .
  • G999 Phospholipase L was obtained from Enzyme Bio-Systems Ltd. , Englewood Cliffs, NJ, U.S.A.
  • Xylan acetylesterase (A . niger transformant TrAlO as described in EP0507369 and available through deposited microorganisms) . After inoculation, transformant TrAlO was grown on a culture medium containing 30 grams of soy pulp per liter to induce enzyme activity. After 48 hrs of growth at 30 " C under aeration and a minumum pH value of 4.0, the fermentation broth was centrifuged and the supernatant was filtered. First filtration was over Seitz K700 filters, second filtration over Seitz Supra 250 filter and germ filtration over a Seitz Supra EKS. The resulting liquid was concentrated by a factor 10 using ulta-filtration after which the concentrate was lyophilized. Xylan acetylesterase activity in the final powder was estimated to be approx. 300 units/gram powder.
  • Enzyme solutions were prepared by dissolving 6 milligrams of enzyme powder (i.e. Piccantase, Maxatase and Xylan acetylesterase) in one milliliter of demin. water. Of the liquid G999 preparation, 16 microliters were diluted in one milliliter of demineralized water. A stock solution of retinol acetate (Sigma) was prepared by dissolving 55 milligram retinol acetate in one milliliter of methanol. Enzyme incubations were carried out by adding 100 microliter phosphate buffer pH 5.5; 100 icroliter of enzyme solution and 200 microliter of retinol acetate stock solution to 500 microliter of demineralized water.
  • enzyme powder i.e. Piccantase, Maxatase and Xylan acetylesterase
  • Lipid hydrolysis In some applications of esterified vitamins, reactivation of the vitamins by enzymes with lipolytic activities is less desirable. For example during reactivation of vitamin precursors included in cosmetics, enzymic degradation of the oils included in the cosmetic product should be avoided. In this respect it would be advantageous to avail of vitamin activating enzymes with no degradative effect towards triglyceride oils .
  • the three active enzymes were subjected to a test in which hydrolysis of emulsified olive oil was quantitated.
  • Various enzymes including lipases are able to deacetylate vitamin A-acetate.
  • G999 and Xylan acetylesterase are of particular interest because these enzymes combine deacetylation activity with very low lipolytic activity. Moreover, the natural substrates for these enzymes (i.e. lysophospholipids and acetylated xylans) do not normally occur on the human skin.
  • suspension of the immobilized and stabilized material is important to guarantee an even dosing of the active material into the final composition.
  • the suspension method should enable long term storage without sedimentation of the immobilized active material .
  • ChiroCLEC-BL an aqueous solution of cross-linked protease (subtilisin) crystals, obtained from Altrus Biologies Inc., Cambridge, MA, USA.
  • Carbopol-Ultrez-10 a viscosifying polymer, was obtained from BF Goodrich, The Hague, Netherlands.
  • Solutions were prepared of 5% DHA in a buffer solution of either 0.1 M phosphate (pH 7) or 0.1 M pyrophosphate (pH 5.5 and pH 8.5) in D 2 0. In some cases ascorbic acid was added. Samples were incubated in a stove at 50 'C for up to 7 days.
  • Acidic pH conditions improve the storage stability of DHA.
  • a reducing agent like ascorbic acid has no significant effect on the storage stability of DHA.
  • a dispensing system which is designed to simultaneously deliver a natamycin containing composition and a shampoo composition in a ratio of 1:10.
  • natamycin trihydrate 110 g was suspended in 388 ml of distilled water and then sterilized by heat treatment.
  • the pH of the suspension was 6.5. After standing for at. least 4 weeks no sedimentation was observed.
  • HPLC analysis showed that the natamycin content immediately after the preparation and after 4 weeks storing at ambient temperature was respectively 20.1 and 20.2 % (w/w) .
  • each dosage contains about 2% of natamycin.
  • the dosage may be simply diluted 100 to 200 times by mixing with water.
  • a dispenser containing 250 g of the sample 25 g of the natamycin suspension and 225 g of the citric acid solution
  • Dispensing systems suited for simultaneously dosing two separately contained incompatible compounds, are well known. As such, the dispensing system schematically depicted Fig. 3
  • the dispenser shown Fig. 3 is able to simultaneously dose two compounds separately contained m A and B by pressing dosing head C. Pressing dosing head C activates two small pumps which subsequently dispense the two compounds in approximately equal volumes. Depending on the design of the dosing head, the compounds can be dosed in two separate streams or in just one stream.
  • a dispensing unit is required that is able to deliver a stabilized, aqueous enzyme composition together with a non-enzyme containing basic composition m a ratio of for instance 1:2.
  • a dispensing unit is required that is able to deliver a stabilized, aqueous enzyme composition together with a non-enzyme containing basic composition m a ratio of for instance 1:2.
  • Translated to a two-chambered single use pouch this would mean that the chamber containing the enzyme composition contains at least half as much product volume as the other chamber.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
PCT/EP1997/000507 1996-01-31 1997-01-31 Use of compositions comprising stabilized biologically effective compounds WO1997027841A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE69732881T DE69732881T2 (de) 1996-01-31 1997-01-31 Verwendung von zusammensetzungen mit stabilisierten enzymen
DK97904378T DK0817613T3 (da) 1997-01-31 1997-01-31 Anvendelse af præparater, som omfatter stabiliserede enzymer
AT97904378T ATE291897T1 (de) 1996-01-31 1997-01-31 Verwendung von zusammensetzungen mit stabilisierten enzymen
JP9527321A JPH11503465A (ja) 1996-01-31 1997-01-31 安定化された生物学的に有効な化合物を含む組成物の使用
AU17216/97A AU1721697A (en) 1996-01-31 1997-01-31 Use of compositions comprising stabilized biologically effective compounds
MX9707487A MX9707487A (es) 1996-01-31 1997-01-31 Uso de composiciones que comprenden compuestos efectivos biologicamente estabilizados.
BRPI9702049-4A BR9702049B1 (pt) 1996-01-31 1997-01-31 sistema distribuidor contendo dois compartimentos para a dosagem simultánea de duas composições aquosas.
EP97904378A EP0817613B1 (en) 1996-01-31 1997-01-31 Use of compositions comprising stabilized enzymes
CA002216169A CA2216169C (en) 1996-01-31 1997-01-31 Use of compositions comprising stabilized biologically effective compounds
US08/930,685 US6117433A (en) 1996-01-31 1997-01-31 Use of compositions comprising stabilized biologically effective compounds

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
EP96200190 1996-01-31
EP96200190.5 1996-01-31
EP96200594.8 1996-03-08
EP96200594 1996-03-08
EP96201713 1996-06-21
EP96201713.3 1996-06-21
EP96202781.9 1996-10-03
EP96202781 1996-10-03

Publications (1)

Publication Number Publication Date
WO1997027841A1 true WO1997027841A1 (en) 1997-08-07

Family

ID=27443289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/000507 WO1997027841A1 (en) 1996-01-31 1997-01-31 Use of compositions comprising stabilized biologically effective compounds

Country Status (16)

Country Link
US (1) US6117433A (id)
EP (1) EP0817613B1 (id)
JP (1) JPH11503465A (id)
KR (1) KR100517060B1 (id)
CN (1) CN1140261C (id)
AR (1) AR006308A1 (id)
AT (1) ATE291897T1 (id)
AU (1) AU1721697A (id)
BR (1) BR9702049B1 (id)
CA (1) CA2216169C (id)
DE (1) DE69732881T2 (id)
ES (1) ES2237789T3 (id)
ID (1) ID18666A (id)
MX (1) MX9707487A (id)
PT (1) PT817613E (id)
WO (1) WO1997027841A1 (id)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002133A2 (en) * 1997-07-08 1999-01-21 Dsm N.V. Topical application of a combination of benzoyl peroxide and a second active ingredient
US5947335A (en) * 1996-10-15 1999-09-07 Lever Brothers Company Dual compartment package
US6082588A (en) * 1997-01-10 2000-07-04 Lever Brothers Company, Division Of Conopco, Inc. Dual compartment package and pumps
WO2002022101A1 (en) * 2000-09-13 2002-03-21 The Procter & Gamble Company Cosmetic method
WO2002022100A1 (en) * 2000-09-13 2002-03-21 The Procter & Gamble Company Cosmetic method
WO2002022102A1 (en) * 2000-09-13 2002-03-21 The Procter & Gamble Company Cosmetic compositions
WO2002022103A1 (en) * 2000-09-13 2002-03-21 The Procter & Gamble Company Cosmetic compositions
KR100340086B1 (ko) * 1999-08-27 2002-06-12 안용찬 비듬방지용 샴푸조성물
EP1396262A1 (de) * 2002-09-05 2004-03-10 Beiersdorf AG Kosmetikum mit aktivierbaren Pflegekomponenten
WO2005044218A1 (en) * 2003-10-31 2005-05-19 The Procter & Gamble Company Method of providing a blended composition
WO2006020208A2 (en) * 2004-07-26 2006-02-23 Merz Pharma Gmbh & Co. Kgaa Therapeutic composition whit a botulinum neurotoxin
WO2013091684A1 (en) 2011-12-20 2013-06-27 Oriflame Research And Development Ltd. Compounds with anti-aging activities
WO2017148924A1 (en) 2016-02-29 2017-09-08 G.L. PHARMA GmbH Abuse-deterrent pharmaceutical compositions
WO2017148927A1 (en) 2016-02-29 2017-09-08 G.L. PHARMA GmbH Abuse-deterrent pharmaceutical composition
WO2017148919A1 (en) 2016-02-29 2017-09-08 G.L. PHARMA GmbH Abuse-deterrent pharmaceutical compositions
IT201900006994A1 (it) * 2019-05-20 2020-11-20 Biodermol Ambiente S R L Ceppi batterici per uso industriale
US11298307B2 (en) * 2017-03-31 2022-04-12 Amorepacific Corporation Transparent or semitransparent cosmetic composition having enhanced amentoflavone stability

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100351620B1 (ko) * 1999-07-09 2002-09-10 주식회사대성미생물연구소 3차 결정구조의 내열성 효소
US6585984B1 (en) * 2000-03-03 2003-07-01 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Dual composition cosmetic product with a concentration sensitive and an incompatible active respectively placed within first and second compositions
AU2001255487A1 (en) * 2000-04-21 2001-11-07 Nature's Cure Salicylic acid acne spray formulations and methods for treating acne with same
US20030206897A1 (en) * 2000-09-13 2003-11-06 The Procter & Gamble Company Cosmetic compositions
EP1317247A1 (en) * 2000-09-13 2003-06-11 The Procter & Gamble Company Cosmetic method for treatment of skin and/or hair
JP2002326924A (ja) * 2001-05-07 2002-11-15 Hayashibara Biochem Lab Inc 洗顔料
US7364565B2 (en) * 2001-07-27 2008-04-29 Ramot At Tel Aviv University Ltd. Controlled enzymatic removal and retrieval of cells
GB0126433D0 (en) * 2001-11-03 2002-01-02 Astrazeneca Ab Compounds
CA2465068A1 (en) * 2001-11-03 2003-05-15 Astrazeneca Ab Quinazoline derivatives as antitumor agents
US20080152722A1 (en) * 2002-01-31 2008-06-26 Norburn Robert B Skin care composition
US20080152613A1 (en) * 2002-01-31 2008-06-26 Norburn Robert B Method for manufacturing a skin care composition
CA2416305A1 (en) * 2002-01-31 2003-07-31 Davies, John Shaving, after-shave, and skin conditioning compositions
TWI324597B (en) * 2002-03-28 2010-05-11 Astrazeneca Ab Quinazoline derivatives
US6924285B2 (en) 2002-03-30 2005-08-02 Boehringer Ingelheim Pharma Gmbh & Co. Bicyclic heterocyclic compounds, pharmaceutical compositions containing these compounds, their use and process for preparing them
FR2840215B1 (fr) * 2002-06-03 2004-08-27 Oreal Composition contenant un actif susceptible d'etre oxyde par un hydroperoxyde, une lipoxygenase et un substrat et procede mettant en oeuvre cette composition
GB0309009D0 (en) * 2003-04-22 2003-05-28 Astrazeneca Ab Quinazoline derivatives
GB0309850D0 (en) * 2003-04-30 2003-06-04 Astrazeneca Ab Quinazoline derivatives
EP1508573B1 (en) * 2003-08-20 2009-10-28 Seikagaku Corporation Stabilizing agent for enzymes
DE10342211A1 (de) * 2003-09-12 2005-04-07 Beiersdorf Ag Kosmetikum
CA2539022A1 (en) * 2003-09-16 2005-03-24 Astrazeneca Ab Quinazoline derivatives as tyrosine kinase inhibitors
GB0321648D0 (en) * 2003-09-16 2003-10-15 Astrazeneca Ab Quinazoline derivatives
EP1670782B1 (en) * 2003-09-19 2007-02-14 AstraZeneca AB Quinazoline derivatives
UA83252C2 (uk) * 2003-09-19 2008-06-25 Астразенека Аб Похідні хіназоліну, спосіб їх одержання (варіанти), фармацевтична композиція на їх основі, проміжна сполука
JP2007506716A (ja) * 2003-09-25 2007-03-22 アストラゼネカ アクチボラグ キナゾリン誘導体
ATE548127T1 (de) * 2003-10-03 2012-03-15 Kao Corp Abführvorrichtung
CA2542198A1 (en) * 2003-10-10 2005-04-21 Cosmedical Aps Hair growth inhibition
GB0326459D0 (en) * 2003-11-13 2003-12-17 Astrazeneca Ab Quinazoline derivatives
EP1756088A1 (en) * 2004-06-04 2007-02-28 AstraZeneca AB Quinazoline derivatives as erbb receptor tyrosine kinases
JP2005350384A (ja) * 2004-06-09 2005-12-22 Blc:Kk 基礎化粧方法
DE602005026865D1 (de) 2004-12-14 2011-04-21 Astrazeneca Ab Pyrazolopyrimidinverbindungen als antitumormittel
ATE521603T1 (de) * 2005-02-26 2011-09-15 Astrazeneca Ab Chinazolinderivate als tyrosinkinaseinhibitoren
GB0504474D0 (en) * 2005-03-04 2005-04-13 Astrazeneca Ab Chemical compounds
GB0508717D0 (en) * 2005-04-29 2005-06-08 Astrazeneca Ab Chemical compounds
GB0508715D0 (en) * 2005-04-29 2005-06-08 Astrazeneca Ab Chemical compounds
US7378084B2 (en) * 2005-07-01 2008-05-27 Playtex Products, Inc. Sunless tanning composition and method of sunless tanning
AU2006277621A1 (en) * 2005-08-10 2007-02-15 Maya-Biotech Ltd. Drug delivery system for topical administration
US20090239861A1 (en) * 2005-09-20 2009-09-24 Robert Hugh Bradbury Quinazoline derivatives as anticancer agents
ATE488513T1 (de) * 2005-09-20 2010-12-15 Astrazeneca Ab 4-(1h-indazol-5-ylamino)chinazolinverbindungen als inhibitoren der erbb-rezeptortyrosinkinase zur behandlung von krebs
EP1960371B1 (en) * 2005-12-02 2009-09-16 AstraZeneca AB Quinazoleine derivatives used as inhibitors of erbb tyrosine kinase
US20100222344A1 (en) * 2005-12-02 2010-09-02 Astrazeneca Ab 4-anilino-substituted quinazoline derivatives as tyrosine kinase inhibitors
EP1921070A1 (de) * 2006-11-10 2008-05-14 Boehringer Ingelheim Pharma GmbH & Co. KG Bicyclische Heterocyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstelllung
EA200901041A1 (ru) * 2007-02-06 2010-02-26 Бёрингер Ингельхайм Интернациональ Гмбх Бициклические гетероциклы, содержащие эти соединения лекарственные средства, их применение и способ их получения
US8569221B2 (en) * 2007-08-30 2013-10-29 Kimberly-Clark Worldwide, Inc. Stain-discharging and removing system
BRPI0907916A2 (pt) 2008-02-07 2015-07-28 Boehringer Ingelheim Int Heterociclos espirociclos, medicamentos contendo esses compostos, e processos para preparar os mesmos
NZ589883A (en) * 2008-05-13 2012-06-29 Astrazeneca Ab Fumarate salt of 4- (3-chloro-2-fluoroanilino) -7-methoxy-6- { [1- (n-methylcarbamoylmethyl) piperidin- 4-yl] oxy} quinazoline
EP2313397B1 (de) * 2008-08-08 2016-04-20 Boehringer Ingelheim International GmbH Cyclohexyloxy-substituierte heterocyclen, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
US20120076742A1 (en) * 2010-04-21 2012-03-29 Phillips D Howard Topical drug delivery system with dual carriers
US9931657B2 (en) * 2014-04-18 2018-04-03 The Clorox Company Dual chamber spray dispenser with a single delivery tube
CN105462950B (zh) * 2016-02-16 2017-09-26 上海青瑞食品科技有限公司 一种液体酶制剂及制备方法
FR3052035B1 (fr) 2016-06-02 2020-10-09 Oreal Systeme de distribution d'un produit cosmetique
CN110494116A (zh) 2017-03-27 2019-11-22 赢创德固赛有限公司 用于制备含神经酰胺的配制物的方法和产品
AU2018255972A1 (en) * 2017-04-21 2019-10-31 Phi Therapeutics, Inc. Compositions comprising propionibacterium acnes bacteriophages for treating acne
EP4062908A4 (en) * 2019-11-22 2024-01-24 Samyang Holdings Corporation KIT FOR PREPARING A NANOPARTICLE COMPOSITION FOR DRUG DELIVERY
KR20230029260A (ko) * 2021-08-24 2023-03-03 (주)아모레퍼시픽 효소 손상을 방지하는 화장료 조성물 및 이를 저장하는 화장품 용기

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR6318M (id) * 1967-04-04 1968-09-23
US4243543A (en) * 1979-05-11 1981-01-06 Economics Laboratory, Inc. Stabilized liquid enzyme-containing detergent compositions
US4556554A (en) * 1981-06-01 1985-12-03 Germaine Monteil Cosmetiques Corp. Immobilized enzymes
WO1991000094A1 (en) * 1989-06-28 1991-01-10 Finn Tranberg A new papaverine injection system
WO1991009941A1 (en) * 1989-12-21 1991-07-11 Novo Nordisk A/S Enzyme containing preparation and detergent containing such preparation
DE4121820A1 (de) * 1991-07-02 1993-01-07 Basf Ag Mikrokapseldispersionen
WO1993015726A1 (en) * 1992-02-18 1993-08-19 Baroody Lloyd J Compositions of clindamycin and benzoyl peroxide for acne treatment
EP0710478A1 (fr) * 1994-10-24 1996-05-08 L'oreal Produit pour application topique contenant une lipase et un precurseur d'actif

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2032202A5 (id) * 1969-02-21 1970-11-20 Oreal
US3834075A (en) * 1973-02-12 1974-09-10 Tre X Injector Syst Co Tree trunk pressure feeding device
US3992813A (en) * 1975-07-07 1976-11-23 Freshel David C Tree treating system
AU3667189A (en) * 1988-06-23 1990-01-04 Unilever Plc Enzyme-containing liquid detergents
US4959179A (en) * 1989-01-30 1990-09-25 Lever Brothers Company Stabilized enzymes liquid detergent composition containing lipase and protease
DE4023601A1 (de) * 1990-07-25 1992-01-30 Henkel Kgaa Fluessige enzymzubereitung
US5252312A (en) * 1992-09-30 1993-10-12 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Package effervescible composition
ATE165969T1 (de) * 1993-03-31 1998-05-15 Schering Plough Healthcare Sonnenlose bräunungsmethode und -apparat
EP0731834B1 (en) * 1993-12-03 2000-05-24 Buckman Laboratories International, Inc. Enzyme stabilization by block-copolymers
US5843409A (en) * 1994-08-08 1998-12-01 Colgate Palmolive Company Two component dentifrice for the treatment of dentinal hypersensitivity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR6318M (id) * 1967-04-04 1968-09-23
US4243543A (en) * 1979-05-11 1981-01-06 Economics Laboratory, Inc. Stabilized liquid enzyme-containing detergent compositions
US4556554A (en) * 1981-06-01 1985-12-03 Germaine Monteil Cosmetiques Corp. Immobilized enzymes
WO1991000094A1 (en) * 1989-06-28 1991-01-10 Finn Tranberg A new papaverine injection system
WO1991009941A1 (en) * 1989-12-21 1991-07-11 Novo Nordisk A/S Enzyme containing preparation and detergent containing such preparation
DE4121820A1 (de) * 1991-07-02 1993-01-07 Basf Ag Mikrokapseldispersionen
WO1993015726A1 (en) * 1992-02-18 1993-08-19 Baroody Lloyd J Compositions of clindamycin and benzoyl peroxide for acne treatment
EP0710478A1 (fr) * 1994-10-24 1996-05-08 L'oreal Produit pour application topique contenant une lipase et un precurseur d'actif

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 7250, Derwent World Patents Index; AN 72-79393t, XP002031221 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947335A (en) * 1996-10-15 1999-09-07 Lever Brothers Company Dual compartment package
US6082588A (en) * 1997-01-10 2000-07-04 Lever Brothers Company, Division Of Conopco, Inc. Dual compartment package and pumps
WO1999002133A2 (en) * 1997-07-08 1999-01-21 Dsm N.V. Topical application of a combination of benzoyl peroxide and a second active ingredient
WO1999002133A3 (en) * 1997-07-08 1999-04-01 Gist Brocades Bv Topical application of a combination of benzoyl peroxide and a second active ingredient
US6448233B1 (en) 1997-07-08 2002-09-10 Cosmoferm B.V. Topical application of a combination of benzoyl peroxide and a second active ingredient
KR100340086B1 (ko) * 1999-08-27 2002-06-12 안용찬 비듬방지용 샴푸조성물
WO2002022101A1 (en) * 2000-09-13 2002-03-21 The Procter & Gamble Company Cosmetic method
WO2002022100A1 (en) * 2000-09-13 2002-03-21 The Procter & Gamble Company Cosmetic method
WO2002022102A1 (en) * 2000-09-13 2002-03-21 The Procter & Gamble Company Cosmetic compositions
WO2002022103A1 (en) * 2000-09-13 2002-03-21 The Procter & Gamble Company Cosmetic compositions
EP1396262A1 (de) * 2002-09-05 2004-03-10 Beiersdorf AG Kosmetikum mit aktivierbaren Pflegekomponenten
WO2005044218A1 (en) * 2003-10-31 2005-05-19 The Procter & Gamble Company Method of providing a blended composition
EP2266600A3 (en) * 2004-07-26 2012-11-21 Merz Pharma GmbH & Co. KGaA Therapeutic composition whit a botulinum neurotoxin
US9220783B2 (en) 2004-07-26 2015-12-29 Merz Pharma Gmbh & Co. Kgaa Therapeutic composition with a botulinum neurotoxin
EA011652B1 (ru) * 2004-07-26 2009-04-28 Мерц Фарма Гмбх Унд Ко. Кгаа Терапевтические композиции с нейротоксином ботулина
US7879341B2 (en) 2004-07-26 2011-02-01 Merz Pharma Gmbh & Co. Kgaa Therapeutic composition with a botulinum neurotoxin
WO2006020208A2 (en) * 2004-07-26 2006-02-23 Merz Pharma Gmbh & Co. Kgaa Therapeutic composition whit a botulinum neurotoxin
US8372645B2 (en) 2004-07-26 2013-02-12 Merz Pharma Gmbh & Co. Kgaa Therapeutic composition with a botulinum neurotoxin
WO2006020208A3 (en) * 2004-07-26 2006-06-01 Merz Pharma Gmbh & Co Kgaa Therapeutic composition whit a botulinum neurotoxin
US8652489B2 (en) 2004-07-26 2014-02-18 Merz Pharma Gmbh & Co., Kgaa Therapeutic composition with a botulinum neurotoxin
US10105421B2 (en) 2004-07-26 2018-10-23 Merz Pharma Gmbh & Co. Kgaa Therapeutic composition with a botulinum neurotoxin
US9050367B2 (en) 2004-07-26 2015-06-09 Merz Pharma Gmbh & Co. Kgaa Therapeutic composition with a botulinum neurotoxin
WO2013091684A1 (en) 2011-12-20 2013-06-27 Oriflame Research And Development Ltd. Compounds with anti-aging activities
EP2886163A1 (en) 2011-12-20 2015-06-24 Oriflame Research and Development Ltd. Compounds with Anti-aging activities
EP2862600A1 (en) 2011-12-20 2015-04-22 Oriflame Research and Development Ltd. Compounds with Anti-aging activities
WO2017148924A1 (en) 2016-02-29 2017-09-08 G.L. PHARMA GmbH Abuse-deterrent pharmaceutical compositions
WO2017148927A1 (en) 2016-02-29 2017-09-08 G.L. PHARMA GmbH Abuse-deterrent pharmaceutical composition
WO2017148919A1 (en) 2016-02-29 2017-09-08 G.L. PHARMA GmbH Abuse-deterrent pharmaceutical compositions
EP3560484A1 (en) 2016-02-29 2019-10-30 G.L. Pharma GmbH Abuse-deterrent pharmaceutical composition
US11077196B2 (en) 2016-02-29 2021-08-03 G.L. PHARMA GmbH Abuse-deterrent pharmaceutical composition
US11298307B2 (en) * 2017-03-31 2022-04-12 Amorepacific Corporation Transparent or semitransparent cosmetic composition having enhanced amentoflavone stability
IT201900006994A1 (it) * 2019-05-20 2020-11-20 Biodermol Ambiente S R L Ceppi batterici per uso industriale
WO2020234760A1 (en) * 2019-05-20 2020-11-26 Biodermol Ambiente S.R.L. Bacterial strains for industrial use

Also Published As

Publication number Publication date
EP0817613B1 (en) 2005-03-30
AU1721697A (en) 1997-08-22
DE69732881D1 (de) 2005-05-04
PT817613E (pt) 2005-06-30
CN1178460A (zh) 1998-04-08
KR100517060B1 (ko) 2006-05-25
AR006308A1 (es) 1999-08-25
DE69732881T2 (de) 2006-04-06
BR9702049B1 (pt) 2010-08-10
CA2216169C (en) 2007-01-23
EP0817613A1 (en) 1998-01-14
ES2237789T3 (es) 2005-08-01
CN1140261C (zh) 2004-03-03
CA2216169A1 (en) 1997-08-07
US6117433A (en) 2000-09-12
JPH11503465A (ja) 1999-03-26
ATE291897T1 (de) 2005-04-15
ID18666A (id) 1998-04-30
MX9707487A (es) 1997-11-29
BR9702049A (pt) 1998-01-13
KR19980703467A (ko) 1998-11-05

Similar Documents

Publication Publication Date Title
US6117433A (en) Use of compositions comprising stabilized biologically effective compounds
JP5165683B2 (ja) 安定化した活性成分組成物
US5607681A (en) Anti-microbial compositions
CN1688280B (zh) 含抗斑酶的双组分组合物
US6406897B1 (en) Modified protein, method for preparation thereof and compositions for external application containing the modified protein
US6106828A (en) Conjugation of polypeptides
US5169631A (en) Topical antimicrobial composition and uses
US20080152601A1 (en) Dual Component Dental Composition Containing Enzyme
CN103987367A (zh) 提供酶催化反应的系统
CA2251925A1 (en) Compositions for the removal of dental plaque
JP2006096767A (ja) 適用時に調製されるビタミンcを含む組成物、局所使用のためのビタミンcを生成するための酵素の使用、及び化粧方法
AU734737B2 (en) Plaque-inhibiting oral compositions
US6368595B2 (en) Topical application of enzymes using a peelable film
EP0258186A2 (en) Enzyme containing denture cleansers and method of use
KR960016189B1 (ko) 안정화한 효소의 캡슐을 함유하는 화장료
RU2110985C1 (ru) Косметическая очистительная маска для ухода за кожей лица
KR19980020735A (ko) 안정화한 효소의 캡슐을 함유하는 화장료
KR20090081958A (ko) 피부외용제 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190052.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG

WWE Wipo information: entry into national phase

Ref document number: 1997904378

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2216169

Country of ref document: CA

Ref document number: 2216169

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1997 527321

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970706871

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997904378

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08930685

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1019970706871

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997904378

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970706871

Country of ref document: KR