WO1997024302A1 - Procede de purification d'une substance cristalline - Google Patents

Procede de purification d'une substance cristalline Download PDF

Info

Publication number
WO1997024302A1
WO1997024302A1 PCT/JP1996/003668 JP9603668W WO9724302A1 WO 1997024302 A1 WO1997024302 A1 WO 1997024302A1 JP 9603668 W JP9603668 W JP 9603668W WO 9724302 A1 WO9724302 A1 WO 9724302A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystals
solvent
specific substance
substance
concentration
Prior art date
Application number
PCT/JP1996/003668
Other languages
English (en)
French (fr)
Inventor
Koichi Nagaoka
Koji Yamamoto
Masahiro Motoyuki
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to EP96941884A priority Critical patent/EP0939068A1/en
Priority to KR1019980704904A priority patent/KR19990076779A/ko
Publication of WO1997024302A1 publication Critical patent/WO1997024302A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/14Purification; Separation; Use of additives by crystallisation; Purification or separation of the crystals

Definitions

  • the present invention relates to a method for producing a specific substance with high yield and high purity from a mixture containing a crystalline specific substance.
  • BACKGROUND ART Conventional methods for separating and purifying a specific substance from a mixture containing the specific substance include a distillation method using a difference in boiling point and a cooling crystallization method using a difference in solubility in a solvent depending on temperature.
  • DMN- dimethylnaphthalene
  • 2.6-DMN can be obtained by concentrating coal fraction or petroleum fraction by distillation, or by adding methyl group to naphthalene, or cyclizing hydrocarbon, etc. Obtained as a mixture containing the DMN isomer.
  • DMN has 10 isomers, and the boiling points of these isomers are close to each other, so there is a natural limit to concentration by fractional distillation. T, which can only be increased to about 40%.
  • JP-A-63-2755278 a pressure crystallization method
  • JP-A-63-2755278 a pressure crystallization method
  • a raw material mixture must be used.
  • the 2.6-DMN concentration must be about 50% or more, and high-purity 2.
  • the raw material mixture is first concentrated to increase the 2.6-DMN concentration to over 40%. It is necessary to carry out final purification by pressure crystallization after increasing the pressure to, and the procedure (A) below can be considered.
  • the raw material mixture is cooled to a slurry state containing the crystal of the target substance, and in the step (2), the slurry is solid-liquid by a centrifuge or a pressing machine. Separate the mother liquor containing a large amount of impurities through a separator. And increase the concentration of the target substance to the level necessary for the subsequent purification.
  • the concentrate obtained in the step (2) is cooled to a slurry state in which a target substance is partially deposited.
  • the slurry is subjected to pressure crystallization. After the crystals of the target substance are increased by pressurization, the mother liquor containing a large amount of impurities is discharged to obtain high-purity 2,6-DMN (purified product).
  • the concentration of the specific substance in the slurry used as the pressure crystallization raw material is low (about 70%).
  • the precipitation pressure should be kept relatively low to minimize the precipitation of impurities, and the perspiration that occurs at the end of pressure crystallization should be sufficiently removed to remove impurities adhering to the surface of the crystal as much as possible. And the recovery rate of the target substance will drop significantly.
  • pressure crystallization was divided into multiple stages, and the specific substance concentration was, for example, 70% ⁇ 80% in the first stage, 80% ⁇ 90% in the second stage, and 90 ° / o ⁇ 99% in the final stage. Power that can be gradually increased in this way ⁇ , This method is not only low in work efficiency, but also increases the total loss by multiplying I will do it.
  • the following method (B) can be considered as another concentration and purification method.
  • step (1) the raw material mixture is cooled to a slurry state containing crystals of the target substance, and In the process, the slurry is subjected to a solid-liquid separator such as a centrifuge or a crusher to separate and remove the mother liquor containing a large amount of impurities, thereby increasing the concentration of the target substance to a level necessary for the purification in the next step.
  • a solid-liquid separator such as a centrifuge or a crusher to separate and remove the mother liquor containing a large amount of impurities, thereby increasing the concentration of the target substance to a level necessary for the purification in the next step.
  • the solid-liquid separation seawater step (2) the residue remains on the crystals. It is necessary to reduce impurities as much as possible by reducing the amount of adhering mother liquor (liquid content) to about 10% or less.
  • the cooling crystallization method After concentrating to 90% level as described above, purify by cooling crystallization in the final step (3).
  • the slurry concentration (crystal concentration in solid-liquid coexisting materials) will fluctuate greatly due to a slight temperature change, and Since handling and solid-liquid separation become difficult, it is necessary to perform cooling crystallization after diluting with a solvent.
  • the solvent in the case of 2.6-DMN, aromatic solvents such as benzene and alcohols are used.
  • the slurry in which the target substance has precipitated is separated into solid and liquid to separate and remove the mother liquor and the target substance is collected as crystals. Can also be adopted.
  • the crystal concentration in the slurry must be reduced due to the necessity of improving the handleability. It is not possible to sufficiently increase the recovery rate of the target substance as a whole in the treatment process. In other words, considering the transport and handling of the slurry containing crystals, the crystal concentration in the slurry that can be handled is limited to about 20%, and it is not possible to obtain a slurry with a crystal content higher than this in a single concentration step. It is difficult, and the rate of recovery is naturally low due to the control of the gloom.
  • the melting point of 2.6-DMN is 110, and in order to concentrate such high-melting substances by the cooling crystallization method, the equipment temperature must be raised to a higher temperature. In addition to complicating the process, the temperature control is also difficult because sweat purification must be performed at a high temperature, and the ultimate purity cannot be sufficiently increased.
  • the present invention has been made in view of the problems of the prior art as described above, and its object is to concentrate and purify the specific substance from a raw material mixture having a low concentration of the specific substance by a relatively simple procedure. It aims to provide a method that can be performed efficiently.
  • the purification method of a crystalline substance according to the present invention is a method of purifying a specific substance from a mixture containing the specific substance, and comprises the following (1) and (2a): It is characterized by performing the process or the following processes (1) and (2b).
  • the above mixture which is liquid or a slurry in which the specified substance is partially crystallized, is subjected to a crystallization operation under a reduced pressure to increase the amount of crystals of the specified substance and to concentrate crystals of the specified substance.
  • (2b) a step of washing the concentrated crystals of the specific substance obtained above with a solvent capable of dissolving the crystals.
  • the mother liquor after separation of the specific substance generated by recrystallization in the step (2a) or the washing liquid obtained in the step (2b) contains the target substance. Since the specified substance is contained in a considerable amount, the solvent is distilled off from these substances and returned to the above steps (1) and (2a) or the steps (1) and (2b) again. It is preferable to perform the treatment again because the yield of the specific substance can be further increased.
  • the solvent obtained by distilling the mother liquor or the washing solution in the above step is returned as the solvent used in the above-mentioned step (2a) or (2b) and is recycled so that the consumption of the solvent can be reduced. It is preferable because it can be reduced.
  • FIG. 1 is a flowchart showing the enrichment / purification method employed in the present invention
  • FIG. 2 is a flowchart showing another enrichment / purification method employed in the present invention
  • FIG. 4 is a flow chart showing a conventional condensing / purifying method
  • FIG. 4 is another flow chart showing a conventional enrichment / purifying method.
  • BEST MODE FOR CARRYING OUT THE INVENTION As described above, the purification method employed in the present invention employs pressure crystallization for concentration of a specific substance performed as a pre-purification step, and a solvent is used in the final purification step.
  • the above-mentioned problems pointed out in the prior art can be solved by combining these with cooling crystallization or solvent washing, and specific substances can be obtained with high purity and high yield by relatively simple operations and procedures. It was a success.
  • Fig. 1.2 is a flow chart showing the purification procedure employed in the present invention.
  • Fig. 1 shows the method according to claim 1 and
  • Fig. 2 shows the procedure when carrying out the method according to claim 4. Is shown.
  • the raw material mixture having the target substance concentration substantially the same as that of the conventional method is cooled to form a slurry containing crystals of the target substance, and then the pressure crystallization is performed in the step (2) ⁇ Now.
  • the mother liquor remaining in the crystal may have a relatively high impurity concentration, so the mother liquor is discharged at a slightly higher pressure than in the case of purification. By doing so, it is possible to reduce the amount of the target substance discharged together with the mother liquor, and to increase the recovery rate of the target substance Can be.
  • the concentrated crystals are dissolved in an appropriate solvent in step (3), cooled and crystallized by a conventional method, and solidified in step (2).
  • Liquid separation may be performed to obtain the target substance as high-purity crystals. Since the concentration of the target substance in the concentrated crystallization as a raw material in the cooling crystallization step (3) has been increased to about 90% in the pressure crystallization step (2) as described above, the load during the cooling crystallization is small. In addition, the loss of the target substance is suppressed, and the target substance of low purity can be obtained in high yield.
  • the cooling crystallization method using a solvent was adopted in the step (3), but in the method of Fig. 2, the purification method by solvent washing in (2) was used instead. That is, in the pressure crystallization step (1), the target substance in the mother liquor is crystallized and grown with the target substance as a nucleus, and the purity of the concentrated crystal is reduced as described above on the surface of the crystal. Since the mother liquor remaining on the mother liquor is adhered, the crystal is washed with a suitable solvent, the mother liquor remaining on the surface is washed with the solvent, and the mother liquor is subjected to solid-liquid separation in step 4. By removing the phase, the target substance can be obtained as high-purity crystals from the concentrated crystals.
  • the mother liquor or the washing liquid contains about 60 to 75% of the target substance. Therefore, this mother liquor and washing solution can be recovered as a whole by concentrating and refining the system by distilling off the solvent and returning it to the surrounding starting material as shown by the broken lines in Figs. This is preferable because the rate can be increased.
  • the solvent removed in this step is at least one of the solvents used in the cooling crystallization (purification) step (3) or the solvent washing (purification) step (2) as shown by the broken line in Fig. 1.2. Returned as a department and used repeatedly This is preferable because the consumption of the solvent can be reduced.
  • the concentration of the slurry is hindered by adopting the pressure crystallization method for reducing the specific substance concentration to about 90% from the raw material having the specific substance concentration of about 40%. Not only increase the recovery rate of the target substance but also reduce the subsequent purification load.
  • purification from high-concentration products can be performed efficiently by simple operations.
  • the cooling crystallization method or solvent washing method that uses a solvent that can be used, it is possible to recover a high-purity specific substance in good yield from a raw material mixture with a relatively low concentration by simple operation and procedure. .
  • the specific operating conditions (temperature, pressure, etc.) of the pressure crystallization / cooling crystallization employed in the present invention can be determined by appropriately setting the optimal conditions according to the type of the target substance and the impurities.
  • the crystallization operation pressure for increasing the amount of crystal of the specific substance in the above step is 500 to 3.00 kg / cm 2 x, more preferably 1.0000 to 20,000. It is desirable to set in the range of kg / cin 2 .
  • the type of solvent used for cooling crystallization or washing for purification may be appropriately selected and determined according to the type of the target substance, for example, when the target substance is 2.6-DMN, Preferred solvents for cooling and crystallization used in step (2a) are lower alcohol solvents such as methanol and ethanol, and preferred solvents for washing used in step (2b) are benzene, toluene and xylene. And the like.
  • 2,6-DMN is a typical example of the specific substance for purification purposes to which the method of the present invention is applied, but the point is that in the phase diagram of the mixture solution containing the specific substance for purification purpose, The same applies to a mixture of the type in which the specific substance is firstly precipitated.
  • Such compounds include, in addition to the above 2.6-DMN, for example, phenols, cresols, naphthalenes, halogenated benzenes, aromatic compounds, and aromatic compounds such as alkylbenzenes, alkylnaphthalenes.
  • Heterocyclic compounds having nitrogen in the ring, such as indole, are exemplified. Examples Hereinafter, the present invention will be described in more detail with reference to examples.However, the present invention is not limited to the following examples, and may be appropriately changed within a range that can conform to the spirits described above and below. It is also possible to implement the present invention, and all of them are included in the technical scope of the present invention. In the following, “%” means “% by weight”.
  • a mixture consisting of 2.6-DMN content: 40%, 2,7-DMN content S: 16%, and other DMN isomer content: 44% obtained by the precooling crystallization method was used as a raw material.
  • 100 kg was heated to 48 ⁇ to make the slurry concentration 20%, which was subjected to high pressure crystallization to concentrate 2.6-DMN.
  • the crystal was crystallized by maintaining the pressure at 1500 kcm 2 and the temperature at 70 ° C. for 3 minutes, and then the mother liquor was discharged through a filter.
  • the 2,6-DMN concentration was 90%. 28 kg of a cake-like crude crystal was obtained.
  • the crude crystal was taken out of the pressure vessel, and the weight thereof was increased by a factor of 5 by weight.
  • the mixture was heated to 6 CTC to dissolve all of the crude crystals, and then the solution was cooled to 20 to precipitate the crystals of 2.6-DMN, followed by solid-liquid separation using a centrifuge.
  • 18.2 kg of crystals having a purity of 2,6-DMN of 99% 45.5% based on the amount of 2,6-DMN in the raw material
  • the DMN isomer mixture having the same composition as in Example 1 obtained by the precooling crystallization method was used as a raw material, and pressure reduction was performed in the same manner as in Example 1 to obtain a 2.6-DMN concentration. Yielded 28 kg of 90% cake coarse crystals.
  • Comparative Example 1 The conventional method described in (A) above, that is, “a method of concentrating by a cooling crystallization method and then purifying by a pressure crystallization method” was adopted, and a raw material mixture 100 having the same component composition as that used in Example 1 was used. k g and was warmed slide Li one concentration of 20% to 48 e C. Then, the slurry was subjected to a slight compression and solid-liquid separation to obtain 28.6 kg of a concentrate with a concentration of 70% of 2.6-DMN containing a considerable amount of mother liquor in the space between the crystals. .
  • the concentrate was heated at 87 to make the slurry concentration 20%, and pressure crystallization and solid-liquid separation were performed according to Example 1.
  • concentration of the target substance in the mixture subjected to pressure crystallization is low (70%)
  • perspiration, washing, and squeezing during solid-liquid separation must be performed sufficiently to ensure a purity of 99% level.
  • the recovery rate of 2.6-DMN is only about 60% in Examples 1 and 2 and 53% in Example 3, which is remarkably inferior in the recovery rate as the target substance. there were.
  • the present invention has been formed as described above, and by concentrating by pressure crystallization and purifying by rejection crystallization or purifying by washing well, a high-purity specific substance can be obtained from a mixture containing the specific substance. Can be recovered with a relatively simple operation in good yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 眘
結晶性物質の精製方法 技術分野 本発明は、 結晶性の特定物質を含む混合物から該特定物質を高収 率且つ高純度で得ることのできる稍製方法に関し、 この方法は、 た とえば石炭や石油留分として得られ、 あるいはナフタレンへのメチ ル基の付加もしくは炭化水素の環化反応等によって得られるジメチ ルナフタレン異性体の混合物から、 高純度の 2 . 6 —ジメチルナフ タレンを得る方法などとして有効に活用することができる。 背景技術 特定物質を含む混合物から該特定物質を分離して精製する方法と しては、 従来より沸点差を利用した蒸留法、 温度による溶剤への溶 解度差を利用した冷却晶析法等が汎用されており、 また最近では、 圧力差を利用した圧力晶析法等も提案されている。 しかしながら何 れの方法にしても、 特定物質濠度の低い原料混合物から特定物質を 一段の処理で高純度かつ高収率に精製することは困難であり、 通常 は、 比較的低濃度の原料混合物を複数段の処理に付して逐次特定物 質澳度を高めていく方法を採用しているが、 特に特定物質と共に物 性 (沸点や溶剤に対する溶解度など) の近似した他の物質が含まれ ている場合は、 特定物質の濃縮乃至精製に様々の問題が生じてく る。
例えば 2 , 6 —ジメチルナフタレン (以下、 ジメチルナフタレン を D M Nと略記する-) を精製する場合を例にとって説明すると、 2. 6 - DMNは、 石炭留分ゃ石油留分から蒸留等によって濃縮す るか、 或はナフタレンへのメチル基の付加反応、 炭化水素の環化反 応等によって得られるが、 いずれも複数の DMN異性体を含む混合 物として得られる。 DMNは 1 0種の異性体を有しており、 それら 異性体の沸点は互いに近接しているので、 分別蒸留による濃縮には おのずと限界があり、 2. 6— DMNとしての濃度で 1 0〜40 % 程度にまでしか高めることができな t、。
また本出願人は 2, 6— DMNの効率的な精製法として先に圧力 晶析法 (特開昭 63 - 275528号) を提案したが、 この方法を 効率よく実施するには、 原料混合物としての 2. 6 - DMN濃度が 50 %程度以上でなければならず、 2, 6 - DMN饞度が 1 0〜 40%である通常の原料混合物を該圧力晶析にかけても、 高純度の 2. 6— DMNを得ることは難しい。
そこで、 上記の圧力晶析法を利用して高純度の 2, 6 - DMNを 得ようとする場合は、 まず原料混合物を濃縮して 2. 6 - DMN濃 度を 40 %程度を超える'濃度にまで高めてから圧力晶析による最終 的な精製を行なう必要があり、 その手順としては、 下記 (A) の方 法が考えられる。
(A) 冷却晶析法により濃縮してから圧力晶析法で精製する方法 処理手順 (図 3のフロー図参照) :
原料混合物 (2. 6 - DMN濃度: 40%以下) → (1)濃縮のた めの冷却→ (2)固液分離 (2, 6一 DMN澹度: 40 %以下—約 70%) → (3)精製のための予備冷却→ (4)圧力晶析 (2. 6 - DMN濃度:約 70%→99%以上) —精製品
即ち、 まず (1)の工程では、 原料混合物を冷却して目的物質の桔 晶を含むスラリ一状態とし、 (2)の工程で該スラリ一を遠心分離機 や圧搾 «過機等の固液分離機にかけて不純物を多く含んだ母液を分 離除去し、 次工程の精製に必要なレベルまで目的物質濃度を高め る。 次いで (3)の工程では、 (2)の工程で得た濃縮物を冷却して目 的物質が一部析出したスラリー状態とし、 (4) の工程で該スラリー を圧力晶析に付し、 加圧により目的物質の結晶を増加させてから、 不純物を多く含んだ母液を排出し、 高純度の 2, 6 -DMN (精製 品) を得る。
上記 (4)の圧力晶析工程では、 圧力晶析の原料となるスラリー中 の特定物質濃度が低い (70%程度) ので、 これを一気に 99%程 度の高純度まで精製するには、 晶析圧力を相対的に低く抑えて不純 物の析出を可及的に抑えると共に、 圧力晶析末期に行なわれる発汗 を十分に行なつて桔晶表面に付着した不純物を可及的に除去しなけ ればならず、 目的物質の回収率は大幅に低下してくる。
また、 圧力晶析を複数段に分け、 特定物質濃度をたとえば第 1段 階で 70 %→80%、 第 2段階で 80%→90%、 最終段階で 90 °/o→99%と言ったふうに順次高めていくことも可能である力《、 こ の方法は作業効率が低い上に各段階での□スを掛け合わせたトー タルロスも多くなるため、 目的物質の回収率も大幅に低下してく る。
また他の濃縮 ·精製法として下記 (B) の方法が考えられる。
(B) 濃縮、 精製ともに冷却晶析を採用する方法
処理手順 (図 4のフロー図参照) :
原料混合物 (2, 6 - DMN濃度: 40%以下) → (1)冷却晶析 による濃縮— (2)固液分離 (2. 6 - DMN濃度: 40%以下—約 7 0 %) → (3)溶剤を用いた冷却晶析" * (4)固液分離 (2, 6 - DMN '濃度:約 70%~>99%以上) →精製品
即ち上記 (A) の方法と同様にして、 まず (1)の工程では、 原料 混合物を冷却して目的物質の結晶を含むスラ リー状態とし、 (2) の 工程で該スラリーを遠心分離機や圧搾 «過機等の固液分離機にかけ て不純物を多く含んだ母液を分離除去し、 次工程の精製に必要なレ ベルまで目的物質 ¾度を高める。 このとき、 最終の精製を冷却晶析 によって行なうには、 該精製工程での原料濃度をかなり高くしてお くことが必要であり、 (2) の固液分鱸工程では、 結晶に付着残存す る母液の付着量 (含液率) を 1 0 %程度以下にして不純物を可及的 に除去することが必要となる。
従ってこの工程では、 分離末期の発汗を十分に行なうと共に、 圧 搾' 過など母液を高度に分離することのできる固液分離法を採用し て不純物を十分に除去しなければならず、 母液と共に排出される目 的物質の量はおのずと多くなるため、 目的物質の回収率は低下して くる。 また、 冷却晶析による '«縮を複数段に分け、 特定物質濃度を たとえば第 1段階で 4 0 %→6 0 %、 第 2段階で 6 0 %— 8 0 %、 最終段階で 8 0 %→9 0 %と言ったふうに順次高めていくことも可 能であるが、 この方法は作業効率が低い上に各段階でのロスを掛け 合わせたトータルロスも多くなるため、 目的物質の回収率も大幅に 低下してくる。
上記の様にして 9 0 %レベルにまで濃縮した後、 (3) の工程で最 終の冷却晶析によって精製を行なう。 尚、 冷却晶析法を採用して精 製を行なう場合、 原料中の目的物質濃度が高いと僅かな温度変化で スラリー濃度 (固液共存物中の結晶濃度) が大きく変動し、 スラリ 一の取扱いや固液分離が困難になるため、 溶剤を加えて希釈した上 で冷却晶析を行なう必要がある。 溶剤としては、 2 . 6— D M Nの 場合はベンゼン等の芳香族系溶剤やアルコール類が用いられる。 そ の後 (4)の工程で、 目的物質の析出したスラリーを固液分離して母 液を分離除去し目的物を結晶として採取するが、 このときの固液分 離には遠心分離法等も採用できる。 ところが上記 (Α) , ( Β ) 法に共通する問題として、 何れも目 的物質の濃縮に冷却晶析法を採用しているため、 取扱い性を高める ことの必要上スラリ一中の結晶濃度を十分に高めることができず、 処理工程全体としての目的物質の回収率を十分に高めることができ ない。 即ち、 結晶を含むスラリーの輸送や取扱い性を考えると、 扱 えるスラリー中の結晶濃度は 2 0 %程度が限界であり、 それ以上の 結晶含有率のスラリ一を一段の濃縮工程で得ることは困難であり、 該澹度が律速となつて回収率はおのずと低くならざるを得な t、。 そ して目的物質の回収率を高めるには、 濠縮工程で排出される母液中 に相当量溶け込んでいる目的物質の回収と濃縮を複数回繰り返さな ければならず、 作業が煩雑で効率も低下すると共に処理設備も大き く しなければならない。
また上記 (A) の方法では、 高融点の目的物質を扱うときに次の 様な問題も生じてくる。 例えば 2 . 6— DMNの融点は 1 1 0でで あり、 この様な高融点物質を冷却晶析法によって濃縮するには、 設 備温度をそれ以上に高めなければならないため、 設備の保温等の管 理が煩雑となるばかりでなく発汗精製を高温で行なわなければなら ないため温度管理も難しく、 到達純度も十分に上がらない。
本発明は上記の様な従来技術の問題点に着目してなされたもので あって、 その目的は、 特定物質濃度の低い原料混合物から、 該特定 物質の濃縮と精製を比較的簡単な手順で効率よく行なうことのでき る方法を提供しょうとするものである。 発明の開示 本発明に係る結晶性物質の精製方法とは、 特定物質を含む混合物 から該特定物質を精製する方法であって、 下記 ( 1 ) . ( 2 a ) の 工程もしくは下記 ( 1) , (2 b) の工程を実施するところに特徴 を有している。
( 1) 液状もしくは該特定物質が一部晶出したスラリー伏の上 記混合物を髙圧力下の晶析操作に付し、 上記特定物質の 結晶量を增加させて上記特定物質の濃縮された結晶を得 る工程、
(2 a) 上記で得られる特定物質の濃縮された結晶を、 該結晶 を良く溶解する溶剤に溶解し、 冷却下の晶析操作に付す ことによって特定物質を再桔晶させる工程、 または
( 1) 液状もしくは該特定物質が一部晶出したスラリー状の上 記混合物を高圧力下の晶析操作に付し、 上記特定物貫の 結晶量を增加させて上記特定物質の濃縮された結晶を得 る工程、
(2 b) 上記で得られる特定物質の濃縮された結晶を、 該桔晶 を溶解することのできる溶剤によって洗浄する工程。
上記方法を実施するに当たっては、 前記 (2 a) の工程で、 再結 晶により生成した前記特定物質を分離した後の母液、 あるいは前記 (2 b) の工程で得られる洗浄液には、 目的物質である特定物質 が相当量含まれているので、 これらから溶剤を留去し、 再び上記 (1) . (2 a) の工程、 あるいは (1) , (2 b) の工程に返通 して再度処理を行なえば、 特定物質の収率を一層高めることができ るので好ましい。
また、 上記工程で母液あるいは洗浄液を蒸留することによって得 られる溶剤は、 前記 (2 a) または (2 b) の工程で使用する溶剤 として返還し循環利用する様にすれば、 溶剤の消費量を低减するこ とができるので好ましい。
そしてこの稍製方法は、 たとえば DMN異性体混合物から 2. 6 一 D M Nを特定物質として分離稍製する方法などとして有効に活用 することができ、 この場合、 冷却下の晶析を行なう際に用いる結晶 を良く溶解する溶剤としてはアルコール系溶剤が好ましく、 また桔 晶の洗浄に用いられる結晶を溶解することのできる溶剤としては、 芳香族系溶剤が好ましく用いられる。 図面の簡単な説明 図 1は、 本発明で採用される濃縮 '精製法を示すフロー図、 図 2 は、 本発明で採用される他の濃縮,精製法を示すフロー図、 図 3 は、 従来の港縮 ·精製法を示すフロー図、 図 4は、 従来の濃縮 ·精 製法を示す他のフロー図である。 発明を実施するための最良の形態 上記の様に本発明で採用される精製方法は、 精製前段階として行 なわれる特定物質の濃縮に圧力晶析法を採用し、 最終の精製段階で は溶剤を用いた冷却晶析もしくは溶媒洗浄を採用し、 これらの組合 せによって従来技術で指摘した前述の問題点を解消し、 比較的簡単 な操作 ·手順で特定物質を高純度、 高収率で得ることに成功したも のである。
図 1 . 2は、 本発明で採用される精製手順を示すフロー図であ り、 図 1は請求項 1に記載の方法、 図 2は請求項 4に記載の方法を 夫々実施する際の手順を示している。
まず図 1のフロー図において、 ①の工程では、 前記従来法と実質 的に同様の目的物質濃度の原料混合物を冷却し、 目的物質の結晶を 含むスラリー状態としてから、 ②の工程で圧力晶析による澳縮を行 なう。
この様に圧力晶析法で澳縮する方法を採用すれば、 高圧容器内で のスラリー澳度に制限がなく、 即ち、 前述した様に従来の冷却晶析 法を採用する際の輪送性や取扱い性を確保することの必要からスラ リ一濃度を 2 0 %程度の低饞度に抑える必要がなく、 スラリ一通度 を十分に高めることができるので、 冷却晶析によって濃縮する場合 に比べて目的物質の回収率を大幅に高めることが可能となる。 しか も、 圧力晶析を目的物質濃度で 9 0 %程度までの濃縮に止めるとい う前提の下では、 精製を目的とする通常の圧力晶析における発汗 · 洗浄 ·圧搾といった操作を最後まで行なわず、 母液の排出を途中で 止めればよいので、 母液に混入して排出される目的物質のロスも抑 えられ、 目的物質の回収率は更に高められる。 また圧力晶析で精製 を行なうには、 発汗 ·洗浄 ·圧搾を確実に行なうのに高精度の制御 機器 (温度、 圧力、 母液排出量等の制御) を必要とするが、 攘縮を 目的とする場合はその制御を著しく簡素化することができ、 圧力晶 析設備の装置 ·機構を簡略化することも可能となる。
更に、 圧力晶析を濃縮によって行なうことの他の利点として、 次 の点が举げられる。 即ち目的物質濃度が 5 0 %程度以下の原料を用 いて一段の圧力晶析で 9 9 %以上の高純度物に精製することはかな り難しい。 しかして、 圧力晶析によって得れらる精製結晶の純度 は、 結晶中に残存する母液の量と钝度に依存し、 低濃度原料を圧力 晶析にかけたときは、 母液中の不純物濃度が高くなるため、 精製結 晶の純度は上がりにくい。 ところが純度 9 0 %程度までの濃縮に圧 力晶析を利用する場合、 結晶中に残存する母液の不純物濃度が比較 的高くてもよいので、 精製する場合よりもやや高めの圧力で母液の 排出を行なうことによって、 母液と共に排出される目的物質量を低 減することが可能となり、 ひいては目的物質の回収率を高めること ができる。
かくして②の工程で目的物質澳度を 9 0 %程度にまで濃縮した後 は、 ③の工程で該濃縮結晶を適当な溶剤に溶解して常法により冷却 晶析を行ない、 ④の工程で固液分離し目的物質を高純度の結晶とし て得ればよい。 該③の冷却晶析工程の原料となる濃縮桔晶は、 前述 の如く②の圧力晶析工程で目的物質濃度が 9 0 %程度まで高められ ているので、 該冷却晶析時の負荷が少なく且つ目的物質のロスも抑 えられ、 髙純度の目的物質を高収率で得ることが可能となる。
尚、 上記では③の工程で溶剤を用いた冷却晶析法を採用したが、 図 2の方法では、 これに代えて⑤の溶剤洗浄による精製法を採用し ている。 即ち②の圧力晶析工程では、 目的物質を核として母液中の 該目的物質が晶出し成長していくものであり、 濃縮結晶の純度を下 げているのは前述の如く該結晶の表面に付着残存した母液中の不純 物であるから、 該澳縮結晶を適当な溶剤によって洗浄しその表面に 付着残存している母液を該溶剤によつて洗浄し、 ④の固液分離によ つて液相を除去してやれば、 濃縮結晶から目的物質を髙純度の結晶 として得ることができる。
尚上記図 1, 2の方法を実施するに際し、 ④の固液分離工程で排 出される母液あるいは溶剤洗净液中には、 目的物質が相当量溶解 · 混入しており、 使用する溶剤の種類や量にもよるが、 該母液あるい は洗浄液中には 6 0〜7 5 %程度の目的物質が混入している。 従つ てこの母液や洗浄液は、 図 1, 2に破線で示す如く、 溶剤を留去し てから後繞の出発原料に返還し循環処理すれば、 濃縮 ·精製系全体 としての目的物質の回収率を高めることができるので好ましい。 また、 この工程で留去される溶剤は、 図 1 . 2に破線で示してい る様に③の冷却晶析 (精製) 工程あるいは⑤の溶剤洗净 (精製) ェ 程で用いる溶剤の少なくとも一部として返還し、 循環使用する様に すれば、 溶剤の消費量を低減することができるので好ましい。
上記の様に本発明では、 特定物質濃度が 4 0 %程度の低澳度原料 から特定物質濃度が 9 0 %程度までの馕縮に圧力晶析法を採用する ことによって、 スラリー '濃度を支障なく高めて目的物質の回収率を 高めると共に、 その後の精製負荷を軽减することができ、 また最 終の精製工程では、 高濃度品からの精製を簡単な操作で効率よく行 なうことのできる溶剤を用いた冷却晶析法あるいは溶剤洗浄法を活 用することにより、 比校的低濃度の原料混合物から簡単な操作 ·手 順で高純度の特定物質を収率良く回収できることになつた。
尚、 本発明で採用される圧力晶析ゃ冷却晶析の具体的な操作条件 (温度、 圧力など) 等は、 目的物質や不純物の種類等に応じて、 適 宜最適の条件を設定すればよいが、 前記①の工程で特定物質の結晶 量を增加させる晶析操作圧力は、 5 0 0〜3 . 0 0 0 kg/cm2 x より 好ましくは 1 . 0 0 0〜 2 , 0 0 O kg/cin2の範囲に設定することが 望ましい。 その理由は、 晶析圧力が 5 0 0 kg/cm2未満では特定物質 の結晶量増大が不十分となつて特定物質の収率が十分に上がり難く なり、 一方 3 . 0 0 O kg/cm2を超えて過度に晶析圧力を高めると、 加圧による発熱が著しくなるため、 圧力晶析の障害になるばかりで なく、 晶析設備に冷却手段を付設しなければならなくなり、 設備面 および操作面からも好ましくないからである。
精製のための冷却晶析もしくは洗浄に用いる溶剤の種類等につい ては、 目的物質の種類等に応じて適宜選択して決定すればよく、 例 えば目的物質が 2 . 6— D M Nであるとき、 前記 ( 2 a ) の工程で 用いる冷却晶析用の好ましい溶剤は、 メタノール、 エタノール等の 低級アルコール系溶剤、 前記 (2 b ) の工程で用いる洗浄用の好ま しい溶剤は、 ベンゼン、 トルエン、 キシレン等の芳香族系溶剤など が例示される。 また、 本発明法が適用される精製目的の特定物質として代表的な のは、 前述の如く 2, 6— DMNであるが、 要は精製目的となる特 性物質を含む混合物溶液の状態図において、 該特定物質が最初に析 出するタイプの混合物であれば同様に適用することができる。 この 様な化合物としては、 上記 2. 6 - DMN以外に、 例えばフ ノー ル, クレゾール類. ナフタレン, ハロゲン化ベンゼン類, 芳香族化 合物. アルキルベンゼン類, アルキルナフタレン類等の芳香族化合 物. インドールなど窒素を環内に有する複素環化合物等が例示され る。 実施例 以下、 実施例を挙げて本発明をより具体的に説明するが、 本発明 はもとより下記実施例によって制限を受けるものではなく、 前 ·後 記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可 能であり、 それらはいずれも本発明の技術的範囲に含まれる。 尚、 下記において 「%」 とあるのは 「重量%」 を意味する。
実施例 1
予備冷却晶析法によって得た、 2. 6 - DMN含有量: 40 %、 2, 7 - DMN含有 S: 1 6 %、 その他の DMN異性体含有量: 44 %からなる混合物を原料とし、 その 100 k gを 48^に加温 してスラ リー濃度を 20%とし、 これを高圧晶析にかけて 2. 6 - DMNの濃縮を行なった。 この圧力晶析は、 圧力: 1 500 k cm2 、 温度: 70 Cで 3分間保持して桔晶を晶出させた後、 フィ ルターを通して母液を排出させ、 2, 6— DMN濃度が 90%の ケーキ状粗結晶 28 k gを得た。
次いでこの粗結晶を圧力容器から取り出し、 重量比で 5倍量のェ 夕ノールを加え 6 CTCに加熱して粗結晶の全てを溶解させ、 その 後溶液を 20でに冷却して 2. 6— DMNの結晶を析出させてか ら、 遠心分離機によって固液分離を行ない、 2, 6 - DMN純度が 9 9%の結晶 1 8. 2 k g (原料中の 2, 6 - DMN量に対して 45. 5%) を得た。
実施例 2
予備冷却晶析法によって得た上記実施例 1と同じ成分組成の DM N異性体混合物を原料とし、 且つ実施例 1と同様にして圧力晶析に よる澳縮を行ない、 2. 6 -DMN濃度が 90%のケーキ伏粗結晶 28 k gを得た。
次いでこのケーキ状粗桔晶を圧力容器から取り出して破砕し、 こ れに重量比で 2倍量のベンゼンを加えてから 20°Cで 1時間攪拌 することによって洗浄し、 次いで遠心分離機によつて固液分宵 IIを行 ない、 2, 6— DMN純度が 99 %の結晶 1 8. 0 k g (原料中の 2, 6— DMN量に対して 45. 0%) を得た。
実施例 3
上記実施例 1の濃縮 ·精製法を実施するに際し、 精製工程の遠心 分離機で固液分離される母液中には相当量の 2. 6 - D M Nが含ま れている。 そこで、 該母液中の溶剤を減圧下に留去し、 回収した溶 剤は粗結晶を溶解するための溶剤として再利用した。 また、 溶剤を 留去した後の残留物として、 2. 6 - DMN濃度が 7 1 %の混合物 9. 8 k gが得られたので、 この混合物 9. 8 k gを当初の原料混 合物 (2. 6 -0\1 度: 42. 8%) 1 00 k gに混合し、 実 施例 1と全く同様にして濃縮および精製を行なった。 その結果、 最 終的に 2. 6 - DMN純度が 99%の結晶 20. 0 k g (原料中の 2. 6— DMN量に対して 50. 0%) が得られた。
比較例 1 前記 (A) として記載した従来法、 即ち 「冷却晶析法により濃縮 してから圧力晶析法で精製する方法」 を採用し、 実施例 1で用いた のと同じ成分組成の原料混合物 1 00 k gを 48 eCに加温してスラ リ一濃度 20 %とした。 次いでこのスラリ一を軽度の圧搾濂過にか けて固液分離すると、 結晶間の隙間に相当量の母液を含む 2. 6 - DMN濃度 7 0%の濃縮物 28. 6 k gが得られた。
この濃縮物を 87でに加温してスラリー濃度 20%とし、 実施例 1に準じて圧力晶析および固液分離を行なった。 このとき、 圧力晶 折にかける混合物の目的物質濃度が低い (70%) ため、 99%レ ベルの純度を確保するには、 固液分離時の発汗 ·洗浄 ·圧搾を十分 に行なわねばならず、 液相として多量の母液を排出させる必要があ り、 最終的に得られる 2. 6— DMN濃度 99 %の結晶は 1 0. 6 k g (原料中の 2, 6 — DMN量に対し 2 6. 5 %) であり、 2. 6 - DMNの回収率は、 前記実施例 1 , 2の約 60%、 実施例 3の 5 3%に過ぎず、 目的物質としての回収率において著しく劣る ものであった。
比較例 2
前記 (B) として記載した従来法、 即ち 「濃縮、 精製ともに冷却 晶析を採用する方法」 を採用し、 実施例 1で用いたのと同じ成分組 成の原料混合物 1 00 k gを 48でに加温してスラリー濃度 20% とした。 次いでこのスラリーを高度の圧搾濾過にかけて母液を可及 的に除去すると、 2, 6 - DMN濃度 90%の濃縮物としての収量 は 1 8. 9 k gに低減した。
この澳縮物を破砕し、 これに重量比で 2倍量のベンゼンを加えて から 2 (TCで 1時間攪拌し、 次いで遠心分離機により固液分離する ことによって得られる 2, 6— DMN純度 99%の結晶は 1 2. 2 k g (原料中の 2. — DMN量に対して 3 0. 6 %) となり、 2. 6—DMNの回収率は、 前記実施例 1 , 2の約 68%、 実施例 3の約 6 1 %に過ぎず、 目的物質としての回収率において著しく劣 るものであった。
発明の効果
本発明は以上の様に榱成されており、 圧力晶析を用いた濃縮と 却晶析による精製または洗浄による精製をうまく組合せることによ つて、 特定物質を含む混合物から高純度の特定物質を比較的簡単な 操作で収率よく回収することができる。

Claims

請求の範囲 特定物質を含む混合物から該特定物質を精製する方法であつ て、 下記 (1 ) , (2 a) の工程からなることを特徴とする結 性物質の賴製方法《
( 1) 液状もしくは該特定物質が一部晶出したスラリー状の上 記混合物を高圧力下の晶析操作に付し、 上記特定物質の 結晶量を増加させて上記特定物質の濃縮された結晶を得 る工程、
(2 a) 上記で得られる特定物質の濃縮された結晶を、 該結晶 を良く溶解する溶剤に溶解し、 冷却下の晶析操作に付す ことによつて特定物質を再結晶させる工程。
上記請求項 1における (2 a) の工程で、 再結晶により生成し た前記特定物質を分離した後の母液から溶剤を留去し、 再び上 記請求項 1の (1) . (2 a) の工程に付すことを特徴とする 結晶性物質の精製方法。
上記請求項 2において母液から留去された溶剤を、 前記請求項 1における (2 a) の工程で用いる溶剤の少なくとも一部とし て再使用する結晶性物質の精製方法。
特定物質を含む混合物から該特定物質を精製する方法であつ て、 下記 (1 ) . (2 b) の工程からなることを特徴とする桔 晶性物質の精製方法。
( 1) 液状もしくは該特定物質が一部晶出したスラリー伏の上 記混合物を高圧力下の晶析操作に付し、 上記特定物質の 結晶量を増加させて上記特定物質の濃縮された結晶を得 る工程、
(2 b) 上記で得られる特定物質の濃縮された結晶を、 該結晶 O 97/24302
を溶解することのできる溶剤によって洗浄する工程。
5. 上記請求項 4における (2 b) の工程で、 特定物質の結晶を洗 浄することによって得られる洗浄液から溶剤を留去し、 残留物 を再び上記請求項 4の (1) . (2 b) の工程に付すことを特 徴とする結晶性物質の精製方法。
6. 上記請求項 5において洗浄液から留去された溶剤を、 前記請求 項 4の (2 b) の工程で用いる溶剤の少なくとも一部として再 使用する結晶性物質の精製方法。
7. 特定物質が 2, 6—ジメチルナフタレンであり、 混合物がジメ チルナフタレン異性体を含有するものである請求項 1または 4 に記載の精製方法。
8. 結晶を良く溶解する溶剤がアルコール系溶剤である請求項 7に 記載の精製方法。
9. 結晶を溶解することのできる溶剤が、 芳香族系溶剤である請求 項 7に記載の精製方法。
1 0. 上記 ( 1) の工程で特定物質の結晶量を增加させるための晶 析操作時の圧力を、 50 Okg/cm2以上 3, 000 kg/cm2以下と する請求項 1または 4に記載の精製方法。
PCT/JP1996/003668 1995-12-26 1996-12-17 Procede de purification d'une substance cristalline WO1997024302A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96941884A EP0939068A1 (en) 1995-12-26 1996-12-17 Method for purifying crystalline substance
KR1019980704904A KR19990076779A (ko) 1995-12-26 1996-12-17 결정성 물질의 정제방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/339341 1995-12-26
JP7339341A JPH09176054A (ja) 1995-12-26 1995-12-26 結晶性物質の精製方法

Publications (1)

Publication Number Publication Date
WO1997024302A1 true WO1997024302A1 (fr) 1997-07-10

Family

ID=18326540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003668 WO1997024302A1 (fr) 1995-12-26 1996-12-17 Procede de purification d'une substance cristalline

Country Status (5)

Country Link
EP (1) EP0939068A1 (ja)
JP (1) JPH09176054A (ja)
KR (1) KR19990076779A (ja)
CA (1) CA2241571A1 (ja)
WO (1) WO1997024302A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179063A (zh) * 2011-03-23 2011-09-14 苏州汇通色谱分离纯化有限公司 高压液-液萃取方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100316139B1 (ko) * 1999-01-15 2001-12-20 박호군 고순도의 2,6-디메틸나프탈렌의 분리 방법
EP1209139A4 (en) * 1999-08-31 2002-10-09 Kobe Steel Ltd PROCESS FOR PRODUCING 2,6-DIMETHYLNAPHTALENE
JP2002114718A (ja) * 2000-10-02 2002-04-16 Kobe Steel Ltd 2,6−ジメチルナフタレンの製造方法
KR100463076B1 (ko) * 2002-03-18 2004-12-23 한국화학연구원 2,6-디메틸나프탈렌의 분리정제방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644203A (en) * 1987-06-26 1989-01-09 Kobe Steel Ltd Surface cleaning of solid phase by pressure crystallization
JPH01250329A (ja) * 1988-03-07 1989-10-05 Showa Shell Sekiyu Kk 圧力晶析法によるナフタレンのメチル誘導体の分離方法
JPH03258748A (ja) * 1990-03-07 1991-11-19 Nippon Steel Chem Co Ltd 2,6―ナフタレンジカルボン酸の製造方法
JPH05331079A (ja) * 1992-05-26 1993-12-14 Kobe Steel Ltd 2,6−ジイソプロピルナフタレンの分離精製法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644203A (en) * 1987-06-26 1989-01-09 Kobe Steel Ltd Surface cleaning of solid phase by pressure crystallization
JPH01250329A (ja) * 1988-03-07 1989-10-05 Showa Shell Sekiyu Kk 圧力晶析法によるナフタレンのメチル誘導体の分離方法
JPH03258748A (ja) * 1990-03-07 1991-11-19 Nippon Steel Chem Co Ltd 2,6―ナフタレンジカルボン酸の製造方法
JPH05331079A (ja) * 1992-05-26 1993-12-14 Kobe Steel Ltd 2,6−ジイソプロピルナフタレンの分離精製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0939068A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179063A (zh) * 2011-03-23 2011-09-14 苏州汇通色谱分离纯化有限公司 高压液-液萃取方法

Also Published As

Publication number Publication date
EP0939068A4 (ja) 1999-09-01
KR19990076779A (ko) 1999-10-15
JPH09176054A (ja) 1997-07-08
EP0939068A1 (en) 1999-09-01
CA2241571A1 (en) 1997-07-10

Similar Documents

Publication Publication Date Title
JPH10502330A (ja) 高純度パラキシレン供給原料からのパラキシレンの結晶化
US6565653B2 (en) Energy efficient process for producing high purity paraxylene
WO1997024302A1 (fr) Procede de purification d'une substance cristalline
CA2143113A1 (en) Process for the production of pure vinyl pyrrolidone
US6525235B2 (en) Method for manufacturing 2,6-dimethylnaphthalene
US4025573A (en) Separation process
WO2013099423A1 (ja) 高品質のε-カプロラクタムの製造方法
JPH01261363A (ja) 高純度カプロラクタムの製造法
KR20020024334A (ko) 2,6-디메틸나프탈렌의 제조방법
JP2748833B2 (ja) 粗製アントラセンの回収方法
JPH09176055A (ja) 結晶性物質の精製方法
EP0757047B1 (en) Process for crystallizing chroman-I from an impure mixture
EP0264226B1 (en) Separation process by crystallisation
JPS5941973B2 (ja) タ−フエニルの分離精製法
JPS63122637A (ja) 2−メチルナフタレンの精製方法
JP2001072613A (ja) 高純度インデンの製造方法および高純度インデン
JP2000128809A (ja) 高純度テトラ核置換アルキルベンゼンの回収方法
JP4566302B2 (ja) ベンゾチオフェンの製造方法
JPH05163168A (ja) 2,6−ジイソプロピルナフタレンの選択的分離方法
JPS63185973A (ja) ジベンゾフランの製造方法
JPS63188633A (ja) アセナフテンの製造方法
JPH0788323B2 (ja) ナフタレンの精製方法
JPS60239480A (ja) 着色の少ないジフエニレンオキシドの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2241571

Country of ref document: CA

Ref country code: CA

Ref document number: 2241571

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019980704904

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996941884

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996941884

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704904

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996941884

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019980704904

Country of ref document: KR