WO1997018165A1 - Verfahren zur herstellung von aluminiumoxid aus aluminiumhydroxid - Google Patents

Verfahren zur herstellung von aluminiumoxid aus aluminiumhydroxid Download PDF

Info

Publication number
WO1997018165A1
WO1997018165A1 PCT/EP1996/004764 EP9604764W WO9718165A1 WO 1997018165 A1 WO1997018165 A1 WO 1997018165A1 EP 9604764 W EP9604764 W EP 9604764W WO 9718165 A1 WO9718165 A1 WO 9718165A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
stage
gas
fluidised bed
suspension
Prior art date
Application number
PCT/EP1996/004764
Other languages
English (en)
French (fr)
Inventor
Hans Werner Schmidt
Martin Rahn
Werner Stockhausen
Dietrich Werner
Martin Hirsch
Original Assignee
Metallgesellschaft Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to UA98063070A priority Critical patent/UA48201C2/uk
Priority to AT96937331T priority patent/ATE209607T1/de
Priority to AU74970/96A priority patent/AU728011B2/en
Priority to EA199800451A priority patent/EA000516B1/ru
Priority to EP96937331A priority patent/EP0861208B1/de
Priority to CA002235706A priority patent/CA2235706C/en
Application filed by Metallgesellschaft Aktiengesellschaft filed Critical Metallgesellschaft Aktiengesellschaft
Priority to SK642-98A priority patent/SK284481B6/sk
Priority to DK96937331T priority patent/DK0861208T3/da
Priority to DE59608329T priority patent/DE59608329D1/de
Priority to JP09518539A priority patent/JP2000512255A/ja
Priority to US09/068,758 priority patent/US6015539A/en
Priority to BR9611386-3A priority patent/BR9611386A/pt
Publication of WO1997018165A1 publication Critical patent/WO1997018165A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • C01F7/445Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination making use of a fluidised bed

Definitions

  • the invention relates to a process for the production of anhydrous aluminum oxide from aluminum hydroxide in a circulating fluidized bed formed from a fluidized bed reactor (8), separator (6) and return line, in which the aluminum hydroxide is passed into the second stage of the gas side with the exhaust gases from the fluidized bed reactor (8) circulating fluidized bed operated two-stage suspension preheater (2) and at least partially dewatered, dewatered aluminum hydroxide from the second stage of the suspension preheater (2) into the gas-side first stage of a suspension preheater operated with the exhaust gases from the fluidized bed reactor (8) of the circulating fluidized bed and further preheater (5) dewatered and then fed to the circulating fluidized bed which is supplied with oxygen-containing fluidizing gas (10), which is indirectly heated in a subsequent cooling stage by the aluminum oxide produced, and is supplied with acid heated in a higher plane material-containing secondary gas (11) is operated, the indirect heating of the fluidizing gas in a fluidized bed cooler (23).
  • the return of the calcine heat to the calcination zone in the form of fluidizing and secondary gases heated in the fluidized bed cooler makes a significant contribution to reducing the heat consumption figures.
  • Another advantage of the method is that the staged combustion, namely only with fluidizing air, sub-stoichiometric in the high dispersion density range, then stoichiometric or slightly over-stoichiometric in the low suspension density range in the presence of secondary air, which affects the quality of the
  • a disadvantage of the process described above is that, at the high calcining temperatures of 1000 to 1100 ° C. which are generally considered necessary, it is difficult to utilize the product heat in the actual calcining process. Either the gas flows required for sufficient product cooling are so large that they cannot be used completely in the calcining process, or the cooling of the product is insufficient when cooling against the gas flows required in the calcining process. Finally, the quality requirements for the finished calcined aluminum oxide have changed recently. An aluminum oxide with a sandy quality, that is to say a high gamma oxide content, is particularly in demand. The changed requirements make a considerable change in the process management necessary.
  • the object of the invention is to provide a process for the production of anhydrous aluminum oxide from aluminum hydroxide which meets the changed requirements for the oxide quality and in particular is associated with minimal heat consumption.
  • the method of the type mentioned according to the invention is designed in such a way that the temperature in the circulating fluidized bed is set to a value in the range from 850 to 1000 ° C., the aluminum oxide removed from the circulating fluidized bed with 10 to 25% by weight of the partially dewatered aluminum hydroxide emerging from the first stage of the suspension preheater (2) on the solids side for a period of at least 2 min. mixed, the mixed material cools first in a multi-stage suspension cooler (15, 16, 17, 18, 19, 20) with heating of secondary gas (11) and then in the fluidized bed cooler (23) with indirect heating of fluidizing gas (10).
  • the system of the circulating fluidized bed used in the process according to the invention consists of a fluidized bed reactor, a separator for separating solids from the suspension discharged from the fluidized bed reactor - generally a return cyclone - and a return line for the separated solid into the fluidized bed reactor.
  • the principle of the circulating fluidized bed is distinguished by the fact that, in contrast to the "classic" fluidized bed, in which a dense phase is separated from the gas space above by a clear density jump, there are distribution states without a defined boundary layer. There is no jump in density between the dense phase and the dust space above it, but the solids concentration within the reactor decreases from bottom to top. A gas-solid suspension is discharged from the upper part of the reactor.
  • Ar is the Archimedes number
  • REPLACEMENT BLA ⁇ (RULE 26)
  • the mixing of the solid streams which, on the one hand, come from the first suspension preheater on the solids side and, on the other hand, originate from the circulating fluidized bed, for at least 2 minutes. is essential to the process. This is the only way to adequately split off the chemically bound water that is still contained in the at least partially dewatered aluminum hydroxide and thus to ensure that a sufficiently low loss on ignition is achieved.
  • the mixing of the solid streams takes place particularly advantageously by swirling with the water vapor formed during the mixing.
  • the fluidizing gas velocity above the secondary gas supply is generally 7 to 10 m / sec.
  • An advantageous embodiment of the invention consists in setting the pressure loss in the fluidized bed reactor, which is a function of the solids content, to ⁇ 100 mbar.
  • a further advantageous embodiment of the invention provides that the partially dewatered aluminum hydroxide emerging from the second stage of the suspension preheater on the gas side is separated off in a separator connected upstream of the electrostatic filter.
  • the fluidizing gas for the fluidized bed reactor of the circulating fluidized bed being heated in each case by indirect heat exchange and a liquid heat transfer medium being heated in the subsequent stages.
  • the amount of air used for calcine cooling can be adapted in the simplest manner to the fluidizing air requirement of the fluidized bed reactor of the circulating fluidized bed.
  • the outstanding advantage of the method according to the invention is that the calcining process, including preheating and cooling, can be carried out in the simplest manner
  • a further advantage of the method according to the invention consists in a heat consumption figure which, depending on the quality requirement that is placed on the aluminum oxide produced, is significantly below the values customary up to now.
  • the figure shows a flow diagram of the method according to the invention
  • the filter-moist aluminum hydroxide is introduced into the second suspension preheater (2) on the gas side by means of a screw conveyor (1) and is detected by the exhaust gas stream coming from the first suspension preheater (5) on the gas side.
  • the gas material flow is then separated in the subsequent cyclone separator (3).
  • the exhaust gas emerging from the cyclone separator (3) is fed to an electrostatic gas cleaning system (4) and finally to a chimney (not shown).
  • the solid that emerges from the cyclone cutter (3) and the electrostatic gas cleaning then arrives predominantly in the suspension preheater (5) by means of a metering device, and in the smaller part in the bypass line (14).
  • the suspension preheater (5) the solid is captured by the exhaust gas emerging from the recycling cyclone (6) of the circulating fluidized bed and is further dewatered or dehydrated. Separation of the gas-material flow occurs again in the separating cyclone (7), the dewatered material being passed into the fluidized bed reactor (8) and the exhaust gas into the above-mentioned suspension preheater (2).
  • the fuel required for calcination is supplied via line (9), which is arranged at a low height above the grate of the fluidized bed reactor (8).
  • the oxygen-containing gas streams required for combustion are supplied via line (10) as fluidizing gas and via line (11) as secondary gas.
  • the gas-solid suspension enters the return cyclone (6) of the circulating fluidized bed via the connecting line (12), in which the solid and gas are separated again.
  • the solid emerging from the recycle cyclone (6) via line (13) is mixed with a portion of the solid originating from the cyclone (3) and the electrostatic gas cleaning, which is supplied via line (14), and the Suspension cooler formed from first riser pipe (15) and cyclone separator (16) is fed in.
  • the exhaust gas from the cyclone separator (16) reaches the fluidized bed reactor (8) via pipe (11), and the solid matter in the riser pipe
  • Fluidized bed reactor (8) supplied fluidizing gas, m the downstream two chambers cooling against em warm medium, preferably water, which is conducted in countercurrent.
  • em warm medium preferably water
  • Cyclone separator (7) with exhaust gas brought in at a temperature of 306 ° C. is subjected to a first drying. After separation in the cyclone separator (3), the solid is
  • Dust is removed from the electrostatic precipitator (4) and fed to the comb.
  • the quantity is 132719 Nm 3 / h.
  • the amount accumulating in the cyclone separator (7) Solid is finally introduced into the fluidized bed reactor (8) of the circulating fluidized bed.
  • the circulating fluidized bed is operated at a temperature of 950 ° C. It is fed via line (9) 5123 kg / h heating oil, via line (11) 60425 Nm 3 / h secondary air and via line (10) 12000 Nm 3 / h fluidizing air.
  • the fluidizing air has a temperature of 188 ° C, the secondary air 525 ° C. It leaves the circulating fluidized bed a gas stream in an amount of 98631 Nm 3 / h with an oxygen content of 2.23 vol.%, Which is fed to the suspension preheater (5) and (2), and a solid at 66848 kg / h.
  • This stream of solids discharged via line (13) is mixed with 15262 kg / h of solids, which are brought in via line (14), before setting into the riser (15) of the first suspension cooler, with a mixing temperature of 608 ° C. After passing through the riser (15), the gas-solid suspension enters the cyclone separator
  • suspension coolers In the three suspension coolers, the solid is gradually cooled to 525 ° C, 412 ° C and 274 ° C, respectively.
  • the secondary gas stream fed to the fluidized bed reactor (8) via line (11) heats up to a temperature of 525 ° C.
  • the suspension coolers are operated with the directly heated fluidizing air of the subsequent fluidized bed cooler (23) and with process air supplied via line (25) in a quantity of 33000 Nm 3 / h.
  • the final cooling of the solid takes place in the fluidized bed cooler (23), the first chamber of which is supplied with 7200 Nm 3 / h and the second and third chambers with 7000 Nm 3 / h of fluidizing air.
  • the solid temperatures achieved in the individual chambers are 238 ° C, 135 ° C and 83 ° C.
  • the cooling water is heated, which in countercurrent to the solid is passed through the cooling chambers in an amount of 350,000 kg / h from 40 ° C. to 49 ° C.
  • the fluidizing air leaving the fluidized bed cooler (23) has a temperature of 153 ° C. and is produced in an amount of 21200 Nm 3 / h. As mentioned above, it is entered into the suspension cooling.
  • the fluidized bed cooler (23) leaves 77111 kg h of aluminum oxide with a loss on ignition of 0.5% and a BET surface area of 70 nr / g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Bei einem Verfahren zur Herstellung von wasserfreiem Aluminiumoxid aus Aluminiumhydroxid in einer aus Wirbelschichtreaktor (8), Abscheider (6) und Rückführleitung gebildeten zirkulierenden Wirbelschicht, bei dem man das Aluminiumhydroxid in die gasseitig zweite Stufe eines mit den Abgasen des Wirbelschichtreaktors (8) der zirkulierenden Wirbelschicht betriebenen zweistufigen Suspensionsvorwärmers (2) einträgt und mindestens teilweise entwässert, entwässertes Aluminiumhydroxid aus der zweiten Stufe des Suspensionsvorwärmer (2) in die gasseitig erste Stufe eines mit den Abgasen des Wirbelschichtreaktors (8) der zirkulierenden Wirbelschicht betriebenen Suspensionsvorwärmers (5) einträgt und weiter entwässert und anschließend der zirkulierenden Wirbelschicht zuführt, die mit in einer nachfolgenden Kühlstufe durch das erzeugte Aluminiumoxid indirekt erhitztem, sauerstoffhaltigen Fluidisierungsgas (10) und direkt erhitztem, in einer höheren Ebene zugeführtem sauerstoffhaltigen Sekundärgas (11) betrieben wird, stellt man die Temperatur in der zirkulierenden Wirbelschicht auf einen Wert im Bereich von 850 bis 1000 °C ein. Das der zirkulierenden Wirbelschicht entnommene Aluminiumoxid wird mit 10 bis 25 Gew.-% des aus der feststoffseitig ersten Stufe des Suspensionsvorwärmers (2) austretenden, teilweise entwässerten, an der zirkulierenden Wirbelschicht als By-pass vorbeigeführtem Aluminiumhydroxids für die Dauer von mindestens 2 min. vermischt, das vermischte Material zunächst in einem mehrstufigen Suspensionskühler (15, 16, 17, 18, 19, 20) unter Aufheizung von Sekundärgas (11) und anschließend im Wirbelschichtkühler (23) unter indirekter Aufheizung von Fluidisierungsgas (10) gekühlt.

Description

^'erfahren zur Herstellung von Λluπiniumoxid aus
Aluminiumhydroxid
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von wasserfreiem Aluminiumoxid aus Aluminiumhydroxid in einer aus Wirbelschichtreaktor (8) , Abscheider (6) und Rückführleitung gebildeten zirkulierenden Wirbelschicht, bei dem man das Aluminiumhydroxid in die gasseitig zweite Stufe eines mit den Abgasen des Wirbelschichtreaktors (8) der zirkulierenden Wirbelschicht betriebenen zweistufigen Suspensionsvorwärmer (2) einträgt und mindestens teilweise entwässert, entwässertes Aluminiumhydroxid aus der zweiten Stufe des Suspensionsvorwärmer (2) in die gasseitig erste Stufe eines mit den Abgasen des Wirbelschichtreaktors (8) der zirkulierenden Wirbelschicht betriebenen Suspensionsvorwärmer (5) eintragt und weiter entwässert und anschließend der zirkulierenden Wirbelschicht zuführt, die mit in einer nachfolgenden Kuhlstufe durch das erzeugte Aluminiumoxid indirekt erhitztem, sauerstoffhaltigen Fluidisierungsgas (10) und direkt erhitztem in einer höheren Ebene zugeführtem sauerstoffhältigem Sekundargas (11) betrieben wird, wobei die indirekte Aufheizung des Fluidisierungsgases m einem Wirbelschichtkühler (23) erfolgt. Ein derartiges Verfahren ist in DE-A-1592140 beschrieben.
Gegenüber den bis dahin üblichen Drehrohrofenverfahren und Verfahren in der sogenannten klassischen Wirbelschicht zeichnet sich das eingangs genannte Verfahren insbesondere durch günstige Wärmeverbrauchszahlen aus, die je nach Qualität des erzeugten Aluminiumoxids mit ca. 720 bis 800 kcal/kg deutlich unter denen für z.B. Drehrohrverfahren typischen Werten von 1000 bis 1100 kcal/kg liegen. Diese Werte werden zum einen in Folge einer nachstöchiometrischen Verbrennung des Brennstoffes und der weitestgehenden Ausnutzung der Abwärme der Abgase, die die Calzinierzone verlassen, zur Vortrocknung und Teilentwässerung erreicht. Zum anderen leistet die Rückführung der Calzinatwärme in die Calzinierzone in Form von im Wirbelschichtkühler aufgeheizten Fluidisierungs- und Sekundärgases einen erheblichen Beitrag zur Verringerung der Wärmeverbrauchszahlen. Ein weiterer Vorteil des Verfahrens besteht darin, daß durch die gestufte Verbrennung, nämlich zunächst nur mit Fluidisierungsluft unterstochiometrisch im Bereich hoher Dispersionsdichte, dann in Gegenwart von Sekundärluft stöchiometrisch bzw. geringfügig überstöchiometrisch im Bereich niedriger Suspensionsdichte Überhitzungen, die sich auf die Qualität des
Verfahrenserzeugnisses nachteilig auswirken, mit Sicherheit vermieden werden.
Nachteilig bei dem zuvor beschriebenen Verfahren ist, daß es bei den im allgemeinen für notwendig erachteten hohen Calziniertemperaturen von 1000 bis 1100°C Schwierigkeiten bereitet, die Produktwärme im eigentlichen Calzinierprozeß nutzbar zu machen. Entweder sind die zur ausreichenden Produktkühlung erforderlichen Gasströme so groß, daß sie im Calzinierprozess nicht vollständig einsetzbar sind oder aber ist -bei Kühlung gegen die im Calzinierprozeß erforderlichen Gasströme- die Kühlung des Produktes nicht ausreichend. Schließlich haben sich in jüngerer Zeit die an das fertig calzinierte Aluminiumoxid gestellten Qualitätsanforderungen geändert. Gefragt ist insbesondere ein Aluminiumoxid mit sandiger Qualität, daß heißt hohem gamma-Oxid-Anteil . Die veränderten Anforderungen machen eine erhebliche Veränderung der Prozeßführung notwendig. Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung von wasserfreiem Aluminiumoxid auε Aluminiumhydroxid bereitzustellen, daß den geänderten Anforderungen an die Oxidqualität gerecht wird und insbesondere mit einem minimalen Wärmeverbrauch verbunden ist.
Die Aufgabe wird gelöst, in dem das Verfahren der eingangs genannten Art entsprechend der Erfindung derart ausgestaltet wird, daß man die Temperatur in der zirkulierenden Wirbelschicht auf einen Wert im Bereich von 850 bis 1000°C einstellt, das der zirkulierenden Wirbelschicht entnommene Aluminiumoxid mit 10 bis 25 Gew.% des aus der feststoffseitig ersten Stufe des Suspensionsvorwärmers (2) austretenden teilweise entwässerten Aluminiumhydroxids für die Dauer von mindestens 2 min. vermischt, das vermischte Material zunächst in einem mehrstufigen Suspensionskühler (15, 16, 17, 18, 19,20) unter Aufheizung von Sekundärgas (11) und anschließend im Wirbelschichtkühler (23) unter indirekter Aufheizung von Fluidisierungsgas (10) kühlt.
Das beim erfindungsgemäßen Verfahren eingesetzte System der zirkulierenden Wirbelschicht besteht aus einem Wirbelschichtreaktor, einem Abscheider zum Abscheiden von Feststoff aus der aus dem Wirbelschichtreaktor ausgetragenen Suspension - im allgemeinen einem Rückführzyklon - und einer Rückführleitung für den abgeschiedenen Feststoff in den Wirbelschichtreaktor. Das Prinzip der zirkulierenden Wirbelschicht zeichnet sich dadurch aus, daß im Unterschied zur "klassischen" Wirbelschicht, bei der eine dichte Phase durch einen deutlichen Dichtesprung von dem darüber befindlichen Gasraum getrennt ist, Verteilungszustände ohne definierte Grenzschicht vorliegen. Ein Dichtesprung zwischen dichter Phase und darüber befindlichem Staubraum ist nicht vorhanden, jedoch nimmt innerhalb des Reaktors die Feststoffkonzentration von unten nach oben ab. Aus dem oberen Teil des Reaktors wird eine Gas-FeststoffSuspension ausgetragen. Bei der Definition der Betriebsbedingung über die Kennzahlen von Froude und Archimedes ergeben sich folgende Bereiche:
0,1 3/4 Fr2 10
bzw.
0,01 < Ar < 100,
wobei
dk 3 • g (pk - pg)
Ar = und
P9 v2
u:
Fr^ =
g • d
sind.
Es bedeuten: u die relative Gasgeεchwindigkeit in m/sec.
Ar die Archimedes-Zahl
Fr die Froude-Zahl pg die Dichte deε Gases in kg/m3 pk die Dichte des Feststoffteilchens in kg/m3 dk den Durchmesser des kugelförmigen Teilchens in m v die kinematische Zähigkeit in πr/sec. g die Gravitationskonstante in m/sec.2
ERSATZBLAπ(REGEL26) Die Vermischung der Feststoffströme, die einerseits über den By-pass aus dem feststoffseitig ersten Suspensionsvorwärmer herrühren und andererseits aus der zirkulierenden Wirbelschicht stammen, für die Dauer von mindestens 2 min. ist verfahrenswesentlich. Denn nur dann ist eine hinreichende Abspaltung des chemisch gebundenen Wassers, das im mindestens teilweise entwässerten Aluminiumhydroxid noch enthalten ist und damit die Erzielung eines hinreichend niedrigen Glühverlustes gewährleistet. Die Vermischung der Feststoffströme erfolgt besonders vorteilhaft durch Verwirbelung mit dem beim Vermischen entstehenden Wasserdampf.
Die Wirbelgasgeschwindigkeit oberhalb der Sekundärgaszuführung beträgt im allgemeinen 7 bis 10 m/sec.
Eine -vorteilhafte Ausgestaltung der Erfindung besteht darin, den Druckverlust im Wirbelschichtreaktor, der eine Funktion des Feststoffinhaltes ist, auf < 100 mbar einzustellen.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, das aus der gasseitig zweiten Stufe des Suspensionsvorwärmers austretende teilweise entwässerte Aluminiumhydroxid in einem dem Elektrofilter vorgeschalteten Abscheider abzutrennen.
Schließlich ist es entsprechend einer weiteren Ausgestaltung der Erfindung vorteilhaft, die Schlußkühlung des erzeugten Aluminiumoxids durch mehrstufige Wirbelkühlung durchzuführen, wobei jeweils durch indirekten Wärmeaustausch in der ersten Stufe das Fluidisierungsgas für den Wirbelschichtreaktor der zirkulierenden Wirbelschicht und in den nachfolgenden Stufen ein flüssiges Wärmeträgermedium erhitzt wird. Hierdurch läßt sich die zur Kalzinatkühlung eingesetzte Luftmenge in einfachster Weise an den Fluidisierungsluftbedarf des Wirbelschichtreaktors der zirkulierenden Wirbelschicht anpassen. Der herausragende Vorteil des erfindungsgemaßen Verfahrens liegt darin, daß man den Calzinierprozeß einschließlich Vorwarmung und Kühlung in einfachster Weise dem jeweiligen
Qualitatsanforderungen anpassen kann. Denn im allgemeinen ist es üblich, daß eine bestimmte Produktqualltat hinsichtlich BET-Oberfläche, Glühverlust und alpha-Oxid gefordert ist. Hieraus ergibt sich die in der zirkulierenden Wirbelschicht einzustellende Reaktionstemperatur und die als By-pass an der zirkulierenden Wirbelschicht vorbeizufuhrende, lediglich entwässerte Aluminiumhydroxidmenge. Das bedeutet, daß mit steigender BET-Oberflache sowohl die Calziniertemperatur in der zirkulierenden Wirbelschicht als auch die By-pass-Menge für Aluminiumhydroxid in Richtung auf die unteren beanspruchten Grenzwerte einzustellen ist. Umgekehrt sind mit sinkender BET-Oberflache die vorgenannten Werte in Richtung der oberen beanspruchten Grenzwerte zu verschieben. Bei zulassigem höheren Glühverlust kann die By-pass-Menge für Aluminiumhydroxid bei sonst konstanten Betriebsbedingungen, insbesondere bei konstanter Calziniertemperatur, weiter innerhalb der beanspruchten Grenzen erhöht werden. Dadurch ist eine weitere Reduktion der Warmeverbrauchszahl erreichbar.
Ein weiterer Vorteil des erfindungsgemaßen Verfahrens besteht in einer Warmeverbrauchszahl, die -in Abhängigkeit von der Qualitatsanforderung, die an das erzeugte Aluminiumoxid gestellt ist- deutlich unter den bislang üblichen Werten liegt.
Die Erfindung wird anhand der Figur und des Ausfuhrungsbeispiels beispielsweise und naher erläutert.
Die Figur stellt ein Fließschema des erfindungsgemaßen Verfahrens dar
Das filterfeuchte Aluminiumhydroxid wird mittels einer Förderschnecke (1) in den gasseitig zweiten Suspensionsvorwärmer (2) eingetragen und von dem aus dem gasseitig ersten Suspensionsvorwärmer (5) kommenden Abgasstrom erfaßt. Anschließend wird der Gas-Materialstrom in dem nachfolgenden Zyklonabscheider (3) getrennt. Das aus dem Zyklonabscheider (3) austretende Abgas wird zur Entstaubung einer elektrostatischen Gasreinigung (4) und schließlich einem Kamin (nicht dargestellt) zugeleitet.
Der aus dem Zyklonabscneider (3) und der elektrostatischen Gasreinigung austretende Feststoff gelangt anschließend vermittels einer Dosiervorrichtung zum überwiegenden Teil in den Suspensionsvorwärmer (5) , zum kleineren Teil in die By-pass-Leitung (14) . Im Suspensionsvorwärmer (5) wird der Feststoff von dem aus dem Rückführzyklon (6) der zirkulierenden Wirbelschicht austretenden Abgas erfaßt und weiter entwässert bzw. dehydratisiert. Im Abscheidezyklon (7) tritt wiederum eine Trennung des Gas-Material-Stromes ein, wobei das entwässerte Material in den Wirbelschichtreaktor (8) und das Abgas in den oben erwähnten Suspensionsvorwärmer (2) geleitet werden.
Die Zuführung des zur Calzination erforderlichen Brennstoffes erfolgt über Leitung (9) , die in geringer Höhe über dem Rost des Wirbelschichtreaktors (8) angeordnet ist. Die zur Verbrennung erforderlichen sauerstoffhaltigen Gasströme werden über Leitung (10) als Fluidisierungsgas und über Leitung (11) als Sekundärgaε zugeführt. Infolge der Gaszufuhrung in Form von Fluidisierungsgas und Sekundärgas stellt sich im unteren Reaktorbereich zwischen Rost und Sekundärgaszuführung (11) eine vergleichsweise hohe Suspensionsdichte, oberhalb der Sekundärgaszuführung (11) eine vergleichsweise geringe Suspensionsdichte ein.
Die Gas-Feststoff-Suspension tritt über die Verbindungsleitung (12) in den Rückführzyklon (6) der zirkulierenden Wirbelschicht ein, in dem eine neuerliche Trennung von Feststoff und Gas erfolgt. Der über Leitung (13) aus dem Rückführzyklon (6) austretende Feststoff wird mit einem Teil des aus dem Zyklon (3) und der elektrostatischen Gasreinigung stammenden Feststoffes, der über Leitung (14) herangeführt wird, vermischt und dem ersten auε Steigleitung (15) und Zyklonabscheider (16) gebildeten Suspensionεkühler zugeleitet Das Abgas des Zyklonabscheiders (16) gelangt über Leitung (11) in den Wirbelschichtreaktor (8) , der Feststoff in den auε Steigleitung
(17) und Zyklonabscheider (18) gebildeten zweiten Suspensionskuhler und εchließlich m den aus Steigleitung (19) und Zyklonabscheider (20) gebildeten dritten Suεpenεionskuhler Der Gasfluß durch die einzelnen Suspensionskuhler erfolgt im Gegenstrom zum Feststoff über die Leitungen (21) und (22) Nach dem Verlassen des letzten Suspensionskuhlers erfahrt das erzeugte Aluminiumoxid eine Schlußkuhlung in dem mit drei Kuhlkammern ausgestatteten Wirbelschichtkühler (23) In dessen erster Kammer erfolgt eine Aufheizung des dem
Wirbelschichtreaktor (8) zugefuhrten Fluidisierungsgases, m den nachgeschalteten zwei Kammern eine Kühlung gegen em Warmetragermedium, vorzugsweise Wasser, das im Gegenstrom gefuhrt wird Das Aluminiumoxid tritt schließlich über Leitung
(24) aus
Beispiel
Mit Hilfe der Förderschnecke (1) werden dem gasseitig zweiten
Suspensionsvorwärmer (2) 126360 kg/h Aluminiumhydroxid mit 7
Gew.% mechanisch gebundenem Wasser zugeführt Durch das aus dem
Zyklonabscheider (7) mit einer Temperatur von 306°C herangeführte Abgas erfolgt eine erste Trocknung Der Feststoff wird nach Abscheidung im Zyklonabscheider (3) im
Suspensionsvorwärmer (5) einer weiteren Trocknung und
Entwässerung mit den aus dem Ruckfuhrzyklon (6) der zirkulierenden Wirbelschicht herangeführten Abgasen emer
Temperatur von 950°C unterworfen Das aus dem letzten
Zyklonabscheider (3) austretende Abgas wird anschließend im
Elektrofilter (4) entstaubt und dem Kamm zugeführt Seme Menge betragt 132719 Nm3/h Der im Zyklonabscheider (7) anfallende Feststoff wird schließlich in den Wirbelschichtreaktor (8) der zirkulierenden Wirbelschicht eingetragen.
Die zirkulierende Wirbelschicht wird bei einer Temperatur von 950°C betrieben. Ihr werden über Leitung (9) 5123 kg/h Heizöl, über Leitung (11) 60425 Nm3/h Sekundärluft und über Leitung (10) 12000 Nm3/h Fluidisierungsluft zugeführt. Die Fluidisierungsluft besitzt eine Temperatur von 188°C, die Sekundärluft eine solche von 525°C. Es verlassen die zirkulierende Wirbelschicht ein Gasstrom in einer Menge von 98631 Nm3/h mit einem Sauerstoffgehalt von 2,23 Vol.%, der dem Suspensionsvorwärmer (5) und (2) zugeleitet wird, sowie ein Feststoff mit 66848 kg/h. Dieser über Leitung (13) abgeführte Feststoffström wird vor dem Eintritt in die Steigleitung (15) des ersten Suspensionskuhlers mit 15262 kg/h Feststoff, der über Leitung (14) herangeführt wird, unter Einstellung einer Mischtemperatur von 608°C vermischt. Nach Durchlaufen der Steigleitung (15) gelangt die Gas-Feststoff-Suspension in den Zyklonabscheider
(16) und von dort in die nachfolgenden aus den Steigleitungen
(17) bzw. (19) und Zyklonabscheidern (18) bzw. (20) gebildeten Suspensionskühlern. In den drei Suspensionskuhlern erfolgt eine stufenweise Abkühlung des Feststoffes auf 525°C bzw. 412°C bzw. 274°C. Gleichzeitig heizt sich der dem Wirbelschichtreaktor (8) über Leitung (11) zugeführte Sekundärgasstrom auf eine Temperatur von 525°C auf. Der Betrieb der Suspensionskuhler erfolgt mit der direkt aufgeheizten Fluidisierungsluft des nachfolgenden Wirbelschichtkühlers (23) sowie mit über Leitung (25) zugeführter Prozeßluft in einer Menge von 33000 Nm3/h.
Die Endkühlung des Feststoffes geschieht im Wirbelschichtkühler (23) , dessen erste Kammer mit 7200 Nm3/h und dessen 2. und 3. Kammer mit jeweils 7000 Nm3/h Fluidisierungsluft beaufschlagt werden. Die in den einzelnen Kammern erzielten Temperaturen des Feststoffes betragen 238°C, 135°C und 83°C. Die in der ersten Kammer des Wirbelschichtkühlerε (23) zur Kühlung benutzte Luft in einer Menge von 12000 Nm3/h, die dem Wirbelschichtreaktor (8) als Fluidisierungsluft zugeführt wird, heizt sich dabei durch indirekten Wärmeaustausch auf 188°C auf. In der zweiten und dritten Kühlkammer des Wirbelεchichtkühlers (23) erfolgt eine Aufheizung des Kühlwassers, das im Gegenstrom zum Feststoff durch die Kühlkammern in einer Menge von 350000 kg/h gefuhrt wird von 40°C auf 49°C. Die den Wirbelschichtkühler (23) verlassende Fluidisierungsluft hat eine Temperatur von 153°C und fällt in einer Menge von 21200 Nm3/h an. Sie wird -wie vorstehend erwähnt- m die Suspenεionskühlung eingetragen Den Wirbelschichtkühler (23) verlassen 77111 kg h Aluminiumoxid mit emem Glühverlust von 0,5 % und einer BET-Oberflache von 70 nr/g

Claims

Patentansprüche :
1. Verfahren zur Herstellung von wasserfreiem Aluminiumoxid aus Aluminiumhydroxid in einer aus Wirbelschichtreaktor (8) , Abscheider (6) und Rückführleitung gebildeten zirkulierenden Wirbelschicht, bei dem man das Aluminiumhydroxid in die gasseitig zweite Stufe eines mit den Abgasen des Wirbelschichtreaktors (8) der zirkulierenden Wirbelschicht betriebenen zweistufigen Suspensionsvorwärmer (2) einträgt und mindestens teilweise entwässert, entwässertes Aluminiumhydroxid aus der zweiten Stufe deε
Suspensionsvorwärmer (2) in die gasseitig erste Stufe eineε mit den Abgasen des Wirbelschichtreaktors (3) der zirkulierenden Wirbelschicht betriebenen Suspensionsvorwärmer (5) einträgt und weiter entwässert und anschließend der zirkulierenden Wirbelschicnr. zuführt, die mit in einer nachfolgenden Kühlstufe durch das erzeugte Aluminiumoxid indirekt erhitztem, sauerstoffhaltigen Fluidisierungsgas (10) und indirekt erhitzter in einer höheren Ebene zugeführtem sauerstoffhältigem Sekundärgas (11) betrieben wird, wobei die indirekte Aufheizung des Fluidisierungsgases in einem Wirbelschichtkühler (23) erfolgt, dadurch gekennzeichnet, daß man die Temperatur in der zirkulierenden Wirbelschicht auf einen Wert im Bereich von 850 bis 1000°C einstellt, das der zirkulierenden Wirbelschicht entnommene Aluminiumoxid mit 10 bis 25 Gew.% des aus der feststoffseitig ersten Stufe des Suspensionsvorwärmers (2) austretenden teilweise entwässerten, an der zirkulierenden Wirbelschicht als By-pass vorbeigeführtem Aluminiumhydroxids für die Dauer von mindestens 2 min. vermischt, das vermischte Material zunächst in einem mehrstufigen Suspensionskuhler (15,16,17,18,19,20) unter Aufheizung von Sekundärgas (11) und anschließend im Wirbelschichtkühler (23) unter indirekter Aufheizung von Fluidisierungsgas (10) kühlt. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man
den Druckverlust im Wirbelschichtreaktor (8) auf <. 100 mbar einstellt.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man das aus der gasseitig zweiten Stufe des Suspensionsvorwarmers (2) austretende mindestens teilweise entwasserte Aluminiumhydroxid in einem dem Elektrofilters (4) vorgeschalteten Abscheider (3) trennt.
Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß man die Schlußkuhlung des erzeugten Aluminiumoxids durch mehrstufige Wirbelkuhlung durchfuhrt, wobei jeweils durch indirekten Wärmeaustausch in der ersten Stufe das Fluidisierungsgas (10) für den Wirbelschichtreaktor (8) der zirkulierenden Wirbelschicht und in den nachfolgenden Stufen ein flüssiges Warmetragermedium erhitzt wird.
PCT/EP1996/004764 1995-11-14 1996-11-02 Verfahren zur herstellung von aluminiumoxid aus aluminiumhydroxid WO1997018165A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
UA98063070A UA48201C2 (uk) 1995-11-14 1996-02-11 Спосіб одержання окису алюмінію із гідроокису алюмінію
AU74970/96A AU728011B2 (en) 1995-11-14 1996-11-02 Fluidized bed process for producing alumina from aluminum hydroxide
EA199800451A EA000516B1 (ru) 1995-11-14 1996-11-02 Способ получения окиси алюминия из гидроокиси алюминия
EP96937331A EP0861208B1 (de) 1995-11-14 1996-11-02 Verfahren zur herstellung von aluminiumoxid aus aluminiumhydroxid
CA002235706A CA2235706C (en) 1995-11-14 1996-11-02 Process of preparing aluminum hydroxide
AT96937331T ATE209607T1 (de) 1995-11-14 1996-11-02 Verfahren zur herstellung von aluminiumoxid aus aluminiumhydroxid
SK642-98A SK284481B6 (sk) 1995-11-14 1996-11-02 Spôsob výroby oxidu hlinitého z hydroxidu hlinitého
DK96937331T DK0861208T3 (da) 1995-11-14 1996-11-02 Fremgangsmåde til fremstilling af aluminiumoxid ud fra aluminiumhydroxid
DE59608329T DE59608329D1 (de) 1995-11-14 1996-11-02 Verfahren zur herstellung von aluminiumoxid aus aluminiumhydroxid
JP09518539A JP2000512255A (ja) 1995-11-14 1996-11-02 水酸化アルミニウムからアルミナを調整する方法
US09/068,758 US6015539A (en) 1995-11-14 1996-11-02 Fluidized bed process for producing alumina from aluminum hydroxide
BR9611386-3A BR9611386A (pt) 1995-11-14 1996-11-02 Processo para a preparação de alumina a partir de hidróxido de alumìnio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19542309.7 1995-11-14
DE19542309A DE19542309A1 (de) 1995-11-14 1995-11-14 Verfahren zur Herstellung von Aluminiumoxid aus Aluminiumhydroxid

Publications (1)

Publication Number Publication Date
WO1997018165A1 true WO1997018165A1 (de) 1997-05-22

Family

ID=7777360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/004764 WO1997018165A1 (de) 1995-11-14 1996-11-02 Verfahren zur herstellung von aluminiumoxid aus aluminiumhydroxid

Country Status (17)

Country Link
US (1) US6015539A (de)
EP (1) EP0861208B1 (de)
JP (1) JP2000512255A (de)
CN (1) CN1085623C (de)
AT (1) ATE209607T1 (de)
AU (1) AU728011B2 (de)
BR (1) BR9611386A (de)
CA (1) CA2235706C (de)
DE (2) DE19542309A1 (de)
DK (1) DK0861208T3 (de)
EA (1) EA000516B1 (de)
ES (1) ES2169270T3 (de)
ID (1) ID17589A (de)
IN (1) IN186958B (de)
SK (1) SK284481B6 (de)
UA (1) UA48201C2 (de)
WO (1) WO1997018165A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005318A2 (en) * 2003-07-11 2005-01-20 Outokumpu Technology Oy Process and plant for producing metal oxide from metal hydroxide
WO2008077462A2 (en) * 2006-12-22 2008-07-03 Outotec Oyj Process and plant for the thermal treatment of particulate solids, in particular for producing metal oxide from metal hydroxide
WO2009026989A1 (en) * 2007-09-01 2009-03-05 Outotec Oyj Process and plant for the thermal treatment of granular solids

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19805897C1 (de) * 1998-02-13 1998-12-03 Metallgesellschaft Ag Verfahren zur Schlußkühlung von wasserfreiem Aluminiumoxid
DE19944778B4 (de) * 1999-09-17 2004-07-08 Outokumpu Oyj Verfahren zum thermischen Behandeln körniger Feststoffe
DE10260741A1 (de) * 2002-12-23 2004-07-08 Outokumpu Oyj Verfahren und Anlage zur Wärmebehandlung von feinkörnigen Feststoffen
DE10260738A1 (de) * 2002-12-23 2004-07-15 Outokumpu Oyj Verfahren und Anlage zur Förderung von feinkörnigen Feststoffen
DE10260734B4 (de) * 2002-12-23 2005-05-04 Outokumpu Oyj Verfahren und Anlage zur Herstellung von Schwelkoks
DE10260745A1 (de) * 2002-12-23 2004-07-01 Outokumpu Oyj Verfahren und Anlage zur thermischen Behandlung von körnigen Feststoffen
DE10260731B4 (de) 2002-12-23 2005-04-14 Outokumpu Oyj Verfahren und Anlage zur Wärmebehandlung von eisenoxidhaltigen Feststoffen
DE10260737B4 (de) 2002-12-23 2005-06-30 Outokumpu Oyj Verfahren und Anlage zur Wärmebehandlung von titanhaltigen Feststoffen
DE10260733B4 (de) * 2002-12-23 2010-08-12 Outokumpu Oyj Verfahren und Anlage zur Wärmebehandlung von eisenoxidhaltigen Feststoffen
DE10260739B3 (de) * 2002-12-23 2004-09-16 Outokumpu Oy Verfahren und Anlage zur Herstellung von Metalloxid aus Metallverbindungen
DE102004042430A1 (de) * 2004-08-31 2006-03-16 Outokumpu Oyj Wirbelschichtreaktor zum thermischen Behandeln von wirbelfähigen Substanzen in einem mikrowellenbeheizten Wirbelbett
DE102007009758A1 (de) 2007-02-27 2008-08-28 Outotec Oyj Verfahren und Vorrichtung zur Regelung eines Feststoffstromes
DE102007014435B4 (de) * 2007-03-22 2014-03-27 Outotec Oyj Verfahren und Anlage zur Herstellung von Metalloxid aus Metallsalzen
DE102009006095B4 (de) 2009-01-26 2019-01-03 Outotec Oyj Verfahren und Anlage zur Herstellung von Aluminiumoxid aus Aluminiumhydroxid
DE102009006094B4 (de) 2009-01-26 2018-10-31 Outotec Oyj Verfahren und Anlage zur Herstellung von Aluminiumoxid aus Aluminiumhydroxid
CN101624201B (zh) * 2009-08-12 2011-05-18 广西华银铝业有限公司 气体悬浮焙烧氧化铝余热加热平盘洗水的方法
DE102009050165A1 (de) 2009-10-21 2011-04-28 Outotec Oyj Vorrichtung zur Behandlung von Feststoffen und/oder Gasen
CN102050475B (zh) * 2009-10-27 2013-07-03 沈阳铝镁设计研究院有限公司 双室流态化冷却器
DE102010050495B4 (de) 2010-11-08 2018-05-24 Outotec Oyj Verfahren und Anlage zur Herstellung von Aluminiumoxid aus Aluminiumhydroxid
DE102013103080A1 (de) 2013-03-26 2014-06-12 Outotec Oyj Verfahren und Vorrichtung zum Entfernen von feineren Feststoffteilchen aus einem fluidisierten Feststoffgemisch
DE102015108722A1 (de) 2015-06-02 2016-12-08 Outotec (Finland) Oy Verfahren und Anlage zur thermischen Behandlung von körnigen Feststoffen
CN105139897B (zh) * 2015-07-23 2017-08-11 清华大学 一种大规模连续制备包覆颗粒的系统
CN107311212A (zh) * 2017-07-26 2017-11-03 沈阳新诚科技有限公司 一种提高1350t/d型氢氧化铝气态悬浮焙烧炉产量的方法
WO2019114922A1 (en) * 2017-12-11 2019-06-20 Outotec (Finland) Oy Process and plant for thermal decomposition of aluminium chloride hydrate into aluminium oxide
CN108751244B (zh) * 2018-07-06 2024-04-09 北京航天石化技术装备工程有限公司 一种结晶铝盐焙烧制备工业级氧化铝的集成装置
CN111675233B (zh) * 2020-05-28 2023-11-10 宁夏盈氟金和科技有限公司 双流化床生产无水氟化铝系统及方法
CN112174176B (zh) * 2020-09-28 2022-11-15 沈阳鑫博工业技术股份有限公司 一种利用氢氧化铝制备α–氧化铝的装置及方法
WO2023229496A1 (ru) * 2022-05-24 2023-11-30 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Устройство для термообработки гидроксида алюминия

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1559441A (de) * 1967-06-16 1969-03-07
FR2032925A5 (de) * 1969-02-22 1970-11-27 Metallgesellschaft Ag
FR2313120A1 (fr) * 1975-06-03 1976-12-31 Metallgesellschaft Ag Procede pour effectuer des processus endothermiques
GB2019369A (en) * 1978-04-20 1979-10-31 Smidth & Co As F L Improvements relating to the production of anhydrous alumina
FR2559572A1 (fr) * 1984-02-15 1985-08-16 Kloeckner Humboldt Deutz Ag Procede et installation de calcination continue d'hydroxyde d'aluminium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO791174L (no) * 1978-04-20 1979-10-23 Smidth & Co As F L Fremgangsmaate for fremstilling av vannfri aluminiumoksyd
US4585645A (en) * 1985-04-03 1986-04-29 Aluminum Company Of America Alpha alumina production in a steam-fluidized reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1559441A (de) * 1967-06-16 1969-03-07
DE1592140A1 (de) * 1967-06-16 1970-10-22 Metallgesellschaft Ag Verfahren zur Herstellung von Aluminiumoxid aus Aluminiumhydroxid
FR2032925A5 (de) * 1969-02-22 1970-11-27 Metallgesellschaft Ag
FR2313120A1 (fr) * 1975-06-03 1976-12-31 Metallgesellschaft Ag Procede pour effectuer des processus endothermiques
GB2019369A (en) * 1978-04-20 1979-10-31 Smidth & Co As F L Improvements relating to the production of anhydrous alumina
FR2559572A1 (fr) * 1984-02-15 1985-08-16 Kloeckner Humboldt Deutz Ag Procede et installation de calcination continue d'hydroxyde d'aluminium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005318A2 (en) * 2003-07-11 2005-01-20 Outokumpu Technology Oy Process and plant for producing metal oxide from metal hydroxide
WO2005005318A3 (en) * 2003-07-11 2005-06-16 Outokumpu Oy Process and plant for producing metal oxide from metal hydroxide
WO2008077462A2 (en) * 2006-12-22 2008-07-03 Outotec Oyj Process and plant for the thermal treatment of particulate solids, in particular for producing metal oxide from metal hydroxide
WO2008077462A3 (en) * 2006-12-22 2008-09-18 Outotec Oyj Process and plant for the thermal treatment of particulate solids, in particular for producing metal oxide from metal hydroxide
EA016147B1 (ru) * 2006-12-22 2012-02-28 Оутотек Ойй Способ и установка для термической обработки измельченных твердых частиц, в частности, для получения оксида металла из гидроксида металла
WO2009026989A1 (en) * 2007-09-01 2009-03-05 Outotec Oyj Process and plant for the thermal treatment of granular solids
EA016569B1 (ru) * 2007-09-01 2012-05-30 Оутотек Ойй Способ и установка для термической обработки зернистых твердых частиц

Also Published As

Publication number Publication date
SK64298A3 (en) 1999-07-12
EP0861208A1 (de) 1998-09-02
EP0861208B1 (de) 2001-11-28
JP2000512255A (ja) 2000-09-19
UA48201C2 (uk) 2002-08-15
ES2169270T3 (es) 2002-07-01
ATE209607T1 (de) 2001-12-15
CA2235706C (en) 2004-08-31
EA000516B1 (ru) 1999-10-28
BR9611386A (pt) 2000-10-24
ID17589A (id) 1998-01-15
EA199800451A1 (ru) 1998-10-29
CA2235706A1 (en) 1997-05-22
DK0861208T3 (da) 2002-03-25
US6015539A (en) 2000-01-18
IN186958B (de) 2001-12-22
CN1204302A (zh) 1999-01-06
AU728011B2 (en) 2001-01-04
DE19542309A1 (de) 1997-05-15
SK284481B6 (sk) 2005-04-01
DE59608329D1 (de) 2002-01-10
AU7497096A (en) 1997-06-05
CN1085623C (zh) 2002-05-29

Similar Documents

Publication Publication Date Title
WO1997018165A1 (de) Verfahren zur herstellung von aluminiumoxid aus aluminiumhydroxid
DE102009006095B4 (de) Verfahren und Anlage zur Herstellung von Aluminiumoxid aus Aluminiumhydroxid
DE2524540C2 (de) Verfahren zur Durchführung endothermer Prozesse
DE2624302C2 (de) Verfahren zur Durchführung exothermer Prozesse
DE10260737B4 (de) Verfahren und Anlage zur Wärmebehandlung von titanhaltigen Feststoffen
DE2641292C2 (de) Verfahren zur Wärmebehandlung von Materialien in der Wirbelschicht
DE69519891T2 (de) Druckwirbelschicht-Feuerung mit integriertem Rezirkulationswärmetauscher
DE1592140B2 (de) Vorrichtung zur Herstellung von wasser freiem Aluminiumoxid aus Aluminiumoxid Hyd
DE10260739B3 (de) Verfahren und Anlage zur Herstellung von Metalloxid aus Metallverbindungen
DE2524541C2 (de) Verfahren zur thermischen Spaltung von Aluminiumchloridhydrat
DE102009006094A1 (de) Verfahren und Anlage zur Herstellung von Metalloxid aus Metallsalzen
EP0059508B1 (de) Verfahren zur Herstellung von Zementklinker
DE69322753T2 (de) Verfahren zum Brennen von Kalkstein
DE2916142A1 (de) Herstellung von wasserfreier tonerde
DE3008234A1 (de) Verfahren und anlage zum brennen von feinkoernigem gut
DE1433320A1 (de) Verfahren und Anlage zum Reduzieren von Eisenoxyd und anderen Metalloxyden
DE3214617A1 (de) Verfahren zur extraktion von kohlenwasserstoffen aus einem kohlenwasserstoffhaltigen substrat sowie eine entsprechende vorrichtung
DE102007030394A1 (de) Verfahren und Anlage zur Wärmebehandlung von sulfidischen Erzen
DE102010050495B4 (de) Verfahren und Anlage zur Herstellung von Aluminiumoxid aus Aluminiumhydroxid
DE10331364B3 (de) Verfahren und Anlage zur Herstellung von Metalloxid aus Metallhydroxid
DE3615622A1 (de) Verfahren zur durchfuehrung endothermer prozesse
EP0244820B1 (de) Vorrichtung zur Vorwärmung und gegebenenfalls Trocknung feinkörniger Feststoffe
EP0222433B1 (de) Verfahren zur Durchführung von Hochtemperaturreaktionen
DE19805897C1 (de) Verfahren zur Schlußkühlung von wasserfreiem Aluminiumoxid
DE1592140C (de) Vorrichtung zur Herstellung von wasserfreiem Aluminiumoxid aus Aluminiumoxid-Hydrat

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96199087.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP SK UA US AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2235706

Country of ref document: CA

Ref document number: 2235706

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1996937331

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 64298

Country of ref document: SK

WWE Wipo information: entry into national phase

Ref document number: 199800451

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1996937331

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09068758

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1996937331

Country of ref document: EP