WO1997019169A1 - Tumorvakzine und verfahren zu ihrer herstellung - Google Patents

Tumorvakzine und verfahren zu ihrer herstellung Download PDF

Info

Publication number
WO1997019169A1
WO1997019169A1 PCT/EP1996/005126 EP9605126W WO9719169A1 WO 1997019169 A1 WO1997019169 A1 WO 1997019169A1 EP 9605126 W EP9605126 W EP 9605126W WO 9719169 A1 WO9719169 A1 WO 9719169A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
cells
peptide
patient
peptides
Prior art date
Application number
PCT/EP1996/005126
Other languages
English (en)
French (fr)
Inventor
Walter Schmidt
Max Birnstiel
Tamàs SCHWEIGHOFFER
Peter Steinlein
Michael Buschle
Original Assignee
Boehringer Ingelheim International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19543649A external-priority patent/DE19543649C2/de
Priority claimed from DE19607044A external-priority patent/DE19607044A1/de
Priority to AU76947/96A priority Critical patent/AU720131B2/en
Priority to RO98-00985A priority patent/RO115275B1/ro
Priority to EE9800161A priority patent/EE03778B1/xx
Priority to EP96939870A priority patent/EP0866851A1/de
Priority to SK669-98A priority patent/SK66998A3/sk
Priority to UA98063235A priority patent/UA66753C2/xx
Application filed by Boehringer Ingelheim International Gmbh filed Critical Boehringer Ingelheim International Gmbh
Priority to HU0000318A priority patent/HUP0000318A3/hu
Priority to JP9519395A priority patent/JP2000502052A/ja
Priority to PL96326756A priority patent/PL188537B1/pl
Priority to NZ322910A priority patent/NZ322910A/xx
Priority to KR1019980703681A priority patent/KR19990067653A/ko
Priority to BR9611466A priority patent/BR9611466A/pt
Publication of WO1997019169A1 publication Critical patent/WO1997019169A1/de
Priority to BG102439A priority patent/BG62999B1/bg
Priority to NO982329A priority patent/NO982329D0/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5154Antigen presenting cells [APCs], e.g. dendritic cells or macrophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • a therapeutic vaccine based on tumor cells is essentially based on the following prerequisites: there are qualitative or quantitative differences between tumor cells and normal cells; the immune system basically has the ability to recognize these differences; the immune system can be stimulated - through active specific immunization with vaccines - to recognize tumor cells based on these differences and to induce their rejection.
  • the tumor cells In order to produce an anti-tumor response, at least two prerequisites must be met: first, the tumor cells must express antigens or neoepitopes that are not found on normal cells. Second, the immune system needs to be activated to respond to these antigens.
  • a major obstacle to the immunotherapy of tumors is their low immunogenicity, especially in humans. This is surprising in that it would be expected that the large number of genetic changes in malignant cells should lead to the formation of peptide neoepitopes, which are recognized in the context of MHC-I molecules by cytotoxic T-lymphocytes.
  • tumor-associated and tumor-specific antigens have been discovered which represent such neo-epitopes and should therefore represent potential targets for an attack by the immune system.
  • the fact that the immune system still does not succeed in eliminating tumors which express these neo-epitopes should therefore obviously not be due to the lack of neo-epitopes, but rather because the immunological response to these neo-antigens is inadequate.
  • Tumor vaccines based on active immunotherapy have been produced in various ways; an example of this are irradiated tumor cells, which are treated with immunostimulating adjuvants such as Corynebacterium parvum or Bacillus Calmette Guerin (BCG), in order to elicit immune reactions against tumor antigens (Oettgen and Old, 1991).
  • immunostimulating adjuvants such as Corynebacterium parvum or Bacillus Calmette Guerin (BCG)
  • BCG Bacillus Calmette Guerin
  • Tumor cells that have been genetically modified to secrete cytokines such as IL-2, GM-CSF or IFN- ⁇ or to express co-stimulating molecules have been shown in experimental animal models to generate potent anti-tumor immunity (Dranoff et al ., 1993; Zatloukal et al., 1995).
  • cytokines such as IL-2, GM-CSF or IFN- ⁇
  • co-stimulating molecules have been shown in experimental animal models to generate potent anti-tumor immunity (Dranoff et al ., 1993; Zatloukal et al., 1995).
  • cytokm-secreting Tumor vaccines for human applications have not been established.
  • accessory proteins so-called accessory proteins
  • Neo-APCs antigen-presenting cells
  • An example of such an approach is described by Ostrand-Rosenberg, 1994.
  • TAs tumor antigens
  • peptides derived therefrom e.g. by Wölfel et al., 1994 a) and 1994 b); Carrel et al. , 1993, Lehmann et al. , 1989, Tibbets et al. , 1993, or in the published international applications WO 92/20356, WO 94/05304, WO 94/23031, WO 95/00159
  • a tumor vaccine in the form of tumor antigens as such is not sufficiently immunogenic to trigger a cellular immune response as would be required to eliminate tumor cells carrying tumor antigens;
  • the co-application of adjuvants also offers only limited possibilities for strengthening the immune response (Oettgen and Old, 1991).
  • a third strategy of active immunotherapy to increase the effectiveness of tumor vaccines is based on xenogenized (alienated) autologous tumor cells. This concept is based on the assumption that the immune system reacts to tumor cells which express a foreign protein and that in the course of this reaction an immune response is also produced against those tumor antigens (TAs) which are presented by the tumor cells of the vaccine.
  • TAs tumor antigens
  • trimolecular complex consisting of the components T-cell antigen receptor, MHC ("Major Histocompatibility Complex”) molecule and its ligand, which is a peptide fragment derived from a protein.
  • MHC-I molecules (or the corresponding human molecules, the HLAs) are peptide receptors which, with constant specificity, allow the binding of millions of different ligands.
  • the prerequisite for this are allele-specific peptide motifs which have the following specificity criteria:
  • the peptides have a defined length, as a rule eight to ten amino acid residues.
  • two of the amino acid positions represent so-called “anchors" which can only be occupied by a single amino acid or by amino acid residues with closely related side chains.
  • anchors The exact location of the anchor amino acids in the peptide and the requirements for their properties vary with the MHC-I haplotypes.
  • the C-terminus of the peptide ligands is often an aliphatic or a charged residue.
  • Such allele-specific MHC-I-peptide-ligand motifs have hitherto been used, inter alia, for H-2K d , K b , K k , K kml , D b , HLA-A * 0201, A * 0205 and B * 2705 known.
  • mutagenic chemicals such as N-methyl-N 'nitrosoguanide. This is said to result in the tumor cells presenting neo-antigens derived from mutated variants of cellular proteins, which are foreign gene products (Van Pel and Boon, 1982).
  • mutagenic chemicals such as N-methyl-N 'nitrosoguanide.
  • This approach is based on the above-mentioned idea that the tumor cells, when administered in the form of a full-line vaccine, are recognized as foreign on the basis of the protein expressed or the peptides derived therefrom, or that, in the case of the expression of autologous MHC, 1 molecules, the presentation of tumor antigen is optimized by an increased number of MHC-I molecules on the cell surface.
  • the change in tumor cells with a foreign protein can lead to the cells presenting peptides derived from the foreign protein in the MHC context and the change from "itself" to "foreign” within the framework of the MHC peptide complex recognition.
  • the recognition of a protein or peptide as foreign has the consequence that in the course of immune recognition not only against the foreign protein, but also against the immune antigens that are specific to the tumor cells are generated.
  • the antigen-presenting cells are activated, which process the proteins (including TAs) found in the tumor cell of the vaccine into peptides and as ligands for their own MHC-I and MHC-II molecules use.
  • the activated, peptide-loaded APCs migrate into the lymph nodes, where a few of the naive T-lymphocytes recognize the peptides from the TA on the APCs and as a stimulus for clonal expansion - in other words for the generation of tumor-specific CTLs and T- Helper cells - can use.
  • the object of the present invention was to provide a new tumor vaccine based on alienated tumor cells, with the aid of which an effective cellular anti-tumor immune response can be triggered.
  • tumor cells contain the respective tumor-specific tumor antigens, they are inadequate vaccines because they are ignored by the immune system due to their low immunogenicity.
  • the alienation with a peptide is intended to ensure that the cellular immune response triggered by the foreign peptides is directed against the tumor antigens.
  • the cause of the low immunogenicity of tumor cells can not be a qualitative, but rather a quantitative problem.
  • a peptide derived from a tumor antigen this may mean that it is presented by MHC-I molecules, but in a concentration that is too low to trigger a cellular tumor-specific immune response.
  • An increase in the number of tumor-specific peptides on the tumor cell should therefore also cause an alienation of the tumor cell, which leads to the triggering of a cellular immune response.
  • the cells are thus available for loading with a peptide, so they act as a presentation vehicle for the peptide offered from outside.
  • Tumor activity is based on the triggering of an immune response against the peptide presented on the cells, which is offered to the immune system without direct context with the antigenic repertoire of the tumor cell.
  • the invention relates to a tumor vaccine for administration to a patient, consisting of tumor cells which present peptides derived from tumor antigens in the HLA context and at least some of which have at least one of the patient's MHC-1 haplotype on the cell surface and which were loaded with one or more peptides a) and / or b) such that the tumor cells in the context of the peptides are recognized as foreign by the patient's immune system and trigger a cellular immune response, the peptides
  • a) act as ligands for the MHC-I haplotype, which is common to the patient and the tumor cells of the vaccine, and different smd from peptides, which are derived smd from proteins which are expressed by cells of the patient, or
  • b) act as ligands for the MHC-I haplotype, which smd shares between the patient and the tumor cells of the vaccine, and are derived from tumor antigens which are expressed by cells of the patient and which are present in a concentration on the tumor cells of the vaccine is higher than the concentration of a peptide derived from the same tumor antigen as that expressed on the patient's tumor cells.
  • Human MHC molecules are also referred to in the following as "HLA"("Human Leucocyte Antigen”) according to international practice.
  • Cellular immune response is to be understood as the cytotoxic T cell immunity which, as a result of the generation of tumor-specific cytotoxic CD8-positive T cells and CD4-positive helper T cells, causes the destruction of the tumor cells.
  • the effect of the vaccine according to the invention from tumor cells is based above all on the fact that the peptide increases the immunogenic effect of the tumor antigens present on the tumor cells.
  • peptides of type a) are also referred to below as “foreign peptides” or “xenopeptides”.
  • the tumor cells of the vaccine are autologous. These are cells that are taken from the patient to be treated, treated ex vi vo with peptide (s) a) and / or b), inactivated if necessary and then re-administered to the patient. (Methods for producing autologous tumor vaccines described in WO 94/21808, the disclosure of which reference is made to).
  • the tumor cells are allogenic, ie they do not originate from the patient to be treated.
  • the use of allogeneic cells is particularly preferred if labor-economic considerations play a role; the production of individual vaccines for each individual patient is labor-intensive and costly, moreover, difficulties arise in the ex vivo cultivation of the tumor cells in individual patients, so that tumor cells are not obtained in sufficient numbers to be able to produce a vaccine.
  • the allogeneic tumor cells it must be taken into account that they must be matched to the HLA subtype of the patient.
  • allogeneic tumor cells are cells of one or more cell lines, of which at least one cell expression expresses at least one, preferably several tumor antigens which are identical to the tumor antigens of the patient to be treated, ie the tumor vaccine is matched to the patient's tumor dosage. This ensures that the cellular immune response triggered by the MHC-I presented on the tumor cells of the vaccine, which leads to the expansion of tumor-specific CTLs and T helper cells, is also directed against the patient's tumor cells because they express the same tumor antigen as the cells of the vaccine.
  • Each patient is treated with the tumor vaccine according to the invention, who suffers from breast cancer metastases, the Her2 / neu mutation (Allred et al., 1992; Peopoles et al., 1994; Yoshino et al., 1994 a); Stein et al. , 1994; Yoshino et al. , 1994 b); Fisk et al. , 1995; Han et al. , 1995), allogeneic tumor cells which are matched to the HLA haplotype of the patient and which also express the mutated Her2 / neu as tumor antigen are used as vaccines. More recently, numerous tumor antigens have been isolated and their connection with one or more cancers has been elucidated.
  • tumor antigens include ras (Fenton et al., 1993; Gedde Dahl et al., 1992; Jung et al., 1991; Morishita et al., 1993; Peace et al., 1991; Skipper et al., 1993 ), MAGE tumor antigens (Boon et al., 1994; Slmgluff et al., 1994; van der Bruggen et al., 1994; WO 92/20356); an overview of various tumor antigens is further provided by Carrel et al. , Given in 1993.
  • the patient's tumor antigens are generally used in the course of establishing a diagnosis and therapy plan using standard methods, e.g. determined with the help of assays based on CTLs with specificity for the tumor antigen to be determined.
  • assays have been by Mr. et al, 1987; Coulie et al. , 1993; Cox et al. , 1994; Rivoltmi et al. , 1995; Kawakami et al. , 1995; as well as described in WO 94/14459;
  • Tumor antigens appearing on the cell surface can also be detected with immunoassays based on antibodies. If the tumor antigenic enzymes smd, e.g. Tyrosmasen, they can be detected with enzyme assays.
  • a mixture of autologous and allogeneic tumor cells can be used as the starting material for the vaccine.
  • This embodiment of the invention is used in particular when the tumor antigens expressed by the patient are unknown or only incompletely characterized and / or when the allogeneic tumor cells express only part of the patient's tumor antigens.
  • the addition of autologous tumor cells treated with the foreign peptide ensures that at least some of the tumor cells in the vaccine contain as large a number as possible of the patient's own tumor antigen.
  • Allogeneic tumor cells are those that match the patient in one or more MHC-I haplotypes.
  • the peptides of types a) and b) are defined in terms of their sequence by the HLA subtype of the patient to whom the vaccine is to be administered, in accordance with the requirement to bind to an MHC-I molecule.
  • the determination of the HLA subtype of the patient is therefore one of the essential prerequisites for II represents the selection or construction of a suitable peptide.
  • the HLA subtype results automatically from the specificity of the HLA molecule that is genetically determined in the patient.
  • the HLA subtype of the patient can be determined using standard methods such as the micro-lymphotoxicity test (MLC test, mixed lymphocyte culture) (Practical Immunol., 1989).
  • MLC test is based on the principle of first adding antiserum or a monoclonal antibody against a specific HLA molecule in the presence of rabbit complement (C) to the lymphocytes isolated from patient blood. Positive cells are lysed and take up an indicator dye, while undamaged cells remain unstained.
  • RT-PCR can also be used to determine a patient's HLA haplotype (Curr. Prot. Mol. Biol. Chapters 2 and 15). Blood is taken from a patient and RNA is isolated from it. This RNA is first subjected to reverse transcription, which produces the patient's cDNA. The cDNA serves as a template for the polymerase chain reaction with primer pairs which specifically effect the amplification of a DNA fragment which stands for a specific HLA haplotype. If a DNA band appears after agarose gel electrophoresis, the patient expresses the corresponding HLA molecule. If the gang does not appear, the patient is negative. At least two bands are expected for each patient.
  • the invention When the invention is used in the form of an allogeneic vaccine, cells are used, at least some of which are matched to at least one HLA subtype of the patient.
  • a vaccine based on a mixture of allogeneic tumor cells expressing these haplotypes can be used to measure a broad patient population; this can cover around 70% of the European population (Mackiewicz et al., 1995).
  • the definition of the peptides used according to the invention by the HLA subtype determines these with regard to their anchor amino acids and their length; Defined anchor positions and lengths ensure that the peptides fit the peptide cavity of the respective HLA molecules and are thus presented on the cell surface of the tumor cells forming the vaccine in such a way that the cells are recognized as foreign. This has the consequence that the immune system is stimulated and a cellular immune response is also generated against the tumor cells of the patient.
  • Peptides which are suitable as foreign peptides according to category a) in the context of the present invention are available in a wide range.
  • Their sequence can be derived from naturally occurring immunogenic proteins or their cellular breakdown products, e.g. derived from viral or bacterial peptides, or from non-patient tumor antigens.
  • Suitable foreign peptides can be selected, for example, on the basis of peptide sequences known from the literature; For example, based on that of Rammenee et. al. , 1993, Falk et al. , 1991, for the different HLA motifs described peptides derived from immunogenic proteins of different origins which fit into the binding grooves of the molecules of the respective HLA subtypes.
  • the already known or, if necessary, still to be determined polypeptide sequences can be adjusted by sequence matching Taking into account the HLA-specific requirements, it can be determined which peptides are suitable candidates.
  • Suitable peptides can be found, for example, in Rammenee et al. , 1993, Falk et al. , 1991, and Rammenee, 1995; as well as in WO 91/09869 (HIV peptides); Peptides derived from tumor antigens have been described, inter alia, in the published international patent applications WO 95/00159, WO 94/05304. Reference is made to the disclosure of these references and the articles cited therein in connection with peptides.
  • Preferred candidates for xenopeptides are peptides, the immunogenicity of which has already been shown, i.e. peptides derived from known immunogens, e.g. viral or bacterial proteins. Such peptides show a violent reaction in the MLC test due to their immunogenicity.
  • any desired variations in anchor positions and length can be made on the basis of the minimum requirements given on the basis of the original peptide sequence, in this case artificial peptides are used according to the invention which correspond to the requirements to an MHC-I ligand.
  • the amino acids which are not anchor amino acids are changed in order to obtain the peptide of the sequence Phe Phe Ile Gly Ala Leu Glu Glu Ile (FFIGALEEI); in addition, the anchor amino acid Ile at position 9 can be replaced by Leu.
  • Peptides which are derived from tumor antigens that is to say from proteins which are expressed in a tumor cell and which do not appear in the corresponding non-transformed cell or in a significantly lower concentration, can be used within the scope of the present invention Invention can be used as peptides of type a) and / or type b).
  • the length of the peptide preferably corresponds to the minimum sequence of 8 to 10 amino acids with the required anchor amino acids required for binding to the MHC-I molecule. If necessary, the peptide can also be extended at the C- and / or at the N-terminus, provided that this extension does not impair the binding ability, or the extended peptide can be processed cellularly for the minimal sequence.
  • the peptide can be extended with negatively charged amino acids, or negatively charged amino acids can be incorporated into the peptide at positions other than the anchor amino acids in order to electrostatically bind the peptide to a polycation such as polylysine. to reach.
  • peptides also includes larger protein fragments or whole proteins which are guaranteed to be processed by the APCs after application to form peptides which match the MHC molecule.
  • the antigen is therefore not used in the form of a peptide, but rather as a protein or protein fragment or as a mixture of proteins or protein fragments.
  • the protein represents an antigen or tumor antigen from which the fragments obtained after processing are derived.
  • the proteins or protein fragments taken up by the cells are processed and can then be presented to the immune effector cells in the MHC context and thus trigger or strengthen an immune response (Braciale and Braciale, 1991; Kovacsovics Bankowski and Rock, 1995; York and Rock, 1996) . i fc
  • the identity of the processed end product can be determined by chemical analysis (Edman degradation or mass spectrometry of processed fragments; see the review article by Rammenee et al., 1995 and the original literature cited therein) or biological assays (ability of the APCs for the stimulation of T cells, which specifically detect smd) for the processed fragments.
  • peptide candidates with regard to their suitability as foreign peptides is in principle carried out in several stages: in general, the candidates are advantageously tested in series tests, first in a peptide binding test for their binding ability to an MHC-I molecule.
  • a suitable examination method is e.g. the FACS analysis based on the flow cytometer (Flow Cytometry, 1989; FACS Vantage TM User's Guide, 1994; CELL Quest TM User's Guide, 1994).
  • the peptide is labeled with a fluorescent dye, e.g. with FITC (fluorescein isothiocyanate) and applied to tumor cells that express the respective MHC-I molecule.
  • FITC fluorescein isothiocyanate
  • peptide is used which is labeled with J 125 or with rare earth metal ions (eg Europium).
  • the cells are loaded at 4 ° C. with different, defined concentrations of peptide for 30 to 240 mm.
  • an excess of unlabelled peptide is added to some samples, which prevents the specific interaction of the labeled peptide.
  • the cells are then washed so that they are non-specifically associated with cells Material is removed.
  • the amount of cell-bound peptide is now determined either in a scintillation counter based on the radioactivity emitted, or in a photometer suitable for measuring long-lived fluorescence. The data obtained in this way are evaluated using standard methods.
  • the immunogenicity of xenopeptides derived from proteins whose immunogenic activity is not known can e.g. be tested in the MLC test.
  • Peptides which, in this test, which is also expediently carried out in a series with different peptides, expediently using a standard peptide with a known immunogenic effect, which produce a particularly violent reaction, are suitable for the present invention.
  • T2 cells Another possibility for testing MHC-I-binding peptide candidates for their immunogenicity is to examine the binding of the peptides to T2 cells.
  • T2 cells Alexander et al., 1989 or RMA-S cells (Karre et al., 1986), defective in the TAP peptide transport mechanism to sem and only then stable MHC-I- Presenting molecules, if peptides are applied to them, which are presented in the MHC-I context.
  • T2 cells or RMA-S cells are used which are stable with an HLA gene, for example with HLA-Al and / or HLA-A2 genes are transfected.
  • the cells are exposed to peptides that are good MHC-I ligands, by presenting them in the MHC-I context so that they can be recognized as foreign by the immune system, such peptides cause the HLA molecules to appear on the cell surface in a significant amount
  • the detection of the HLAs on the cell surface allows the identification of suitable peptides (Malnati et al., l ⁇
  • an autologous or allogeneic tumor cell of the vaccine can have several xenopeptides of different sequences.
  • the peptides used can differ on the one hand in that they bind to different HLA subtypes. It can thus be achieved that several or all HLA subtypes of a patient or a larger group of patients are recorded.
  • the vaccine is administered in irradiated form.
  • a further, possibly additional, variability with regard to the xenopeptides presented on the tumor cell can consist in the fact that peptides which bind to a specific HLA subtype differ with regard to their sequence which is not decisive for HLA binding, for example by of proteins of different origins, e.g. from viral and / or bacterial proteins, derived smd.
  • proteins of different origins e.g. from viral and / or bacterial proteins, derived smd.
  • the tumor vaccine in which the tumor vaccine consists of a mixture of allogeneic tumor cells from different cell lines and optionally additionally autologous tumor cells, all tumor cells can be treated with the same peptide (s) or the tumor cells of different origins can also have different xenopeptides exhibit.
  • a viral peptide of the sequence Leu Phe Glu Ala Ile Glu Gly Phe Ile was used as the foreign peptide of type a), which is derived from the influenza virus Haemagglutinm derives and is a H2-K ⁇ ligand; the anchor amino acids are underlined.
  • a tumor vaccine was produced and tested in an animal model (melanoma model and colon carcinoma model).
  • a further viral peptide of the sequence Ala Ser Asn Glu Asn Met Glu Thr Met which is derived from the nucleoprotein of influenza virus and a ligand of the HLA-1 haplotype H2-K b - ⁇ st (Rammenee et. Al., 1993; anchor amino acids smd underlined ), was used for the production of a tumor vaccine; the protective effect of the vaccine was confirmed in another melanoma model.
  • a further vaccine was produced by alienating tumor cells with a foreign peptide of the sequence Phe Phe Ile Gly Ala Leu Glu Glu Ile (FFIGALEEI).
  • FIGALEEI a foreign peptide of the sequence Phe Phe Ile Gly Ala Leu Glu Glu Ile
  • This is a synthetic peptide not previously known in nature.
  • care was taken to ensure that the requirements with regard to the suitability as ligand for the MHC-I molecule of the type H2-Kd were met.
  • the suitability of the peptide for generating anti-tumor immunity according to the concept of active immunotherapy was confirmed on murine colon carcinoma CT-26 (syngeneic for the mouse strain Balb / c).
  • the tumor vaccine can also contain autologous and / or allogeneic tumor cells and / or fibroblasts that are transfected with cytokine genes.
  • autologous and / or allogeneic tumor cells and / or fibroblasts that are transfected with cytokine genes.
  • cytokine genes can also contain autologous and / or allogeneic tumor cells and / or fibroblasts that are transfected with cytokine genes.
  • IL-2 expression vector this method is based on receptor-mediated endocytosis and uses a cellular ligand conjugated with a polycation, such as polylysine, in particular transferrm) for complexing DNA and an endosomolytically active agent such as adenovirus).
  • the peptide-treated tumor cells and the cytokine-expressing cells are preferably mixed in a ratio of 1: 1.
  • 1: 1 For example, if one mixes an IL-2 vaccine, which produces 4,000 units of IL-2 per 1 x IO 6 cells, with 1 x IO 6 peptide-treated tumor cells, the vaccine thus obtained can be used for two treatments, with an optimal dose of 1,000 up to 2,000 units of IL-2 (Schmidt et al., 1995) was adopted.
  • the cells are worked up and the vaccine according to the invention is formulated in a conventional manner, e.g. in Biologie Therapy of Cancer, 1991, or in WO 94/21808.
  • the invention relates to a method for producing a tumor vaccine consisting of tumor cells for administration to a patient.
  • the method is characterized in that tumor cells which naturally present peptides derived from tumor antigens in the HLA context and at least some of which express at least one MHC-I haplotype of the patient are treated with one or more peptides which
  • Patients and the tumor cells of the vaccine are common, function, and different from peptides, 1 1 the smd derived from proteins expressed by the patient's cells, or the
  • tumor cells are incubated with one or more peptides a) and / or b) and in such an amount in the presence of an organic polycation until the peptides are bound to the tumor cells in such a way that they are isolated from the immune system of the Patients are recognized as foreign and trigger a cellular immune response.
  • the amount of peptide is preferably about 50 ⁇ g to about 160 ⁇ g per 1 ⁇ IO 5 to 2 ⁇ 10 7 cells. If a peptide of category b) is used, the concentration can also be higher. It is essential for these peptides that their concentration on the tumor cells of the vaccine is increased compared to the concentration of a peptide on the tumor cells of the patient, which is derived from the same tumor antigen, in such a way that the tumor cells of the vaccine are recognized as foreign and have a cellular immune response trigger.
  • Suitable polycations include homologous organic polycations such as polylysine, polyargmm, polyornithm or heterologous polycations with two or more different positively charged amino acids, which polycations can have different chain lengths, furthermore non-peptide synthetic polycations such as polyethyleneimines, natural DNA-binding proteins of a polycationic character such as Histones or proteins or analogs or fragments thereof, as well as spermine or spermidme.
  • Organic polycations suitable for the purposes of the present invention also include polycationic lipids (Feigner et al, 1994; Loeffler et al., 1993; Remy et al., 1994; Behr, 1994), which are commercially available as Transfectam, Lipofectamm or Lipofectm, among others.
  • Polylysine (pL) with a chain length of approximately 30 to approximately 300 lysine residues is preferably used as the polycation.
  • the amount of polycation required in relation to the peptide can be determined empirically in detail. If polylysine and xenopeptides of category a) are used, the mass ratio pL: peptide is preferably about 1: 4 to about 1:12.
  • the incubation period is generally 30 mm to 4 h. It depends on the point in time at which the maximum loading of the peptide has been reached; The degree of loading can be followed by means of FACS analysis and the required incubation period can be determined in this way.
  • the polylysine is used in at least partially conjugated form.
  • Part of the polylyme is preferably in a form conjugated with Transfer ⁇ n (Tf) (Transferrin-Polylysm conjugate TfpL, in this regard reference is also made to the disclosure of WO 94/21808), the mass ratio pL: TfpL preferably being about 1: 1 is.
  • Tf Transfer ⁇ n
  • polylysine can be combined with other proteins, e.g. the cellular ligands described in WO 94/21808 as internalizing factors.
  • the DNA is expediently in the form of a plasmid, preferably a plasmid which is free from sequences which code for functional eukaryotic proteins, that is to say as an empty vector.
  • any common, functionally available plasmid can be used as DNA.
  • the amount of DNA in relation to the polycation which may be partially conjugated with a protein, for example pL, TfpL or a mixture of pL with TfpL, is preferably about 1: 2 to about 1: 5.
  • the duration of the incubation, the amount and type of polycation in relation to the number of tumor cells and / or the amount of peptide, whether or in what proportion the polycation or with which protein it is advantageously conjugated, the advantage of the presence of DNA or their amount can be determined empirically.
  • the individual process parameters are varied and the peptides are applied to the tumor cells under otherwise identical conditions and it is checked how efficiently the peptides have bound to the tumor cells.
  • a suitable method for this is the FACS analysis.
  • the method according to the invention is suitable not only for the treatment of tumor cells but also for the treatment of other cells.
  • autologous that is, patient's own, fibroblasts, or cells of fibroblast cells, which are either matched to the patient's HLA subtype or which have been transfected with the appropriate MHC-I gene, can be loaded with one or more peptides according to the method of the invention that are derived from smd tumor antigens that are expressed by the patient's tumor cells.
  • the fibroblasts treated and irradiated in this way can be used as such or in a mixture with peptide-treated tumor cells as tumor vaccines.
  • dendritic cells can be treated using the method according to the invention.
  • Dendritic cells smd APCs of the skin they can optionally be loaded in vitro, ie cells isolated from the patient are mixed in vitro with one or more peptides, the peptides of Tumor antigens of the patient are derived and bind to an MHC-I or to an MHC-II molecule of the patient.
  • these cells can also be loaded with the peptide in vivo.
  • the complexes of peptide, polycation and possibly DNA are preferably injected intradermally, because dendritic cells are found particularly frequently in the skin.
  • the peptide was complexed with TfpL or pL for the transfer into CT-26 cells and with TfpL and a non-functional plasmid (empty vector) for the transfer m M-3 cells.
  • TfpL or pL for the transfer into CT-26 cells
  • TfpL and a non-functional plasmid empty vector for the transfer m M-3 cells.
  • the irradiated tumor vaccine alienated with the peptide, generated an efficient anti-tumor immunity: 75% of the vaccinated mice were able to eliminate a tumor challenge which was present in all control animals which either received no vaccine or a vaccine without the xenopeptide , led to tumor formation.
  • mice carrying metastases were vaccinated with xenopeptized, irradiated M-3 cells. 87.5% of the mice vaccinated in this way were able to eliminate the metastases, while all untreated and 7 out of 8 mice of the mice contracted tumors which had received vaccines without the xenopeptide.
  • the extent of the systemic immune response of the tumor vaccine depends on the method by which the peptide is applied to the tumor cells. If the peptide was administered to the cells by means of Polylysm / Transfer ⁇ n, the effect was significantly more pronounced than if the cells were incubated with the peptide for 24 hours (“pulses”). Adjuvant admixing of the peptide to the irradiated vaccines was also not very efficient.
  • Transfer infection should either ensure a more efficient uptake of the peptide into the cells, or else loading with Polylysm / Transfer ⁇ n causes the peptide to adhere to the cell membrane, thus physically bringing it close to the MHC-I molecules and then to them can bind, whereby due to its strong affinity it can displace cellular peptides that are less bound smd.
  • Fig. La-c FACS analysis of foreign peptide-treated M-3 cells
  • Fig. Ld microphotographs of FITC peptide-treated M-3 cells
  • Fig. 4a Protection of Balb / c mice by
  • Fig. 5 Protection of C57BL / 6J mice by
  • mice melanoma cell cloudman S91 (clone M-3; ATCC No. CCL 53.1) was purchased from ATCC.
  • Melanoma cells B16-F10 (Fidler et al., 1975) were purchased from the NIH DCT Tumor Depository.
  • the transferrm-polylysm conjugates of DNA-containing transfection complexes were prepared as described in WO 94/21808.
  • the peptides LFEAIEGFI, FFIGALEEI, LPEAIEGFG, and ASNENMETM were processed on a peptide synthesizer (model 433 A with feedback monitor, Applied Biosystems, Foster City, Canada) using TentaGel S PHB (Rapp, Tübingen) as a solid phase according to the Fmoc method ( HBTU activation, Fastmoc TM, scale 0:25 mmol) synthesized.
  • the peptides were dissolved in 1 M TEAA, pH 7.3 and purified by reverse chromatography on a Vydac C 18 column. The sequences were confirmed by time-of-flight mass spectrometry on a MAT Lasermat (Fmnigan, San Jose, Canada).
  • the testing of the effectiveness of the cancer vaccine for its protective action against metastasis (“therapeutic mouse model") and the testing in the prophylactic mouse model was carried out according to the protocol described in WO 94/21808, the DBA / 2 model and the Balb / c. Being the mouse model Model were used.
  • the xenopeptide LFEAIEGFI was applied to M-3 cells once with TfpL / DNA complexes (“Transloadmg”; FIG. 1 a), and once the cells with the peptide Z7 m incubated (“Pulse”; Fig. Lb) and once the peptide was adjuvantly mixed with the cells (Fig. Lc).
  • FITC-labeled xenopeptide LFEAIEGFI or unlabeled control peptide were mixed with 3 ⁇ g Transferrm-Polylysm (TfpL), 10 ⁇ g pL and 6 ⁇ g psp65 (Boehringer Mannheim, LPS free) in 500 ⁇ l HBS buffer.
  • TfpL Transferrm-Polylysm
  • 10 ⁇ g pL 10 ⁇ g pL
  • 6 ⁇ g psp65 Boehringer Mannheim, LPS free
  • the pulsing of the cells with the peptide was carried out with 1-2 x IO 6 cells with 20 ml DMEM with 450 ⁇ g peptide (FITC- labeled or unlabeled) for 3 hours at 37 ° C.
  • 1d shows microphotographs of cytocentrifuged M-3 cells: the upper picture shows cells which have received the peptide by means of the complex ("Transloadmg”), the lower picture shows cells which have been incubated with the peptide ("pulses”) were. DAPI was used to counterstain the core.
  • M-3 cells loaded with the complex containing the peptide showed a shift in fluorescence by almost 2 orders of magnitude compared to 2.S untreated cells or cells treated with polylysine in all, which indicates an efficient transfer of the peptide to the cells by means of TfpL / DNA complex (FIG. 1 a).
  • Incubation with peptide (pulses) was less effective, which is reflected in the shift in fluorescence by only a power of ten, which was practically undetectable in fluorescence microscopy (FIG. 1d).
  • the peptide disappeared after the washing step FIG. 1c
  • peptide-containing complexes were prepared which contained either 50, 5 or 0.5 ⁇ g of the active peptide LFEAIEGFI and thus loaded M-3 cells.
  • a IL-2 vaccine which secreted the optimal dose of IL-2 (see d), served as a comparison. This vaccine was used to vaccinate DBA / 2 mice that carried a five-day metastasis. The vaccine with
  • the pre-immunization with the tumor vaccine according to the invention was superior to treatment with the IL-2 vaccine: naive mice vaccinated with the IL-2 Vaccines were only protected against a dose of 10 ⁇ living, highly tumorigenic cells (M-3-W). However, the capacity of this vaccine was exhausted with a challenge of 3 ⁇ 10 ⁇ cells, while a tumor load of this extent was successfully combated by animals which had been pre-immunized with the vaccine from tumor cells loaded with foreign peptides.
  • 160 ⁇ g xenopeptide LFEAIEGFI or FFIGALEEI were mixed with 12 ⁇ g pL or with 3 ⁇ g Transferrm-Polylysm plus 10 ⁇ g polylysine, and complexed 30 mm at room temperature in 500 ⁇ l HBS buffer and then in a T 75 cell culture bottle with 1.5 x 10 ⁇ CT-26 cells were transferred to 4 ml DMEM medium (10% FCS, 20 mM glucose), followed by incubation at 37 ° C and 5% CO2. After 4 h the cells were washed with PBS, 15 ml of fresh medium were added and the mixture was incubated overnight at 37 ° C. and 5% CO2. 4 h before the application, the cells were irradiated with 100 Gy. The vaccine was worked up as described in WO 94/21808.
  • mice 6-12 week old Balb / c mice were vaccinated twice every week by subcutaneous injection (cell dose: 10 5 / mouse). There were 8 mice per group (or 7 mice in the experiment in which pL was used for loading the cells) in the experiment. A week after the last vaccination, contralateral tumors with 5 x 10 4 parental CT-26- Cells set. Comparative experiments in which the vaccine was prepared in a manner other than by means of the complexes from TfpL / DNA and the controls were carried out as described in Example 2. The growth of the tumor challenge was checked at least once a week. The result for peptide LFEAIEGFI can be seen in FIG. 4a; 6 out of 8 animals were protected. In the case of FFIGALEEI peptide (not shown in Figure 4a, 4 out of 8 animals were protected).
  • CD4 + cells were injected 24 h before vaccination by intravenous injection of 500 ⁇ g monoclonal antibody GK1.5
  • FIG. 4b The involvement of the T cells is shown by the fact that all animals from which T cells had been removed developed tumors.
  • mice from the strain C57BL / 6J were used as test animals (8 animals per group).
  • the melanoma cells used were the B16-F10 cells (NIH DCT tumor depository; Fidler et al., 1975) which were syngeneic for the mouse strain used.
  • the animals of all test groups were vaccinated twice at a weekly interval by subcutaneous injection of IO 5 B16-F10 cells per mouse:
  • the vaccine was produced by loading irradiated B16-F10 cells with the peptide of the sequence ASNENMETM, as described in Example 2 for the vaccine from M-3 cells.
  • IL-2 and GM-CSF secreting B16-F10 cells were used as vaccines for the pre-immunization; the vaccine produced 1,000 units of IL-2 or 200ng GM-CSF per animal.
  • a control group received irradiated and otherwise untreated B16-F10 cells for the pre-immunization.
  • test animals were treated with lxlO 4 living, irradiated B16-F10 cells and then the tumor growth was monitored.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Tumorvakzine und Verfahren zu deren Herstellung. Die Tumorvakzine enthält Tumorzellen, von denen zumindest ein Teil mindestens einen MHC-I-Haplotyp des Patienten an der Zelloberfläche aufweist, und die mit einem oder mehreren Peptiden, die an das MHC-I-Molekül binden, derart beladen wurden, daß die Tumorzellen im Kontext mit den Peptiden vom Immunsystem des Patienten als fremd erkannt werden und eine zelluläre Immunantwort auslösen. Die Beladung wird in Gegenwart eines Polykations wie Polylysin vorgenommen.

Description

Tumorvakzine und Verfahren zu ihrer Herstellung
Die Entwicklung einer therapeutischen Vakzine auf der Grundlage von Tumorzellen beruht im wesentlichen auf den folgenden Voraussetzungen: es bestehen qualitative oder quantitative Unterschiede zwischen Tumorzellen und normalen Zellen; das Immunsystem hat prinzipiell die Fähigkeit, diese Unterschiede zu erkennen; das Immunsystem kann - durch aktive spezifische Immunisierung mit Vakzinen - dazu stimuliert werden, Tumorzellen anhand dieser Unterschiede zu erkennen und deren Abstoßung herbeizuführen.
Um eine Anti-Tumorantwort herbeizuführen, müssen zumindest zwei Voraussetzungen erfüllt sein: erstens müssen die Tumorzellen Antigene oder Neoepitope, die auf normalen Zellen nicht vorkommen, exprimieren. Zweitens muß das Immunsystem entsprechend aktiviert werden, um auf diese Antigene zu reagieren. Ein wesentliches Hindernis bei der Immuntherapie von Tumoren ist deren geringe Immunogenizität, vor allem im Menschen. Dies ist insofern überraschend, als zu erwarten wäre, daß die große Anzahl genetischer Veränderungen maligner Zellen zur Entstehung von Peptid-Neoepitopen führen sollte, die im Kontext mit MHC-I-Molekülen von zytotoxischen T-Lymphozyten erkannt werden.
In jüngerer Zeit wurden Tumor-assoznerte und Tumor¬ spezifische Antigene entdeckt, die solche Neo-Epitope darstellen und somit potentielle Ziele für einen Angriff des Immunsystems darstellen sollten. Daß es dem Immunsystem dennoch nicht gelingt, Tumore zu eliminieren, die diese Neo-Epitope exprimieren, dürfte demnach offensichtlich nicht am Fehlen von Neo-Epitopen gelegen sein, sondern daran, daß die immunologische Antwort auf diese Neo-Antigene unzureichend ist.
Für die Immuntherapie von Krebs auf zellulärer Basis wurden zwei allgemeine Strategien entwickelt: Einerseits die adoptive Immuntherapie, die sich der in vitro Expansion von tumorreaktiven T-Lymphozyten und deren Wiedereinführung m den Patienten bedient; andererseits die aktive Immuntherapie, welche Tumorzellen verwendet, in der Erwartung, daß damit entweder neue oder verstärkte Immunantworten gegen Tumorantigene hervorgerufen werden, die zu einer systemischen Tumorantwort führen.
Tumorvakzine auf der Grundlage der aktiven Immuntherapie wurden auf verschiedene Arten hergestellt; ein Beispiel dafür sind bestrahlte Tumorzellen, die mit immunstimulierenden Adjuvantien wie Corynebacterium parvum oder Bacillus Calmette Guerin (BCG) versetzt werden, um Immunreaktionen gegen Tumorantigene hervorzurufen (Oettgen und Old, 1991) .
In den letzten Jahren wurden vor allem genetisch modifizierte Tumorzellen für eine aktive Immuntherapie gegen Krebs verwendet, wobei die m die Tumorzellen eingeführten Fremdgene m drei Kategorien fallen:
Eine davon verwendet Tumorzellen, die genetisch modifiziert werden, um Zytokine zu produzieren. Lokale Koinzidenz von Tumorzellen und Zytokmsignal sollen einen Stimulus setzen, der Anti-Tumorimmunität auslöst. Eine Übersicht über Anwendungen dieser Strategie wird von Pardoll, 1993, Zatloukal et al . , 1993, und Dranoff und Mulligan, 1995, gegeben.
Von Tumorzellen, die genetisch verändert wurden, um Zytokine wie IL-2, GM-CSF oder IFN-γ zu sekretieren oder um co-stimulierende Moleküle zu exprimieren, wurde in experimentellen Tiermodellen gezeigt, daß sie potente Anti-TumorImmunität generieren (Dranoff et al . , 1993; Zatloukal et al . , 1995) . Bei einem Menschen, der bereits eine beträchtliche Tumorbelastung aufweist und eine Toleranz gegen den Tumor entwickelt hat, ist es jedoch wesentlich schwieriger, die Kaskade komplexer Wechselwirkungen vollständig zu erfassen, so daß eine wirkungsvolle Anti-Tumorreaktion stattfinden kann. Die tatsächliche Wirksamkeit von Zytokm-sekretierenden Tumorvakzinen für Anwendungen im Menschen ist noch nicht erwiesen.
Eine weitere Kategorie von Genen, mit denen Tumorzellen im Hinblick auf ihre Verwendung als Tumorvakzine verändert werden, kodiert für sog. akzessorische Proteine ("accesssory proteins") ; das Ziel dieses Ansatzes besteht darin, Tumorzellen m Antigen- präsentierende Zellen ("Neo-APCs") umzufunktionieren, um sie direkt Tumor-spezifische T-Lymphozyten generieren zu lassen. Ein Beispiel für einen derartigen Ansatz wird von Ostrand-Rosenberg, 1994, beschrieben.
Die Identifizierung und Isolierung von Tumorantigenen (TAs) bzw. davon abgleiteter Peptide, z.B. durch Wölfel et al., 1994 a) und 1994 b) ; Carrel et al . , 1993, Lehmann et al . , 1989, Tibbets et al . , 1993, oder in den veröffentlichten internationalen Anmeldungen WO 92/20356, WO 94/05304, WO 94/23031, WO 95/00159 beschrieben) war die Voraussetzung dafür, Tumorantigene als Immunogene für Tumorvakzine zu verwenden, und zwar sowohl in Form von Proteinen als auch von Peptiden. Eine Tumorvakzine in Form von Tumorantigenen als solchen ist jedoch nicht ausreichend immunogen, um eine zelluläre Immunantwort auszulösen, wie sie zur Elimmierung von Tumorantigen tragenden Tumorzellen erforderlich wäre; auch die co-Applikation von Adiuvantien bietet nur bedingte Möglichkeiten zur Verstärkung der Immunantwort (Oettgen und Old, 1991) .
Eine dritte Strategie der aktiven Immuntherapie zur Steigerung der Wirksamkeit von Tumorvakzinen basiert auf xenogenisierten (verfremdeten) autologen Tumorzellen. Diesem Konzept liegt die Annahme zugrunde, daß das Immunsystem auf Tumorzellen reagiert, die ein Fremdprotein exprimieren und daß im Zuge dieser Reaktion auch eine Immunantwort gegen diejenigen Tumorantigene (TAs) hervorgerufen wird, die von den Tumorzellen der Vakzine präsentiert werden. ^-
Eme Übersicht über diese verschiedenen Ansätze, bei denen Tumorzellen im Hinblick auf eine verstärkte Immunogenizität durch Einführung verschiedener Gene verfremdet werden, wird von Zatloukal et al . , 1993, gegeben.
Eine zentrale Rolle bei der Regulierung der spezifischen Immunantwort spielt ist ein trimolekularer Komplex, bestehend aus den Komponenten T-Zeil-Antigenrezeptor, MHC ("Major Histocompatibility Complex" ) -Molekül und dessen Liganden, der ein von einem Protein abgeleitetes Peptidfragment ist.
MHC-I-Moleküle (bzw. die entsprechenden humanen Moleküle, die HLAs) sind Peptidrezeptoren, die bei stπngenter Spezifitat die Bindung von Millionen verschiedener Liganden erlauben. Die Voraussetzung dafür stellen Allel-spezifische Peptidmotive dar, die folgende Spezifitatskriterien aufweisen: Die Peptide haben, in Abhängigkeit vom MHC-I-Haplotyp, eine definierte Länge, in der Regel acht bis zehn Aminosäurereste. Typischerweise stellen zwei der Aminsoaurepositionen sog. "Anker" dar, die nur durch eine einzige Aminosäure oder durch Aminosäure-Reste mit eng verwandten Seitenketten besetzt werden können. Die genaue Lage der Ankerammosauren im Peptid und die Anforderungen an deren Eigenschaften variieren mit den MHC-I-Haplotypen. Der C-Terminus der Peptid-Liganden ist häufig ein aliphatischer oder ein geladener Rest. Solche allelspezifische MHC-I-Peptιd-Lιgandenmotιve sind bisher u.a. für H-2Kd, Kb, Kk, Kkml, Db, HLA-A*0201, A*0205 und B*2705 bekannt.
Im Rahmen des Proteinumsatzes innerhalb der Zelle werden reguläre, entartete und fremde Genprodukte, z.B. virale Proteine oder Tumorantigene, in kleine Peptide zerlegt; einige davon stellen potentielle Liganden für MHC-I- Moleküle dar. Damit ist die Voraussetzung für deren Präsentation durch MHC-Moleküle und als Folge davon die Auslösung einer zellulären Immununatwort gegeben, wobei ζ noch nicht im einzelnen aufgeklärt ist, wie die Peptide als MHC-I-Liganden in der Zelle produziert werden.
Em Ansatz, der sich diesen Mechanismus für die Verfremdung von Tumorzellen im Hinblick auf eine Verstärkung der Immunantwort zunutze macht, besteht darin, Tumorzellen mit mutagenen Chemikalien, wie N-Methyl-N' -nitrosoguanidm zu behandeln. Dies soll dazu führen, daß die Tumorzellen von mutierten Varianten zellulärer Proteine abgeleitete Neo-Antigene präsentieren, die fremde Genprodukte darstellen (Van Pel und Boon, 1982) . Da jedoch die mutagenen Ereignisse zufällig über das Genom verteilt sind und außerdem zu erwarten ist, daß einzelne Zellen infolge unterschiedlicher mutagener Ereignisse auch unterschiedliche Neo-Antigene präsentieren, ist dieses Verfahren m qualitativer und quantitativer Hinsicht schwierig zu kontrollieren.
Em anderer Ansatz verfremdet Tumorzellen dadurch, daß sie mit Genen eines oder mehrerer Fremdproteine, z.B. dem emes fremden MHC-1-Moleküls oder MHC-Proteme unterschiedlichen Haplotyps, transfiziert werden, das dann in Form an der Zelloberfläche aufscheint (EP-A2 0 569 678; Plautz et al . , 1993; Nabel et al . , 1993) . Dieser Ansatz beruht auf der oben erwähnten Vorstellung, daß die Tumorzellen, wenn sie m Form einer Ganzzeil- Vakzine verabreicht werden, anhand des expπmierten Proteins bzw. der davon abgeleiteten Peptide als fremd erkannt werden, oder daß, im Fall der Expression von autologen MHC-1-Molekülen, durch eme erhöhte Anzahl von MHC-I-Molekülen auf der Zelloberfläche die Präsentation von Tumorantigen optimiert wird. Die Veränderung von Tumorzellen mit einem Fremdprotein kann dazu führen, daß die Zellen vom Fremdprotein stammende Peptide im MHC- Kontext präsentieren und die Veränderung von "selbst" zu "fremd" im Rahmen der MHC-Peptid-Komplex Erkennung stattfindet. Die Erkennung eines Proteins oder Peptids als fremd hat zur Folge, daß im Zuge der Immunerkennung nicht nur gegen das fremde Protein, sondern auch gegen die den Tumorzeilen eigenen Tumorantigene eme Immunantwort erzeugt wird. Im Zuge dieses Prozesses werden die Antigen-präsentierenden Zellen (Antigen Presentmg Cells, APCs) aktiviert, die die in der Tumorzelle des Vakzins vorkommenden Proteine (inklusive TAs) zu Peptiden prozessieren und als Liganden für ihre eigenen MHC-I und MHC-II-Moleküle verwenden. Die aktivierten, Peptid-beladenen APCs wandern m die Lymphknoten em, wo einige wenige der naiven T-Lymphozyten die vom TA stammenden Peptide auf den APCs erkennen und als Stimulus zur klonale Expansion - mit anderen Worten zur Generierung von Tumor-spezifischen CTLs und T-Helferzellen - verwenden können.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, eine neue Tumorvakzine auf der Grundlage verfremdeter Tumorzellen bereitzustellen, mit Hilfe derer eine wirksame zellulare Anti-Tumorimmunantwort ausgelost werden kann.
Bei der Lösung der gestellten Aufgabe wurde von folgenden Überlegungen ausgegangen: Während nicht- maligne, normale Korperzellen vom Immunsystem toleriert werden, reagiert der Körper auf eme normale Zelle, wenn sie, z.B. aufgrund einer Virusinfektion, körperfremde Proteine synthetisiert, mit einer Immunabwehr. Die Ursache dafür ist darin gelegen, daß die MHC-I-Moleküle Fremdpeptide präsentieren, die von den körperfremden Proteinen stammen. Als Folge davon registriert das Immunsystem, daß etwas Unerwünschtes, Fremdes mit dieser Zelle geschehen ist. Die Zelle wird eliminiert, APCs werden aktiviert und eme neue, spezifische Immunität gegen die Fremdproteine exprimierenden Zellen generiert.
Tumorzellen enthalten zwar die jeweiligen tumorspezifischen Tumorantigene, smd aber als solche unzulängliche Vakzine, weil sie aufgrund ihrer geringen Immunogenizität vom Immunsystem ignoriert werden. Belädt man nun, im Gegensatz zu den bekannten Ansätzen, eine Tumorzelle nicht mit einem Fremdprotein, sondern mit einem Fremdpeptid, so werden zusätzlich zu den Fremdpeptiden auch die zelleigenen Tumorantigene von dieser Zelle als fremd wahrgenommen. Durch die Verfremdung mit einem Peptid soll erreicht werden können, daß sich die durch die Fremdpeptide ausgelöste zelluläre Immunantwort gegen die Tumorantigene richtet.
Die Ursache für die geringe Immunogenizität von Tumorzellen kann nicht em qualitatives, sondern em quantitatives Problem sem. Für em von einem Tumorantigen abgeleitetes Peptid kann das bedeuten, daß es zwar von MHC-I-Molekülen präsentiert wird, jedoch in einer Konzentration, die zu gering ist, um eine zelluläre tumorspezifische Immunantwort auszulösen. Eme Erhöhung der Zahl von tumorspezifischen Peptiden auf der Tumorzelle sollte somit ebenfalls eme Verfremdung der Tumorzelle bewirken, die zur Auslösung einer zellulären Immunantwort führt. Im Gegensatz zu Ansätzen, bei denen das Tumorantigen bzw. das davon abgeleitete Peptid dadurch auf der Zelloberfläche präsentiert wird, daß eε mit einer für das betreffende Protein bzw. Peptid kodierenden DNA transfiziert wurde, wie in den internationalen Veröffentlichungen WO 92/20356, WO 94/05304, WO 94/23031 und WO 95/00159, beschrieben, sollte eme Vakzine bereitgestellt werden, die bei einfacherer Herstellung eme effiziente Immunantwort auslöst .
Von Mandelboim et al . , 1994 und 1995, wurde vorgeschlagen, RMA-S-Zellen mit von Tumorantigenen abgeleiteten Peptiden zu inkubieren, um damit eine zelluläre Immunantwort gegen die entsprechenden patienteneigenen Tumorantigene auszulösen. Von den von Mandelboim et al . für die Tumorvakzmierung vorgeschlagenen Zellen der Bezeichnung RMA-S (Karre et al . , 1986) wird angenommen, daß sie Funktionen von APCs ausführen können. Sie haben die Eigenart, daß ihre HLA- Moleküle an der Zelloberfläche infolge emes Defekts im zellulären TAP-Mechanismus ("Transport of Antigenic Peptides"; verantwortlich für die Prozessierung von Peptiden und deren Bindung an HLA-Moleküle) leer sind. Damit stehen die Zellen für die Beladung mit einem Peptid zur Verfügung, sie fungieren also gleichsam als Präsentiervehikel für das von außen angebotene Peptid. Die erzielte Anti-Tumorwirkung beruht auf der Auslösung emer Immunantwort gegen das auf den Zellen präsentierte Peptid, das dem Immunsystem ohne unmittelbaren Kontext mit dem antigenen Repertoir der Tumorzelle angeboten wird.
Die Erfindung betrifft eme Tumorvakzine für die Verabreichung an einem Patienten, bestehend aus Tumorzellen, die von sich aus von Tumorantigenen abgeleitete Peptide im HLA-Kontext präsentieren und von denen zumindest em Teil mindestens emen MHC-1-Haplotyp des Patienten an der Zelloberfläche aufweist und die mit einem oder mehreren Peptiden a) und/oder b) derart beladen wurden, daß die Tumorzellen im Kontext mit den Peptiden vom Immunsystem des Patienten als fremd erkannt werden und eme zelluläre Immunantwort auslösen, wobei die Peptide
a) als Liganden für den MHC-I-Haplotyp, der dem Patienten und den Tumorzellen der Vakzine gemeinsam ist, fungieren, und verschieden smd von Peptiden, die abgeleitet smd von Proteinen, die von Zellen des Patienten exprimiert werden, oder
b) als Liganden für den MHC-I-Haplotyp, der dem Patienten und den Tumorzellen der Vakzine gemeinsam smd, fungieren, und abgeleitet smd von Tumorantigenen, die von Zellen des Patienten exprimiert werden und in einer Konzentration auf den Tumorzellen der Vakzine vorliegen, die höher ist als die Konzentration emes Peptids, das von demselben Tumorantigen abgeleitet ist wie das auf den Tumorzellen des Patienten exprimierte. Die humanen MHC-Moleküle werden gemäß den internationalen Gepflogenheiten im folgenden auch als "HLA" ("Human Leucocyte Antigen") bezeichnet.
Unter "zelluläre Immunantwort" ist die zytotoxische T-Zellimmunität zu verstehen, die als Folge der Generierung von tumorspezifischen zytotoxischen CD8- positiven T-Zellen und CD4-posιtιven Helfer-T-Zellen die Zerstörung der Tumorzellen bewirkt.
Die Wirkung der erfindungsgemäßen Vakzine aus Tumorzellen beruht vor allem darauf, daß die immunogene Wirkung des auf den Tumorzellen vorhandenen Vorrats an Tumorantigenen durch das Peptid verstärkt wird.
Die Peptide des Typs a) werden im folgenden auch als "Fremdpeptide" oder "Xenopeptide" bezeichnet.
In einer Ausführungsform der Erfindung sind die Tumorzellen der Vakzine autolog. Dabei handelt es sich um Zellen, die dem zu behandelnden Patienten entnommen werden, ex vi vo mit Peptid (en) a) und/oder b) behandelt, gegebenenfalls inaktiviert und danach dem Patienten wieder verabreicht werden. (Methoden zur Herstellung von autologen Tumorvakzinen smd in der WO 94/21808, auf deren Offenbarung Bezug genommen wird, beschrieben) .
In einer Ausführungsform der Erfindung sind die Tumorzellen allogen, d.h. sie stammen nicht von dem zu behandelnden Patienten. Der Verwendung von allogenen Zellen wird vor allem dann der Vorzug gegeben, wenn arbeitsökonomische Überlegungen eme Rolle spielen; die Herstellung von individuellen Vakzinen für jeden einzelnen Patienten ist arbeits- und kostenaufwendig, außerdem treten bei einzelnen Patienten Schwierigkeiten bei der ex vivo Kultivierung der Tumorzellen auf, so daß Tumorzellen nicht m ausreichend großer Zahl erhalten werden, um eine Vakzine herstellen zu können. Bei den allogenen Tumorzellen ist zu berücksichtigen, daß sie auf den HLA-Subtyp des Patienten abgestimmt sem müssen. Im Falle der Verwendung von Fremdpeptiden der Kategorie a) handelt es sich bei allogenen Tumorzellen um Zellen einer oder mehrerer Zellinien, von denen zumindest eme Zellmie mindestens em, vorzugsweise mehrere Tumorantigene exprimiert, die identisch smd mit den Tumorantigenen des zu behandelnden Patienten, d.h. die Tumorvakzine wird auf die Tumormdikation des Patienten abgestimmt. Dadurch wird gewährleistet, daß die durch das MHC-I-präsentierten Fremdpeptide auf den Tumorzellen der Vakzine ausgelöste zelluläre Immunantwort, die zur Expansion von tumorspezifischen CTLs und T-Helferzellen führt, sich auch gegen die Tumorzellen des Patienten richtet, weil diese dasselbe Tumorantigen exprimieren wie die Zellen der Vakzine.
Soll z.B. eme Patientin mit der erfindungsgemäßen Tumorvakzine behandelt werden, die an Brustkrebs- Metastasen leidet, die eme Her2/neu-Mutatιon (Allred et al . , 1992; Peopoles et al . , 1994; Yoshino et al . , 1994 a) ; Stein et al . , 1994; Yoshino et al . , 1994 b) ; Fisk et al . , 1995; Han et al . , 1995) aufweisen, werden als Vakzine allogene, auf den HLA-Haplotyp des Patienten abgestimmte Tumorzellen eingesetzt, die ebenfalls das mutierte Her2/neu als Tumorantigen exprimieren. In jüngerer Zeit wurden zahlreiche Tumorantigene isoliert und ihr Zusammenhang mit einer oder mehreren Krebserkrankungen aufgeklärt. Weitere Beispiele für solche Tumorantigene sind ras (Fenton et al . , 1993; Gedde Dahl et al . , 1992; Jung et al . , 1991; Morishita et al . , 1993; Peace et al . , 1991; Skipper et al . , 1993) , MAGE-Tumorantigene (Boon et al . , 1994; Slmgluff et al . , 1994; van der Bruggen et al . , 1994; WO 92/20356) ; eine Übersicht über diverse Tumorantigene wird darüberhinaus von Carrel et al . , 1993 gegeben.
Eme Übersicht über bekannte, im Rahmen der Erfindung verwendbare Tumorantigene und davon abgeleitete Peptide ist in der Tabelle gegeben. U
Die Tumorantigene des Patienten werden im allgemeinen im Zuge der Erstellung von Diagnose und Therapieplan mit Standardmethoden, z.B. mit Hilfe von Assays auf der Grundlage von CTLs mit Spezifität für das zu bestimmende Tumorantigen bestimmt. Derartige Assays wurden u.a. von Herrn et al, 1987; Coulie et al . , 1993; Cox et al . , 1994; Rivoltmi et al . , 1995; Kawakami et al . , 1995; sowie in der WO 94/14459 beschrieben; diesen Literaturstellen smd auch verschiedene Tumorantigene bzw. davon abgeleitete Peptidepitope entnehmbar. Auf der Zelloberfläche auftretende Tumorantigene können auch mit Immunoassays auf Basis von Antikörpern nachgewiesen werden. Wenn die Tumorantigene Enzyme smd, z.B. Tyrosmasen, können sie mit Enzymassays nachgewiesen werden.
In einer weiteren Ausführungsform der Erfindung kann eine Mischung von autologen und allogenen Tumorzellen als Ausgangsmaterial für die Vakzine verwendet werden. Diese Ausführungsform der Erfindung kommt insbesondere dann zur Anwendung, wenn die vom Patienten expπmierten Tumorantigene unbekannt oder nur unvollständig charakterisiert smd und/oder wenn die allogenen Tumorzellen nur einen Teil der Tumorantigene des Patienten exprimieren. Durch Beimischung von autologen, mit dem Fremdpeptid behandelten Tumorzellen wird gewährleistet, daß zumindest em Teil der Tumorzellen der Vakzine eme möglichst große Anzahl von patienteneigenen Tumorantigen enthält. Bei den allogenen Tumorzellen handelt es sich um solche, die in einem oder mehreren MHC-I-Haplotypen mit dem Patienten übereinstimmen.
Die Peptide des Typs a) und b) werden entsprechend der Anforderung, an ein MHC-I-Molekül zu binden, hinsichtlich ihrer Sequenz durch den HLA-Subtyp des Patienten definiert, dem die Vakzine verabreicht werden soll. Die Bestimmung des HLA-Subtyps des Patienten stellt somit eme der wesentlichen Voraussetzungen für I I die Auswahl bzw. Konstruktion eines geeigneten Peptids dar.
Bei der Anwendung der erfindungsgemäßen Tumorvakzine m Form autologer Tumorzellen ergibt sich der HLA-Subtyp automatisch durch die beim Patienten genetisch determinierte Spezifität des HLA-Moleküls . Der HLA- Subtyp des Patienten kann mit Standardmethoden, wie dem Mikro-Lymphotoxizitätstest (MLC-Test, Mixed Lymphozyte Culture) bestimmt werden (Practical Immunol., 1989) . Der MLC-Test beruht auf dem Prinzip, aus Patientenblut isolierte Lymphozyten zunächst mit Antiserum oder einem monoklonalen Antikörper gegen em bestimmtes HLA-Molekül m Gegenwart von Kaninchen-Komplement (C) zu versetzen. Positive Zellen werden lysiert und nehmen emen Indikator-Farbstoff auf, während unbeschädigte Zellen ungefärbt bleiben.
Zur Bestimmung des HLA-Haplotyps eines Patienten kann auch die RT-PCR herangezogen werden (Curr. Prot . Mol. Biol. Kapitel 2 und 15) . Dazu entnimmt man einem Patienten Blut und isoliert daraus RNA. Diese RNA unterwirft man zunächst einer Reversen Transkription, wodurch cDNA des Patienten entsteht . Die cDNA dient alε Matrize für die Polymerasekettenreaktion mit Primerpaaren, die spezifisch die Amplifikation eines DNA-Fragmentes bewirken, das für einen bestimmten HLA- Haplotyp steht. Erscheint nach Agarosegelelektrophorese eme DNA-Bande, exprimiert der Patient das entsprechende HLA-Molekül. Erscheint die Bande nicht, ist der Patient dafür negativ. Für jeden Patienten sind mindestens zwei Banden zu erwarten.
Bei der Anwendung der Erfindung in Form einer allogenen Vakzine werden Zellen verwendet, von denen zumindest em Teil auf mindestens einen HLA-Subtyp des Patienten abgestimmt ist. Im Hinblick auf eme möglichst breite Anwendbarkeit der erfindungsgemäßen Vakzine wird zweckmäßig von einer Mischung verschiedener Zellinien ausgegangen, die zwei oder drei verschiedene der am häufigsten vertretenen HLA-Subtypen exprimieren, wobei insbesondere die Haplotypen HLA-Al und HLA-A2 berücksichtigt werden. Mit einer Vakzine auf der Grundlage einer Mischung von allogenen Tumorzellen, die diese Haplotypen exprimieren, kann auf eine breite Patientenpopulation erfaßt werden; damit können ca. 70 % der europäischen Bevölkerung abgedeckt werden (Mackiewicz et al . , 1995) .
Die Definition der erfindungsgemäß verwendeten Peptide durch den HLA-Subtyp bestimmt diese hinsichtlich ihrer Ankeraminosauren und ihrer Lange; definierte Ankerpositionen und Länge gewährleisten, daß die Peptide m die Peptid-Bmdungεfurche der jeweiligen HLA-Moleküle passen somit auf der Zelloberfläche der die Vakzine bildenden Tumorzellen derart präsentiert werden, daß die Zellen als fremd erkannt werden. Dies hat zur Folge, daß das Immunsystem stimuliert wird und eme zelluläre Immunreaktion auch gegen die Tumorzellen des Patienten erzeugt wird.
Peptide, die im Rahmen der vorliegenden Erfindung als Fremdpeptide gemäß Kategorie a) geeignet sind, sind in einer großen Bandbreite verfügbar. Ihre Sequenz kann von natürlich vorkommenden immunogenen Proteinen bzw. deren zellulären Abbauprodukten, z.B. von viralen oder bakteriellen Peptiden, oder von patientenfremden Tumorantigenen abgeleitet sem.
Geeignete Fremdpeptide können z.B. auf der Grundlage von literaturbekannten Peptidsequenzen ausgewählt werden; z.B. anhand der von Rammensee et. al . , 1993, Falk et al . , 1991, für die unterschiedlichen HLA-Motive beschriebenen, von immunogenen Proteinen verschiedenen Ursprungs abgeleiteten Peptide, die in die Bindungsfurchen der Moleküle der jeweiligen HLA-Subtypen passen. Für Peptide, die eine Teilsequenz eines Proteins mit immunogener Wirkung aufweisen, kann anhand der bereits bekannten oder gegebenfalls noch zu bestimmenden Polypeptidsequenzen durch Sequenzabgleich unter Berücksichtigung der HLA-spezifischen Anforderungen festgestellt werden, welche Peptide geeignete Kandidaten darstellen. Beispiele für geeignete Peptide finden sich z.B. bei Rammensee et al . , 1993, Falk et al . , 1991, und Rammensee, 1995; sowie in der WO 91/09869 (HlV-Peptide) ; von Tumorantigenen abgeleitete Peptide wurden u.a. in den veröffentlichten internationalen Patentanmeldungen WO 95/00159, WO 94/05304 beschrieben. Auf die Offenbarung dieser Literaturstellen und der darin im Zusammenhang mit Peptiden zitierten Artikel wird Bezug genommen.
Bevorzugte Kandidaten für Xenopeptide sind Peptide, deren Immunogenität bereits gezeigt wurde, also Peptide, die von bekannten Immunogenen, z.B. viralen oder bakteriellen Proteinen, abgeleitet sind. Solche Peptide zeigen aufgrund ihrer Immunogenizität eine heftige Reaktion im MLC-Test.
Statt die Originalpeptide zu verwenden, also Peptide, die unverändert von natürlichen Proteinen abgeleitet sind, können anhand der auf der Grundlage der Originalpeptidsequenz angegebenen Minimalanforderungen bezüglich Ankerpositionen und Länge beliebige Variationen vorgenommen werden, in diesem Fall werden also erfindungsgemäß künstliche Peptide verwendet, die entsprechend den Anforderungen an einen MHC-I-Liganden entworfen sind. So können z.B. ausgehend vom H2-Kd- Liganden Leu Phe Glu Ala Ile Glu Gly Phe Ile (LFEAIEGFI) die Aminosäuren, die keine Ankeraminosäuren darstellen, geändert werden, um das Peptid der Sequenz Phe Phe Ile Gly Ala Leu Glu Glu Ile (FFIGALEEI) zu erhalten; außerdem kann die Ankeraminosäure Ile an Position 9 durch Leu ersetzt werden.
Peptide, die von Tumorantigenen, also von Proteinen, die in einer Tumorzelle exprimiert werden und die in der entsprechenden nicht-transformierten Zelle nicht oder in signifikant geringerer Konzentration aufscheinen, abgeleitet sind, können im Rahmen der vorliegenden Erfindung als Peptide des Typs a) und/oder des Typs b) verwendet werden.
Die Länge des Peptids entspricht vorzugsweise der bzgl. der Bindung an das MHC-I-Molekül erforderlichen Mmimalsequenz von 8 bis 10 Aminosäuren mit den erforderlichen Ankeraminosäuren. Gegebenenfalls kann das Peptid auch am C- und/oder am N-Terminus verlängert sem, sofern diese Verlängerung die Bindungsfähigkeit nicht beeinträchtigt, bzw. das verlängerte Peptid auf die Mmimalsequenz zellulär prozessiert werden kann.
In emer Ausführungsform der Erfindung kann das Peptid mit negativ geladenen Aminosäuren verlängert werden, oder es können negativ geladene Aminosäuren in das Peptid, und zwar an anderen Positionen als den Ankeraminosäuren, eingebaut werden, um eme elektrostatische Bindung des Peptids an em Polykation, wie Polylysin, zu erreichen.
Unter den Begriff "Peptide" fallen im Rahmen der vorliegenden Erfindung definitionsgemäß auch größere Proteinfragmente bzw. ganze Proteine, von denen gewährleistet ist, daß sie nach der Applikation von den APCs zu Peptiden prozessiert werden, die an das MHC- Molekül passen.
In dieser Ausführungsform wird das Antigen somit nicht in Form eines Peptids, sondern als Protein oder Proteinfragment bzw. als Gemisch von Proteinen oder Proteinfragmenten eingesetzt. Das Protein stellt em Antigen bzw. Tumorantigen dar, von dem die nach Prozessierung erhaltenen Bruchstücke abgeleitet sind. Die von den Zellen aufgenommenen Proteine bzw. Proteinfragmente werden prozessiert und können danach im MHC-Kontext den Immuneffektorzellen präsentiert werden und somit eme Immunantwort auslösen bzw. verstärken (Braciale und Braciale, 1991; Kovacsovics Bankowski und Rock, 1995; York und Rock, 1996) . i fc
Im Fall der Verwendung von Proteinen oder Proteinfragmenten kann man die Identität des prozessierten Endproduktes mittels chemischer Analyse (Edman-Abbau oder Massenspektrometrie von prozessierten Fragmenten; vgl. den Übersichtsartikel von Rammensee et al . , 1995 sowie die darin zitierte Origmalliteratur) oder biologischen Assays (Fähigkeit der APCs zur Stimulation von T-Zellen, die für die prozessierten Fragmente spezifisch smd) , nachweisen.
Die Auswahl von Peptid-Kandidaten im Hinblick auf ihre Eignung als Fremdpeptide erfolgt prinzipiell m mehreren Stufen: Im allgemeinen werden die Kandidaten, zweckmäßig in Serienversuchen, zunächεt in einem Peptid- Bmdungstest auf ihre Bindungsfähigkeit an em MHC-I- Molekül getestet .
Em geeignete Untersuchungsmethode ist z.B. die auf der Durchflußzytometπe beruhende FACS-Analyse (Flow Cytometry, 1989; FACS Vantage TM User's Guide, 1994; CELL Quest ™ User's Guide, 1994) . Dabei wird das Peptid mit einem Fluoreszenzfarbstoff markiert, z.B. mit FITC (Fluoresceinisothiocyanat) und auf Tumorzellen aufgebracht, die das jeweilige MHC-I-Molekül exprimieren. Im Durchfluß werden einzelne Zellen von einem Laser einer bestimmten Wellenlange angeregt; die emittierte Fluoreszenz wird gemessen, sie ist abhängig von der an die Zelle gebundene Peptidmenge.
Eine weitere Methode zur Bestimmung der gebundenen Peptidmenge ist der Scatchard-Blot . Man benutzt dazu Peptid, das mit J125 oder mit Seltenerdmetallionen (z.B. Europium) markiert ist. Man belädt die Zellen bei 4°C mit verschiedenen, definierten Konzentrationen von Peptid für 30 bis 240 mm. Zur Bestimmung unspezifischer Wechselwirkung von Peptid mit Zellen wird zu einigen Proben em Überschuß nicht-markierten Peptides zugesetzt, der die spezifische Interaktion des markierten Peptids unterbindet. Anschließend wäscht man die Zellen, damit unspezifisch zell-assoziertes Material entfernt wird. Die Menge des zell-gebundenen Peptids wird nun entweder in einem Szintillationszähler anhand der emittierten Radioaktivität, oder in einem zur Messung langlebiger Fluoreszenz geeigneten Photometer ermittelt. Die Auswertung der so gewonnenen Daten erfolgt nach Standardmethoden.
In einem zweiten Schritt werden Kandidaten mit guten Bmdungsqualitäten auf ihre Immunogenizitat geprüft.
Die Immunogenizität von Xenopeptiden, die abgeleitet sind von Proteinen, deren immunogene Wirkung nicht bekannt ist, kann z.B. im MLC-Test getestet werden. Peptide, die in diesem Test, der zweckmäßig ebenfalls m Serie mit unterschiedlichen Peptiden durchgeführt wird, wobei zweckmäßig als Standard em Peptid mit bekannt immunogener Wirkung verwendet wird, eme besonders heftige Reaktion hervorrufen, sind für die vorliegenden Erfindung geeignet.
Eine weitere Möglichkeit für die Testung von MHC-I- bindenden Peptidkandidaten auf ihre Immunogenizität besteht darin, die Bindung der Peptide an T2-Zellen zu untersuchen. Em solcher Test beruht auf der Eigenart von T2-Zellen (Alexander et al . , 1989 oder RMA-S-Zellen (Karre et al . , 1986) , defekt im TAP-Peptid- Transportmechanismus zu sem und erst dann stabil MHC-I- Moleküle zu präsentieren, wenn man auf sie Peptide aufbringt, die im MHC-I-Kontext präsentiert werden. Für den Test werden z.B. T2-Zellen oder RMA-S-Zellen verwendet, die stabil mit einem HLA-Gen, z.B. mit HLA- Al- und/oder HLA-A2-Genen transfiziert sind. Werden die Zellen mit Peptiden beaufschlagt, die gute MHC-I- Liganden sind, indem sie im MHC-I-Kontext so präsentiert werden, daß sie vom Immunsystem als fremd erkannt werden können, bewirken solche Peptide, daß die HLA-Moleküle in signifikanter Menge auf der Zelloberfläche aufscheinen. Der Nachweis der HLAs auf der Zelloberfläche, z.B. mittels monoklonalen Antikörpern, erlaubt die Identifizierung geeigneter Peptide (Malnati et al . , l Ά
1995; Sykulev et al . , 1994) . Auch hier wird zweckmäßig em Standardpeptid mit bekannt guter HLA- bzw. MHC- Bmdungsfähigkeit verwendet .
In einer Ausführungsform der Erfindung kann eme autologe oder allogene Tumorzelle der Vakzine mehrere Xenopeptide unterschiedlicher Sequenz aufweisen. Die verwendeten Peptide können sich in diesem Fall einerseits dahingehend unterscheiden, daß sie an unterschiedliche HLA-Subtypen binden. Damit kann erreicht werden, daß mehrere bzw. sämtliche HLA-Subtypen eines Patienten oder einer größeren Gruppe von Patienten erfaßt werden. Die Vakzine wird in bestrahlter Form verabreicht .
Eme weitere, gegebenfalls zusätzliche, Variabilität hinsichtlich der auf der Tumorzelle präsentierten Xenopeptide kann darin bestehen, daß Peptide, die an einen bestimmten HLA-Subtyp binden, sich hinsichtlich ihrer nicht für die HLA-Bindung maßgeblichen Sequenz unterscheiden, indem sie z.B. von Proteinen unterschiedlichen Ursprungs, z.B. von viralen und/oder bakteriellen Proteinen, abgeleitet smd. Von einer solchen Variabilität, die dem vakzinierten Organismus eme größere Bandbreite an Verfremdung anbietet, kann eme Verstärkung der Stimulierung der Immunantwort erwartet werden.
In der Ausführungsform der Erfindung, bei der die Tumorvakzine aus einer Mischung von allogenen Tumorzellen verschiedener Zellinien sowie gegebenenfalls zusätzlich autologen Tumorzellen besteht, können sämtliche Tumorzellen mit demselben/denselben Peptid (en) behandelt worden sem bzw. können die Tumorzellen verschiedenen Ursprungs auch jeweils verschiedene Xenopeptide aufweisen.
In den im Rahmen der vorliegenden Erfindung durchgeführten Versuchen wurde als Fremdpeptid des Typs a) em virales Peptid der Sequenz Leu Phe Glu Ala Ile Glu Gly Phe Ile verwendet, das sich vom Influenza-Virus Haemagglutinm ableitet und ein H2-K^-Ligand ist; die Ankeraminosäuren sind unterstrichen.
Mit diesem natürlich vorkommenden viralen Peptid als Fremdpeptid wurde eme Tumorvakzine hergestellt und im Tiermodell (Melanσmmodell und Colonkarzinommodell) getestet .
Em weiteres virales Peptid der Sequenz Ala Ser Asn Glu Asn Met Glu Thr Met , das sich vom Nukleoprotem von Influenzavirus ableitet und em Ligand des HLA-1- Haplotyps H2-Kb-ιst (Rammensee et. al . , 1993; Ankeraminosäuren smd unterstrichen) , wurde für die Herstellung einer Tumorvakzine verwendet; die Schutzwirkung der Vakzine wurde m einem anderen Melanommodell bestätigt.
Eme weitere Vakzine wurde hergestellt, indem Tumorzellen mit einem Fremdpeptid der Sequenz Phe Phe Ile Gly Ala Leu Glu Glu Ile (FFIGALEEI) verfremdet wurden. Hierbei handelt es sich um ein synthetisches, m der Natur bisher nicht bekanntes Peptid. Bei der Auswahl der Sequenz wurde darauf geachtet, daß die Anforderungen bezüglich der Eignung als Ligand für das MHC-I-Molekül vom Typ H2-Kd erfüllt sind. Die Eignung des Peptides zur Erzeugung einer Antltumor-Immunität nach dem Konzept der aktiven Immuntherapie wurde am murinen Colon-Karzinom CT-26 (syngenisch für den Mausstamm Balb/c) bestätigt.
In einer weiteren Ausführungsform der Erfindung kann die Tumorvakzine außerdem autologe und/oder allogene Tumorzellen und/oder Fibroblasten enthalten, die mit Zytokingenen transfiziert sind. In der WO 94/21808 sowie von Schmidt et al . , 1995 (auf diese Veröffentlichung wird Bezug genommen) sind effiziente Tumorvakzine beschrieben, die mittels der als "Transferrinfektion" bezeichneten DNA-Transport-Methode mit einem IL-2 Expressionsvektor erzeugt wurden (diese Methode beruht auf der Rezeptor-vermittelten Endozytose und benutzt einen mit einem Polykation, wie Polylysin, konjugierten zellulären Liganden, insbesondere Transferrm, zur Komplexierung von DNA, sowie em endosomolytisch wirksames Agens wie Adenovirus) .
Vorzugsweise mischt man die Peptid-behandelten Tumorzellen und die Zytokin exprimierenden Zellen im Verhältnis 1:1. Wenn man z.B. eme IL-2 Vakzine, die 4.000 Einheiten IL-2 pro 1 x IO6 Zellen produziert, mit 1 x IO6 Peptid-behandelten Tumorzellen mischt, kann die so erhaltene Vakzine für zwei Behandlungen eingesetzt werden, wobei em Dosisoptimum von 1.000 bis 2.000 Einheiten IL-2 (Schmidt et al . , 1995) angenommen wurde.
Durch die Kombination der Zytokm-Vakzme mit den Peptid-behandelten Tumorzellen können vorteilhaft die Wirkungen dieser beiden Vakzine-Typen vereinigt werden.
Die Aufarbeitung der Zellen sowie die Formulierung der erfindungsgemäßen Vakzine erfolgt in herkömmlicher Weise, wie z.B. in Biologie Therapy of Cancer, 1991, oder in der WO 94/21808 beschrieben.
Die Erfindung betrifft in einem weiteren Aspekt em Verfahren zur Herstellung einer Tumorvakzine bestehend aus Tumorzellen zur Verabreichung an einen Patienten.
Das Verfahren ist erfindungsgemäß dadurch gekennzeichnet, daß man Tumorzellen, die von sich aus von Tumorantigenen abgeleitete Peptide im HLA-Kontext präsentieren und von denen zumindest em Teil mindestens einen MHC-I-Haplotyp des Patienten exprimiert, mit einem oder mehreren Peptiden behandelt, die
a) als Liganden für den MHC-I-Haplotyp, der dem
Patienten und den Tumorzellen der Vakzine gemeinsam sind, fungieren, und verschieden smd von Peptiden, 1 1 die abgeleitet smd von Proteinen, die von Zellen des Patienten exprimiert werden, oder die
b) als Liganden für den MHC-I-Haplotyp, der dem
Patienten und den Tumorzellen der Vakzine gemeinsam smd, fungieren, und abgeleitet smd von Tumorantigenen, die von Zellen des Patienten exprimiert werden,
wobei man die Tumorzellen mit einem oder mehreren Peptiden a) und/oder b) so lange und in einer solchen Menge m Gegenwart eines organischen Polykations mkubiert, bis die Peptide an die Tumorzellen derart gebunden smd, daß sie im Kontext mit den Tumorzellen vom Immunsystem des Patienten als fremd erkannt werden und eme zellulare Immunantwort auslosen.
Die Menge an Peptid betragt vorzugsweise ca. 50 μg bis ca. 160 μg pro 1 x IO5 bis 2 x 107 Zellen. Im Falle der Verwendung eines Peptids der Kategorie b) kann die Konzentration auch hoher sem. Für diese Peptide ist es wesentlich, daß ihre Konzentration auf den Tumorzellen der Vakzine gegenüber der Konzentration eines Peptids auf den Tumorzellen des Patienten, das von demselben Tumorantigen abgeleitet ist, derart erhöht ist, daß die Tumorzellen der Vakzine als fremd erkannt werden und eme zellulare Immunantwort auslosen.
Zu geeigneten Polykationen zahlen homologe organische Polykationen wie Polylysin, Polyargmm, Polyornithm oder heterologe Polykationen mit zwei oder mehr unterschiedlichen positiv geladenen Aminosäuren, wobei diese Polykationen verschiedene Kettenlänge aufweisen können, ferner nicht-peptidische synthetische Polykationen wie Polyethylenimine, natürliche DNA- bmdende Proteine polykationischen Charakters wie Histone oder Protamme bzw. Analoge oder Fragmente davon, sowie Spermin oder Spermidme. Zu im Rahmen der vorliegenden Erfindung geeigneten organischen Polykationen zählen auch polykationische Lipide (Feigner et al, 1994; Loeffler et al . , 1993; Remy et al . , 1994; Behr, 1994) , die u.a. kommerziell als Transfectam, Lipofectamm oder Lipofectm erhältlich smd.
Als Polykation wird bevorzugt Polylysin (pL) einer Kettenlänge von ca. 30 bis ca. 300 Lysinresten eingesetzt .
Die erforderliche Menge an Polykation im Verhältnis zum Peptid kann im einzelnen empirisch bestimmt werden. Im Falle der Verwendung von Polylysin und Xenopeptiden der Kategorie a) betragt das Masseverhältnis pL: Peptid vorzugsweise ca. 1:4 bis ca 1:12.
Die Dauer der Inkubation beträgt im allgemeinen 30 mm bis 4 h. Sie richtet sich danach, zu welchem Zeitpunkt die maximale Beladung mit dem Peptid erreicht ist; der Beladungsgrad kann mittels FACS-Analyse verfolgt und auf diese Weise die erforderliche Inkubationsdauer ermittelt werden.
In emer weiteren Ausführungsform der Erfindung wird das Polylysin in zumindest teilweiser konjugierter Form eingesetzt. Vorzugsweise liegt em Teil des Polylysms in mit Transferπn (Tf) konjugierter Form (Transferrin- Polylysm-Konjugat TfpL, diesbezüglich wird ebenfalls auf die Offenbarung der WO 94/21808 Bezug genommen) vor, wobei das Masseverhältnis pL:TfpL vorzugsweise ca. 1:1 beträgt .
Statt mit Transferrm kann Polylysin mit anderen Proteinen, z.B. den in der WO 94/21808 als Internalisierungsfaktoren beschriebenen zellulären Liganden, konjugiert werden.
Gegebenfalls findet die Behandlung der Tumorzellen außerdem in Gegenwart von DNA statt. Die DNA liegt zweckmäßig als Plasmid vor, vorzugsweise als Plasmid, das frei ist von Sequenzen, die für funktionelle eukaryotische Proteine kodieren, also als Leervektor. Als DNA kann prinzipiell jedes gängige, funktionell erhältliche Plasmid verwendet werden. Die Menge an DNA im Verhältnis zu dem, gegebenenfalls teilweise mit einem Protein konjugierten Polykation, z.B. zu pL, TfpL oder einer Mischung von pL mit TfpL, betragt vorzugsweise ca. 1:2 bis ca.1:5.
Die Dauer der Inkubation, die Menge und Art des Polykations im Verhältnis zu der Zahl der Tumorzellen und/oder der Menge an Peptid, ob bzw. in welchem Anteil das Polykation bzw. mit welchem Protein es vorteilhaft konjugiert ist, der Vorteil der Anwesenheit von DNA bzw. deren Menge können empirisch bestimmt werden. Dazu werden die einzelnen Verfahrensparameter variiert und die Peptide unter ansonsten identischen Bedingungen auf die Tumorzellen aufgebracht und überprüft, wie effizient die Peptide an die Tumorzellen gebunden haben Eine geeignete Methode dafür ist die FACS-Analyse.
Das erfmdungsgemäße Verfahren eignet sich außer zur Behandlung von Tumorzellen auch zur Behandlung anderer Zellen.
Statt Tumorzellen können autologe, also patienteneigene, Fibroblasten, oder Zellen von Fibroblastenzellmien, die entweder auf den HLA- Subtyp des Patienten abgestimmt oder die mit dem entsprechenden MHC-I-Gen transfiziert worden smd, nach dem erfindungsgemäßen Verfahren mit einem oder mehreren Peptiden beladen werden, die von Tumorantigenen abgeleitet smd, die von den Tumorzellen des Patienten exprimiert werden. Die so behandelten und bestrahlten Fibroblasten können als solche oder in Mischung mit Peptid-behandelten Tumorzellen als Tumorvakzine verwendet werden.
In einer weiteren Ausführungsform können statt Fibroblasten dendritische Zellen nach dem erfindungsgemäßen Verfahren behandelt werden. Dendritische Zellen smd APCs der Haut; sie können wahlweise m vi tro beladen werden, d.h. aus dem Patienten isolierte Zellen werden in vi tro mit einem oder mehreren Peptiden versetzt, wobei die Peptide von Tumorantigenen des Patienten abgeleitet sind und an ein MHC-I- oder an em MHC-II-Molekül des Patienten binden. In einer weiteren Ausführungsform können diese Zellen auch in vivo mit dem Peptid beladen werden. Dazu injiziert man die Komplexe aus Peptid, Polykation und gegebenenfalls DNA vorzugsweise intradermal, weil in der Haut dendritische Zellen besonders häufig vorzufinden smd.
Im Rahmen der vorliegenden Erfindung wurde das Peptid mit TfpL oder pL für den Transfer in CT-26 Zellen und mit TfpL und einem nicht funktionellen Plasmid (Leervektor) für den Transfer m M-3 Zellen komplexiert. Im CT-26 System wurde festgestellt, daß die mit dem Peptid verfremdeten, bestrahlten Tumorvakzine eme effiziente Antitumor-Immunität generierten: 75 % der geimpften Mäuse konnten eme Tumorchallenge eliminieren, die bei allen Kontrolltieren, die entweder keine Vakzine oder eme Vakzine ohne das Xenopeptid erhielten, zu Tumorbildung führte. Im M-3 System wurde dasselbe Xenopeptid unter Bedingungen, die für den Organismus hinsichtlich Tumorbildung noch höhere Strmgenz aufwiesen, in einem experimentellen Ansatz getestet, der der Situation im Menschen nachempfunden ist. Metastasen¬ tragende Mäuse wurde mit xenopeptiεierten, bestrahlten M-3 Zellen geimpft. 87.5 % der so geimpften Mäuse konnten die Metastasen eliminieren, während alle unbehandelten und 7 von 8 Mäusen von den Mäusen an Tumoren erkrankten, die Vakzine ohne das Xenopeptid erhalten hatten.
Es wurde außerdem festgestellt, daß das Ausmaß der systemischen Immunantwort der Tumorvakzine von der Methode abhängig ist, mit der das Peptid auf die Tumorzellen aufgebracht wird. Wenn das Peptid mittels Polylysm/Transferπn den Zellen verabreicht wurde, war der Effekt deutlich ausgeprägter als wenn die Zellen 24 h mit dem Peptid mkubiert wurden ("Pulsen") . Auch das adjuvante Beimischen des Peptides zu den bestrahlten Vakzinen war wenig effizient. Durch die 2.5"
Transferrinfektion dürfte entweder eine effizientere Aufnahme des Peptids in die Zellen gewährleistet sem, oder aber die Beladung mit Polylysm/Transferπn bewirkt, daß das Peptid an der Zellmembran haften bleibt, somit physikalisch in die Nähe der MHC-I- Moleküle gebracht wird und dann an diese binden kann, wobei es aufgrund seiner starken Affinität zelluläre Peptide, die schwächer gebunden smd, verdrängen kann.
Figurenübersicht
Fig. la-c :FACS-Analyse von Fremdpeptid-behandelten M-3-Zellen
Fig. ld: Mikrofotografien von FITC-Peptid-behandelten M-3-Zellen
Fig. 2a,b: Heilung von M-3-Melanommetastasen tragenden DBA/2-Mäusen durch eme Vakzine aus Fremdpeptid-beladenen M-3-Zellen
Fig. 3a: Titration von Fremdpeptid für die Herstellung einer Tumorvakzine
Fig. 3b: Vergleich einer Tumorvakzine aus Fremdpeptid- beladenen Tumorzellen mit einer IL-2 sekretierenden Tumorvakzine
Fig. 4a: Schutz von Balb/c-Mäusen durch
Voπmmunisierung mit einer Vakzine aus Fremdpeptid-beladenen Colonkarzmomzellen
Fig. 4b: Untersuchung der Beteiligung von T-Zellen an der systemischen Immunität
Fig. 5: Schutz von C57BL/6J-Mäusen durch
Vorimmunisierung mit einer Vakzine aus Fremdpeptid-beladenen Melanomzellen
In den folgenden Beispielen wurden, wenn nicht anders angegeben, die folgenden Materialien und Methoden verwendet : Die Maus-Melanomzellmie Cloudman S91 (Klon M-3; ATCC No. CCL 53.1) wurde von ATCC erworben.
Die Melanomzellme B16-F10 (Fidler et al . , 1975) wurde vom NIH DCT Tumor Depository erworben.
Die Herstellung von Transferrm-Polylysm-Konjugaten, von DNA enthaltenden Transfektionskomplexen wurde vorgenommen, wie in der WO 94/21808 beschrieben.
Die Peptide LFEAIEGFI, FFIGALEEI , LPEAIEGFG, und ASNENMETM wurden auf einem Peptid-Synthesizer (Modell 433 A mit Feedbackmonitor, Applied Biosystems, Foster City, Kanada) unter Verwendung von TentaGel S PHB (Rapp, Tübingen) als Festphase nach der Fmoc-Methode (HBTU-Aktivierung, Fastmoc™, Maßstab 0:25 mmol) synthetiεiert . Die Peptide wurden m 1 M TEAA, pH 7.3 aufgelost und mittels reverser Chromatographie auf einer Vydac C 18-Säule gereinigt. Die Sequenzen wurden mittels Flugzeitmassenspektrometrie auf einem MAT Lasermat (Fmnigan, San Jose, Kanada) bestätigt.
Die Testung der Wirksamkeit der Krebsvakzine auf ihre Schutzwirkung gegen Metastasenbildung ("Therapeutisches Mauεmodell") sowie die Testung im prophylaktischen Mausmodell wurde nach dem in der WO 94/21808 beschriebenen Protokoll durchgeführt, wobei als Mausmodell das DBA/2-Modell und das Balb/c-Modell verwendet wurden.
Beispiel 1
Vergleichende FACS-Analyse von M-3-Zellen, die mittels verschiedenen Methoden mit Fremd-Peptid behandelt wurden
Für diese Untersuchung, die m Fig. 1 dargestellt ist, wurde das Xenopeptid LFEAIEGFI auf M-3-Zellen einmal mit TfpL/DNA-Komplexen aufgebracht ( "Transloadmg" ; Fig. la) , einmal wurden die Zellen mit dem Peptid Z7 mkubiert ("Pulsen"; Fig. lb) und einmal wurde das Peptid den Zellen adjuvant beigemischt (Fig. lc) .
Für das Transloadmg wurden 160 μg FITC-markiertes Xenopeptid LFEAIEGFI bzw. unmarkiertes Kontrollpeptid mit 3 μg Transferrm-Polylysm (TfpL) , 10 μg pL und 6 μg psp65 (Boehringer Mannheim, LPS frei) in 500 μl HBS-Puffer gemischt. Nach 30 mm bei Raumtemperatur wurde die obige Lösung in eme T 75 Zellkulturflasche mit 1.5 x IO6 M-3 Zellen m 20 ml DMEM-Medium (10 % FCS, 20 mM Glukose) gegeben und bei 37°C mkubiert. Nach 3 h wurden die Zellen zweimal mit PBS gewaschen, mit PBS/2 mM EDTA abgelost und für die FACS-Analyse im 1 ml PBS/5 % FCS resuspendiert .
Das Pulsen der Zellen mit dem Peptid wurde mit 1 -2 x IO6 Zellen m 20 ml DMEM mit 450 μg Peptid (FITC- markiert bzw. unmarkiert) wahrend 3 h bei 37°C durchgeführt .
Für das adjuvante Beimischen wurden vor der FACS- Analyse IO6 von der Kulturflasche abgelöste Zellen mit 100 μg FITC-markiertem Peptid in 1 ml PBS/5% FCS 30 mm bei Raumtemperatur mkubiert. Die Zellen wurden nach Austausch von PBS/5% FCS gewaschen und noch einmal analysiert. Die FACS-Analyse wurde unter Verwendung emes FACS Vantage Geräts (Becton Dickmson) , ausgerüstet mit einem 5 W Argon Laser, eingestellt auf 100 mW bei 488 nm, nach Vorschrift des Herstellers durchgeführt. Das Ergebnis der FACS-Analyse ist in den Fig. la bis lc dargestellt. Fig. ld zeigt Mikrofotografien von zytozentrifugierten M-3-Zellen: das obere Bild zeigt Zellen, die das Peptid mittels dem Komplex ("Transloadmg") erhalten hatten, das untere Bild zeigt Zellen, die mit dem Peptid mkubiert ("Pulsen") worden waren. Für die Gegenfärbung des Kerns wurde DAPI verwendet .
M-3-Zellen, die mit dem das Peptid enthaltenden Komplex beladen worden waren, zeigten eme Verschiebung der Fluoreszenz um beinahe 2 Zehnerpotenzen im Vergleich zu 2.S unbehandelten oder mit Polylysin allem behandelten Zellen, was auf einen effizienten Transfer des Peptids auf die Zellen mittels TfpL/DNA-Komplex hinweist (Fig. la) . Die Inkubation mit Peptid (Pulsen) war weniger wirksam, was sich in der Verschiebung der Fluoreszenz um nur eme Zehnerpotenz niederschlagt, die m der Fluoreszenzmikroskopie praktisch nicht nachweisbar war (Fig. ld) . Im Falle des adjuvanten Beimischens verschwand das Peptid nach dem Waschschritt (Fig. lc) , was daraufhindeutet, daß die Peptidbmdung höchstens geringfügig war.
Beispiel 2
Heilung von Melanommetastasen aufweisenden DBA/2-Mausen mit einer Vakzine aus Fremdpeptid-beladenen Melanomzellen ("Therapeutisches Mausmodell")
a) Herstellung emer Turmorvakzine aus M-3-Zellen
160 μg Xenopeptid LFEAIEGFI wurden mit 3 μg Transferrm-Polylysm (TfpL) , 10 μg pL und 6 μg psp65 (LPS frei) m 500 μl HBS-Puffer gemischt. Nach 30 mm bei Raumtemperatur wurde die obige Losung in eme T 75 Zellkulturflasche mit 1.5 x IO6 M-3 Zellen in 20 ml DMEM-Medium (10 % FCS, 20 mM Glukose) gegeben und bei 37°C mkubiert. Nach 3 h wurden die Zellen mit 15 ml frischem Medium versetzt und über Nacht bei 37°C und 5 % CO2 inkubiert . 4 h vor der Applikation wurden die Zellen mit 20 Gy bestrahlt. Die Aufarbeitung der Vakzine erfolgte wie in WO 94/21808 beschrieben.
b) Wirksamkeit der Tumorvakzine
6 - 12 Wochen alte DBA/2 Mäuse mit einer Fünftages- Metastase (erzeugt durch die subkutane Injektion von 104 lebenden M-3 Zellen) wurden zweimal im Abstand von einer Woche mittels subkutaner Injektion mit der Tumorvakzine behandelt (Dosis: IO5 Zellen/Tier) . Es standen 8 Mäuse im Experiment. Das Ergebnis der Versuche ist m Fig. 2a dargestellt; es zeigte sich, daß 7 von 8 Tieren nach Verabreichung der Vakzine, die mittels TfpL/DNA-Komplexen auf die Tumorzellen geladenes Peptid enthielten, geheilt wurden. In Vergleichsversuchen wurde eme Vakzine verwendet, in der das Peptid LFEAIEGFI (400 μg oder 4 mg) mittels Inkubation (3 h bei 37°C; "Pulsen") auf die Zellen aufgebracht worden war. Von den Tieren, die eine Vakzine mit 400 μg Peptid erhalten hatten, blieben 3 von 8 tumorfrei, die Vakzine aus mit 4 mg Peptid behandelten Zellen heilte nur 1 von 8 Tieren. Kontrollen waren bestrahlte M-3-Zellen allem sowie Zellen, die ohne Peptid mit den Komplexen beladen worden waren (jeweils 1/8 Tieren blieb tumorfrei) . Bei der Gruppe der Kontrolltiere, die keinerlei Behandlung unterzogen worden, entwickelten alle Tiere Tumore.
Um die Relevanz einerseits der Herstellungsmethode der Vakzine, andererseits der Peptidsequenz zu untersuchen, wurde eme weitere Versuchsserie durchgeführt; in diesen Experimenten wurde eme hochtumorigene Variante der M-3-Zellen verwendet. In den Versuchen, in denen die Bedeutung der Behandlungsmethode getestet wurde, wurden Vakzine hergestellt, in denen das Peptid nicht mittels Polylysm-Transferπn auf die Zellen geladen wurde, sondern den Zellen lediglich adjuvant beigemischt wurde. Für die Kontrolle bezüglich der Peptidsequenz wurden die Ankeraminosäuren des Peptids an Position 2 und 9, nämlich Phenylalanm und und Isoleucm, durch Prolm bzw. Glycm ersetzt, was zum Peptid Leu Pro Glu Ala Ile Glu Gly Phe Gly (LPEAIEGFG) führte; diesem Peptid fehlt die Fähigkeit zur H2-Kd- Bindung. Die Metastasenbildung wurde mindestens einmal pro Woche kontrolliert. Das Ergebnis dieser Versuche ist in Fig. 2b zu sehen. Die Vakzine, hergestellt durch Beladen der Zellen mit LFEAIEGFI mittels den TfpL/DNA- Komplexen, heilte 6 von 8 Tieren. Hingegen entwickelten 7 von 8 Tieren Tumore, die eme Vakzine erhalten hatten, für die das Peptid LFEAIEGFI den Zellen lediglich beigemischt wurde bzw. die aus Zellen bestand, die mittels TfpL/DNA-Komplexen mit dem veränderten, nicht an das HLA-Motiv bindenden Peptid LPEAIEGFG beladen wurden. In der Kontrollgruppe, die mit nur bestrahlten M-3-Zellen behandelt worden war bzw. die keinerlei Behandlung erhielt, entwickelten alle Tiere Tumore.
c) Untersuchung des Einflusses der Peptidmenge m der Vakzine
Es wurden, wie in a) beschrieben, Peptid enthaltende Komplexe hergestellt, die entweder 50, 5 oder 0.5 μg des wirksamen Peptides LFEAIEGFI enthielten, und damit M-3 Zellen beladen. Als Vergleich diente eme IL-2 Vakzine, die die optimale Dosis an IL-2 sekretierte (s. d) ) . Mit dieser Vakzine wurden DBA/2 Mause geimpft, die eme Fünftagesmetastase trugen. Die Vakzine mit
50 μg Peptid heilte 6 von 8 Mäusen, die mit 5 μg 4 von 8, ebenso wie die IL-2 Vakzine, während die 0.5 μg enthaltene Vakzine nur 2 von 8 Tieren heilte. Dieεer Versuch ist in Fig. 3a dargestellt.
Beispiel 3
Vergleich der Fremdpeptid enthaltenden Vakzine mit einer Tumorvakzine aus IL-2 sekretierenden Tumorzellen im prophylaktischen Mausmodell
In Vergleichsversuchen wurden zwei Gruppen von Versuchstieren (je 8) einerseits mit der in Beispiel 2a) beschriebenen Vakzine, andererseits mit einer Vakzine aus IL-2 sekretierenden M-3-Zellen (hergestellt nach dem in der WO 94/21808 beschriebenen Protokoll, IL-2-Dosιs 2.000 Einheiten pro Tier) in einem Abstand von 1 Woche 2 x vorimmunisiert . Eme Woche nach der letzten Vakzinierung wurden, bei steigender Zahl von Tumorzellen, contralateral Tumore gesetzt ("Challenge" ; die Dosis ist in Fig. 3b angegeben) . Es zeigte sich, daß die Vorimmunisierung mit der erfindungsgemäßen Tumorvakzine einer Behandlung mit der IL-2-Vakzine überlegen war: naive Mause, geimpft mit der IL-2- Vakzine, waren nur gegen eine Dosis von 10^ lebenden, hochtumorigenen Zellen (M-3-W) geschützt. Die Kapazität dieser Vakzine war jedoch bei einer Challenge von 3 x 10^ Zellen erschöpft, während eme Tumorbelastung dieses Ausmaßes von Tieren, die mit der Vakzine aus Fremdpeptid-beladenen Tumorzellen vorimmunisiert worden waren, erfolgreich bekämpft wurde.
Beispiel 4
Schutz von Balb/c-Mausen durch Vorimmunisierung mit einer Vakzine aus Fremdpeptid-beladenen Colonkarzmomzellen ("Prophylaktisches Mausmodell")
a) Herstellung der CT-26 Vakzine
160 μg Xenopeptid LFEAIEGFI bzw. FFIGALEEI wurden mit 12 μg pL bzw. mit 3 μg Transferrm-Polylysm plus 10 μg Polylysin, gemischt und 30 mm bei Raumtemperatur in 500 μl HBS-Puffer komplexiert und anschließend in eine T 75 Zellkulturflasche mit 1.5 x 10β CT-26 Zellen in 4 ml DMEM-Medium (10 % FCS, 20 mM Glukose) transferiert, anschließend wurde bei 37°C und 5 % CO2 mkubiert. Nach 4 h wurden die Zellen mit PBS gewaschen, mit 15 ml frischem Medium versetzt und über Nacht bei 37°C und 5 % CO2 mkubiert. 4 h vor der Applikation wurden die Zellen mit 100 Gy bestrahlt. Die Aufarbeitung der Vakzine erfolgte wie in der WO 94/21808 beschrieben.
b) Testung der Wirksamkeit der Krebsvakzine auf ihre Schutzwirkung gegen CT-26 Challenge
6 - 12 Wochen alte Balb/c Mäuse wurden zweimal in emwöchigem Abstand durch subkutane Injektion vakziniert (Zelldosis: 105/Maus) . Pro Gruppe standen 8 Mäuse (bzw. 7 Mäuse bei dem Versuch, bei dem pL für das Beladen der Zellen verwendet wurde) im Experiment. Eme Woche nach der letzten Vakzinierung wurden contralateral Tumore mit 5 x 104 parentalen CT-26- Zellen gesetzt. Vergleichsversuche, in denen die Vakzine auf andere Weise als mittels den Komplexen aus TfpL/DNA hergestellt wurde sowie die Kontrollen wurden durchgeführt, wie m Beispiel 2 beschrieben. Das Auswachsen der Tumorchallenge wurde mindestens einmal pro Woche kontrolliert. Das Ergebnis für Peptid LFEAIEGFI ist m Fig. 4a zu sehen; es wurden 6 von 8 Tieren geschützt. Im Fall von Peptid FFIGALEEI (nicht m Fig. 4a gezeigt, wurden 4 von 8 Tieren geschützt) .
c) Beteiligung von T-Zellen an der Wirkung der Tumorvakzine
Um die Beteiligung von T-Zellen an der durch die CT-26- Vakzme bewirkten systemischen Immunitat nachzuweisen, wurden in einem weiteren Versuch 24 h vor der Vakzinierung CD4+-Zellen durch intravenöse Injektion von 500 μg monoklonalen Antikörper GK1.5
(ATCC TIB 207) , CD8+-Zellen durch intravenöse Injektion von 500 μg monoklonalen Antikörper 2.43 (ATCC TIB 210) entfernt Eme positive Kontrollgruppe erhielt die Vakzine, ohne daß CD4+-Zellen und CD8+-Zellen entfernt worden waren. Das Ergebnis der Versuche ist in Fig 4b dargestellt: Die Beteiligung der T-Zellen zeigt sich daran, daß alle Tiere, denen T-Zellen entfernt worden waren, Tumore entwickelten.
Beispiel 5
Schutz von C57BL/6J-Mausen durch Vorimmunisierung mit einer Vakzine aus Fremdpeptid-beladenen Melanomzellen ( "Prophylaktisches Mausmodell" )
In diesem Beispiel wurden als Versuchstiere Mäuse vom Stamm C57BL/6J verwendet (jeweils 8 Tiere pro Gruppe) . Als Melanomzellen wurden die für den verwendeten Mausstamm syngenen Zellen B16-F10 (NIH DCT Tumor Depository; Fidler et al . , 1975) verwendet. Die Tiere aller Versuchsgruppen wurden zweimal in einwöchigem Abstand durch subkutane Injektion von IO5 B16-F10-Zellen pro Maus vakziniert:
In einer Versuchsserie wurde die Vakzine hergestellt, indem bestrahlte B16-F10-Zellen mit dem Peptid der Sequenz ASNENMETM beladen wurden, wie in Beispiel 2 für die Vakzine aus M-3-Zellen beschrieben.
In Parallelversuchen wurden IL-2 bzw. GM-CSF sekretierende B16-F10-Zellen (hergestellt nach dem in der WO 94/21808 beschriebenen Protokoll) als Vakzine für die Vorimmunisierung verwendet; die Vakzine produzierte 1.000 Einheiten IL-2 bzw. 200ng GM-CSF pro Tier.
Eine Kontrollgruppe erhielt für die Vorimmunisierung bestrahlte und ansonsten unbehandelte B16-F10-Zellen.
Eine Woche nach der letzten Vakzinierung wurden den Versuchstieren mit lxlO4 lebenden, bestrahlten B16-F10- Zellen Tumore gesetzt und anschließend das Tumorwachstum verfolgt .
Das Ergebnis der Versuche ist in Fig. 5 dargestellt; die mit dem Fremdpeptid beladenen Tumorzellen zeigten die beste Schutzwirkung vor Tumorbildung.
3 <v-
Tabelle
Peptidsequenz MHC- Antigen Referenz Haplotvp
SPSYVYHQF Ld gp70, endogenes Huang und Pardoll , 1996 MuLV
FEQNTAQA Kb Connexin37 Mandelboim, et al. , 1994
FEQNTAQP Kb Connexin37 Mandelboim, et al. , 1994
SYFPEITHI K<3 JAK1 Rammensee, et al, 1995
EADPTGHSY HLA- AI MAGE-1 Rammensee, et al., 1995
EVDPIGHLY HL A-A 1 MAGE-3 Rammensee, et al. 1995
YMNGTMSQV HLA-A2+ Tyrosinase Rammensee, et al.. 1995 HLA-A0201
MLLALLYCL HLA-AO201 Tyrosinase Rammensee, et al., 1995
AAGIGILTV HLA-AO201 Melan A/Martl Rammensee, et al.. 1995
YLEPGPVTA HLA-AO201 pmell 7/gpl00 Rammensee, et al., 1995
ILDGTATLRL HLA-AO201 pmell 7/gpl00 Rammensee, et al., 1995
SYLDSGIHF HLA-A24 ß-Catenin Robbins, et al., 1996
AINNYAQKL Db SV-40 großes Lill, et al., 1992 CKGVNKEYL T-Antigen QGINNLDNL NLDNLRDYL Tabelle (Fortsetzung)
Peptidsequenz MHC- Antigen Referenz Haplotvp
EEKLIVVLF HLA-B44 MUM-1 Coulie, et al., 1995
AC.DPHSGHFV HLA-A2 mutiertes CDK4 Wolfel, et al., 1995
AYGLDFYIL HLA-A24 pl 5, unbekannte Robbins, et al., 1995 Funktion
KTWGQYWQV HLA-A2 gpl OO Kawakami und YLEPGPVTA Rosenberg, 1995
HMTEVVRHC HLA-A2 mutiertes p53 Houbiers, et al., 1993
KYICNSSCM Kd mutiertes p53 Noguchi, et al., 1994
GLAPPQHEJ HLA-A2 mutiertes p53 Stuber, et al, 1994 LLGRNSEEM
LLPENNVLSPL HLA-A2 Wildtyp p53 Theobald, et al., 199f
RMPEAAPPV
LLGRNSFEV
LLGRDSFEV HLA-A2 mutiertes p53 Theobald, et al, 199f
2>fe
LITERATUR
Alexander, J. et al . , 1989, Immunogenetics 29, 380
Allred, D.C. et al.,1992, J. Clm. Oncol. 10 (4) , 599-605
Behr, J.P. , 1994, Bioconjug-Chem. , Sept-Oct, 5(5) ,
382-9 Biologie Therapy of Cancer, Editors: DeVita, V.T.Jr. ,
Hellman, S. , Rosenberg, S.A. , Verlag J.B.
Lippincott Company, Philadelphia, New York,
London, Hagerstown Boon, T. , 1993, Spektrum der Wissenschaft (Mai) , 58-66 Boon, T. et al . , 1994, Annu. Rev. Immunol. 12, 337-65 Braciale, T.J. und Braciale, V.L. , 1991, Immunol.
Today 12, 124-129 Carrel, Ξ. and Johnson, J.P. , 1993, Current Opinion in
Oncology 5, 383-389 Coligan, J.E. , Kruisbeek, A.M., Margulies, D.H. ,
Shevach, Falk, K. et al . , 1991, Nature 351,
290-296 Coulie, P.G. et al . , 1992, Int. J. Cancer, 50, 289-297
Coulie, P. G. , Lehmann, F., Lethe, B. , Herman, J. ,
Lurqum, C , Andrawiss, M. , und Boon, T. (1995) .
Proc Natl Acad Sei U S A 92 , 7976-80 Cox, A.L. et al . , 1994, Science 264, 5159, 716-9
Current Protocols im Molecular Biology, 1995,
Herausgeber: Ausubel F.M. , et al . , John Wiley & Sons, Inc.
Dranoff, G. et al . , 1993, Proc. Natl. Acad. Sei. USA
90, 3539-3543 Dranoff, G. und Mulligan, R.C , 1995, Advances in Immunology 58, 417
Falk, K. et al . , 1991, Nature 351, 290-296
Feigner, J.H. et al . , 1994, J. Biol. Chem. 269,
2550-2561 Fenton, R.G. et al . , 1993, J. Natl. Cancer Inst. 85,
16, 1294-302 Fisk, B. et al. , 1995, J. Exp . Med. 1881, 2109-2117 Flow Cytometry, Acad. Press, Methods in Cell Biology,
1989, Vol. 33, Herausgeber: Darzynkiewicz, Z. und
Crissman, H.A. Gedde Dahl , T. et al . , 1992, Hum Immunol. 33, 4, 266-74 Guarmi, A. et al . , 1995, Cytokines and Molecular
Therapy 1, 57-64 Han, X.K. et al . , 1995, PNAS 92, 9747-9751 Handbuch: FACS Vantage ™ User ' s Guide, April 1994,
Becton Dickmson Handbuch: CELL Quest ™ Software User's Guide,
June 1994, Becton Dickinson Herrn M. et al . , 1987, Int. J. Cancer, 39, 390 Hock, H. et al . , 1993, Cancer Research 53, 714-716 Houbiers, J. G., Nijman, H. W. , van der Burg, S. H. ,
Dπjfhout, J. W. , Kenemans, P. , van de Velde, C.
J. , Brand, A., Momburg, F. , Käst, W. M. , und
Melief, C. J. (1993) . Eur J Immunol 23 , 2072-7. Huang, A. Y. C , und Pardoll, D. M. (1996) . Proc Natl
Acad Sei U S A 93 , 9730-5 Jung, S. et al . , 1991, J. Exp . Med. 173, 1, 273-6 Kawakami , Y. et al . , 1995, The Journal of Immunol. 154,
3961-3968 Karre, K. et al . , 1986, Nature 319, 20. Feb . , 675 Kovacsovics Bankowski , M. und Rock, K.L. , 1995,
Science 267, 243-246 Lehmann, J.M. et al . , 1989, Proc. Natl. Acad. Sei.
USA 86, 9891-9895 Lethe, B. et al . , 1992, Eur. J. Immunol. 22, 2283-2288 Lill, N. L., Tevethia, M. J., Hendrickson, W. G., und
Tevethia, S. S. (1992) . J Exp Med 176 , 449-57 Loeffler, J.-P. et al . , 1993, Methods Enzymol . 217,
599-618 Mackiewicz, A. et al . , 1995, Human Gene Therapy 6,
805-811 Malnati, M.S. et al . , 1995, Science 267, 1016-1018 Mandelboim, O. et al . , 1994, Nature 369, 5.May, 67-71 Mandelboim, O. et al . , 1995, Nature Medicine 1, 11,
1179-1183 Morishita, R. et al . , 1993, J. Clin. Invest . 91, 6,
2580-5 Nabel, G.J. et al . , 1993, Proc. Natl. Acad. Sei. USA
90, 11307-11311 Noguchi, Y. , Chen, Y. T., und Old, L. J. (1994) . Proc
Natl Acad Sei U S A 91 , 3171-3175 Oettgen, H.F. und Old, L.J., 1991, Biologie Therapy of
Cancer, Editors: DeVita, V.T.Jr., Hellman, S.,
Rosenberg, S.A. , Verlag J.B. Lippmcott Company,
Philadelphia, New York, London, Hagerstown, 87-119 Ostrand-Rosenberg, S. , 1994, Current Opmion m
Immunology 6, 722-727 Pardoll, D.M., 1993, Immunology Today 14, 6, 310 Practical Immunology, Editors: Leslie Hudson and Frank
C. Hay, Blackwell Scientific Publications, Oxford,
London, Edinburgh, Boston, Melbourne Peace, D.J. et al . , 1991, J. Immunol. 146, 6, 2059-65 Peoples, G.E. et al . , 1994, J. Immunol. 152, 10, 4993-9 Plautz, G.E. et al . , 1993, Proc. Natl. Acad. Sei. USA
90, 4645-4649 Rammensee, H.G. et al . , 1993, Current Opmion m
Immunology 5, 35-44 Rammensee, H.G., 1995, Current Opmion in Immunology 7,
85-96 Rammensee, H. G., Friede, T. , und Stepvanovic, S.
(1995) . Immunogeneticε 41 , 178-228 Remy, J.S. et al . , 1994, Bioconjug-Chem. , Nov-Dec,
5 (6) , 647-54 Rivoltmi, L. et al . , 1995, The Journal of Immunology
154, 2257-2265 Robbms, P. F., el Gamil, M. , Li, Y. F., Topalian, S.L.,
Rivoltmi, L., Sakaguchi, K. , Appella, E. ,
Kawakami , Y., und Rosenberg, S. A. (1995) .
J Immunol 154 , 5944-50 Robbms, und Rosenberg. (1996) . J EXP MED 183 , 1185-92. Schmidt, W. et al . , May 1995, Proc. Natl. Adac . Sei.
USA, 92, 4711-4714 Skipper, J., and Stauss, H.J., 1993, J. Exp. Med. 177,
5, 1493-8 Slingluff, CL. et al . , 1994, Current Opinion in
Immunology 6, 733-740 Stein, D. et al . , 1994, EMBO-Journal, 13, 6, 1331-40 Stuber, G. , Leder, G. H., Storkus, W. T.; Lotze, M. T.,
Modrow, S., Szekely, L. , Wolf, H., Klein, E.,
Karre, K. , und Klein, G. (1994) . Eur J Immunol 24 ,
765-768 Sykulev, Y. et al . , 1994, Immunity 1, 15-22 Theobald, M. , Levme, A. J. , und Sherman, L. A. (1995)
PNAS 92 , 11993-7 Tibbets, L.M. et al . , 1993, Cancer, Jan. 15. , Vol.71,
2, 315-321 van der Bruggen, P. et al . , 1994, Eur. J. Immunol. 24,
9, 2134-40 Issn: 0014-2980 Van Pel, A. and Boon, T., 1982, Proc. Natl. Acad. Sei.
USA 79, 4718-4722 Wölfel, T. et al. , 1994 a) , Int. J. Cancer 57, 413-418 Wölfel, T. et al . , 1994 b) , Eur. J. Immunol. 24,
759-764 Wölfel, T. , Hauer, M. , Schneider, J. , Serrano, M. ,
Wölfel, C , Klehmann Hieb, E. , De Plaen, E.,
Hankeln, T. , Meyer zum Buschenfelde, K. H., und
Beach, D. (1995) . Science 269 , 1281-4 York, I.A. und Rock, K.L., 1996, Ann. Rev. Immunol. 14,
369-396 Yoshino, I. et al . , 1994 a) , J. Immunol. 152, 5,
2393-400 Yoshino, I. et al . , 1994 b) , Cancer Res. , 54, 13,
3387-90 Zatloukal, K. et al . , 1993, Gene 135, 199-20 Zatloukal, K. et al . , 1995, J. Immun. 154, 3406-3419

Claims

woPatentansprüche
1. Tumorvakzine für die Verabreichung an einem Patienten, dadurch gekennzeichnet, daß sie Tumorzellen enthält, die von sich aus von Tumorantigenen abgeleitete Peptide im HLA-Kontext präsentieren und von denen zumindest em Teil mindestens einen MHC-I-Haplotyp des Patienten an der Zelloberfläche aufweist, und die mit einem oder mehreren Peptiden a) und/oder b) derart beladen wurden, daß die Tumorzellen im Kontext mit den Peptiden vom Immunsystem des Patienten als fremd erkannt werden und eme zelluläre Immunantwort auslöεen, wobei die Peptide
a) als Liganden für den MHC-I-Haplotyp, der dem Patienten und den Tumorzellen der Vakzine gemeinsam ist, fungieren, und verschieden smd von Peptiden, die abgeleitet sind von Proteinen, die von Zellen des Patienten exprimiert werden, oder
b) als Liganden für den MHC-I-Haplotyp, der dem Patienten und den Tumorzellen der Vakzine gemeinsam sind, fungieren, und abgeleitet smd von Tumorantigenen, die von Zellen des Patienten exprimiert werden und in einer Konzentration auf den Tumorzellen der Vakzine vorliegen, die höher ist als die Konzentration eines Peptids, das von demselben Tumorantigen abgeleitet ist wie das auf den Tumorzellen des Patienten exprimierte.
2. Tumorvakzine nach Anspruch 1, dadurch gekennzeichnet, daß sie autologe Tumorzellen enthält .
3. Tumorvakzine nach Anspruch 1, dadurch gekennzeichnet, daß sie allogene Tumorzellen enthält .
4. Tumorvakzine nach Anspruch 3, dadurch gekennzeichnet, daß die allogenen Tumorzellen Zellen einer oder mehrerer Zellinien sind, von denen zumindest eme Zellmie mindestens em, vorzugsweise mehrere Tumorantigene exprimiert, die identisch sind mit den Tumorantigenen des zu behandelnden Patienten.
5. Tumorvakzine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie aus einer Mischung von autologen und allogenen Zellen besteht.
6. Tumorvakzine nach Anspruch 1, dadurch gekennzeichnet, daß das Peptid a) oder b) em H2-K^- Ligand ist .
7. Tumorvakzine nach Anspruch 1, dadurch gekennzeichnet, daß das Peptid a) oder b) em H2-K^- Ligand ist .
8. Tumorvakzine nach Anspruch 1, 6 oder 7, dadurch gekennzeichnet, daß das Peptid a) von einem natürlich vorkommenden immunogenen Protein bzw. einem zellulären Abbauprodukt davon abgeleitet ist.
9. Tumorvakzine nach Anspruch 8, dadurch gekennzeichnet, daß das Peptid a) von einem viralen Protein abgeleitet ist .
10. Tumorvakzine nach Anspruch 9, dadurch gekennzeichnet, daß das Peptid von einem Influenzavirus-Protein abgeleitet ist.
11. Tumorvakzine nach Anspruch 10, dadurch gekennzeichnet, daß das Peptid die Sequenz Leu Phe Glu Ala Ile Glu Gly Phe Ile aufweist.
12. Tumorvakzine nach Anspruch 10, dadurch gekennzeichnet, daß das Peptid die Sequenz Ala Ser Asn Glu Asn Met Glu Thr Met aufweist.
13. Tumorvakzine nach Anspruch 8, dadurch gekennzeichnet, daß das Peptid a) von einem bakteriellen Protein abgeleitet ist.
14. Tumorvakzine nach Anspruch 1, dadurch gekennzeichnet, daß das Peptid a) von einem patientenfremden Tumorantigen abgeleitet ist.
15. Tumorvakzine nach Anspruch 1, dadurch gekennzeichnet, daß das Peptid a) em synthetisches Peptid ist.
16. Tumorvakzine nach Anspruch 15, dadurch gekennzeichnet, daß das Peptid die Sequenz Phe Phe Ile Gly Ala Leu Glu Glu Ile aufweist.
17. Tumorvakzine nach einem der Ansprüche 1-16, dadurch gekennzeichnet, daß die Tumorzellen mit mehreren Peptiden unterschiedlicher Sequenz behandelt wurden.
18. Tumorvakzine nach Anspruch 17, dadurch gekennzeichnet, daß sich die Peptide dadurch unterscheiden, daß sie an unterschiedliche HLA- Subtypen binden.
19. Tumorvakzine nach Anspruch 17, dadurch gekennzeichnet, daß sich die Peptide hinsichtlich ihrer nicht für die HLA-Bmdung maßgeblichen Sequenz unterscheiden.
20. Tumorvakzine nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß sie außerdem Tumorzellen enthält, die mit einem Zytokmgen transfiziert sind.
21. Tumorvakzine nach Anspruch 20, dadurch gekennzeichnet, daß das Zytokin IL-2 und/oder IFN-γ
22. Tumorvakzine nach einem der Ansprüche 1 biε 21, dadurch gekennzeichnet, daß sie außerdem Fibroblasten enthält, die mit einem Peptid b) behandelt wurden.
23. Tumorvakzine nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß sie außerdem dendritische Zellen enthält, die mit einem Peptid b) und/oder mit einem an em MHC-II-Molekül bindenden Peptid behandelt wurden.
24. Verfahren zur Herstellung einer Tumorvakzine, enthaltend Tumorzellen, zur Verabreichung an einen Patienten, dadurch gekennzeichnet, daß man Tumorzellen, die von sich aus von Tumorantigenen abgeleitete Peptide im HLA-Kontext präsentieren und von denen zumindest em Teil mindestens einen MHC-I- Haplotyp des Patienten exprimiert, mit einem oder mehreren Peptiden behandelt, die
a) als Liganden für den MHC-I-Haplotyp, der dem Patienten und den Tumorzellen der Vakzine gemeinsam smd, fungieren, und verschieden smd von Peptiden, die abgeleitet sind von Proteinen, die von Zellen des Patienten exprimiert werden,
Figure imgf000045_0001
b) als Liganden für den MHC-I-Haplotyp, der dem Patienten und den Tumorzellen der Vakzine gemeinsam smd, fungieren, und abgeleitet sind von Tumorantigenen, die von Zellen des Patienten exprimiert werden,
wobei man die Tumorzellen mit einem oder mehreren Peptiden a) und/oder b) so lange und in einer solchen Menge in Gegenwart eines organischen Polykations inkubiert, bis die Peptide an die Tumorzellen derart gebunden sind, daß sie im Kontext mit den Tumorzellen vom Immunsystem des Patienten als fremd erkannt werden und eine zelluläre Immunantwort auslösen.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß man als Polykation Polylysin einsetzt.
26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß man Polylysin einer Kettenlänge von ca. 30 bis ca. 300 Lysmresten einsetzt.
27. Verfahren nach einem der Ansprüche 24 bis 26, dadurch gekennzeichnet, daß man das Polykation in zumindest teilweise konjugierter Form einsetzt.
28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß das Polykation mit Transferrin konjugiert ist.
29. Verfahren nach einem der Ansprüche 24 bis 27, dadurch gekennzeichnet, daß man die Zellen außerdem in Gegenwart von DNA behandelt .
30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß die DNA ein Plasmid ist.
31. Verfahren nach Anspruch 29 oder 30, dadurch gekennzeichnet, daß das Verhältnis DNA zu, gegebenenfalls teilweise mit einem Protein konjugiertem, Polykation ca. 1:2 bis ca.1 : 5 beträgt.
32. Verfahren nach einem der Ansprüche 29 bis 31, dadurch gekennzeichnet, daß die Zellen Melanomzellen sind.
33. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß man Peptid a) und/oder b) in emer Menge von ca. 50 μg bis ca. 160 μg pro 1 x IO5 bis 2 x IO7 Zellen einsetzt.
34. Anwendung des Verfahrens nach einem der Ansprüche 24 bis 32 auf Fibroblasten, wobei man als Peptid em von einem Tumorantigen des Patienten abgeleitetes Peptid b) einsetzt.
35. Anwendung des Verfahrens nach einem der Ansprüche 24 bis 33 auf dendritische Zellen, wobei man als Peptid em von einem Tumorantigen des Patienten abgeleitetes Peptid b) und/oder em Peptid einsetzt, das an em MHC-II-Molekül des Patienten bindet .
PCT/EP1996/005126 1995-11-23 1996-11-21 Tumorvakzine und verfahren zu ihrer herstellung WO1997019169A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
KR1019980703681A KR19990067653A (ko) 1995-11-23 1996-11-21 종양 백신 및 그의 제조 방법
BR9611466A BR9611466A (pt) 1995-11-23 1996-11-21 Vacinas de tumores e processo para a sua preparação
HU0000318A HUP0000318A3 (en) 1995-11-23 1996-11-21 Tumor vaccine and process for the preparation thereof
EE9800161A EE03778B1 (et) 1995-11-23 1996-11-21 Vähivaktsiin ja selle valmistamismeetod
EP96939870A EP0866851A1 (de) 1995-11-23 1996-11-21 Tumorvakzine und verfahren zu ihrer herstellung
SK669-98A SK66998A3 (en) 1995-11-23 1996-11-21 Tumour vaccine and process for the preparation thereof
UA98063235A UA66753C2 (en) 1995-11-23 1996-11-21 Immunostimulator and method for its production
AU76947/96A AU720131B2 (en) 1995-11-23 1996-11-21 Tumour vaccine and processes for preparing it
RO98-00985A RO115275B1 (ro) 1995-11-23 1996-11-21 Vaccin tumoral si procedeu de preparare
JP9519395A JP2000502052A (ja) 1995-11-23 1996-11-21 腫瘍ワクチン及びその製造方法
PL96326756A PL188537B1 (pl) 1995-11-23 1996-11-21 Szczepionka nowotworowa i sposób jej wytwarzania
NZ322910A NZ322910A (en) 1995-11-23 1996-11-21 Tumour vaccine containing tumour cells, some with MHC-I-haplotype on cell surface to trigger immune response, and preparation of vaccine thereof
BG102439A BG62999B1 (bg) 1995-11-23 1998-05-08 Анти туморна ваксина и метод за нейното получаване
NO982329A NO982329D0 (no) 1995-11-23 1998-05-22 Kreftvaksine og fremgangsmÕte for fremstilling derav

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19543649.0 1995-11-23
DE19543649A DE19543649C2 (de) 1995-11-23 1995-11-23 Tumorvakzine und Verfahren zu ihrer Herstellung
DE19607044A DE19607044A1 (de) 1996-02-24 1996-02-24 Tumorvakzine und Verfahren zu ihrer Herstellung
DE19607044.9 1996-02-24

Publications (1)

Publication Number Publication Date
WO1997019169A1 true WO1997019169A1 (de) 1997-05-29

Family

ID=26020603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/005126 WO1997019169A1 (de) 1995-11-23 1996-11-21 Tumorvakzine und verfahren zu ihrer herstellung

Country Status (24)

Country Link
US (1) US20020085997A1 (de)
EP (1) EP0866851A1 (de)
JP (1) JP2000502052A (de)
KR (1) KR19990067653A (de)
CN (1) CN1202931A (de)
AR (1) AR004341A1 (de)
AU (1) AU720131B2 (de)
BG (1) BG62999B1 (de)
BR (1) BR9611466A (de)
CA (1) CA2238176A1 (de)
CO (1) CO4520254A1 (de)
CZ (1) CZ158998A3 (de)
EE (1) EE03778B1 (de)
HU (1) HUP0000318A3 (de)
NO (1) NO982329D0 (de)
NZ (1) NZ322910A (de)
PL (1) PL188537B1 (de)
RO (1) RO115275B1 (de)
RU (1) RU2206329C2 (de)
SK (1) SK66998A3 (de)
TR (1) TR199800912T2 (de)
TW (1) TW514530B (de)
UY (2) UY24367A1 (de)
WO (1) WO1997019169A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0904786A1 (de) * 1997-08-22 1999-03-31 Science Park Raf S.p.A. Tumor-Impfung durch Verwendung von mit Antigen transduzierten autologen Zellen
EP1064390A1 (de) * 1998-03-20 2001-01-03 Genzyme Corporation Gesteigerte antitumorimmunität
FR2807661A1 (fr) * 2000-04-14 2001-10-19 Univ Nantes Agent et procede pour la simulation de lymphocytes t specifiques et lymphocytes t obtenus
US7014848B1 (en) 1998-03-20 2006-03-21 Genzyme Corporation Enhanced anti-tumor immunity
US7105162B1 (en) 1996-02-24 2006-09-12 Boehringer Ingelheim International Gmbh Pharmaceutical composition for immunomodulation based on peptides and adjuvants
US7413733B2 (en) 2002-10-21 2008-08-19 Molmed Spa Antigen transduced T cells used as a delivery system for antigens
WO2011101465A1 (en) 2010-02-19 2011-08-25 Intercell Ag Ic31 nanoparticles
US9782496B2 (en) 2002-04-30 2017-10-10 Molmed Spa Immunoconjugates for the treatment of tumours

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187307B1 (en) 1997-01-31 2001-02-13 Research Corporation Technologies, Inc. Cancer immunotherapy with semi-allogeneic cells
CA2476995A1 (en) * 2001-09-18 2003-03-27 Kyogo Itoh Method of detecting cellular immunity and application thereof to drugs
CN1315536C (zh) * 2002-09-13 2007-05-16 李进 肿瘤抗原疫苗及其制备方法和疫苗组合物
CA2537161C (en) * 2003-08-25 2014-07-29 Oncomune Preventive cancer vaccine based on brother of regulator of imprinted sites molecule (boris)
US7674456B2 (en) * 2004-06-14 2010-03-09 Charles Wiseman Breast cancer cell lines and uses thereof
US20090214494A1 (en) * 2005-03-29 2009-08-27 The Board Of Trustees Of The University Of Illinoi Cancer Vaccines and Therapeutic Methods
ATE461214T1 (de) * 2005-09-05 2010-04-15 Immatics Biotechnologies Gmbh Tumor-assoziierte peptide, welche an unterschiedliche menschliche leukozytenantigene der klasse ii binden
US20090004213A1 (en) * 2007-03-26 2009-01-01 Immatics Biotechnologies Gmbh Combination therapy using active immunotherapy
CN104662171B (zh) * 2012-07-12 2018-07-13 普瑟姆尼股份有限公司 个性化癌症疫苗和过继免疫细胞治疗
TW202333779A (zh) 2017-05-08 2023-09-01 美商磨石生物公司 阿爾法病毒新抗原載體
CA3140019A1 (en) 2019-05-30 2020-12-03 Gritstone Bio, Inc. Modified adenoviruses
CN116438308A (zh) 2020-08-06 2023-07-14 磨石生物公司 多表位疫苗盒
EP4304615A1 (de) * 2021-03-12 2024-01-17 T-Cure Bioscience, Inc. Verfahren zur verbesserung der diversität der hla-haplotypexpression in tumoren zur verbreiterung der tumorzellenempfänglichkeit für eine tcr-t-therapie

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569678A2 (de) * 1992-03-13 1993-11-18 Yeda Research And Development Co. Ltd. Mit MHC-Genen doppelt transfizierte Zellen als Impfstoffe zur Immunoprevention von Tumormetastasen
WO1994023031A1 (en) * 1993-03-26 1994-10-13 Ludwig Institute For Cancer Research Isolated nucleic acid molecules coding for tumor rejection antigen precursor mage-3 and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569678A2 (de) * 1992-03-13 1993-11-18 Yeda Research And Development Co. Ltd. Mit MHC-Genen doppelt transfizierte Zellen als Impfstoffe zur Immunoprevention von Tumormetastasen
WO1994023031A1 (en) * 1993-03-26 1994-10-13 Ludwig Institute For Cancer Research Isolated nucleic acid molecules coding for tumor rejection antigen precursor mage-3 and uses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BASKAR S ET AL: "MHC class II-transfected tumor cells induce long-term tumor -specific immunity in autologous mice.", CELLULAR IMMUNOLOGY 155 (1). 1994. 123-133. ISSN: 0008-8749, XP000650528 *
SCHMIDT W ET AL: "Transloading of tumor cells with foreign major histocompatibility complex class I peptide ligand: A novel general strategy for the generation of potent cancer vaccines.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 93 (18). 1996. 9759-9763. ISSN: 0027-8424, XP002025886 *
ZIER, K. S. ET AL: "Tumor cell vaccines that secrete interleukin-2 (IL-2) and interferon.gamma. (IFN.gamma.) are recognized by T cells while resisting destruction by natural killer (NK) cells", EUR. J. CANCER, PART A (1996), 32A(8), 1408-1412 CODEN: EJCTEA, 1996, XP002025887 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105162B1 (en) 1996-02-24 2006-09-12 Boehringer Ingelheim International Gmbh Pharmaceutical composition for immunomodulation based on peptides and adjuvants
EP0881906B2 (de) 1996-02-24 2009-02-04 Boehringer Ingelheim International GmbH Pharmazeutische zusammensetzung für die immunmodulation beruhend auf peptiden und adjuvantien
EP0904786A1 (de) * 1997-08-22 1999-03-31 Science Park Raf S.p.A. Tumor-Impfung durch Verwendung von mit Antigen transduzierten autologen Zellen
EP1064390A1 (de) * 1998-03-20 2001-01-03 Genzyme Corporation Gesteigerte antitumorimmunität
EP1064390A4 (de) * 1998-03-20 2002-06-12 Genzyme Corp Gesteigerte antitumorimmunität
US7014848B1 (en) 1998-03-20 2006-03-21 Genzyme Corporation Enhanced anti-tumor immunity
FR2807661A1 (fr) * 2000-04-14 2001-10-19 Univ Nantes Agent et procede pour la simulation de lymphocytes t specifiques et lymphocytes t obtenus
US9782496B2 (en) 2002-04-30 2017-10-10 Molmed Spa Immunoconjugates for the treatment of tumours
US7413733B2 (en) 2002-10-21 2008-08-19 Molmed Spa Antigen transduced T cells used as a delivery system for antigens
WO2011101465A1 (en) 2010-02-19 2011-08-25 Intercell Ag Ic31 nanoparticles
US8765148B2 (en) 2010-02-19 2014-07-01 Valneva Austria Gmbh 1C31 nanoparticles
US9248180B2 (en) 2010-02-19 2016-02-02 Valneva Austria Gmbh IC31 nanoparticles

Also Published As

Publication number Publication date
RO115275B1 (ro) 1999-12-30
PL188537B1 (pl) 2005-02-28
UY24367A1 (es) 2000-10-31
AR004341A1 (es) 1998-11-04
JP2000502052A (ja) 2000-02-22
CA2238176A1 (en) 1997-05-29
BR9611466A (pt) 1999-05-18
SK66998A3 (en) 1998-12-02
NZ322910A (en) 2000-05-26
CO4520254A1 (es) 1997-10-15
EE9800161A (et) 1998-12-15
CZ158998A3 (cs) 1999-06-16
EP0866851A1 (de) 1998-09-30
HUP0000318A2 (hu) 2000-06-28
NO982329D0 (no) 1998-05-22
AU720131B2 (en) 2000-05-25
UY24430A1 (es) 1997-07-01
HUP0000318A3 (en) 2002-02-28
BG62999B1 (bg) 2001-01-31
PL326756A1 (en) 1998-10-26
CN1202931A (zh) 1998-12-23
TR199800912T2 (xx) 1998-08-21
US20020085997A1 (en) 2002-07-04
KR19990067653A (ko) 1999-08-25
BG102439A (en) 1999-01-29
AU7694796A (en) 1997-06-11
TW514530B (en) 2002-12-21
EE03778B1 (et) 2002-06-17
RU2206329C2 (ru) 2003-06-20

Similar Documents

Publication Publication Date Title
EP0881906B1 (de) Pharmazeutische zusammensetzung für die immunmodulation beruhend auf peptiden und adjuvantien
EP0866851A1 (de) Tumorvakzine und verfahren zu ihrer herstellung
EP1919943B1 (de) Melanom-assoziierte mhc klasse i assoziierte oligopeptide und deren verwendungen
CN109310739A (zh) 新抗原及其使用方法
KR101294290B1 (ko) 예방 또는 치료를 위해 제i류 주조직 적합성복합체〔mhc〕-제한 에피토프에 대한 면역 반응을 유발,향상 및 지속하는 방법
DE69839273T2 (de) Krebsimmuntherapie mit semi-allogenen zellen
US20160022791A1 (en) Cytotoxic T Lymphocyte Inducing Immunogens For Prevention Treatment and Diagnosis of Cancer
DE102004026135A1 (de) An MHC-Moleküle bindende Tumor-assoziierte Peptide
DE10225144A1 (de) An MHC-Moleküle bindende Tumor-assoziierte Peptide
EP1308167A1 (de) Antigenpräsentierende Vesikel
DE10313819A1 (de) An MHC-Moleküle bindende Tumor-assoziierte Peptide
DE19543649C2 (de) Tumorvakzine und Verfahren zu ihrer Herstellung
DE10112851C1 (de) Semi-allogene Antitumor-Vakzine mit HLA-haplo-identischen Antigen-präsentierenden Zellen
DE19607044A1 (de) Tumorvakzine und Verfahren zu ihrer Herstellung
DE19638313C2 (de) Pharmazeutische Zusammensetzung für die Immunmodulation
DE60207103T2 (de) Immunogene alk (anaplastic lymphoma kinase) peptide
DE102015106731A1 (de) Peptide für die Krebsimmuntherapie
DE19648687A1 (de) Pharmazeutische Zusammensetzung für die Immunmodulation
WO1996029093A1 (de) Tumorzellen zur verwendung als tumorvakzine, die mindestens ein antigen, für welches bereits eine immunantwort besteht, enthalten
MXPA98003930A (en) Vaccines against tumors and procedure for your producc

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96198493.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR BY CA CN CZ EE HU IL JP KR KZ LT LV MX NZ PL RO RU SG SK TR UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1199800432

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 1019980703681

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/003930

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 98-00985

Country of ref document: RO

WWE Wipo information: entry into national phase

Ref document number: 66998

Country of ref document: SK

ENP Entry into the national phase

Ref document number: 2238176

Country of ref document: CA

Ref document number: 2238176

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV1998-1589

Country of ref document: CZ

Ref document number: 1998/00912

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 1997 519395

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09077214

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996939870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 322910

Country of ref document: NZ

WWP Wipo information: published in national office

Ref document number: 1996939870

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1998-1589

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019980703681

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019980703681

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996939870

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV1998-1589

Country of ref document: CZ