WO1997016479A1 - Kompositmaterialien mit nanoskaligen füllstoffen - Google Patents

Kompositmaterialien mit nanoskaligen füllstoffen Download PDF

Info

Publication number
WO1997016479A1
WO1997016479A1 PCT/EP1996/004720 EP9604720W WO9716479A1 WO 1997016479 A1 WO1997016479 A1 WO 1997016479A1 EP 9604720 W EP9604720 W EP 9604720W WO 9716479 A1 WO9716479 A1 WO 9716479A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
filler particles
matrix phase
particles
phase
Prior art date
Application number
PCT/EP1996/004720
Other languages
English (en)
French (fr)
Inventor
Helmut Schmidt
Ertugrul Arpac
Herbert Krug
Martin Mennig
Zahoor Ahmad
Original Assignee
Institut für Neue Materialien Gemeinnützige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut für Neue Materialien Gemeinnützige GmbH filed Critical Institut für Neue Materialien Gemeinnützige GmbH
Priority to AU74960/96A priority Critical patent/AU7496096A/en
Publication of WO1997016479A1 publication Critical patent/WO1997016479A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • nanocrystalline crystals when compacted, have a relatively high interfacial volume, which gives the materials special properties.
  • initial investigations were also carried out on nanocrystalline ceramics, but no similar effects were found, apart from a few preliminary results that indicated an increased deformability. So far, similar phenomena have not been found on composite materials with a nanoscale structure, especially not on composites in which the matrix phase has polymer-like structures. It is e.g.
  • materials can be provided which differ from the prior art in that they have a very high proportion of nanoscale particles and which, if appropriate, also through a certain interface design, the interfaces have a significant influence on material and material properties.
  • deviations from the properties to be expected are found, which can only be attributed to interface phases. If, for example, the expansion coefficient of certain systems of this type is determined, it is found that this is reduced considerably more than would be explained by the additive effect of matrix and filler.
  • the present invention accordingly relates to a process for the production of composite materials with a high interfacial content, in which a nanoscale filler is dispersed in a polymeric matrix and which is characterized in that the matrix is optionally surface-modified filler particles Affinity for the matrix phase and a particle size of no more than 200 nm is incorporated in an amount of at least 5 percent by volume so that the filler particles are distributed in the substantially agglomerate-free state in the matrix phase.
  • Composite materials with a high interfacial content obtainable by this process are also the subject of the present invention.
  • the essential features of the method according to the invention are thus that the nanoscale filler particles to be incorporated into the matrix phase in a certain minimum amount have an affinity for the matrix phase and that they are distributed agglomerate-free in the matrix phase.
  • This is the only way to ensure that there is a high interfacial content in the composite materials, ie a high percentage of the matrix phase takes part in the formation of interfacial phases which differ from the rest of the matrix phase (whose structure is similar to that of an unfilled matrix) in their structure and differ in their properties.
  • These interface phases surround the filler particles like a shell.
  • their proportion can be determined, for example, by dissolving the matrix of the composite material as far as possible with a solvent for the matrix phase under ambient conditions.
  • the part of the matrix phase that can no longer be solved represents the interface phase, ie the part of the matrix that has (strongly) interacted with the filler particles.
  • These interactions can be both covalent bonds between groups on the surfaces of the filler particles (which may also come from a surface modifier that may be used) and thus reactive groups in the matrix molecules, as well as non-covalent interactions such as dipole-dipole Interactions and electrostatic attraction.
  • the term "affinity for the matrix phase” means the ability of the filler particles to enter into the above-mentioned or similar interactions with the molecules of the matrix phase which are strong enough to bring about a certain orientation of the matrix molecules in the immediate vicinity of the surfaces of the filler particles and at the same time for a bond or at least to provide a strong attraction between the surface of the filler particles and the molecules of the matrix phase.
  • This affinity between the filler particles and the matrix phase also ensures that the filler particles are present in the matrix phase essentially in isolation from one another, ie without the formation of agglomerates from a plurality of primary particles. This ensures that the contact area between the filler particles and the matrix phase - and thus also the interface phase - has a maximum effect under the given conditions.
  • the nanoscale filler is not integrated into the matrix phase as an agglomerated powder but in the form of a stabilized (essentially) agglomerate-free suspension and (if necessary through a suitable surface modification of the particles) the agglomerate-free state is maintained even in the final composite material.
  • the matrix and filler particles also enter into relatively strong interaction relationships, which lead to interfacial structures in the finished composite material, which presumably are responsible for the qualitative changes in properties observed.
  • the use of mechanical forces such as e.g. Shear effect with simultaneous application of surface-modifying substances.
  • the nanodisperse installation presumably has two effects:
  • the nanoscale installation means that the volume fraction of these inner interfaces in the entire composite material is due to the large surface area of the nanoparticles becomes so large that the changes in properties attributable to the interfaces (areas) are also macroscopically clearly observable.
  • This type of nanocomposition can be achieved e.g. by either starting with naturally agglomerated powders and permanently breaking the soft agglomerates by dispersing them in a suitable (non-matrix) medium (e.g. using methacrylic acid (esters)) or by using stabilized nanoscale suspensions (e.g. silica sols) from the start.
  • a suitable (non-matrix) medium e.g. using methacrylic acid (esters)
  • stabilized nanoscale suspensions e.g. silica sols
  • the composite materials according to the invention are particularly distinguished by the fact that they have new mechanical and thermomechanical properties due to an internal interface phase, e.g. a reduced coefficient of thermal expansion and an increased temperature resistance, and their optical properties can be adjusted over a wide range by means of the nanoparticles; in particular, it is possible to realize completely transparent composite materials despite the high degree of filling.
  • Any known organic and inorganic polymeric substances are suitable as materials for the matrix phase that can be used according to the invention.
  • Organically modified inorganic polycondensates can also be used as the matrix phase.
  • matrix materials which can be used particularly advantageously according to the invention are polyaeryl acid, polymethacrylic acid, polyacrylates, polyacrylamides, polycarbamides, polymethacrylates, polyolefins, polystyrene, polyamides, polyimides, polyvinyl compounds such as polyvinyl chloride, polyvinyl alcohol and polyvinyl butyral, corresponding copolymers, for example poly (ethylene-vinyl acetate) , for example polyethylene terephthalate or polydiallyl phthalate, polyacrylates, polycarbonates, polyethers, for example polyoxymethylene, polyethylene oxide or polyphenylene oxide, polyether ketones, polysulfones, polyepoxides, fluoropolymers, polysiloxanes, organopolysiloxanes or with metals and transition metals formed heteropolysiloxanes, as described, for example, in EP-A-36648 and EP-A-223067, and mixtures of two
  • nanoscale filler particles to be used according to the invention are preferably (at least partially) inorganic in nature.
  • the nanoscale inorganic particles are, for example, oxides such as CaO, ZnO, CdO, Si0 2 , Ti0 2 , Zr0 2 , Ce0 2 , Sn0 2 , PbO, A1 2 0 3 , ln 2 0 3 and La 2 0 3 ; Sulfides such as CdS and ZnS; Selenides such as GaSe, CdSe or ZnSe; Tellurides such as ZnTe or CdTe; Halides such as NaCI, KCI, BaCl 2 , AgCl, AgBr, AgI, CuCl, CuBr, Cdl 2 or Pbl 2 ; Carbides such as CeC 2 ; Arsenides such as AlAs, GaAs or CeAs; Antimonides such as InSb; Nitrides such as BN, A1N, Si 3 N 4 or Ti 3 N 4 ; Phosphides such as GaP, InP, Zn 3 P 2 or C
  • Organically modified inorganic particles such as particulate polymethylsiloxanes, methacrylic-functionalized oxide particles and salts of methyl phosphoric acid can also be used.
  • metal colloids can also be used, which can usually be produced via the reaction of metal salts and surface modification with ligands such as aminosilanes, mercaptosilanes etc. (for example Au, Ag, Pt, Cu, Co, Ni, Pd).
  • nanoscale particles can be produced in a customary manner, for example by flame hydrolysis, flame pyrolysis and plasma process [see AN Dubrovina et al. , Kristallografiya, 26 (1981) 637-639], colloid techniques [see E. Matijevic, "Preparation and Interaction of Colloids of Interest in Ceramics” in "Ultrastructure Processing of Advanced Ceramics", ed. : JD Mackenzie, DR Ulrich, John Wiley & Sons, New York (1988) 429, and other publications by E. Matijevic et al.], Sol-gel processes [see R. Nass, H. Schmidt, Journal of Non-Crystalline Solids 121 (1990) 329-333; MA Anderson et al.
  • the nanoscale particles have a particle size of at most 200 nm, preferably 2 to 50 nm and in particular 5 to 20 nm. They preferably consist of inorganic materials with a low coefficient of thermal expansion, materials with a
  • Expansion coefficients ⁇ 10 -4 K-1 are particularly preferred.
  • Si0 2 particles for example, have a very low thermal expansion coefficient of 5 x 10 " K ⁇ , which have the additional advantage of a thixotropic effect when dispersed in the polymeric matrix.
  • the viscosity-changing properties of the nanoscale particles can be adjusted by suitable surface modification, and particularly preferred are stabilized colloidal, nanodispersed sols of inorganic particles such as, for example, silica sols from BAYER, Sn0 2 sols from Goldschmidt, Ti0 2 Brine from MERCK, Si0 2 -, Zr0 2 -, Al 2 0 3 -, Sb 2 0 3 - brine from Nissan Chemicals or aerosil dispersions from DEGUSSA.
  • the volume fraction of the nanoscale particles in the composite material is usually 5 to 50% by volume, preferably 10 to 30% by volume and in particular 15 to 20% by volume, based on the filler plus matrix.
  • substances can be used, for example, which can fulfill several functions (partly in parallel). For example, you can 1. Prevent the agglomeration of the particles during composite production;
  • Compounds having a molecular weight which is not higher than 500, preferably not higher than 350 and in particular not higher than 200 are particularly suitable for this purpose.
  • Such compounds are preferably liquid under normal conditions and preferably have no more than a total of 15, in particular no more than 10 and particularly preferably no more than 8 carbon atoms.
  • the functional groups that these compounds have to carry depend primarily on the surface groups of the nanoscale particles used in each case and also on the desired interaction with the matrix.
  • an acid / base reaction according to Bronsted or Lewis can take place between the functional groups of the surface-modifying compound and the surface groups of the filler particles (including complex formation and adduct formation).
  • An example of another suitable interaction is the dipole-dipole interaction.
  • suitable functional groups are carboxylic acid groups, (primary, secondary, tertiary and quaternary) amino groups and CH-acidic groups. Several of these groups can also be present simultaneously in one molecule (betaines, amino acids, EDTA, etc.).
  • examples of preferred surface modifiers are saturated or unsaturated monocarboxylic and polycarboxylic acids (preferably monocarboxylic acids) with ibis 12 carbon atoms (e.g. formic acid, acetic acid, propionic acid, butyric acid, pentanoic acid, hexanoic acid, acrylic acid, methacrylic acid, crotonic acid, citric acid, adipic acid, succinic acid, glutaric acid, oxalic acid, as oxalic acid , maleic acid and fumaric acid) and their esters (preferably C ⁇ -C 4 alkyl esters) and amides, such as methyl methacrylate.
  • monocarboxylic acids preferably monocarboxylic acids
  • ibis 12 carbon atoms e.g. formic acid, acetic acid, propionic acid, butyric acid, pentanoic acid, hexanoic acid, acrylic acid, methacrylic acid, crotonic acid,
  • the electrostatic stabilization of the nanoscale filler particles it is also possible, for example, to use the compounds known for this purpose, such as NaOH, NH 3 , KOH, Al (OH) 3 , provided they are used the polymeric matrix are compatible.
  • the finished polymers (and / or their starting materials) for the matrix, the nanoscale filler particles and (optionally) the surface-modifying substances can be used either as such or preferably as a solution in an organic solvent and / or in water.
  • suitable solvents are alcohols such as butanol, ketones such as acetone, esters such as ethyl acetate, ethers such as tetrahydrofuran and aliphatic, aromatic and halogenated hydrocarbons such as hexane, benzene, toluene and chloroform.
  • the composite materials according to the invention can be produced in various ways.
  • the nanoscale particles can be dispersed in one of the abovementioned solvents and / or one of the abovementioned polymerizable or curable compounds, e.g. with stirring or using ultrasound.
  • the dispersion obtained is then mixed with the polymer (or its starting materials) for the matrix either as such or diluted with a solvent.
  • the solvent used for the dilution is either identical to the solvent used for the dispersion or is miscible with it.
  • the nanoscale particles can also be dispersed in a solution of the polymer or its starting materials.
  • the polymer or the compounds providing the polymer can be dissolved or mixed in a stabilized dispersion (aqueous or non-aqueous) of the nanoscale particles, optionally with the addition of the surface-modifying substances.
  • the composite material also contains a polymerization, polyaddition and / or polycondensation catalyst which can thermally and / or photochemically induce the crosslinking and curing (collectively referred to as "crosslinking initiator").
  • the commercially available starters can be used as photoinitiators be used.
  • Examples include Irgacure 184 (1-hydroxycyclohexylphenyl ketone), Irgacure R 500 (1-hydroxycyclohexylphenyl ketone, benzophenone) and other photo initiators of the Irgacure R type available from Ciba-Geigy; Darocur R 1173, 1116, 1398, 1174 and 1020 (available from Merck), benzophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-1sopropylthioxanthone, benzoin, 4, 4 '-dirnethoxybenzoin, benzoin ethyl ether, benzoin isopropyl ether, Benzyldimethylketal, 1, 1, 1-trichloroacetophenone, diethoxyacetophenone and dibenzosuberone.
  • the thermal initiators include organic peroxides in the form of diacyl peroxides, peroxydicarbonates, alkyl peresters, dialkyl peroxides, perketals, ketone peroxides and alkyl hydroperoxides. Specific examples of such thermal initiators are dibenzoyl peroxide, tert. Butyl perbenzoate and azobisisobutyronitrile.
  • the crosslinking initiator when used, is usually used in an amount of 0.1 to 5, preferably 0.5 to 3 percent by weight, based on the composition mentioned.
  • the solvents can be partially or completely removed to increase the viscosity or to produce solvent-free composites.
  • the finished composite material can then be processed in the usual way, e.g. by forming a shaped body or applying it to a substrate in the form of a coating, optionally followed by drying and / or curing.
  • the composite material contains a crosslinkable compound, depending on the type of crosslinking initiator used, this is crosslinked and cured thermally and / or by radiation (e.g. with a UV lamp or a laser).
  • the curing conditions depend on the decomposition conditions of the crosslinking initiator.
  • the composite material obtainable by the process according to the invention preferably contains at least 30 percent by volume of the matrix phase in the form of an interface phase, ie an envelope surrounding the filler particles, which differs from the rest of the matrix phase in terms of its structure and properties.
  • the interface phase particularly preferably makes up at least 50 and in particular at least 75% by volume of the total matrix phase. A fraction of the interface phase in the matrix phase of at least 90 and in particular at least 95 percent by volume is even more preferred.
  • methylimidazole is added as a starter for the epoxy crosslinking.
  • Polycarbonate sheets (10 x 10 cm; Bayer-Apec HT) are coated with the resulting composition by knife coating (layer thickness 20 to 50 ⁇ m) and the resulting coating is thermally compacted at 160 ° C. for 6 hours.
  • the coating shows a slight cloudiness in front light against a black background.
  • the scattered light increase after 1000 cycles of the Taber Abraser Test (CS 10F, 500 g) is approx. 3 to 4%.
  • Example 1 The procedure of Example 1 is repeated, but instead of of methylimidazole 5 ml of a mixture of 94.2 ml of JH-aminopropyl-triethoxysilane (APTES) and 60.27 ml of alcoholic Si0 2 sol (NISSAN, MA-ST, 30 weight percent Si0 2 , particle size about 10 nm) as a starter of the epoxy -Networking used (two-component system).
  • APTES JH-aminopropyl-triethoxysilane
  • NISSAN alcoholic Si0 2 sol
  • the resulting coatings show a slight haze in front light against a black background.
  • the scattered light increase after 1000 cycles of the Taber Abraser Test (CS 10F, 500 g) is approx. 4 to 5%.
  • Example 2 20 ml of APTES and 20 ml of alcoholic Si0 2 sol (see Example 2) are mixed and stirred for 2 hours. 7.43 g of pyromellitic dianhydride and 1.4 ml of water are then added. The initially viscous mass liquefies within a few minutes and can be used for coating. The coating and compaction are carried out as in Example 1.
  • the resulting coatings are clear, yellowish and show a photochromism from yellowish to green in sunlight and UV light.
  • the transparent coating sol is applied using standard coating processes such as Spin, dip and spray coating applied to plastic substrates.
  • the coating material is cured thermally at 90 to 150 ° C.
  • the scattered light increase after 1000 cycles of the Taber Abraser Test (CS 10F, 500 g coating weight) is less than 2%.
  • polycarbonate sheets are coated by dip coating in a layer thickness of 8 to 9 microns.
  • the coated substrates are cured in a drying cabinet at 150 ° C. for 3 or 20 hours.
  • the scattered light increase after 1000 cycles of the Taber Abraser Test (CS 10F, 500 g) is approx. 4%.
  • the scratch hardness is about 12 g.
  • Example 5 The procedure of Example 5 is repeated, with the exception that MPTS is replaced by GPTS and no TEGDMA is used (layer thickness 5 to 6 ⁇ m).
  • the scattered light loss is about 2% and the scratch hardness is about 30 g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Es wird ein Verfahren zur Herstellung von Kompositmaterialien mit hohem Grenzflächenanteil beschrieben, bei dem man einer Matrix gegebenenfalls oberflächenmodifizierte Füllstoffteilchen mit Affinität zur Matrixphase und einer Teilchengröße von nicht mehr als 200 nm in einer Menge von mindestens 5 Volumenprozent so einverleibt, daß die Füllstoffteilchen in im wesentlichen agglomeratfreiem Zustand in der Matrixphase verteilt werden. Die durch dieses Verfahren erhältlichen Kompositmaterialien weisen vorzugsweise mindestens 30 Volumenprozent der Matrixphase in Form einer die Füllstoffteilchen umgebenden Hülle auf, die sich vom Rest der Matrixphase hinsichtlich ihrer Struktur und ihrer Eigenschaften unterscheidet. Durch den hohen Anteil von Grenzflächenphasen in diesem Kompositmaterial werden diesem Material Eigenschaften verliehen, die sich von denjenigen eines entsprechenden Kompositmaterials mit geringem bzw. ohne Grenzflächenanteil signifikant unterscheiden.

Description

KOMPOSITMATERIALIEN MIT NANOSKALIGEN FÜLLSTOFFE
In den frühen 80er Jahren wurde festgestellt, daß nanokristal- line Kristalle, wenn sie kompaktiert sind, über ein relativ hohes Grenzflächenvolumen verfügen, das den Werkstoffen besondere Eigenschaften verleiht. Dies wurde jedoch nur für Materialien gefunden, die als einzige Phase eine nanokristalline Phase enthalten, bei der sich die nanokristallinen Teilchen mehr oder weniger berühren. Neben Metallen wurden auch anfängliche Untersuchungen an nanokristallinen Keramiken durchgeführt, bei denen jedoch ähnliche Effekte nicht festgestellt wurden, wenn man von einigen vorläufigen Resultaten absieht, die auf eine erhöhte Deformierbarkeit hindeuteten. Bisherwurdenähnliche Phänomene anKompositmaterialien mit nanoskaligem Aufbau nicht festgestellt, besonders nicht bei Kompositen, in denen die Matrixphase polymerähnliche Strukturen aufweist. Es ist zwar z.B. bekannt, daß an Grenzflächen zwischen Polymeren und Metallen durch die Wirkung der Grenzfläche Abweichungen von der Kontinuumsstruktur des Polymeren auftreten; die Grenzflächenvolumina bei den üblichen Werkstoffen sind jedoch zu gering, um in irgendeiner Weise das Eigenschaftsprofil, das sich mehr oder weniger additiv aus den einzelnen Komponenten zusammensetzt, zu verändern. Bei gefüllten Polymeren üblicher Art, bei denen Grenzflächen zwischen den Füllstoffteilchen und den Polymeren auftreten, konnte bisher kein nennenswerter Einfluß der Grenzflächen auf die Werkstoffeigenschaften festgestellt werden. Bei Verwendung nanoskaliger Füllstoffe (z.B. disperse Kieselsäure) wurden bisher derartige Effekte ebenfalls nicht festgestellt, vermutlich weil die verwendeten Volumenfüllgrade zur Erzeugung von Grenzflächen¬ einflüssen nicht ausreichten oder die Grenzflächen keine geeignete Struktur aufwiesen oder die Agglomerationsgrade zu hoch waren. Selbst bei gezielten Untersuchungen zur Herstellung von Nanokompositen in anorganisch-organischen Systemen, bei denen postuliert wurde, daßspezielleGrenzflächen aufgetreten sind, wurden keine entsprechenden Effekte gefunden.
Überraschenderweise können erfindungsgemäß Werkstoffe bereitgestellt werden, die sich vom Stand der Technik durch einen sehr hohen Anteil an nanoskaligen Teilchen unterscheiden und die gegebenenfalls auch durch eine bestimmte Grenzflächenausgestaltung einen deutlichen Einfluß der Grenzflächen auf Werkstoff- und Materialeigenschaften haben. An derartigen Werkstoffen werden Abweichungen von den zu erwartenden Eigenschaften gefunden, die nur auf Grenzflächenphasen zurückgeführt werden können. Bestimmt man z.B. den Ausdehnungs¬ koeffizienten bestimmter derartiger Systeme, so stellt man fest, daß dieser deutlich stärker reduziert wird, als dies durch den additiven Effekt von Matrix und Füllstoff zu erklären wäre. Ähnlich verhält es sich mit dem Elastizitätsmodul oberhalb von Tg, der als Funktion des Füllgrades deutlich nichtlinear erhöht wird, d.h. der E-Modul liegt auf einem wesentlich höheren Niveau, als dies bei gefüllten Polymeren mit ähnlichen Volumenfüllgraden gefunden wird.
Ähnliche Auswirkungen werden auch auf die Temperaturlage des Transformationsbereiches beobachtet. Füllt man z.B. Aramidsysteine mit Zr02, so verschiebt sich der Transformationsbereich aus dem Bereich von 300°C in den Bereich von 400°C, und das bei Volumenfüllgraden im Bereich von 10%, was mit einer "Füllung" der Polymermatrix mit anorganischen Füllstoff im üblichen Sinn nicht zu erklären ist. Ähnliche Ergebnisse wurden mit Si02-gefüllten Methacrylatpolymeren oder Methacrylat-Epoxy-Copolymeren gefunden.
Mit Hilfe des erfindungsgemäßen Verfahrens ist es möglich, Komposite herzustellen, deren Verhalten nicht wie üblich additiv durch die Eigenschaften der beiden Komponenten (z.B. anorganische dispergierte Phase einerseits und organische oder organisch modifizierte anorganische Matrix andererseits) bestimmt wird, sondern durch die Grenzflächenphase. Ohne an eine bestimmte Theorie gebunden werden zu wollen, wird angenommen, daß die Grenzflächenphase über eine Struktur mit höherem Ordnungsgrad als die umgebende Matrix verfügt. Eine direkte Strukturanalyse ist derzeit noch nicht möglich, da es keine Methoden gibt, mit denen diese Strukturen im fertigen Komposit präzise nachgewiesen werden können.
Gegenstand der vorliegenden Erfindung ist demgemäß ein Verfahren zur Herstellung von Kompositmaterialien mit hohem Grenzflächenanteil, bei dem man einen nanoskaligen Füllstoff in einer polymeren Matrix dispergiert und das dadurch gekennzeichnet ist, daß man der Matrix gegebenenfalls oberflächenmodifizierte Füllstoffteilchen mit Affinität zur Matrixphase und einer Teilchengröße von nicht mehr als 200 nm in einer Menge vonmindestens 5 Volumenprozent so einverleibt, daßdie Füllstoffteilchen inimwesentlichenagglomeratfreiemZustand in der Matrixphase verteilt werden.
Durch dieses Verfahren erhältliche Kompositmaterialien mit hohem Grenzflächenanteil sind ebenfalls Gegenstand der vorliegenden Erfindung.
Die wesentlichen Merkmale des erfindungsgemäßen Verfahrens sind somit, daß die in einer bestimmten Mindestmenge in die Matrixphase einzuverleibenden nanoskaligen Füllstoffteilchen eine Affinität zur Matrixphase aufweisen und daß sie agglomeratfrei in der Matrixphase verteilt werden. Nur so kann sichergestellt werden, daß in den Kompositmaterialien ein hoher Grenzflächenanteil vorliegt, d.h. ein hoher Prozentsatz der Matrixphase an der Bildung von Grenz- flächenphasen teilnimmt, die sich von dem Rest der Matrixphase (deren Struktur derjenigen einer ungefüllten Matrix gleicht) in ihrer Struktur und in ihren Eigenschaften unterscheiden. Diese Grenzflächenphasen umgeben die Füllstoffteilchen gleichsam wie eine Hülle. Ihr Anteil kann bei organischen Polymeren als Matrix z.B. dadurch bestimmt werden, daß man die Matrix des Kompositmaterials unter Umgebungsbedingungen mit einem Lösungsmittel für die Matrixphase so weit wie möglich löst. Der Teil der Matrixphase, der sich nicht mehr lösen läßt, stellt die Grenzflächenphase dar, d.h. den Teil der Matrix, der mit den Füllstoffteilchen in (starke) Wechselwirkungen getreten ist. Bei diesen Wechselwirkungen kann es sich sowohl um kovalente Bindungen zwischen an den Oberflächen der Füllstoffteilchen befindlichen Gruppen (die auch von einem gegebenenfalls eingesetztenOberflächenmodifizierungsmittel stammen können) und damit reaktiven Gruppen in den Matrix-Molekülen als auch um nicht-kovalente Wechselwirkungen wie beispielsweise Dipol-Dipol- Wechselwirkungen und elektrostatische Anziehung handeln. Somit ist unter dem Begriff "Affinität zur Matrixphase" die Fähigkeit der Füllstoffteilchen zu verstehen, mit den Molekülen der Matrixphase die oben genannten oder ähnliche Wechselwirkungen einzugehen, die stark genug sind, um eine gewisse Orientierung der Matrix-Moleküle inderunmittelbarenNachbarschaft derOberflächender Füllstoffteil¬ chen zu bewirken und gleichzeitig für eine Bindung oder zumindest eine starke Anziehung zwischen der Oberfläche der Füllstoffteilchen und den Molekülen der Matrixphase zu sorgen. Diese Affinität zwischen Füllstoffteilchen und Matrixphase sorgt auch dafür, daß die Füllstoffteilchen im wesentlichen isoliert voneinander, d.h. ohne Bildung von Agglomeraten aus mehreren Primärteilchen, in der Matrixphase vorliegen. Dies gewährleistet, daß die Kontaktfläche zwischen Füllstoffteilchen und Matrixphase -und somit auch die Grenzflächenphase - unter den gegebenen Bedingungen maximal wirkt.
Wie bereits oben erwähnt, wurde erfindungsgemäß überraschenderweise gefunden, daß man bei agglomeratfreiem Einbau nanoskaliger Teilchen in organische bzw. organisch modifizierte anorganische polymere Matrices einen bis dahin unbekannten qualitativen Sprung in z.B. den mechanischen und thermomechanischen Eigenschaften erzeugen kann, der die Gebrauchseigenschaften derartiger Kompositmaterialien nachhaltig verbessert.
Entscheidend dafür ist, daß man den nanoskaligen Füllstoff nicht als agglomeriertes Pulver sondern in Form einer stabilisierten, (im wesentlichen) agglomeratfreien Suspension in die Matrixphase integriert und (gegebenenfalls durch eine geeignete Ober¬ flächenmodifikation der Teilchen) den agglomeratfreien Zustand auch im endgültigen Kompositmaterial beibehält. Dies geschieht z.B. durch eine Anpassung der Polarität von Matrix und Füllstoffteilchen. Auf diese Weise treten Matrix und Füllstoffteilchen aber auch in relativ starke Wechselwirkungsbeziehungen, die zu Grenzflächen¬ strukturen im fertigen Kompositmaterial führen, die vermutlich für die beobachteten qualitativen Eigenschaftsänderungen verantwortlich sind. Hilfreich kann auch die Verwendung mechanischer Kräfte wie z.B. Scherwirkungbei gleichzeitigerAnwendungoberflächenmodifizie¬ render Substanzen sein. Der nanodisperse Einbau wirkt sich vermutlich in zweifacher Weise aus:
Zum einen führt er zu Wechselwirkungen zwischen Partikeln undMatrix, die das Matrixmaterial an den inneren Grenzflächen zu den Partikeln verändern und so zur inneren Grenzflächenstruktur mit neuen Eigenschaften führen. Zum anderen wird durch den nanoskaligen Einbau bewirkt, daß der Volumenanteil dieser inneren Grenzflächen am gesamten Kompositmaterial durch die große Oberfläche derNanopartikel so groß wird, daß die den Grenzflächen(bereichen) zuzuschreibenden Eigenschaftsänderungen auch makroskopisch deutlich beobachtbar werden.
Diese Art der Nanokompositierung erreicht man z.B. dadurch, daß man entweder von naturgemäß agglomerierten Pulvern ausgeht und durch Dispergierung in einem geeigneten (matrixfremden) Medium die weichen Agglomerate dauerhaft bricht (z.B. unter Verwendung von Methacrylsäure (estern) ) oder daß man von vornherein stabilisierte nanoskalige Suspensionen (z.B. Kieselsole) einsetzt. Auch hier ist jedoch entscheidend, daßman (z.B. durch geeignete Oberflächenmodifi- zierung) den agglomeratfreien Zustand im fertigen Kompositmaterial aufrechterhält, um die oben beschriebene kausale Kette zur Erzeugung der neuen Eigenschaften zu realisieren.
Die erfindungsgemäßen Kompositmaterialien zeichnen sich besonders dadurch aus, daß sie durch eine innere Grenzflächenphase neue mechanische und thermomechanische Eigenschaften ausweisen, z.B. einen verringerten thermischen Ausdehnungskoeffizienten und eine erhöhte Temperaturbeständigkeit, und ihre optischen Eigenschaften durch die Nanopartikel in weiten Bereichen einstellbar sind; insbesondere ist es möglich, trotz hohem Füllgrad völlig transparente Kom¬ positmaterialien zu realisieren.
Als erfindungsgemäß einsetzbare Materialien für die Matrixphase eignen sich beliebige bekannte organische und anorganische polymere Substanzen. Auch organisch modifizierte anorganische Polykondensate sind als Matrixphase einsetzbar.
Beispiele für erfindungsgemäß besonders vorteilhaft einsetzbare Matrix-Materialien sind Polyaerylsäure, Polymethacrylsäure, Polyacrylate, Polyacrylamide, Polycarbamide, Polymethacrylate, Polyolefine, Polystyrol, Polyamide, Polyimide, PolyvinylVerbindungen wie Polyvinylchlorid, Polyvinylalkohol und Polyvinylbutyral, entsprechende Copolymere, z.B. Poly(ethylen-vinylacetat) , Polyester, z.B. Polyethylenterephthalat oder Polydiallylphthalat, Polyacrylate, Polycarbonate, Polyether, z.B. Polyoxymethylen, Polyethylenoxid oder Polyphenylenoxid, Polyetherketone, Polysulfone, Polyepoxide, Fluorpolymere, Polysiloxane, Organopolysiloxane oder mit Metallen und Übergangsmetallen gebildete Heteropolysiloxane, wie sie z.B. in den EP-A-36648 und EP-A-223067 beschrieben sind, sowie Mischungen von zwei oder mehreren dieser Polymere, soweit sie miteinander verträglich sind. Anstelle der genannten Polymere können auch deren Oligomere und/oder Vorstufen (Monomere) eingesetzt werden.
Die erfindungsgemäß einzusetzenden nanoskaligen Füllstoffteilchen sind vorzugsweise (zumindest partiell) anorganischer Natur.
Bei den nanoskaligen anorganischen Teilchen handelt es sich z.B. um Oxide wie CaO, ZnO, CdO, Si02, Ti02, Zr02, Ce02, Sn02, PbO, A1203, ln203 und La203; Sulfide wie CdS und ZnS; Selenide wie GaSe, CdSe oder ZnSe; Telluride wie ZnTe oder CdTe; Halogenide wie NaCI, KCI, BaCl2, AgCl, AgBr, AgI, CuCl, CuBr, Cdl2 oder Pbl2; Carbide wie CeC2 ; Arsenide wie AlAs, GaAs oder CeAs; Antimonide wie InSb; Nitride wie BN, A1N, Si3N4 oder Ti3N4; Phosphide wie GaP, InP, Zn3P2 oder Cd3P2; Carbonate wie Na2C03, K2C03, CaC03, SrC03 und BaC03; Carboxylate, z.B. Acetate wie CH3COONa und Pb(CH3C00)4; Phosphate; Sulfate; Silicate; Titanate; Zirkonate; Aluminate; Stannate; Plumbate und entsprechende Mischoxide, z.B. binäre, tertiäre oder quaternäre Kombinationen von Si02, Ti02, Zr02 und Al-,03. Ebenfalls geeignet sind z.B. Mischoxide mit Perowskit-Struktur wie BaTiO-, oder PbTi03. Außerdem können organisch modifizierte anorganische Teilchen wie z.B. partikuläre Polymethylsiloxane, methacrylfunktionalisierte Oxidpartikel und Salze der Methylphosphorsäure verwendet werden. Es können aber auch Metallkolloide verwendet werden, die üblicherweise über die Reaktion von Metallsalzen und Oberflächenmodifizierung mit Liganden wie Atninosilanen, Mercaptosilanen usw. hergestellt werden können (z.B. Au, Ag, Pt, Cu, Co, Ni, Pd) .
Die Herstellung dieser nanoskaligen Partikel kann auf übliche Weise erfolgen, z.B. durch Flammhydrolyse, Flammpyrolyse und Plasmaver¬ fahren [siehe A.N. Dubrovina et al. , Kristallografiya, 26(1981) 637- 639] , Kolloidtechniken [siehe E. Matijevic, "Preparation and Interaction of Colloids of Interest in Ceramics" in "Ultrastructure Processing of Advanced Ceramics", Hsg. : J.D. Mackenzie, D.R. Ulrich, John Wiley & Sons, New York (1988) 429, und andere Publikationen von E. Matijevic et al.] , Sol-Gel-Prozesse [siehe R. Naß, H. Schmidt, Journal of Non-Crystalline Solids 121 (1990) 329-333; M.A. Anderson et al . , Journal of Membrane Science, 39 (1988) 243-258] , kon¬ trollierte Nucleations- und Wachstumsprozesse [siehe z.B. L. Spanhel und M.A. Anderson, J. Amer. Chem. Soc. 113 (1991) 2826-2833; Her, The Chemistry of Silica, Wiley & Sons, New York 1979] , MOCVD- Verfahren [siehe G.B. Springfellow "Organometallic Vapor Phase Epitaxy; Theory and Practice", Academic Press, New York (1989) , Emulsionsverfahren [siehe DE 4118185 AI] und die in den DE 4130550 AI und DE 4133621 AI beschriebenen Verfahren.
Die nanoskaligen Partikel haben eine Teilchengroße von maximal 200 nm, vorzugsweise 2 bis 50 nm und insbesondere 5 bis 20 nm. Sie bestehen vorzugsweise aus anorganischen Materialien mit niedrigem thermischen Ausdehnungskoeffizienten, wobei Materialien mit einem
Ausdehnungskoeffizienten < 10 -4 K-1 besonders bevorzugt sind. Einen sehr niedrigen thermischen Ausdehnungskoeffizienten von 5 x 10" K~ haben z.B. Si02-Partikel, die beim Dispergieren in der polymeren Matrix den zusätzlichen Vorteil einer thixotropen Wirkung besitzen. Dieser thixotrope Effekt beruht vermutlich auf der Ausbildung eines perkolierenden Gerüsts, bei dem die Partikel miteinander in Berührung sind. Die viskositätsverändernden Eigenschaften der nanoskaligen Teilchen lassen sich durch geeignete Oberflächenmodifizierung einstellen. Besonders bevorzugt sind stabilisierte kolloidale, nanodisperse Sole von anorganischen Teil¬ chen wie z.B. Kieselsole der Fa. BAYER, Sn02-Sole der Fa. Goldschmidt, Ti02-Sole der Fa. MERCK, Si02-, Zr02-, Al203-, Sb203- Sole der Fa. Nissan Chemicals oder Aerosildispersionen der Fa. DEGUSSA.
Der Volumenanteil der nanoskaligen Teilchen in dem Kompositmaterial beträgt gewöhnlich 5 bis 50 Vol.-%, vorzugsweise 10 bis 30 Vol.% und insbesondere 15 bis 20 Vol.-%, bezogen auf Füllstoff plus Matrix.
Zur Oberflächenmodifizierung der nanoskaligen Teilchen können z.B. Stoffe vewendet werden, die mehrere Funktionen (z.T. parallel) erfüllen können. Sie können z.B. 1. Die Agglomeration der Teilchen bei der Kompositherstellung verhindern;
2. Das rheologische Verhalten der Komposite auch bei sehr hohen Füllgraden (z.B. ≥20 Vol.-%) durch Einstellen der Wechselwir¬ kungskräfte zwischen den Teilchen und der Matrix und/oder anderen benachbarten Teilchen den Erfordernissen anpassen;
3. Trotz sehr hoher Füllgrade die Transparenz des Füllstoffs vor allem im VIS-NIR-Bereich aufrechterhalten;
4. Durch Reaktionen mit der Matrix und/oder anderen Teilchen die mechanischen, thermomechanischen und die adhäsiven bzw. kohäsiven Eigenschaften der Kompositmaterialien im fertigen (ausgehärteten) Zustand in weiten Bereichen einstellen.
Als Oberflächenmodifikatorwirdvorzugsweise eine oberflächenmodifi¬ zierende niedrigmolekulare organische (= kohlenstoffhaltige) Ver¬ bindung, die über mindestens eine funktionelle Gruppe verfügt, die mit an der Oberfläche der Füllstoffteilchen vorhandenen Gruppen und der polymeren Matrix reagieren und/oder (zumindest) wechselwirken kann, eingesetzt. Zu diesem Zweck eignen sich insbesondere Ver¬ bindungen mit einem Molekulargewicht, das nicht höher als 500, vorzugsweise nicht höher als 350 und insbesondere nicht höher als 200 ist. Derartige Verbindungen sind vorzugsweise unter Normalbedingungen flüssig und weisen vorzugsweise nicht mehr als insgesamt 15, insbesondere nicht mehr als insgesamt 10 und besonders bevorzugt nicht mehr als 8 Kohlenstoffatome, auf. Die funktionellen Gruppen, die diese Verbindungen tragen müssen, richten sich in erster Linie nach den Oberflächengruppen des jeweils eingesetzten nanoskaligen Teilchen und darüber hinaus auch nach der gewünschten Wechselwirkung mit der Matrix. So kann z.B. zwischen den funktionellen Gruppen der oberflächenmodifizierenden Verbindung und den Oberflächengruppen der Fullstoffteilchen eine Säure/Base- Reaktion nach Bronsted oder Lewis stattfinden (einschließlich Komplexbildung und Adduktbildung) . Ein Beispiel für eine andere geeignete Wechselwirkung ist die Dipol-Dipol-Wechselwirkung. Beispiele für geeignete funktionelle Gruppen sind Carbonsäuregruppen, (primäre, sekundäre, tertiäre und quartäre) Aminogruppen und C-H-acide Gruppierungen. Es können auch mehrere dieser Gruppen gleichzeitig in einem Molekül vorhanden sein (Betaine, Aminosäuren, EDTA, usw. ) .
Demgemäß sind Beispiele für bevorzugte Oberflächenmodifikatoren gesättigte oder ungesättigte Mono- und Polycarbonsäuren (vorzugsweise Monocarbonsauren) mit Ibis 12 Kohlenstoffatomen (z.B. Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Pentansäure, Hexansäure, Acrylsäure, Methacrylsäure, Crotonsäure, Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Oxalsäure, Maleinsäure und Fumarsaure) sowie deren Ester (vorzugsweise Cχ-C4-Alkylester) und Amide, z.B. Methylmethacrylat .
Beispiele für weitere geeignete Oberflächenmodifikatoren sind quartäre Ammoniumsalze der Formel NR1R2R3R4+X" worin R1 bis R4 gegebenenfalls voneinander verschiedene aliphatische, aromatische oder cycloaliphatische Gruppen mit vorzugsweise 1 bis 12, insbesondere 1 bis 6 Kohlenstoffatomen darstellen und X" für ein anorganisches oder organisches Anion steht; Mono- und Polyamine, insbesondere solche der allgemeinen Formel R 3_nNHn» worin n = 0, 1 oder 2 und die Reste R unabhängig voneinander Alkylgruppen mit 1 bis 12, insbesondere 1 bis 6 und besonders bevorzugt 1 bis 4 Kohlenstoffatomen darstellen (z.B. Methyl, Ethyl, n- und i-Propyl und Butyl) und Ethylenpolyamine (z.B. Ethylendiamin, Diethylentriamin etc.) ; Aminosäuren; Imine; ß-Dicarbonxylverbindungen mit 4 bis 12, insbesondere 5 bis 8 Kohlenstoffatomen, wie z.B. Acetylaceton, 2,4-Hexandion, 3, 5-Heptandion, Acetessigsäure und Acetessigsäure- C1-C4-alkylester; Silane, insbesondere Organoalkoxysilane, wie z.B. diejenigen, die zur Oberflächenmodifizierung von kolloidaler Kieselsäure eingesetzt werden (z.B. solche der allgemeinen Formel R4_]nSi (OR' )m worin die Gruppen R und R' unabhängig voneinander C1-C4- Alkyl darstellen und m 1, 2, 3 oder 4 ist) ; und modifizierte Alkoholate, bei denen ein Teil der OR-Gruppen (R wie oben definiert) durch inerte organische Gruppen substituiert ist.
Zur elektrostatischen Stabilisierung der nanoskaligen Fullstoffteil¬ chen können z.B. auch die für diesen Zweck bekannten Verbindungen wie z.B. NaOH, NH3, KOH, AI (OH) 3 eingesetzt werden, sofern sie mit der polymeren Matrix verträglich sind.
Die fertigen Polymere (und/oder deren Ausgangsmaterialien) für die Matrix, die nanoskaligen Fullstoffteilchen und (gegebenenfalls) die oberflächenmodifizierenden Stoffe können entweder als solche oder vorzugsweise als Lösung in einem organischen Lösungsmittel und/oder in Wasser eingesetzt werden. Beispiele für geeignete Lösungsmittel sind Alkohole wie Butanol, Ketone wie Aceton, Ester wie Ethyl¬ acetat, Ether wie Tetrahydrofuran und aliphatische, aromatische und halogenierte Kohlenwasserstoffe wie Hexan, Benzol, Toluol und Chloroform.
Die Herstellung des erfindungsgemäßen Kompositmaterialien kann auf verschiedene Weise erfolgen.
Beispielsweise kann man die nanoskaligen Partikel in einem der oben genannten Lösungsmittel und/oder einer der oben genannten polymerisierbaren oder härtbaren Verbindungen dispergieren, z.B. unter Rühren oder mittels Ultraschall. Die erhaltene Dispersion wird dann mit dem Polymer (bzw. dessen Ausgangsmaterialien) für die Matrix entweder als solchem oder verdünnt mit einem Lösungsmittel vermischt. Das zum Verdünnen verwendete Lösungsmittel ist entweder identisch mit dem für die Dispersion verwendeten Lösungsmittel oder damit mischbar. Selbstverständlich können die nanoskaligen Partikel auch in einer Lösung des Polymers oder dessen Ausgangsmaterialien dispergiert werden. Alternativ können das Polymer bzw. die das Polymer liefernden Verbindungen in einer stabilisierten Dispersion (wäßrig oder nichtwäßrig) der nanoskaligen Teilchen gelöst oder gemischt werden, gegebenenfalls unter Zusatz der oberflächenmodifi¬ zierenden Stoffe.
Im Falle der Verwendung von (organischen) polymerisierbaren oder härtbaren Verbindungen enthält das Kompositmaterial ferner einen Polymerisations- , Polyadditions- und/oder Polykondensations- katalysator, der die Vernetzung und Härtung thermisch und/oder photochemisch induzieren kann (kollektiv als "Vernetzungsinitiator" bezeichnet) .
Als Photoinitiatoren können z.B. die im Handel erhältlichen Starter eingesetzt werden. Beispiele hierfür sind Irgacure 184 (1-Hydroxycyclohexylphenylketon) , IrgacureR 500 (1-Hydroxycyclo- hexylphenylketon, Benzophenon) und andere von der Firma Ciba-Geigy erhältliche Photoinitiatoren vom IrgacureR-Typ; DarocurR 1173, 1116, 1398, 1174 und 1020 (erhältlich von der Firma Merck) , Benzophenon, 2-Chlorthioxanthon, 2-Methyl-thioxanthon, 2-1sopropylthioxanthon, Benzoin, 4, 4 ' -Dirnethoxybenzoin, Benzoinethylether, Benzoiniso- propylether, Benzyldimethylketal, 1, 1, 1-Trichloracetophenon, Diethoxyacetophenon und Dibenzosuberon.
Als thermische Initiatoren kommen u.a. organische Peroxide in Form von Diacylperoxiden, Peroxydicarbonaten, Alkylperestern, Dialkylperoxiden, Perketalen, Ketonperoxiden und Alkylhydroperoxiden in Frage. Konkrete Beispiele für derartige thermische Initiatoren sind Dibenzoylperoxid, tert . -Butylperbenzoat und Azobisisobutyro- nitril .
Der Vernetzungsinitiator wird, wenn eingesetzt, gewöhnlich in einer Menge von 0,1 bis 5, vorzugsweise 0,5 bis 3 Gewichtsprozent, bezogen auf die genannte Zusammensetzung, angewandt.
Zur Erhöhung der Viskosität oder zur Herstellung lösungsmittelfreier Komposite können die Lösungsmittel teilweise oder vollständig entfernt werden.
Das fertige Kompositmaterial kann dann in üblicher Weise weiterverarbeitet werden, z.B. durch Bildung eines Formkörpers oder Auftragen auf ein Substrat in Form einer Beschichtung, gegebenenfalls gefolgt von einer Trocknung und/oder Härtung.
Falls das Kompositmaterial eine vernetzbare Verbindung enthält, wird diese in Abhängigkeit von der Art des verwendeten Vernetzungs- initiators thermisch und/oder durch Bestrahlung (z.B. mit einer UV- Lampe oder einem Laser) vernetzt und gehärtet.
Die Härtungsbedingungen (Temperatur, UV-Wellenlänge etc.) richten sich nach den Zerfallsbedingungen des Vernetzungsinitiators. In dem durch das erfindungsgemäße Verfahren erhältlichen Kompositmaterial liegen vorzugsweise mindestens 30 Volumenprozent der Matrixphase in Form einer Grenzflächenphase, d.h. einer die Fullstoffteilchen umgebenden Hülle vor, die sich vom Rest der Matrixphase hinsichtlich ihrer Struktur und ihrer Eigenschaften unterscheidet. Besonders bevorzugt macht die Grenzflächenphase mindestens 50 und insbesondere mindestens 75 Volumenprozent der gesamten Matrixphase aus. Noch bevorzugter ist ein Anteil der Grenzflächenphase an der Matrixphase von mindestens 90 und insbesondere mindestens 95 Volumenprozent .
Die folgenden Beispiele sollen die vorliegende Erfindung weiter erläutern, ohne sie jedoch in irgendeiner Weise zu beschränken.
Beispiel 1
8,05 ml kolloidales, wäßriges Kieselsol (NISSAN-Snowtex, 50 Gewichtsprozent Si02, Teilchengröße ca. 20 nm) werden mit 10,5 ml Tetraethoxysilan (TEOS) stark gerührt und anschließend werden 0,212 ml konzentrierte Salzsäure zugegeben. In einer exothermen Reaktion wird die zweiphasige Mischung durch gebildetes Ethanol in ca. 2 bis 4 Minuten einphasig. Etwa 2 Minuten nach erfolgter Homogenisierung werden 15,26 ml ^-Glycidoxypropyltrimethoxysilan (GPTS) zugesetzt und es wird 2 weitere Stunden gerührt. Daraufhin werden zwecks Verdünnung 30 ml Ethanol zugesetzt. Vor der Verwendung der resultierenden Mischung als Beschichtungszusammensetzung werden 0,56 ml Methylimidazol als Starter der Epoxy-Vernetzung zugesetzt. Mit der resultierenden Zusammensetzung werden Polycarbonat-Platten (10 x 10 cm; Bayer-Apec HT) durch Rakeln beschichtet (Schichtdicke 20 bis 50 μm) und die resultierende Beschichtung wird bei 160°C 6 Stunden lang thermisch verdichtet.
Die Beschichtung zeigt vor schwarzem Hintergrund bei Auflicht eine leichte Trübung. Die Streulichtzunahme nach 1000 Zyklen Taber Abraser Test (CS 10F, 500 g) beträgt ca. 3 bis 4%.
Beispiel 2
Das Verfahren von Beispiel 1 wird wiederholt, jedoch werden anstelle von Methylimidazol 5 ml einer Mischung von 94,2 ml JH-Aminopropyl- triethoxysilan (APTES) und 60,27 ml alkoholischem Si02-Sol (NISSAN, MA-ST, 30 Gewichtsprozent Si02, Teilchengröße etwa 10 nm) als Starter der Epoxy-Vernetzung eingesetzt (Zwei-Komponentensystem) .
Die resultierenden Beschichtungen zeigen vor schwarzem Hintergrund bei Auflicht eine leichte Trübung. Die Streulichtzunähme nach 1000 Zyklen Taber Abraser Test (CS 10F, 500 g) beträgt ca. 4 bis 5%.
Beispiel 3
20 ml APTES und 20 ml alkoholisches Si02-Sol (siehe Beispiel 2) werden gemischt und 2 Stunden lang gerührt. Anschließend werden 7,43 g Pyromellitsäuredianhydrid und 1,4 ml Wasser zugegeben. Die anfangs zähe Masse verflüssigt sich innerhalb weniger Minuten und kann zum Beschichten verwendet werden. Die Beschichtung und Verdichtung erfolgen wie in Beispiel 1.
Die resultierenden Beschichtungen sind klar, gelblich und zeigen eine Photochromie von gelblich nach grün im Sonnen- und UV-Licht.
Die Streulichzunahme nach 1000 Zyklen Taber Abraser Test (CS 10F, 500 g) beträgt ca. 4 bis 5%.
Beispiel 4
(a) Herstellung von nanoskaligen Ti02-Teilchen (in alkoholischen Lösungsmitteln)
57,10 g n-BuOH werden in einem 250 ml Rundkolben mit 51,73 g Tetraethyltitanat versetzt. Zwecks Hydrolyse und Kondensation des Titanalkoxids gibt man der Mischung langsam 5,55 g HCl
(37 Gewichtsprozent) zu und rührt danach 5 Minuten bei Raumtemperatur. Anschließend versetzt man die Reaktionsmischung tropfenweise mit 3,76 g konzentrierter Perchlorsäure
(60 Gewichtsprozent) und rührt danach weitere 10 Minuten. Der niedrigviskosen, klaren Mischung tropft man 9,82 g Aluminiumtributanolat zu. (b) Herstellung einer wäßrigen Böhmit-Suspension
In einem 100 ml Rundkolben legt man 66,42 g 0,1 M HCl vor und gibt dann portionsweise 6,64 g Böhmit (Disperal Sol P3, Fa. Condea) zu. Anschließend wird die Suspension ca. 20 Minuten lang mit Ultraschall behandelt.
(c) Herstellung eines Beschichtungssols
In einem 250 ml Rundkolben werden 16, 96 g Phenyltriethoxysilan, 83,46 g GPTS und 29,47 g TEOS gemischt und dann mit 16,53 g wäßriger Böhmit-Suspension (siehe (b) oben) versetzt. Die erhaltene Reaktionsmischung wird 2 Stunden bei Raumtemperatur gerührt, worauf ihr unter Eiskühlung das wie oben unter (a) hergestellt alkoholische Ti02-Sol zugetropft wird. Die resultierende Mischung wird noch 2 Stunden unter Eiskühlung gerührt und dann mit 56,53 g Böhmit-Suspension versetzt.
Das transparente Beschichtungssol wird über Standardbeschich- tungsverfahren wie z.B. Schleuder-, Tauch- und Sprühbeschichtung auf Kunststoffsubstrate aufgebracht . Die Aushärtung des Beschichtungsmaterials erfolgt thermisch bei 90 bis 150°C.
Die Streulichtzunahme nach 1000 Zyklen Taber Abraser Test (CS 10F, 500 g Auflagegewicht) beträgt weniger als 2%.
Beispiel 5
0-Methacryloxypropyltrimethoxysilan (MPTS) wird mit 30 Gewichts¬ prozent Böhmit versetzt und anschließend stöchiometrisch mit 0,1 n HCl vorhydrolysiert. Nach ca. zwanzigstündigem Rühren bei Raumtemperatur wird die anfangs milchige Suspension klar und es entsteht ein transluzentes Sol. Anschließend wird das Sol mit 2-Isopropoxyethanol im Verhältnis 1:1, bezogen auf die eingewogene Menge an MPTS, verdünnt, woran sich die Zugabe von Triethylen- glykoldimethacrylat (TEGDMA) im Gewichtsverhältnis 1:2 bezogen auf MPTS anschließt. Schließlich wurden 2 Gewichtsprozent tert . - Butylperbenzoat bezogen auf MPTS + TEGDMA, zugesetzt. Mit der resultierenden Beschichtungszusammensetzung werden Polycarbonat- Platten durch Tauchbeschichtung in einer Schichtdicke von 8 bis 9 μm beschichtet. Die beschichteten Substrate werden 3 bzw. 20 Stunden bei 150°C im Trockenschrank ausgehärtet. Die Streulichtzunahme nach 1000 Zyklen Taber Abraser Test (CS 10F, 500 g) beträgt ca. 4%. Die Ritzhärte ist etwa 12 g.
Beispiel 6
Das Verfahren von Beispiel 5 wird wiederholt, mit der Ausnahme, daß MPTS durch GPTS ersetzt wird und kein TEGDMA eingesetzt wird (Schichtdicke 5 bis 6 μm) .
Der Streulichtverlust beträgt etwa 2% und die Ritzhärte beträgt etwa 30 g.

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Herstellung von Kompositmaterialien mit hohem Grenzflächenanteil, bei dem man einen nanoskaligen Füllstoff in einer polymeren Matrix dispergiert, dadurch g e k e n n z e i c h n e t, daß man der Matrix gegebenenfalls oberflächenmodifizierte Fullstoffteilchen mit Affinität zur Matrixphase und einer Teilchengroße von nicht mehr als 200 nm in einer Menge von mindestens 5 Volumenprozent so einverleibt, daß die Fullstoffteilchen in im wesentlichen agglomeratfreiem Zustand in der Matrixphase verteilt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Fullstoffteilchen eine Teilchengröße von nicht mehr als 50 nm und insbesondere nicht mehr als 20 nm aufweisen.
3. Verfahren nach irgendeinem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Fullstoffteilchen der Matrix in einer Menge von mindestens 10 und insbesondere mindestens 15 Volumenprozent einverleibt werden.
4. Verfahren nach irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Matrix ein organisches oder ein organisch modifiziertes anorganisches Polymer bzw. Polykondensat ist.
5. Verfahren nach irgendeinem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Füllstoffteilchen von anorganischer Natur sind und insbesondere auf Oxiden von Si, Ti, Zr, AI, Sn und/oder Sb basieren.
6. Verfahren nach irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Matrix in Anwesenheit der Fullstoffteilchen herstellt.
7. Verfahren nach irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Fullstoffteilchen in einer die Matrix und gegebenenfalls Oberflächenmodifizierungsmittel für die Füllstoffteilchen enthaltenden Lösung dispergiert und das Lösungsmittel entfernt.
8. Kompositmaterial, erhältlich nach dem Verfahren gemäß irgendeinem der Ansprüche 1 bis 7.
9. Kompositmaterial nach Anspruch 8, dadurch gekennzeichnet, daß mindestens 30 Volumenprozent der Matrixphase in Form einer die Fullstoffteilchen umgebenden Hülle vorliegen, die sich vom Rest der Matrixphase hinsichtlich ihrer Struktur und ihrer Eigenschaften unterscheidet.
10. Kompositmaterial nach Anspruch 9, dadurch gekennzeichnet, daß mindestens 50 und insbesondere mindestens 75 Volumenprozent der Matrixphase in Form der die Fullstoffteilchen umgebenden Hülle vorliegen.
11. Verwendung des Kompositmaterials nach irgendeinem der Ansprüche 8 bis 10 zur Herstellung von Formkörpern oder Beschichtungen.
PCT/EP1996/004720 1995-10-31 1996-10-30 Kompositmaterialien mit nanoskaligen füllstoffen WO1997016479A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU74960/96A AU7496096A (en) 1995-10-31 1996-10-30 Composites with nanoscale fillers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19540623.0 1995-10-31
DE19540623A DE19540623A1 (de) 1995-10-31 1995-10-31 Verfahren zur Herstellung von Kompositmaterialien mit hohem Grenzflächenanteil und dadurch erhältliche Kompositmaterialien

Publications (1)

Publication Number Publication Date
WO1997016479A1 true WO1997016479A1 (de) 1997-05-09

Family

ID=7776315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/004720 WO1997016479A1 (de) 1995-10-31 1996-10-30 Kompositmaterialien mit nanoskaligen füllstoffen

Country Status (3)

Country Link
AU (1) AU7496096A (de)
DE (1) DE19540623A1 (de)
WO (1) WO1997016479A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051739A1 (de) * 1997-05-14 1998-11-19 Institut für Neue Materialien Gemeinnützige GmbH Nanokomposit für thermische isolierzwecke
WO1999017716A2 (en) * 1997-10-03 1999-04-15 Dentsply International Inc. Dental materials having a nanoscale filler
WO1999032546A1 (de) * 1997-12-19 1999-07-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Polymer mit darin isoliert dispergierten nanoskaligen feststoffteilchen, verfahren zu seiner herstellung und seine verwendung
WO2000067992A1 (de) * 1999-05-05 2000-11-16 Schock & Co. Gmbh Kunststoffformkörper
DE19933819A1 (de) * 1999-07-20 2001-02-01 Bayer Ag Kompakte und/oder zellige Polyurethanelastomere mit nanoskaligen Füllstoffen
US6228904B1 (en) 1996-09-03 2001-05-08 Nanomaterials Research Corporation Nanostructured fillers and carriers
WO2003016411A1 (de) * 2001-08-16 2003-02-27 Basf Coatings Ag Thermisch sowie thermisch und mit aktinischer strahlung härtbare beschichtungsstoffe und ihre verwendung
WO2003095532A1 (de) * 2002-05-11 2003-11-20 Basf Coatings Ag Wässrige dispersion von anorganischen nanopartikeln, verfahren zu ihrer herstellung und ihre verwendung
US6916878B2 (en) * 2001-03-29 2005-07-12 Basf Coatings Ag Aqueous dispersions that are free or substantially free from volatile organic compounds, and method for their production and use thereof
DE102004032671A1 (de) * 2004-07-02 2006-02-02 Hahn-Meitner-Institut Berlin Gmbh Niedertemperatur-Brennstoffzelle mit einer Hybridmembran und Verfahren zur Herstellung
WO2006012157A2 (en) * 2004-06-24 2006-02-02 Ppg Industries Ohio, Inc. Nanoparticle coatings for flexible and/or drawable substrates
WO2008033343A2 (en) * 2006-09-11 2008-03-20 Dow Global Technologies Inc. Polyolefin dispersion technology used for resin coated sand
US7416781B2 (en) 2002-05-11 2008-08-26 Basf Coatings Ag Coatings, methods for producing the same, and the use thereof
CN100443433C (zh) * 2007-01-11 2008-12-17 中国船舶重工集团公司第七一一研究所 减振降噪用聚合物混凝土纳米阻尼材料、制备方法和互穿网络纳米粒子的应用
US7803871B2 (en) 2002-05-11 2010-09-28 Basf Coatings Gmbh Aqueous dispersion of inorganic nanoparticles, method for the production and use thereof
US10513793B2 (en) 2014-02-19 2019-12-24 Tenaris Connections B.V. Threaded joint for an oil well pipe

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19617931C5 (de) * 1996-04-26 2010-07-22 Ivoclar Vivadent Ag Verwendung eines gefüllten und polymerisierbaren Materials als Dentalmaterial
MY122234A (en) * 1997-05-13 2006-04-29 Inst Neue Mat Gemein Gmbh Nanostructured moulded bodies and layers and method for producing same
GB9815271D0 (en) 1998-07-14 1998-09-09 Cambridge Display Tech Ltd Particles and devices comprising particles
GB9815270D0 (en) * 1998-07-14 1998-09-09 Cambridge Display Tech Ltd Particles and devices comprising particles
DE19846659C2 (de) 1998-10-09 2001-07-26 Wkp Wuerttembergische Kunststo Schichtwerkstoff und Verfahren zum Herstellen eines solchen
IL149210A0 (en) * 1999-10-21 2002-11-10 Dow Global Technologies Inc Inorganic/organic compositions
US6472467B1 (en) 1999-10-21 2002-10-29 Dow Global Technologies Inc. Inorganic/organic compositions
US6387981B1 (en) 1999-10-28 2002-05-14 3M Innovative Properties Company Radiopaque dental materials with nano-sized particles
US6730156B1 (en) 1999-10-28 2004-05-04 3M Innovative Properties Company Clustered particle dental fillers
US6376590B2 (en) 1999-10-28 2002-04-23 3M Innovative Properties Company Zirconia sol, process of making and composite material
US6579929B1 (en) * 2000-01-19 2003-06-17 Bridgestone Corporation Stabilized silica and method of making and using the same
NO319406B1 (no) * 2000-07-05 2005-08-08 Sintef Valset metallsubstrat med sjikt av en organisk basert lakk, samt anvendelse av organisk basert, modifisert lakk til bandlakkering av valsede metallflater
NO319405B1 (no) * 2000-07-05 2005-08-08 Sintef Organisk basert lakk eller gel-coat, fremgangsmate til fremstilling samt anvendelse av samme
DE10055082A1 (de) * 2000-11-07 2002-05-16 Bosch Gmbh Robert Keramischer Verbundwerkstoff
DE50107675D1 (de) 2001-02-01 2006-02-23 Biop Biopolymer Technologies A Thermoplastisches Polymerkomposit auf Stärkebasis mit integrierten nanoskopischen Teilchen, Verfahren zu seiner Herstellung
EP1236765A1 (de) 2001-02-28 2002-09-04 hanse chemie GmbH Siliciumdioxiddispersion
DE10200928A1 (de) * 2002-01-12 2003-09-25 Basf Coatings Ag Organische Dispersionen von oberflächenmodifizierten Nanopartikeln, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10204395B4 (de) * 2002-02-04 2004-01-29 Ems-Chemie Ag Hydraulikleitung und Verfahren zur Herstellung einer Hydraulikleitung
US8263203B2 (en) 2003-04-24 2012-09-11 Usgreentech, L.L.C. Filler for artificial turf system
US6884509B2 (en) 2003-04-24 2005-04-26 U.S. Greentech, Llc Special turf filler comprising silica particles
US7858148B2 (en) 2003-04-24 2010-12-28 Usgreentech, L.L.C. Filler for artificial turf system
DE10320431A1 (de) 2003-05-08 2004-12-16 Basf Coatings Ag Epoxyfunktionelle Silane, Verfahren zur ihrer Herstellung und ihre Verwendung
DE10353507A1 (de) 2003-11-17 2005-06-30 Basf Coatings Ag Hydrolysate und/oder Kondensate von Epoxid- und Silangruppen enthaltenden Oligomeren und Polymeren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10357116A1 (de) 2003-12-06 2005-07-07 Solvay Barium Strontium Gmbh Desagglomeriertes Bariumsulfat
DE102004009582A1 (de) * 2004-02-25 2005-09-15 Sasol Germany Gmbh Mit böhmitischen Tonerdehydraten gefüllte Polymere
EP1591476A1 (de) * 2004-04-30 2005-11-02 U.S. Greentech, Inc. Rasenfüllstoff
ATE414120T1 (de) * 2004-07-16 2008-11-15 Alberdingk Boley Gmbh Wässrige bindemitteldispersion mit nanopartikeln, verfahren zu deren herstellung und deren verwendung
DE102005006870A1 (de) * 2005-02-14 2006-08-24 Byk-Chemie Gmbh Oberflächenmodifizierte Nanopartikel, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102006006941A1 (de) * 2006-02-14 2007-08-23 Brandenburger Isoliertechnik Gmbh & Co. Hitze- und Feuerisoliermaterial
US20100291327A1 (en) 2006-04-27 2010-11-18 Thomas Rentschler Uv-curable undercoat
EP2114349B1 (de) 2006-12-28 2016-09-14 3M Innovative Properties Company Dentalfüllstoff und verfahren
DE102008031360A1 (de) 2008-07-04 2010-01-14 K+S Ag Verfahren zum Herstellen von aushärtbaren Massen, enthaltend grob- und/oder nanoskalige, gecoatete, desagglomerierte und bevorzugt funktionalisierte Magnesiumhydroxidpartikel, sowie von ausgehärteten thermoplastischen oder duroplastischen Polymeren bzw. Kompositen, enthaltend desagglomerierte und homogen verteilte Magnesiumhydroxidfüllstoffpartikel
DE102011101179A1 (de) * 2011-05-11 2012-11-15 Fachhochschule Kiel Beschichtungen für Polymere
DE102015113897B4 (de) * 2015-08-21 2017-06-08 Kerafol Keramische Folien Gmbh Verfahren zur Herstellung einer Bindermatrix für ein anorganisches, insbesondere keramisches, Feststoffpartikelmaterial

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0094801A2 (de) * 1982-05-14 1983-11-23 Johnson Matthey Public Limited Company Kompositionen anorganischer Teilchen
JPS6166726A (ja) * 1984-09-10 1986-04-05 Mitsubishi Kasei Vinyl Co 軟質塩化ビニル系樹脂成形品の表面処理剤
JPS61108639A (ja) * 1984-11-02 1986-05-27 Mitsubishi Monsanto Chem Co 軟質塩化ビニル系樹脂成形品の表面処理剤
EP0202180A1 (de) * 1985-05-13 1986-11-20 La Celliose S.A. Harte abrasionsfeste Lacke, Verfahren zu ihrer Herstellung und deren Anwendung für die Beschichtung von festen Oberflächen
JPS61293232A (ja) * 1985-06-20 1986-12-24 Asahi Optical Co Ltd コ−ティング組成物
JPS6363726A (ja) * 1986-09-05 1988-03-22 Nippon Shokubai Kagaku Kogyo Co Ltd 表面処理用組成物
JPH01240581A (ja) * 1988-03-22 1989-09-26 Kyowa Gas Chem Ind Co Ltd コーティング組成物および耐擦傷性合成樹脂成形品
JPH04356934A (ja) * 1991-05-31 1992-12-10 Sumitomo Bakelite Co Ltd 絶縁樹脂ペースト
WO1993007179A2 (de) * 1991-10-10 1993-04-15 Institut für Neue Materialien Gemeinnützige GmbH Nanoskalige teilchen enthaltende kompositmaterialien, verfahren zu deren herstellung und deren verwendung für optische elemente
EP0588508A1 (de) * 1992-08-31 1994-03-23 Dow Corning Corporation Verformbare, abriebfeste Beschichtung und Verfahren zur Herstellung
EP0634462A2 (de) * 1993-07-13 1995-01-18 Metallgesellschaft Ag Beschichtungszusammensetzung, die auf ein Substrat aufgebracht ist und feinstteiliges TiO2 enthält
DE4338361A1 (de) * 1993-11-10 1995-05-11 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von Zusammensetzungen auf der Basis von Epoxidgruppen-haltigen Silanen
EP0666349A1 (de) * 1994-01-26 1995-08-09 Bayer Ag Trägervliese aus synthetischen Fasern und deren Herstellung
EP0678563A1 (de) * 1994-04-18 1995-10-25 Mitsubishi Chemical Corporation Strahlungshärtbare Beschichtungszusammensetzung
DE29508083U1 (de) * 1995-01-12 1995-10-26 Degussa Kunststofformteil mit einer einstufigen wasserspreitenden Beschichtung
EP0687657A1 (de) * 1994-06-03 1995-12-20 Bayer Ag Polysiloxan-Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung für Beschichtungen
EP0696621A1 (de) * 1994-02-02 1996-02-14 Mitsubishi Rayon Co., Ltd. Beschichtungszusammensetzung und daraus hergestellte oberflächenbeschichtete form

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0094801A2 (de) * 1982-05-14 1983-11-23 Johnson Matthey Public Limited Company Kompositionen anorganischer Teilchen
JPS6166726A (ja) * 1984-09-10 1986-04-05 Mitsubishi Kasei Vinyl Co 軟質塩化ビニル系樹脂成形品の表面処理剤
JPS61108639A (ja) * 1984-11-02 1986-05-27 Mitsubishi Monsanto Chem Co 軟質塩化ビニル系樹脂成形品の表面処理剤
EP0202180A1 (de) * 1985-05-13 1986-11-20 La Celliose S.A. Harte abrasionsfeste Lacke, Verfahren zu ihrer Herstellung und deren Anwendung für die Beschichtung von festen Oberflächen
JPS61293232A (ja) * 1985-06-20 1986-12-24 Asahi Optical Co Ltd コ−ティング組成物
JPS6363726A (ja) * 1986-09-05 1988-03-22 Nippon Shokubai Kagaku Kogyo Co Ltd 表面処理用組成物
JPH01240581A (ja) * 1988-03-22 1989-09-26 Kyowa Gas Chem Ind Co Ltd コーティング組成物および耐擦傷性合成樹脂成形品
JPH04356934A (ja) * 1991-05-31 1992-12-10 Sumitomo Bakelite Co Ltd 絶縁樹脂ペースト
WO1993007179A2 (de) * 1991-10-10 1993-04-15 Institut für Neue Materialien Gemeinnützige GmbH Nanoskalige teilchen enthaltende kompositmaterialien, verfahren zu deren herstellung und deren verwendung für optische elemente
EP0588508A1 (de) * 1992-08-31 1994-03-23 Dow Corning Corporation Verformbare, abriebfeste Beschichtung und Verfahren zur Herstellung
EP0634462A2 (de) * 1993-07-13 1995-01-18 Metallgesellschaft Ag Beschichtungszusammensetzung, die auf ein Substrat aufgebracht ist und feinstteiliges TiO2 enthält
DE4338361A1 (de) * 1993-11-10 1995-05-11 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von Zusammensetzungen auf der Basis von Epoxidgruppen-haltigen Silanen
EP0666349A1 (de) * 1994-01-26 1995-08-09 Bayer Ag Trägervliese aus synthetischen Fasern und deren Herstellung
EP0696621A1 (de) * 1994-02-02 1996-02-14 Mitsubishi Rayon Co., Ltd. Beschichtungszusammensetzung und daraus hergestellte oberflächenbeschichtete form
EP0678563A1 (de) * 1994-04-18 1995-10-25 Mitsubishi Chemical Corporation Strahlungshärtbare Beschichtungszusammensetzung
EP0687657A1 (de) * 1994-06-03 1995-12-20 Bayer Ag Polysiloxan-Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung für Beschichtungen
DE29508083U1 (de) * 1995-01-12 1995-10-26 Degussa Kunststofformteil mit einer einstufigen wasserspreitenden Beschichtung

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 230 (C - 365) 9 August 1986 (1986-08-09) *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 292 (C - 376) 3 October 1986 (1986-10-03) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 163 (C - 424) 26 May 1987 (1987-05-26) *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 297 (C - 519) 12 August 1988 (1988-08-12) *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228904B1 (en) 1996-09-03 2001-05-08 Nanomaterials Research Corporation Nanostructured fillers and carriers
US6479156B1 (en) * 1997-05-14 2002-11-12 Institut für Neue Materialien Gemeinnützige GmbH Nanocomposite for thermal insulation
WO1998051739A1 (de) * 1997-05-14 1998-11-19 Institut für Neue Materialien Gemeinnützige GmbH Nanokomposit für thermische isolierzwecke
CN100352853C (zh) * 1997-05-14 2007-12-05 新材料公共服务公司研究所 用于热绝缘的毫微复合材料及其用途
WO1999017716A2 (en) * 1997-10-03 1999-04-15 Dentsply International Inc. Dental materials having a nanoscale filler
WO1999017716A3 (en) * 1997-10-03 1999-09-10 Dentsply Int Inc Dental materials having a nanoscale filler
WO1999032546A1 (de) * 1997-12-19 1999-07-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Polymer mit darin isoliert dispergierten nanoskaligen feststoffteilchen, verfahren zu seiner herstellung und seine verwendung
US6936643B1 (en) 1999-05-05 2005-08-30 Schock & Co. Gmbh Plastic molded body
WO2000067992A1 (de) * 1999-05-05 2000-11-16 Schock & Co. Gmbh Kunststoffformkörper
DE19933819A1 (de) * 1999-07-20 2001-02-01 Bayer Ag Kompakte und/oder zellige Polyurethanelastomere mit nanoskaligen Füllstoffen
US6916878B2 (en) * 2001-03-29 2005-07-12 Basf Coatings Ag Aqueous dispersions that are free or substantially free from volatile organic compounds, and method for their production and use thereof
US7446142B2 (en) 2001-08-16 2008-11-04 Basf Coatings Ag Thermal coating materials and coating materials that can be cured thermally and using actinic radiation and the use thereof
WO2003016411A1 (de) * 2001-08-16 2003-02-27 Basf Coatings Ag Thermisch sowie thermisch und mit aktinischer strahlung härtbare beschichtungsstoffe und ihre verwendung
US7416781B2 (en) 2002-05-11 2008-08-26 Basf Coatings Ag Coatings, methods for producing the same, and the use thereof
US7803871B2 (en) 2002-05-11 2010-09-28 Basf Coatings Gmbh Aqueous dispersion of inorganic nanoparticles, method for the production and use thereof
US7488769B2 (en) 2002-05-11 2009-02-10 Basf Coatings Ag Aqueous dispersion of inorganic nanoparticles, method for the production and use thereof
WO2003095532A1 (de) * 2002-05-11 2003-11-20 Basf Coatings Ag Wässrige dispersion von anorganischen nanopartikeln, verfahren zu ihrer herstellung und ihre verwendung
US7438972B2 (en) 2004-06-24 2008-10-21 Ppg Industries Ohio, Inc. Nanoparticle coatings for flexible and/or drawable substrates
WO2006012157A3 (en) * 2004-06-24 2006-03-02 Ppg Ind Ohio Inc Nanoparticle coatings for flexible and/or drawable substrates
WO2006012157A2 (en) * 2004-06-24 2006-02-02 Ppg Industries Ohio, Inc. Nanoparticle coatings for flexible and/or drawable substrates
DE102004032671A1 (de) * 2004-07-02 2006-02-02 Hahn-Meitner-Institut Berlin Gmbh Niedertemperatur-Brennstoffzelle mit einer Hybridmembran und Verfahren zur Herstellung
US20080182040A1 (en) * 2006-09-11 2008-07-31 Chereau Loic F Polyolefin dispersion technology used for resin coated sand
WO2008033343A3 (en) * 2006-09-11 2008-05-29 Dow Global Technologies Inc Polyolefin dispersion technology used for resin coated sand
WO2008033343A2 (en) * 2006-09-11 2008-03-20 Dow Global Technologies Inc. Polyolefin dispersion technology used for resin coated sand
KR101110923B1 (ko) * 2006-09-11 2012-03-13 다우 글로벌 테크놀로지스 엘엘씨 수지 코팅된 모래를 위해 사용되는 폴리올레핀 분산액 기술
US8173209B2 (en) 2006-09-11 2012-05-08 Dow Global Technologies Llc Polyolefin dispersion technology used for resin coated sand
US8568879B2 (en) 2006-09-11 2013-10-29 Dow Global Technologies Llc Polyolefin dispersion technology used for resin coated sand
CN100443433C (zh) * 2007-01-11 2008-12-17 中国船舶重工集团公司第七一一研究所 减振降噪用聚合物混凝土纳米阻尼材料、制备方法和互穿网络纳米粒子的应用
US10513793B2 (en) 2014-02-19 2019-12-24 Tenaris Connections B.V. Threaded joint for an oil well pipe
US11359303B2 (en) 2014-02-19 2022-06-14 Tenaris Connections B.V. Threaded joint for an oil well pipe

Also Published As

Publication number Publication date
AU7496096A (en) 1997-05-22
DE19540623A1 (de) 1997-05-07

Similar Documents

Publication Publication Date Title
WO1997016479A1 (de) Kompositmaterialien mit nanoskaligen füllstoffen
EP0819151B1 (de) Kompositklebstoff für optische und optoelektronische anwendungen
WO2005080475A2 (de) Verwendung von kern-mantel-partikeln zur herstellung invers-opaler strukturen
EP0891565A1 (de) Optische bauteile mit gradientenstruktur und verfahren zu deren herstellung
EP1183107A2 (de) Mit einer mikrostrukturierten oberfläche versehene substrate, verfahren zu ihrer herstellung und ihre verwendung
EP2152761B1 (de) Verfahren zur herstellung von kunststoffen mit netzwerken aus nanopartikeln
DE10326815A1 (de) Antiadhäsive Hochtemperaturschichten
WO1999052964A2 (de) Nanostrukturierte formkörper und schichten und deren herstellung über stabile wasserlösliche vorstufen
WO2002086194A2 (de) Funktionelle keramische schichten, auf basis einer, mit kristallinen nanoteilchen hergestellten trägerschicht
EP0615531A1 (de) Oberflächenmodifizierte oxidpartikel und ihre anwendung als füll- und modifizierungsmittel in polymermaterialien
WO2000005182A1 (de) Sphärische ionomerpartikel und deren herstellung
DE10212121A1 (de) Verfahren zur Herstellung von nano-Zinkoxid-Dispersionen stabilisiert durch hydroxylgruppenhaltige anorganische Polymere
EP1680462B1 (de) Verfahren zur herstellung eines antistatisch beschichteten formkörpers
DE10311639A1 (de) Antistatisch beschichteter Formkörper und Verfahren zu seiner Herstellung
EP2129519B1 (de) Laminate enthaltend metalloxid-nanopartikel
DE602004004538T2 (de) Pulverlackvorgänger und deren verwendung in pulverlacken
WO2007020064A1 (de) Oberflächenmodifizierte nanopartikel aus aluminiumoxid und oxiden von elementen der i. und ii. hauptgruppe des periodensystems sowie deren herstellung
EP1660415A2 (de) Verwendung von kern-mantel-partikeln
DE102004029303A1 (de) Nanoskalige Titandioxid-Sole, Verfahren zu dessen Herstellung und seine Verwendung
DE19855226A1 (de) Beschichtete, elektrisch polarisierbare, nicht magnetische Teilchen, Verfahren zu deren Herstellung und deren Verwendung
DE10164904B4 (de) Verfahren zur Herstellung eines Kern-Hülle-Teilchens, wobei der Kern ein nanoskaliges Teilchen ist und die Verwendung des Teilchens
DE10341198A1 (de) Verwendung von Kern-Mantel-Partikeln
DE10349061A1 (de) Verfahren zur Herstellung von Füllstoffe enthaltenden Kunststoffen
WO2023274610A1 (de) Scheibe mit einer sol-gel-beschichtung mit nano-einlagerungen
DE102006020516A1 (de) Oberflächenmodifizierte Nanopartikel aus Aluminiumoxid und Oxiden von Elementen der I. und II. Hauptgruppe des Periodensystems sowie deren Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN CZ HU JP PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97517069

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase