Wässrige Dispersion von anorganischen Nanopartikeln, Verfahren zu ihrer Herstellung und ihre Verwendung
Gebiet der Erfindung
Die vorliegende Erfindung betrifft eine neue wässrige Dispersion von anorganischen Nanopartikeln. Außerdem betrifft die vorliegende Erfindung ein neues Verfahren zur Herstellung wässriger Dispersionen von anorganischen Nanopartikeln. Des weiteren betrifft die vorliegende Erfindung die Verwendung der neuen wässrigen Dispersion von anorganischen Nanopartikeln für die Herstellung von Beschichtungen und Lackierungen sowie Formteilen, insbesondere optischen Formteilen, und freitragenden Folien.
Stand der Technik
Wässrige Dispersionen von anorganischen Nanopartikeln, deren Oberfläche mit mindestens einer Verbindung der allgemeinen Formel II:
[(S-)0-L-]mM(R)„(H)p (II),
worin die Indizes und die Variablen die folgende Bedeutung haben:
S reaktive funktionelle Gruppe;
L mindestens zweibindige organische verknüpfende Gruppe;
H hydrolysierbare einbindige Gruppe oder hydrolysierbares Atom;
M zwei- bis sechswertiges Hauptgruppen- und Nebengruppen-Metall;
R einbindiger organischer Rest;
o eine ganze Zahl von 1 bis 5;
m + n
+ p eine ganze Zahl von 2 bis 6;
p eine ganze Zahl von 1 bis 6
m und n Null oder eine ganze Zahl von 1 bis 5;
modifiziert sind, sind aus der internationalen Patentanmeldung WO 99/52964 bekannt. Sie werden hergestellt, indem anorganische Nanopartikel mit den Verbindungen II in wässriger Dispersion beschichtet werden, wonach man die durch die Hydrolyse und Kondensation entstandenen Alkohole destillativ entfernt.
Die bekannten wässrigen Dispersionen von oberflächenmodifizierten anorganischen Nanopartikeln können als Beschichtungsstoffe zur Herstellung transparenter, kratzfester Beschichtungen verwendet werden.
Dabei weisen die bekannten Beschichtungen eine hohe Transparenz und eine gute Haftung auf sehr vielen Substraten auf. Sie sind aber vergleichsweise spröde und können nicht in Schichtdicken > 30 μm hergestellt werden, weil dann Spannungsrisse auftreten. Außerdem enthaften die bekannten Beschichtungen vergleichsweise leicht nach der Belastung mit Wasser.
Aus der europäischen Patentanmeldung EP 0 832 947 A 2 sind Klarlacke bekannt, die anorganische Nanopartikel enthalten, deren Oberfläche
derart modifiziert ist, dass sie mit dem Bindemittel reagieren kann. Die Kratzfestigkeit der aus diesen Klarlacken hergestellten Klarlackierungen reicht aber an die Kratzfestigkeit der aus der internationalen Patentanmeldung WO 99/52964 bekannten Beschichtungen nicht heran. Außerdem enthalten die Klarlacke der europäischen Patentanmeldung große Mengen an organischen Lösemitteln, weswegen sie bei der Applikation und der Härtung große Mengen an flüchtigen organischen Verbindungen (VOC) abgeben, was wirtschaftlich und ökologisch nachteilig ist.
In der nicht vorveröffentlichten deutschen Patentanmeldung DE 101 26 651.0 werden Beschichtungsstoffe beschrieben, die
(A) mindestens ein Bindemittel, ausgewählt aus der Gruppe, bestehend aus physikalisch, thermisch, mit aktinischer Strahlung und thermisch und mit aktinischer Strahlung härtbaren, statistisch, alternierend und blockartig aufgebauten, linearen, verzweigten und kammartig aufgebauten, Polyadditionsharzen und
Polykondensationsharzen sowie (Co)Polymerisaten von olefinisch ungesättigten Monomeren;
und
(B) Nanopartikel, ausgewählt aus der Gruppe, bestehend aus Nanopartikeln, die mit mindestens einer Verbindung der allgemeinen Formel II:
[(S-)o-L-]n-M-(-X-R)m.n (II),
worin die Indizes und die Variablen die folgende Bedeutung haben:
S reaktive funktioneile Gruppe mit mindestens einer mit aktinischer Strahlung aktivierbaren Bindung;
L mindestens zweibindige organische verknüpfende Gruppe;
X unabhängig voneinander Sauerstoffatom, Schwefelatom oder >NR6, mit R6 = Wasserstoffatom oder Alkylgruppe mit 1 bis 4 Kohlenstoffatomen;
M Metallatom;
R einbindiger organischer Rest;
o eine ganze Zahl von 1 bis 5;
m 3 oder 4;
n für m = 3, 1 oder 2 und
n für m = 4, 1 , 2 oder 3;
modifiziert worden sind;
enthalten. Die Beschichtungsstoffe können (Meth)Acrylatcopolymerisate als Bindemittel enthalten. Die (Meth)Acrylatcopolymerisate können neben zahlreichen anderen Monomeren auch Monomere (b) der allgemeinen Formel I:
R1R2C=CR3R4 (I),
worin die Reste R1, R2, R3 und R jeweils unabhängig voneinander für Wasserstoffatome oder substituierte oder unsubstituierte Alkyl-, Cycloalkyl-, Alkylcycloalkyl-, Cycloalkylalkyl-, Aryl-, Alkylaryl-, Cycloalkylaryl- Arylalkyl- oder Arylcycloalkylreste stehen, mit der Maßgabe, dass mindestens zwei der Variablen R1, R2 , R3 und R4 für substituierte oder unsubstituierte Aryl-, Arylalkyl- oder Arylcycloalkylreste, insbesondere substituierte oder unsubstituierte Arylreste, stehen; einpolymerisiert enthalten.
Die Beschichtungsstoffe können konventionelle, organische Lösemittel enthaltende Systeme, wässrige Systeme, im wesentlichen oder völlig lösemittel- und wasserfreie flüssige Beschichtungsstoffe (100%-Systeme), im wesentlichen oder völlig lösemittel- und wasserfreie feste Beschichtungsstoffe (Puiverlacke) oder im wesentlichen oder völlig lösemittelfreie Pulverlacksuspensionen (Pulverslurries) sein. In den Beispielen wird indes nur ein konventioneller, organische Lösemittel enthaltender Klarlack beschrieben. Außerdem wird die elektrophoretische Mobilität der Bindemittel in einer wässrigen Dispersion eines pH-Wertes von 2 bis 7 nicht angegeben.
In der nicht vorveröffentlichten deutschen Patentanmeldung DE 101 15 592.1 werden von flüchtigen organischen Verbindungen freie oder im wesentlichen freie, wässrige Dispersionen beschrieben, die
(A) mindestens ein Copolymerisat, herstellbar durch zwei- oder mehrstufige radikalische Copolymerisation in einem wässrigen Medium von
a) mindestens einem olefinisch ungesättigten Monomer, ausgewählt aus der Gruppe, bestehend aus hydrophilen und hydrophoben olefinisch ungesättigten Monomeren, und
b) mindestens einem vom olefinisch ungesättigten Monomer (a) verschiedenen olefinisch ungesättigten Monomer der allgemeinen Formel I
R1R2C=CR3R4 (I),
worin die Reste R1, R2, R3 und R4 jeweils unabhängig voneinander für Wasserstoffatome oder substituierte oder unsubstituierte Alkyl-, Cycloalkyl-, Alkylcycloalkyl-,
Cycloalkylalkyl-, Aryl-, Alkylaryl-, Cycloalkylaryl- Arylalkyl- oder Arylcycloalkylreste stehen, mit der Maßgabe, dass mindestens zwei der Variablen R1, R2 , R3 und R4 für substituierte oder unsubstituierte Aryl-, Arylalkyl- oder Arylcycloalkylreste, insbesondere substituierte oder unsubstituierte Arylreste, stehen;
und
(B) hydrophile Nanopartikel
enthalten. Die Oberfläche der hydophilen Nanopartikel ist aber nicht modifiziert.
Aufgabe der vorliegenden Erfindung
Aufgabe der vorliegenden Erfindung ist es, neue wässrige Dispersionen von oberflächenmodifizierten, anorganischen Nanopartikeln bereitzustellen, die die Nachteile des Standes der Technik nicht mehr länger aufweisen, sondern lagerstabil sind und Beschichtungen und Lackierungen sowie optische Formteile und freitragende Folien liefern, die
hochkratzfest, hochglänzend, flexibel, transparent und klar sind, wobei die Beschichtungen und die Lacke in Schichtdicken >30 μm keine Spannungsrisse und keine Enthaftung von den Substraten mehr zeigen.
Insbesondere war es die Aufgabe der vorliegenden Erfindung, neue wässrige Dispersionen bereitzustellen, die einen hohen Gehalt an Nanopartikeln haben.
Die erfindungsgemäße Lösung
Demgemäß wurde die neue wässrige Dispersion eines pH-Wertes von 2 bis 7, enthaltend
(A) mindestens ein quellbares Polymer oder Oligomer mit anionischen und/oder potenziell anionischen und/oder nicht-ionischen hydrophilen Gruppen,
(B) oberflächenmodifizierte, kationisch stabilisierte, anorganische Nanopartikel mindestens einer Art und
(C) mindestens ein Amphiphil,
gefunden, die im Folgenden als »erfindungsgemäße Dispersion« bezeichnet wird.
Weitere Erfindungsgegenstände gehen aus der Beschreibung hervor.
Im Hinblick auf dem Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, dass die Aufgabe, die der vorliegenden Erfindung zugrundelag, mit Hilfe der erfindungsgemäßen Dispersion gelöst werden konnte.
Da eine positive Oberflächenladung für eine Reihe von wässrigen Dispersionen von anorganischen Nanopartikeln (beispielsweise Böhmit und bestimmte Siliziumdioxid-Sole) essenziell ist, war es umso überraschender, dass eine Kombination von kationisch stabilisierten, oberflächenmodifizierten, anorganischen Nanopartikeln mit anionisch stabilisierten Polymeren und Oligomeren zu lagerstabilen, wässrigen Dispersionen führt. Noch mehr überraschte, dass dies mit Hilfe von Copolymerisaten erzielt werden konnte, die in wässrigen Medien eines pH-Wertes von 2 bis 7 leicht quellbar waren und daher eine gute elektrophorethische Mobilität aufwiesen. Insbesondere überraschte, dass die erfindungsgemäßen Dispersionen einen besonders hohen Gehalt an Nanopartikeln aufwiesen.
Ausführliche Beschreibung der Erfindung
Die erfindungsgemäße Dispersion hat einen pH-Wert von 2 bis 7, vorzugsweise 2,5 bis 7 und insbesondere 3 bis 6,5. Seine Einstellung erfolgt durch Zugabe von anorganischen und/oder organischen Säuren, die keine unerwünschten Reaktionen mit den Ausgangsprodukten und den Bestandteilen der erfindungsgemäßen Dispersion eingehen, wie Fällungsreaktionen oder die Zersetzung von Nanopartikeln (B). Beispiele geeigneter Säuren sind Ameisensäure, Essigsäure und Salzsäure.
Der Festkörpergehalt der erfindungsgemäßen Dispersion kann sehr breit variieren und richtet sich nach den Erfordernissen des Einzelfalls. Vorzugsweise liegt er bei 10 bis 80, bevorzugt 15 bis 75, besonders bevorzugt 20 bis 70, ganz besonders bevorzugt 25 bis 65 und insbesondere 30 bis 60 Gew.-%, jeweils bezogen auf die Gesamtmenge der erfindungsgemäßen Dispersion.
Der erste wesentliche Bestandteil der erfindungsgemäßen Dispersion ist mindestens ein, insbesondere ein, quellbares Polymer oder Oligomer (A), insbesondere ein Polymer (A), mit anionischen und/oder potenziell anionischen funktioneilen Gruppen.
Hier und im Folgenden werden unter Polymeren Verbindungen verstanden, die im statistischen Mittel mehr als 10 Monomereinheiten im Molekül enthalten. Unter Oligomeren werden Verbindungen verstanden, die im statistischen Mittel 2 bis 15 Monomereinheiten im Molekül enthalten. Ergänzend wird hierzu auf Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seite 425, »Oiigomere«, und Seite 464, »Polymere«, verwiesen.
Vorzugsweise werden die anionischen und potenziell anionischen funktionellen Gruppen aus der Gruppe, bestehend aus Carbonsäure-, Sulfonsäure- und Phosphonsäuregruppen, sauren Schwefelsäure- und Phosphorsäureestergruppen sowie Carboxylat-, Sulfonat-, Phosphonat-, Sulfatester- und Phosphatestergruppen, insbesondere Carbonsäure- und Carboxylatgruppen, ausgewählt.
Der Gehalt der Polymeren und Oligomeren (A) an anionischen und/oder potenziell anionischen funktioneilen Gruppen kann sehr breit variieren und richtet sich nach den Erfordernissen des Einzelfalls, insbesondere danach, wie viele dieser Gruppen erforderlich sind, um die Quellbarkeit der Polymeren und Oligomeren (A) in wässrigen Medien eines pH-Wertes von 2 bis 7 sicherzustellen. Vorzugsweise entspricht der Gehalt einer Säurezahl von 5 bis 70, bevorzugt 6 bis 60, besonders bevorzugt 7 bis 50, ganz besonders bevorzugt 8 bis 40 und insbesondere 9 bis 30 mg KOH/g. Unter Festkörper wird hier und im folgenden die Summe der Bestandteile verstanden, die die aus der erfindungsgemäßen Dispersion hergestellten Beschichtungen, optischen Formteile und selbsttragenden Folien bilden.
Vorzugsweise weisen die quellbaren Polymeren und Oligomeren (A) bei pH-Werten von 2 bis 7 eine elektrophorethische Mobilität < -0,5, bevorzugt < -2,0 (μm/s)/(V/cm), auf. Die elektrophorethische Mobilität kann mit Hilfe der Laser-Doppler-Elektrophorese bestimmt. Dabei kann als Messgerät der Zetasizer ® 3000 der Firma Malvern angewandt werden. Es kommen aber auch mikroelektrophoretische (mikroskopische) Messverfahren in Betracht.
Vorzugsweise werden die Polymeren und Oligomeren (A) aus der Gruppe der Copolymerisate, die durch die zwei- oder mehrstufige, kontrollierte radikalische Copolymerisation in einem wässrigen oder einem organischen, insbesondere in einem wässrigen, Medium erhältlich sind, wobei man
(1) in einer ersten Sufe
(a) mindestens ein olefinisch ungesättigtes Monomer, insbesondere mindestens ein Monomer, dass mindestens eine, insbesondere eine, anionische und/oder potenziell anionische und/oder nicht-ionische hydrophile funktioneile Gruppe im Molekül enthält, und
(b) mindestens ein vom olefinisch ungesättigten Monomer (a) verschiedenes olefinisch ungesättigtes Monomer der allgemeinen Formel I
R1R2C=CR3R4 (I),
worin die Reste R1, R2, R3 und R4 jeweils unabhängig voneinander für Wasserstoffatome oder substituierte oder
unsubstituierte Alkyl-, Cycloalkyl-, Alkylcycloalkyl-, Cycloalkylalkyl-, Aryl-, Alkylaryl-, Cycloalkylaryl- Arylalkyl- oder Arylcycloalkylreste stehen, mit der Maßgäbe, dass mindestens zwei der Variablen R1, R2 , R3 und R4 für substituierte oder unsubstituierte Aryl-, Arylalkyl- oder Arylcycloalkylreste, insbesondere substituierte oder unsubstituierte Arylreste, stehen;
copolymerisiert, wonach man
(2) in einer zweiten Stufe mindestens ein weiteres Monomer (a), vorzugsweise mindestens ein Monomer (a), das keine anionischen und/oder potenziell anionischen und/oder nicht-ionischen hydrophilen funktionellen Gruppen enthält, in der Gegenwart des in der ersten Stufe gebildeten Copolymerisats nach Zugabe geringer
Mengen oder ohne Zugabe von radikalischen Initiatoren (co)polymerisiert;
ausgewählt.
Beispiele gut geeigneter Monomere (a), enthaltend die vorstehend beschriebenen anionischen und/oder potenziell anionischen funktioneilen Gruppen, sind Acrylsäure, beta-Carboxyethylacrylat, Methacrylsäure, Ethacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure oder Itaconsäure; olefinisch ungesättigte Sulfon- oder Phosphonsäuren oder deren Teilester; oder Maleinsäuremono(meth)acryloyloxyethylester,
Bernsteinsäuremono(meth)acryloyloxyethylester oder
Phthalsäuremono(meth)acryloyloxyethylester, insbesondere Acrylsäure und Methacrylsäure.
Neben den vorstehend beschriebenen, anionische und/oder potenziell anionische funktionelle Gruppen enthaltenden Monomeren (a) oder an Stelle von diesen können noch hydrophile Monomere (a), die nichtionische hydrophile Gruppen enthalten, verwendet werden. Bevorzugte hydrophile Gruppen sind Polyethylenoxidgruppen, vorzugsweise oligomere Polyethylenoxidgruppen bis zu einem Molekulargewicht von 400 Dalton. Der Gehalt solcher Gruppen in den Copolymerisaten (A) kann sehr breit variieren und orientiert sich vorzugsweise an der vorhandenen molaren Menge der anionischen und/oder potenziell anionischen Gruppen.
Beispiele gut geeigneter hydrophiler Monomere (a) mit funktionellen Gruppen dieser Art sind omega-Hydroxy- oder omega-Methoxy- polyethylenoxid-1 -yl-, omega-Methoxy-polypropylenoxid-1 -yl-, oder omega-Methoxy-poly(ethylenoxid-co-polypropylenoxid)-1-yl-acrylat oder - methacrylat.
Darüber hinaus können noch Monomere (a) eingesetzt werden, die keine potenziell anionische und/oder anionische und keine nichtionische hydrophile Gruppen enthalten. Diese Monomeren (a) können hydrophob sein.
Zu den Begriffen »hydrophil« und »hydrophob« wird auf Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seite 294,»Hydrophilie«, und Seiten 294 und 295, »Hydrophobie«, verwiesen.
Beispiele geeigneter olefinisch ungesättigter Monomere (a) dieser Art sind
(1) im wesentlichen säuregruppenfreien Ester olefinisch ungesättigter Säuren, wie (Meth)Acrylsäure-, Crotonsäure-, Ethacrylsäure-,
Vinylphosphonsäure- oder Vinylsulfonsäurealkyl- oder cycloalkylester mit bis zu 20 Kohlenstoffatomen im Alkylrest, insbesondere Methyl-, Ethyl-, Propyl-, n-Butyl-, sec.-Butyl-, tert- Butyl-, Hexyl-, Ethylhexyl-, Stearyl- und Laurylacrylat, -methacrylat, -crotonat, -ethacrylat oder -vinylphosphonat oder vinylsulfonat; cycloaliphatische (Meth)acrylsjäure-, Crotonsäure-, Ethacrylsäure-, Vinylphosphonsäure- oder Vinylsulfonsäureester, insbesondere Cyclohexyl-, Isobornyl-, Dicyclopentadienyl-, Octahydro-4,7- methano-1 H-inden-methanol- oder tert.- Butylcyclohexyl(meth)acrylat, -crotonat, -ethacrylat, vinylphosphonat oder vinylsulfonat. Diese können in untergeordneten Mengen höherfunktionelle (Meth)Acrylsäure-, Crotonsäure- oder Ethacrylsäurealkyl- oder -cycloalkylester wie Ethylengylkol-, Propylenglykol-, Diethylenglykol-, Dipropylenglykol-, Butylenglykol-, Pentan-1 ,5-diol-, Hexan-1 ,6-diol-, Octahydro-4,7- methano-1 H-inden-dimethanol- oder Cyclohexan-1 ,2-, -1 ,3- oder - 1 ,4-diol-di(meth)acrylat; Trimethylolpropantri(meth)acrylat; oder Pentaerythrittetra(meth)acrylat sowie die analogen Ethacrylate oder Crotonate enthalten. Im Rahmen der vorliegenden Erfindung sind hierbei unter untergeordneten Mengen an höherfunktionellen
Monomeren (1) solche Mengen zu verstehen, welche nicht zur Vernetzung oder Gelierung der Copolymerisate (A) führen, es sei denn, sie sollen in der Form von vernetzten Mikrogelteilchen vorliegen;
(2) Monomere, die mindestens eine Hydroxylgruppe oder Hydroxymethylaminogruppe pro Molekül tragen und im wesentlichen säuregruppenfrei sind, wie
- Hydroxyalkylester von alpha,beta-olefinisch ungesättigten
Carbonsäuren, wie Hydroxyalkylester der Acrylsäure,
Methacrylsäure und Ethacrylsäure, in denen die Hydroxyalkylgruppe bis zu 20 Kohlenstoffatome enthält, wie 2-Hydroxyethyl-, 2-Hydroxypropyl-, 3-Hydroxypropyl-, 3- Hydroxybutyl-, 4-Hydroxybutylacrylat, -methacrylat oder - ethacrylat; 1 ,4-Bis(hydroxymethyl)cyclohexan-, Octahydro-
4,7-methano-1 H-inden-dimethanol- oder
Methylpropandiolmonoacrylat, -monomethacrylat, monoethacrylat oder -monocrotonat; oder
Umsetzungsprodukte aus cyclischen Estern, wie z.B. epsilon-Caprolacton und diesen Hydroxyalkylestern;
olefinisch ungesättigte Alkohole wie Allylalkohol;
Allylether von Polyolen wie Trimethylolpropanmonoallylether oder Pentaerythritmono-, -di- oder -triallylether. Die höherfunktionellen Monomeren (1) werden im allgemeinen nur in untergeordneten Mengen verwendet. Im Rahmen der vorliegenden Erfindung sind hierbei unter untergeordneten Mengen an höherfunktionellen Monomeren solche Mengen zu verstehen, welche nicht zur Vernetzung oder Gelierung der Copolymerisate (A) führen, es sei denn, sie sollen in der Form von vernetzten Mikrogelteilchen vorliegen;
Umsetzungsprodukte von alpha.beta-olefinisch Carbonsäuren mit Glycidylestern einer in alpha-Stellung verzweigten Monocarbonsäure mit 5 bis 18 Kohlenstoffatomen im Molekül. Die Umsetzung der Acryl- oder Methacrylsäure mit dem Glycidylester einer Carbonsäure mit einem tertiären alpha-Kohlenstoffatom kann vorher, während oder nach der Polymerisationsreaktion erfolgen. Bevorzugt wird als Komponente (a1) das
Umsetzungsprodukt von Acryl- und/oder Methacrylsäure mit dem Glycidylester der VersaticΘ-Säure eingesetzt. Dieser Glycidylester ist unter dem Namen Cardura® E10 im Handel erhältlich. Ergänzend wird auf Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York,
1998, Seiten 605 und 606, verwiesen;
Formaldehydaddukte von Aminoalkylestern von alpha.beta- olefinisch ungesättigten Carbonsäuren und von alpha.beta- ungesättigten Carbonsäureamiden, wie N-Methylol- und N,N-
Dimethylol-aminoethylacrylat, -aminoethylmethacrylat, acrylamid und -methacrylamid; sowie
Acryloxysilangruppen und Hydroxylgruppen enthaltende olefinisch ungesättigte Monomere, herstellbar durch
Umsetzung hydroxyfunktioneller Silane mit Epichlorhydrin und anschließender Umsetzung des Zwischenprodukts mit einer alpha.beta-olefinisch ungesättigten Carbonsäure, insbesondere Acrylsäure und Methacrylsäure, oder ihren Hydroxyalkylestern;
(3) Vinylester von in alpha-Stellung verzweigten Monocarbonsäuren mit 5 bis 18 Kohlenstoffatomen im Molekül, wie die Vinylester der Versatic ©-Säure, die unter der Marke VeoVa ® vertrieben werden;
(4) cyclische und/oder acyclische Olefine, wie Ethylen, Propylen, But-1- en, Pent-1-en, Hex-1-en, Cyclohexen, Cyclopenten, Norbonen, Butadien, Isopren, Cylopentadien und/oder Dicyclopentadien;
(5) Amide von alpha.beta-olefinisch ungesättigten Carbonsäuren, wie (Meth)Acrylsäureamid, N-Methyl -, N,N-Dimethyl-, N-Ethyl-, N,N-
Diethyl-, N-Propyl-, N,N-Dipropyl, N-Butyl-, N,N-Dibutyl- und/oder N,N-Cyclohexyl-methyl-(meth)acrylsäureamid;
(6) Epoxidgruppen enthaltenden Monomere, wie der Glycidylester der Acrylsäure, Methacrylsäure, Ethacrylsäure, Crotonsäure,
Maleinsäure, Fumarsäure und/oder Itaconsäure;
(7) vinylaromatischen Kohlenwasserstoffe, wie Styrol, Vinyltoluol oder alpha-Alkylstyrole, insbesondere alpha-Methylstyrol;
(8) Nitrile, wie Acrylnitril oder Methacrylnitril; L
(9) Vinylverbindungen, ausgewählt aus der Gruppe, bestehend aus Vinylhalogeniden wie Vinylchlorid, Vinylfluorid, Vinylidendichlorid, Vinylidendifluorid; Vinylamiden, wie N-Vinylpyrrolidon; Vinylethem wie Ethylvinylether, n-Propylvinylether, Isopropylvinylether, n- Butylvinylether, Isobutylvinylether und Vinylcyclohexylether; sowie Vinylestern wie Vinylacetat, Vinylpropionat, und Vinylbutyrat;
(10) Allylverbindungen, ausgewählt aus der Gruppe, bestehend aus Allylethem und -estern, wie Propylallylether, Butylallylether, Ethylenglykoldiallylether Trimethylolprppantriallylether oder
Allylacetat oder Allylpropionat; was die höherfunktionellen Monomere betrifft, gilt das vorstehend Gesagte sinngemäß;
(11) Siloxangruppen enthaltende Monomere, wie Methacryloxypropyltrimethoxysilan (MEMO); und
(12) Polysiloxanmakromonomere, die ein zahlenmittleres Molekulargewicht Mn von 1.000 bis 40.000 und im Mittel 0,5 bis 2,5 ethylenisch ungesättigte Doppelbindungen pro Molekül aufweisen,
wie Polysiloxanmakromonomere, die ein zahlenmittleres Molekulargewicht Mn von 1.000 bis 40.000 und im Mittel 0,5 bis 2,5 ethylenisch ungesättigte Doppelbindungen pro Molekül aufweisen; insbesondere Polysiloxanmakromonomere, die ein zahlenmittleres Molekulargewicht Mn von 2.000 bis 20.000, besonders bevorzugt
2.500 bis 10.000 und insbesondere 3.000 bis 7.000 und im Mittel 0,5 bis 2,5, bevorzugt 0,5 bis 1 ,5, ethylenisch ungesättigte Doppelbindungen pro Molekül aufweisen, wie sie in der DE 38 07 571 A 1 auf den Seiten 5 bis 7, der DE 37 06 095 A 1 in den Spalten 3 bis 7, der EP 0 358 153 B 1 auf den Seiten 3 bis 6, in der
US 4,754,014 A 1 in den Spalten 5 bis 9, in der DE 44 21 823 A 1 oder in der internationalen Patentanmeldung WO 92/22615 auf Seite 12, Zeile 18, bis Seite 18, Zeile 10, beschrieben sind; und
Als Monomere (b) werden Verbindungen der allgemeinen Formel I verwendet.
In der allgemeinen Formel I stehen die Reste R1, R2 , R3 und R4 jeweils unabhängig voneinander für Wasserstoffatome oder substituierte oder unsubstituierte Alkyl-, Cycloalkyl-, Alkylcycloalkyl-, Cycloalkylalkyl-, Aryl-, Alkylaryl-, Cycloalkylaryl- Arylalkyl- oder Arylcycloalkylreste, mit der Maßgabe, dass mindestens zwei der Variablen R1, R2 , R3 und R4 für substituierte oder unsubstituierte Aryl-, Arylalkyl- oder Arylcycloalkylreste, insbesondere substituierte oder unsubstituierte Arylreste, stehen.
Beispiele geeigneter Alkylreste sind Methyl, Ethyl, Propyl, Isopropyl, n- Butyl, iso-Butyl, tert.-Butyl, Amyl, Hexyl oder 2-Ethylhexyl.
Beispiele geeigneter Cycloalkylreste sind Cyclobutyl, Cyclopentyl oder Cyclohexyl.
Beispiele geeigneter Alkylcycloalkylreste sind Methylencyclohexan, Ethylencyclohexan oder Propan-1 ,3-diyl-cyclohexan.
Beispiele geeigneter Cycloalkylalkylreste sind 2-, 3- oder 4-Methyl-, -Ethyl- , -Propyl- oder -Butylcyclohex-1.-yl.
Beispiele geeigneter Arylreste sind Phenyl, Naphthyl oder Biphenylyl.
Beispiele geeigneter Alkylarylreste sind Benzyl oder Ethylen- oder Propan- 1,3-diyl-benzol.
Beispiele geeigneter Cycloalkylarylreste sind 2-, 3-, oder 4- Phenylcyclohex-1 -yl.
Beispiele geeigneter Arylalkylreste sind 2-, 3- oder 4-Methyl-, -Ethyl-, - Propyl- oder -Butylphen-1-yl.
Beispiele geeigneter Arylcycloalkylreste sind 2-, 3- oder 4- Cyclohexylphen-1 -yl.
Die vorstehend beschriebenen Reste R1, R2 , R3 und R4 können substituiert sein. Hierzu können elektronenziehende oder elektronenschiebende Atome oder organische Reste verwendet werden.
Beispiele geeigneter Substitutienten sind Halogenatome, insbesondere Chlor und Fluor, Nitrilgruppen, Nitrogruppen, partiell oder vollständig halogenierte, insbesondere chlorierte und/oder fluorierte, Alkyl-, Cycloalkyl-, Alkylcycloalkyl-, Cycloalkylalkyl-, Aryl-, Alkylaryl-, Cycloalkylaryl- Arylalkyl- und Arylcycloalkylreste, inclusive der vorstehend beispielhaft genannten, insbesondere tert.-Butyl; Aryloxy-, Alkyloxy- und Cycloalkyloxyreste, insbesondere Phenoxy, Naphthoxy, Methoxy, Ethoxy,
Propoxy, Butyloxy oder Cyclohexyloxy; Arylthio-, Alkylthio- und Cycloalkylthioreste, insbesondere Phenylthio, Naphthylthio, Methylthio, Ethylthio, Propylthio, Butylthio oder Cyclohexylthio; und/oder Hydroxylgruppen.
Beispiele für erfindungsgemäß besonders bevorzugt verwendete Monomere (b) sind 1,1-Diphenylethylen, 1,1-Dinaphthalinethylen, eis- oder trans- Stilben oder Vinyliden-bis(4-nitrobenzol).
Erfindungsgemäß können die Monomereη (b) einzeln oder als Gemisch aus mindestens zwei Monomeren (b) verwendet werden.
Hinsichtlich der Reaktionsführung und der Eigenschaften der resultierenden Copolymerisate (A) ist 1 ,1-Diphenylethylen von ganz besonderem Vorteil und wird deshalb erfindungsgemäß ganz besonders bevorzugt verwendet.
Jedes der vorstehend genannten Monomeren mit anionischen und/oder potenziell anionischen funktioneilen Gruppen (a) kann für sich alleine mit dem Monomeren (b) polymerisiert werden. Erfindungsgemäß ist es indes von Vorteil, mindestens ein weiteres Monomeres (a), das frei ist von diesen funktionellen Gruppen, zu verwenden, weil hierdurch das Eigenschaftsprofil der in der Stufe (1) resultierenden Copolymerisate in besonders vorteilhafter Weise sehr breit variiert und dem jeweiligen Verwendungszweck der erfindungsgemäßen Dispersionen ganz gezielt angepaßt werden kann. Vorzugsweise werden die Monomeren (a) so ausgewählt, dass das Eigenschaftsprofil der Copolymerisate (A) im wesentlichen von den vorstehend beschriebenen
(Meth)Acrylatmonomeren (a) bestimmt wird, wobei die Monomeren (a), die anderen Monomerklassen entstammen, dieses Eigenschaftsprofil in vorteilhafter Weise breit und gezielt variieren. Insbesondere können in
dieser Weise in die Copolymerisate (A) funktionelle Gruppen eingebaut werden, durch die die Copolymerisate (A) hydrophil werden, so dass sie in wässrigen Medien dispergiert oder gelöst werden können. Außerdem können reaktive funktionelle Gruppen eingebaut werden, die mit den nachstehend beschriebenen komplementären reaktiven funktioneilen Gruppen (S 2) in den nachstehend beschriebenen Verbindungen II thermische Vernetzungsreaktionen eingehen können. Außerdem können funktionelle Gruppen eingebaut werden, die den Copolymerisaten (A) selbstvernetzende Eigenschaften verleihen wie N-Methylol- oder N- Alkoxymethyl- oder N-Methylolethergruppen. Nicht zuletzt können in die Copolymerisate (A) mindestens eine der nachstehend beschriebenen reaktiven funktionellen Gruppen (S 1) eingebaut werden, die mindestens eine mit aktinischer Strahlung aktivierbare Bindung enthalten, die mit den in den nachstehend beschriebenen Verbindungen II gegebenenfalls vorhandenen, mit aktinischer Strahlung aktivierbaren Bindungen reagieren können. Selbstverständlich können beide Arten von reaktiven funktionellen Gruppen (S 1) und (S 2) in die Copolymerisate (A) eingebaut werden. Die betreffenden Copolymerisate (A) sind dann thermisch und mit aktinischer Strahlung härtbar, was von der Fachwelt auch als Dual-Cure bezeichnet wird.
Hier und im Folgenden wird unter aktinischer Strahlung elektromagnetische Strahlung, wie nahes Infrarot (NIR), sichtbares Licht, UV-Strahlung oder Röntgenstrahlung, insbesondere UV-Strahlung, und Korpuskularstrahlung, wie Elektronenstrahlung, verstanden.
Das Copolymerisat (A) kann somit mindestens eine, vorzugsweise mindestens zwei, reaktive funktionelle Gruppen (S 2) enthalten, welche mit komplementären reaktiven funktionellen Gruppen (S 2) der nachstehend beschriebenen Verbindungen II thermische Vernetzungsreaktionen eingehen können. Die reaktiven funktionellen
Gruppen können dabei über die Monomeren (a) in die Copolymerisate (A) eingebracht oder nach deren Synthese durch polymeranaloge Reaktionen eingeführt werden. Dabei ist darauf zu achten, dass die reaktiven funktionellen Gruppen (S 2) keine unerwünschten Reaktionen miteinander oder mit dem wässrigen Medium eingehen, wie beispielsweise eine unerwünschte Salzbildung, die Bildung unlöslicher Niederschläge oder eine vorzeitige Vernetzung, was alles die Stabilität der erfindungsgemäße Dispersion nachteilig beeinflusst.
Beispiele geeigneter erfindungsgemäß zu verwendender komplementärer reaktiver funktioneller Gruppen (S 2), welche Vernetzungsreaktionen eingehen, sind in der folgenden Übersicht zusammengestellt. In der Übersicht steht die Variable R5 für substituierte oder unsubstituierte Alkyl-, Cycloalkyl-, Alkylcycloalkyl-, Cycloalkylalkyl-, Aryl-, Alkylaryl-, Cycloalkylaryl- Arylalkyl- oder Arylcycloalkylreste. Beispiele geeigneter Reste dieser Art sind die vorstehend bei den Resten R1, R2 , R3 und R4 aufgeführten.
Übersicht: Beispiele komplementärer reaktiver funktioneller Gruppen (S 2)
Copolymerisat (A) und Verbindung II oder
Verbindung 11 und Copolymerisat f A)
-SH -C(O)-OH
-OH -C(O)-O-C(0)-
-NH-C(O)-OR5
-CH2-OH
-CH2-O-CH3
-NH-C(O)-CH(-C(O)OR5)2
-NH-C(O)-CH(-C(O)OR5)(-C(O)-R5)
>Si(OR5)2
-C(O)-OH O -CH-CH2
-O-C(O)-CR°=CH2 -OH
-O-CR=CH2 -C(O)-CH2-C(O)-R5
-CH=CH2
Vorzugsweise werden die Copolymerisate (A) hergestellt, indem man in einer ersten Stufe (1) mindestens ein Monomer (b) mit mindestens einem Monomer (a), das mindestens eine potenziell anionische oder anionische funktionelle Gruppe enthält, zu einem Copolymerisat oder einem Makroinitiator umsetzt. Dieses Copolymerisat oder dieser Makroinitiator wird dann nach seiner Isolierung oder unmittelbar in der Reaktionsmischung, vorzugsweise unmittelbar in der Reaktionsmischung, in mindestens einer weiteren Stufe (2) mit mindestens einem weiteren Monomer (a), das keine potenziell anionische, anionische oder nichtionische hydrophile Gruppen enthält, vorzugsweise einem hydrophoben Monomeren (a), unter radikalischen Bedingungen umgesetzt.
Bevorzugt wird die Umsetzung in der Stufe (2) nach der Zugabe einer geringen Menge oder ohne Zugabe eines Initiators der radikalischen Polymerisation durchgeführt. Unter geringen Mengen sind Mengen zu verstehen, die unterhalb der Mengen an Initiatoren liegen, wie sie in der Stufe (1) jeweils eingesetzt wurden. Dies bedeutet, dass Umsetzung in der Stufe (2) in völliger Abwesenheit eines Initiators durchgeführt oder durch die Reste des in der Stufe (1) eingesetzten Initiators oder durch einen in der vergleichbaren Menge zugesetzten Initiator initiiert und durchgeführt werden kann.
Dabei können aber die Stufen (1) und (2) auch in einem Reaktor nacheinander durchgeführt werden. Hierzu wird zunächst das Monomer
(b) mit mindestens einem Monomeren (a) vollständig oder teilweise in
Abhängigkeit von der gewünschten Anwendung und den gewünschten Eigenschaften umgesetzt, wonach mindestens ein weiteres Monomer (a) hinzugegeben und radikalisch polymerisiert wird. In einer weiteren Ausführungsform werden von Anfang an mindestens zwei Monomere (a) eingesetzt, wobei das Monomer (b) zunächst mit einem der mindestens zwei Monomeren (a) reagiert und anschließend das resultierende Copolymerisat oberhalb eines bestimmten Molekulargewichts auch mit dem oder den weiteren Monomeren (a) reagiert.
Vorzugsweise liegt das Gewichtsverhältnis des in der ersten Stufe (1) gebildeten Copolymerisats oder Makroinitators zu dem oder den weiteren Monomer(en) (a) der weiteren Stufe(n) (2) bei 1 : 25 bis 5 : 1 , bevorzugt 1 : 22 bis 4 : 1, besonders bevorzugt 1 : 18 bis 3 : 1, ganz besonders bevorzugt 1 : 16 bis 2 : 1 und insbesondere 1 : 15 bis 1 : 1.
Je nach Reaktionsführung ist es dabei möglich, Copolymerisate (A) mit Block-, Multiblock-, Gradienten(co)polymer-, Stern- und Verzweigungsstrukturen, die ggf. auch an den Endgruppen funktionalisiert sind, herzustellen.
Als Beispiele für die in der erste Stufe (1) einsetzbaren Initiatoren der radikalischen Polymerisation werden genannt: Dialkylperoxide, wie Di- tert.-Butylperoxid oder Dicumylperoxid; Hydroperoxide, wie Cumolhydroperoxid oder tert.- Butylhydroperoxid; Perester, wie tert.- Butylperbenzoat, tert.-Butyiperpivalat, tert.-Butylper-3,5,5-trimethyl- hexanoat oder tert.-Butylper-2-ethylhexanoat; Kalium-, Natrium- oder Ammoniumperoxodisulfat; Azodinitrile wie Azobisisobutyronitril; C-C- spaltende Initiatoren wie Benzpinakolsilylether; oder eine Kombination eines nicht oxidierenden Initiators mit Wasserstoffperoxid. Weitere Beispiele geeigneter Initiatoren werden in der deutschen Patentanmeldung DE 196 28 142 A1, Seite 3, Zeile 49, bis Seite 4, Zeile 6, beschrieben.
Vorzugsweise werden in der Stufe (1) vergleichsweise große Mengen an radikalischem Initiator zugegeben, wobei der Anteil des Initiators am Reaktionsgemisch, ^jeweils bezogen auf die Gesamtmenge der Monomeren (a) und (b) sowie des Initiators, besonders bevorzugt 0,5 bis 50 Gew.-%, ganz besonders bevorzugt 1 bis 20 und insbesondere 2 bis 15 Gew.-% beträgt.
Vorzugsweise beträgt das Gewichtsverhältnis von Initiator zu den Monomeren (b) 4 : 1 bis 1 : 4, besonders bevorzugt 3 : 1 bis 1 : 3 und insbesondere 2 : 1 bis 1 : 2. Weitere Vorteile resultieren, wenn der Initiator innerhalb der angegebenen Grenzen im Überschuß eingesetzt wird.
Die zwei- oder mehrstufige radikalische Copolymerisation bzw. Copolymerisation wird vorzugsweise in einem wässrigen Medium durchgeführt.
Das wässrige Medium enthält im wesentlichen Wasser. Hierbei kann das wässrige Medium in untergeordneten Mengen gelöste feste, flüssige oder gasförmige, nieder- und/oder hochmolekulare Stoffe, insbesondere Basen, enthalten, sofern diese nicht die Copolymerisation in negativer Weise beeinflussen oder gar hemmen und/oder zur Emission flüchtiger organischer Verbindungen führen. Im Rahmen der vorliegenden Erfindung ist unter dem Begriff „untergeordnete Menge" eine Menge zu verstehen, welche den wässrigen Charakter des wässrigen Mediums nicht aufhebt. Bei dem wässrigen Medium kann es sich aber auch um reines Wasser handeln.
Beispiele geeigneter Basen sind niedermolekulare Basen wie Natronlauge, Kalilauge, Ammoniak, Diethanolamin, Triethanolamin, Mono-
, Di- und Triethylamin, und/oder Dimethylethanolamin, insbesondere Ammoniak und/oder Di- und/oder Triethanolamin.
Erfindungsgemäß ist es von Vorteil, wenn das in der Stufe (1) eingesetzte wässrige Medium mindestens die Gesamtmenge, insbesondere die Gesamtmenge, des wässrigen Mediums bildet, in dem das Copolymerisat (A) nach seiner Herstellung dispergiert vorliegt.
Erfindungsgemäß ist es des weiteren von Vorteil, wenn das wässrige Medium das in der Stufe (1) gebildete Copolymerisat in einer Menge von, bezogen auf die Gesamtmenge von wässrigem Medium und Copolymerisat, 0,1 bis 10, vorzugsweise 1 bis 8 und insbesondere 2 bis 7 Gew.-% enthält.
Als Reaktoren für die (Co)Polymerisationsverfahren kommen die üblichen und bekannten Rührkessel, Rührkesselkaskaden, Rohrreaktoren, Schlaufenreaktoren oder Taylorreaktoren, wie sie beispielsweise in den Patentschriften DE 198 28 742 A 1 oder EP 0 498 583 A 1 oder in dem Artikel von K. Kataoka in Chemical Engineering Science, Band 50, Heft 9, 1995, Seiten 1409 bis 1416, beschrieben werden, in Betracht. Vorzugsweise wird die radikalische Copolymerisation in Rührkessein oder Taylorreaktoren, durchgeführt, wobei die Tayiorreaktoren so ausgelegt werden, dass auf der gesamten Reaktorlänge die Bedingungen der Taylorströmung erfüllt sind, selbst wenn sich die kinematische Viskosität des Reaktionsmediums aufgrund der Copolymerisation stark ändert, insbesondere ansteigt (vgl. die deutsche Patentanmeldung DE 198 28 742 A 1).
Die Copolymerisation wird vorteilhafterweise bei Temperaturen oberhalb der Raumtemperatur und unterhalb der niedrigsten
Zersetzungstemperatur der jeweils verwendeten Monomeren
durchgeführt, wobei bevorzugt ein Temperaturbereich von 10 bis 150, ganz besonders bevorzugt 50 bis 120 und insbesondere 55 bis 110 °C gewählt wird.
Bei Verwendung besonders leicht flüchtiger Monomere (a) und/oder (b) kann die Copolymerisation auch unter Druck, vorzugsweise unter 1 ,5 bis 3.000 bar, bevorzugt 5 bis 1.500 und insbesondere 10 bis 1.000 bar durchgeführt werden.
Hinsichtlich der Molekulargewichtsverteilung ist das Copolymerisat (A) keinerlei Beschränkungen unterworfen. Vorteilhafterweise wird aber die Copolymerisation so geführt, dass ein Verhältis Mw/Mn, gemessen mit Gelpermeationschromatographie unter Verwendung von Polystyrol als Standard, von < 4, bevorzugt < 2 und insbesondere < 1,5 sowie in einzelnen Fällen auch < 1,3 resultiert. Die Molekulargewichte der
Copolymerisate (A) sind durch die Wahl des Verhältnisses von Monomer
(a) zu Monomer (b) zu radikalischem Initiator in weiten Grenzen
- steuerbar. Dabei bestimmt insbesondere der Gehalt an Monomer (b) das
Molekulargewicht, und zwar derart, dass je größer der Anteil an Monomer (b) ist, desto geringer ist das erhaltene Molekulargewicht.
Der Gehalt der erfindungsgemäßen Dispersion an dem Copolymerisat (A) kann breit variieren und richtet sich nach den Erfordernissen des Einzelfalls. Vorzugsweise ist das Copolymerisat (A) in der erfindungsgemäßen Dispersion in einer Menge von, bezogen auf die Summe der wesentlichen Bestandteile (A), (B) und (C), 1 bis 30 Gew.-% enthalten.
Der weitere wesentliche Bestandteil der erfindungsgemäßen Dispersion sind oberflächenmodifizierte, kationisch stabilisierte, anorganische Nanopartikel (B) mindestens einer Art, insbesondere einer Art.
Vorzugsweise werden die zu modifizierenden Nanopartikel aus der Gruppe, bestehend aus Haupt- und Nebengruppen-Metallen und deren Verbindungen ausgewählt. Bevorzugt werden die Haupt- und Nebengruppen-Metalle aus Metallen der dritten bis fünften Hauptgruppe, der dritten bis sechsten sowie der ersten und zweiten Nebengruppe des Periodensystems der Elemente sowie den Lanthaniden ausgewählt. Besonders, bevorzugt werden Bor, Aluminium, Gallium, Silizium, Germanium, Zinn, Arsen, Antimon, Silber, Zink, Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Molybdän, Wolfram und Cer, insbesondere Aluminium, Silizium, Silber, Cer, Titan und Zirkonium eingesetzt.
Vorzugsweise handelt es sich bei den Verbindungen der Metalle um die Oxide, Oxidhydrate, Sulfate oder Phosphate.
Bevorzugt werden Silber, Siliziumdioxid, Aluminiumoxid, Aluminiumoxidhydrat, Titandioxid, Zirkoniumoxid, Ceroxid und Mischungen hiervon, besonders bevorzugt Silber, Ceroxid, Siliziumdioxid, Aluminiumoxidhydrat und Mischungen hiervon, ganz besonders bevorzugt Aluminiumoxidhydrat und insbesondere Böhmit verwendet.
Vorzugsweise weisen die zu modifizierenden Nanopartikel eine Primärpartikelgröße < 50, bevorzugt 5 bis 50, insbesondere 10 bis 30 nm, auf.
Die erfindungsgemäß zu verwendenden Nanopartikel (B) bzw. deren Oberfläche sind mit mindestens einer Verbindung der allgemeinen Formel II:
[(S-)o-L-]mM(R)n(H)p (II),
modifiziert.
In der allgemeinen Formel II haben die Indizes und der Variablen die folgende Bedeutung:
S reaktive funktionelle Gruppe;
L mindestens zweibindige organische verknüpfende Gruppe;
H hydrolysierbare einbindige Gruppe oder hydrolysierbares Atom;
M zwei- bis sechswertiges Hauptgruppen- und Nebengruppen-Metall;
R einbindiger organischer Rest;
o eine ganze Zahl von 1 bis 5, insbesondere 1 ;
m + n
+ p eine ganze Zahl von 2 bis 6, insbesondere 3 oder 4;
p eine ganze Zahl von 1 bis 6, insbesondere 1 bis 4;
m und n Null oder eine ganze Zahl von 1 bis 5, vorzugsweise 1 bis 3, insbesondere 1 , speziell m = 1 und n = 0.
Dabei kann die Modifizierung durch physikalische Adsorption der
Verbindungen II an die Oberfläche der unmodifizierten Nanopartikel und/oder durch chemische Reaktion der Verbindungen II mit geeigneten reaktiven funktionellen Gruppen an der Oberfläche der unmodifizierten
Nanopartikel erfolgen. Vorzugsweise erfolgt die Modifizierung über chemische Reaktionen.
Beispiele geeigneter Metalle M sind die vorstehend beschriebenen.
Vorzugsweise wird die reaktive funktionelle Gruppe S aus der Gruppe, bestehend aus (S 1) reaktiven funktionellen Gruppen, die mindestens eine mit aktinischer Strahlung aktivierbare Bindung enthalten, und (S 2) reaktiven funktionellen Gruppen, die mit Gruppen ihrer Art ("mit sich selbst") und/oder mit komplementären reaktiven funktionellen Gruppen thermisch initiierte Reaktionen eingehen, ausgewählt. Beispiele geeigneter reaktiver funktioneller Gruppen (S 2) sind die vorstehend beschriebenen, insbesondere Epoxidgruppen.
Im Rahmen der vorliegenden Erfindung wird unter einer mit aktinischer Strahlung aktivierbaren Bindung eine Bindung verstanden, die bei Bestrahlen mit aktinischer Strahlung reaktiv wird und mit anderen aktivierten Bindungen ihrer Art Polymerisationsreaktionen und/oder Vernetzungsreaktionen eingeht, die nach radikalischen und/oder ionischen Mechanismen ablaufen. Beispiele geeigneter Bindungen sind Kohlenstoff- Wasserstoff-Einzelbindungen oder Kohlenstoff-Kohlenstoff-, Kohlenstoff- Sauerstoff-, Kohlenstoff-Stickstoff-, Kohlenstoff-Phosphor -oder Kohlenstoff-Silizium-Einzelbindungen oder -Doppelbindungen. Von diesen sind die Kohlenstoff-Kohlenstoff-Doppelbindungen besonders vorteilhaft und werden deshalb erfindungsgemäß ganz besonders bevorzugt verwendet. Der Kürze halber werden sie im folgenden als „Doppelbindungen" bezeichnet.
Demnach enthält die erfindungsgemäß bevorzugte reaktive Gruppe (S 1) eine Doppelbindung oder zwei, drei oder vier Doppelbindungen. Werden mehr als eine Doppelbindung verwendet, können die Doppelbindungen
konjugiert sein. Erfindungsgemäß ist es indes von Vorteil, wenn die Doppelbindungen isoliert, insbesondere jede für sich endständig, in der hier in Rede stehenden Gruppe (S 1) vorliegen. Erfindungsgemäß ist es von besonderem Vorteil zwei Doppelbindungen, insbesondere eine Doppelbindung, zu verwenden.
Die mit aktinischer Strahlung aktivierbaren Bindungen können über Kohlenstoff-Kohlenstόffbindungen oder Ether-, Thioether-,
Carbonsäureester-, Thiocarbonsäureester-, Carbonat-, Thiocarbonat-, Phosphorsäureester-, Thiophosphorsäureester-, Phosphonsäureester-, Thiophosphonsäureester-, Phosphit-, Thiophosphit-, Sulfonsäureester-, Amid-, Amin-, Thioamid-, Phosphorsäureamid-, Thiophosphorsäureamid-, Phosphonsäureamid-, Thiophosphonsäureamid-, Sulfonsäureamid-, Imid-, Urethan-, Hydrazid-, Harnstoff-, Thioharnstoff-, Carbonyl-, Thiocarbonyl-, Sulfon- oder Sulfoxidgruppen, insbesondere aber über Kohlenstoff- Kohlenstoff-Bindungen, Carbonsäureestergruppen und Ethergruppen, mit der verknüpfenden Gruppe L verbunden sein.
Besonders bevorzugte reaktive funktionelle Gruppen (S 1) sind daher (Meth)Acrylat-, Ethacrylat-, Crotonat-, Cinnamat-, Vinylether-, Vinylester-, Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylgruppen; Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylethergruppen oder Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylestergruppen, insbesondere aber Methcrylatgruppen (S 1).
Die Variable H steht für eine hydrolysierbare einbindige Gruppe oder für ein hydrolysierbares Atom,
Beispiele geeigneter hydrolysierbarer Atome sind Wasserstoffatome und Halogenatome, insbesondere Chlor- und Bromatome.
Vorzugsweise werden die hydrolysierbaren einbindigen Gruppen verwendet. Beispiele geeigneter Gruppen dieser Art sind Gruppen der allgemeinen Formel III:
-X-R (III).
In der allgemeinen Formel III steht steht die Variable X für ein Sauerstoffatom, Schwefelatom und/oder eine Gruppe >NR6, worin R6 eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, insbesondere Methyl, Ethyl, Propyl und n-Butyl, bedeutet. Bevorzugt steht X für ein Sauerstoffatom.
R steht für einen einbindigen organischen Rest. Der einbindige Rest R kann substituiert oder unsubstituiert sein; vorzugsweise ist er unsubstituiert. Er kann aromatisch, aliphatisch oder cycloaliphatisch sein. Ein einbindiger Rest R wird dann als aromatisch angesehen, wenn X direkt mit dem aromatischen Rest verbunden ist. Diese Regel ist sinngemäß auf die aliphatischen und cycloaliphatischen Reste anzuwenden. Vorzugsweise werden lineare oder verzweigte, insbesondere lineare, aliphatische Reste eingesetzt. Bevorzugt sind niedere, aliphatische Reste, besonders bevorzugt die vorstehend beschriebenen aliphatischen Reste R1. Von diesen werden die Methylgruppen oder die Ethylgruppen ganz besonders bevorzugt verwendet.
Die Variable L steht für eine mindestens zweibindige, insbesondere zweibindige, organische verknüpfende Gruppe.
Beispiele geeigneter zweibindiger organischer vernüpfender Gruppen L sind gegebenenfalls Heteroatome enthaltende, aliphatische, aromatische,
cycloaliphatische und aromatisch-cycloaliphatische
Kohlenwasserstoffreste, wie
(1) substituierte oder unsubstituierte, bevorzugt unsubstituierte, lineare oder verzweigte, vorzugsweise lineare, Alkandiyl-Reste mit 3 bis
30, bevorzugt 3 bis 20 und insbesondere 3 Kohlenstoffatomen, die innerhalb der Kohlenstoffkette auch cyclische Gruppen enthalten können, insbesondere Trimethylen, Tetramethylen, Pentamethylen,
Hexamethylen, Heptamethylen, Octamethylen, Nonan-1 ,9-diyl, Decan-1 ,10-diyl, Undecan-1 ,11-diyl Dodecan-1 ,12-diyl, Tridecan-
1 ,13-diyl, Tetradecan-1 ,14-diyl, Pentadecan-1 ,15-diyl, Hexadecan-
1 ,16-diyl, Heptadecan-1 ,17-diyl, Octadecan-1 ,18-diyl, Nonadecan-
1 ,19-diyl oder Eicosan-1 ,20-diyl, bevorzugt Tetramethylen,
Pentamethylen, Hexamethylen, Heptamethylen, Octamethylen, Nonan-1 ,9-diyl, Decan-1 ,10-diyl, 2-Heptyl-1-pentyl-cyclohexan-3,4- bis(non-9-yl), Cyclohexan-1 ,2-, -1 ,4- oder -1 ,3-bis(methyl),
Cyclohexan-1 ,2-, 1 ,4- oder 1 ,3-bis(eth-2-yl), Cyclohexan-1 ,3- bis(prop-3-yl) oder Cyclohexan-1 ,2-, 1 ,4- oder 1 ,3-bis(but-4-yl);
(2) substituierte oder unsubstituierte, bevorzugt unsubstituierte, lineare oder verzweigte, vorzugsweise lineare, Oxalkandiyl-Reste mit 3 bis 30, bevorzugt 3 bis 20 und insbesondere 3 bis 6 Kohlenstoffatomen, die innerhalb der Kohlenstoffkette auch cyclische Gruppen enthalten können, insbesondere Oxapropan-1 ,4- diyl, Oxabutan-1 ,5-diyl, Oxapentan-1 ,5-diyl, Oxahexan-1 ,7-diyl oder
2-Oxapentan-1 ,5-diyl;
(3) zweiwertige Polyesterreste mit wiederkehrenden Polyesteranteilen der Formel -(-CO-(CHR7)r CH2-O-)- aus. Hierbei ist der Index r bevorzugt 4 bis 6 und der Substitutent R7 = Wasserstoff, ein Alkyl-,
Cycloalkyl- oder Alkoxy-Rest. Kein Substituent enthält mehr als 12 Kohlenstoffatome;
(4) lineare Polyetherreste, vorzugsweise mit einem zahlenmittleren Molekulargewicht von 400 bis 5.000, insbesondere von 400 bis
3.000, die sich von Poly(oxyethylen)glykolen,
Poly(oxypropylen)glykolen und Poly(oxybutylen)glykolen ableiten;
(5) lineare Siioxanreste, wie sie beispielsweise in Siliconkautschuken vorliegen, hydrierte Polybutadien- oder Polyisoprenreste, statistische oder alternierende Butadien-Isopren-
Copolymerisatreste oder Butadien-Isopren-
Pfropfmischpolymerisatreste, die noch Styrol einpolymerisiert enthalten können, sowie Ethylen-Propylen-Dienreste;
(6) Phen-1 ,4-, -1 ,3- oder -1 ,2-ylen, Naphth-1 ,4-, -1 ,3-, -1 ,2-, -1 ,5- oder - 2,5-ylen, Propan-2,2-di(phen-4'-yl), Methan-di(phen-4'-yl), Diphenyl- 4,4'-diyl oder 2,4- oder 2,6-Toluylen; oder
(7) Cycloalkandiyl-Reste mit 4 bis 20 Kohlenstoffatomen, wie Cyclobutan-1,3-diyl, Cyclopentan-1,3-diyl, Cyclohexan-1 ,3- oder - 1,4-diyl, Cycloheptan-1 ,4-diyl, Norbornan-1 ,4-diyl, Adamantan-1 ,5- diyl, Decalin-diyl, 3,3,5-Trimethyl-cyclohexan-1,5-diyl, 1- Methylcyclohexan-2,6-diyl, Dicyclohexylmethan-4,4'-diyl, 1,1'- Dicyclohexan-4 ,4-diyl oder 1,4-Dicyclohexylhexan-4,4"-diyl, insbesondere 3,3,5-Trimethyl-cyclohexan-1 ,5-diyl oder
Dicyclohexylmethan-4,4'-diyl.
Besonders bevorzugt werden die verknüpfenden Gruppen L (1) und L (2), ganz besonders bevorzugt Trimethylen, Tetramethylen, Pentamethylen, Hexamethylen, Heptamethylen, Octamethylen, Oxapropan-1 ,4-diyl oder 2-
Oxapentan-1 ,5-diyl und insbesondere Trimethylen, Oxapropan-1 ,4-diyl oder 2-Oxapentan-1 ,5-diyl verwendet.
In der allgemeinen Formel II steht die Variable o für eine ganze Zahl von 1 bis 5, vorzugsweise 1 bis 4, bevorzugt 1 bis 3 und besonders bevorzugt 1 und 2. Insbesondere ist o gleich 1.
Die Verbindungen II können auch in komplexierter Form eingesetzt werden, wie dies beispielsweise in der internationalen Patentanmeldung WO 99/52964, Seite 8, Zeilen 12 bis 20, beschrieben wird.
Die Verbindungen II sind üblich und bekannt und zu einem großen Teil im Handel erhältlich. Gut geeignete Verbindungen II sind beispielsweise aus der
internationalen Patentanmeldung WO 99/52964, Seite 6, Zeile 1 , bis Seite 8, Zeile 20,
der deutschen Patentanmeldung DE 197 26 829 A 1 , Spalte 2, Zeile 27, bis Spalte 3, Zeilen 38,
der deutschen Patentanmeldung DE 199 10 876 A 1 , Seite 2, Zeile 35, bis Seite 3, Zeile 12,
- der deutschen Patentanmeldung DE 38 28 098 A 1 , Seite 2, Zeile 27, bis Seite 4, Zeile 43, oder
der europäischen Patentanmeldung EP 0 450 625 A 1 , Seite 2, Zeile 57, bis 5, Zeile 32,
bekannt.
Methodisch gesehen bietet die Modifizierung der Oberfläche der Nanopartikel keine Besonderheiten, sondern erfolgt nach den üblichen und bekannten Verfahren, die beispielsweise aus der internationalen Patentanmeldung WO 99/52964, Seite 10, Zeile 22, bis Seite 11 , Zeile 17, und Beispiele 1 bis 20, Seite 14, Zeile 10, bis Seite 20 Zeile 24, oder aus der deutschen Patentanmeldung DE 197 26 829 A 1, Beispiele 1 bis 6, Spalte 5, Zeile 63, bis Spalte 8, Zeile 38, bekannt sind. Vorzugsweise werden die dort angegebenen Mengenverhältnisse von Verbindungen II zu unmodifizierten Nanopartikeln angewandt.
Der Gehalt der erfindungsgemäßen Dispersion an den oberflächenmodifizierten, anorganischen Nanopartikeln (B) kann breit variieren und richtet sich nach den Erfordernissen des Einzelfalls. Vorzugsweise sind die Nanopartikel (B) in der erfindungsgemäßen Dispersion in einer Menge von, bezogen auf die Summe der wesentlichen Bestandteile (A), (B) und (C), 60 bis 98 Gew.-% enthalten.
Der weitere wesentliche Bestandteil der erfindungsgemäßen Dispersion ist mindestens ein Amphiphil (C).
Amphiphile sind bekanntermaßen Moleküle, die sowohl hydrophile als auch lipophile Eigenschaften haben (vgl. Römpp Chemie Lexikon, Georg Thieme Verlag, Stuttgart, New York, 9. Auflage, 1989, Band 1, Seite 176, »Amphiphil«).
Vorzugsweise werden die Amphiphile aus der Gruppe, bestehend aus Monoalkoholen, insbesondere Monoalkoholen mit 3 bis 6 Kohlenstoffatomen im Molekül, und aliphatischen Polyolen, insbesondere Diolen mit 3 bis 12 Kohlenstoffatomen im Molekül, ausgewählt.
Beispiel gut geeigneter Monoalkohole sind Propanol, Isopropanol, n- Butanol, Isobutanol, sec-Butanol, tert.-Butanol, Amylalkohol,
Neopentylalkohol oder n-Hexanol.
Beispiele geeigneter Diole sind Propylenglykol, Trimethylenglykol,
Butylenglykol, 1 ,5-Pentandiol, 1 ,6-Hexandiol und die stellungsisomeren
Diethyloctandiole, wie sie beispielsweise aus der deutschen Patentanmeldung DE 198 09 643 A 1 bekannt sind.
Besonders bevorzugt werden Propanol, Isopropanol, Butanol oder Isobutanol verwendet.
Der Gehalt der erfindungsgemäßen Dispersion an den Amphiphilen (C) kann sehr breit variieren und richtet sich nach den Erfordernissen des Einzelfalls. Vorzugsweise sind die Amphiphile (C) in den erfindungsgemäßen Dispersion in einer Menge von, bezogen auf die Summe der wesentlichen Bestandteile (A), (B) und (C), 1 bis 10 Gew.-% enthalten.
Außer den vorstehend beschriebenen wesentlichen Bestandteilen kann die erfindungsgemäße Dispersion noch weitere lackübliche Bestandteile enthalten.
Es ist indes ein ganz besonderer Vorteil der erfindungsgemäßen Dispersion, dass sie auch ohne Vernetzungsmittel oder Additive hervorragende Beschichtungen und Lackierungen sowie optische Formteile und selbsttragende Folien liefert.
Die Herstellung der erfindungsgemäßen Dispersion erfordert keine methodischen Besonderheiten, sondern erfolgt nach den üblichen und bekannten Methoden der Herstellung wässriger Dispersionen durch
Vermischen der vorstehend beschriebenen Bestandteile in geeigneten Mischaggregaten wie Rührkessel, Dissolver, Ulrtaturrax, In-Iine-Dissolver, Rührwerksmühlen oder Extruder.
Die erfindungsgemäße Dispersion dient der Herstellung der erfindungsgemäßen Lackierungen und Beschichtungen auf grundierten oder ungrundierten Substraten. Außerdem kommt sie für alle Verwendungszwecke, die in der internationalen Patentanmeldung WO 99/52964, Seite 12, Zeile 10, bis Seite 14, Zeile 4, beschrieben werden, in Betracht, insbesondere für die Herstellung von optischen Formteilen und selbsttragende Folien.
Als Substrate kommen alle zu lackierenden Oberflächen, die durch eine Härtung der hierauf befindlichen Lackierungen unter Anwendung von Hitze oder Hitze und aktinischer Strahlung nicht geschädigt werden, in Betracht. Geeignete Subtrate bestehen beispielsweise aus Metallen, Kunststoffen, Holz, Keramik, Stein, Textil, Faserverbunden, Leder, Glas, Glasfasern, Glas- und Steinwolle, mineral- und harzgebundenen Baustoffen, wie Gips- und Zementplatten oder Dachziegel, sowie Verbunden dieser Materialien. Die Oberflächen dieser Materialien können bereits vorlackiert oder vorbeschichtet sein.
Demgemäß ist die erfindungsgemäße Dispersion für das Lackieren von Kraftfahrzeugkarosserien und Teilen hiervon, Kraftfahrzeugen im Innen- und Außenbereich, Bauwerken im Innen- und Außenbereich, Türen, Fenstern und Möbeln sowie im Rahmen der industriellen Lackierung für das Lackieren von Kunststoffteilen, insbesondere transparenten Kunststoffteilen, Kleinteilen, Coils, Container, Emballagen, elektrotechnischen Bauteilen und weißer Ware sowie für das Beschichten von Hohlglasartikeln besonders gut geeignet.
Im Falle elektrisch leitfähiger Substrate können Grundierungen verwendet werden, die in üblicher und bekannter Weise aus Elektrotauchiacken (ETL) hergestellt werden. Hierfür kommen sowohl anodische (ATL) als auch kathodische (KTL) Elektrotauchlacke, insbesondere aber KTL, in Betracht.
"Mit der erfindungsgemäßen Beschichtung können auch grundierte oder nicht grundierte Kunststoffe wie z. B. ABS, AMMA, ASA, CA, CAB, EP, UF, CF, MF, MPF, PF, PAN, PA, PE, HDPE, LDPE, LLDPE, UHMWPE, PET, PMMA, PP, PS, SB, PUR, PVC, RF, SAN, PBT, PPE, POM, PUR- RIM, SMC, BMC, PP-EPDM und UP (Kurzbezeichnungen nach DIN 7728T1) sowie deren Polymerblends oder die mit diesen Kunststoffen hergestellten faserverstärkten Kompositamaterialien lackiert werden.
Im Falle von nichtfunktionalisierten und/oder unpolaren Substratoberflächen können diese vor der Beschichtung in bekannter Weise einer Vorbehandlung, wie mit einem Plasma oder mit Beflammen, unterzogen oder mit einer Hydrogrundierung versehen werden.
Besondere Vorteile zeigen die erfindungsgemäße Dispersion und die erfindungsgemäßen Beschichtungen in der Automobilserien- und Reparaturlackierung als klare und transparente, hochkratzfeste, hochglänzende flexible, säure- und wasserbeständige, fest haftende, steinschlagfeste Klarlackierungen im Rahmen färb- und/oder effektgebender Mehrschichtlackierungen.
Die erfindungsgemäßen Mehrschichtlackierungen können in unterschiedlicher erfindungsgemäßer Weise hergestellt werden.
Eine erste bevorzugte Variante des erfindungsgemäßen Lackierverfahrens umfasst die Verfahrensschritte:
(I) Herstellen einer Basislackschicht durch Applikation eines Wasserbasislacks auf das Substrat,
(II) Trocknen der Basislackschicht,
(III) Herstellen einer Klarlackschicht durch Applikation der erfindungsgemäßen Dispersion auf die Basislackschicht und
(IV) gemeinsame Härtung der Basislackschicht und der erfindungsgemäßen Klarlackschicht, wodurch die Basislackierung und die erfindungsgemäße Klarlackierung resultieren (Nass-in- nass-Verfahren).
Diese Variante bietet insbesondere bei der Lackierung von Kunststoffen besondere Vorteile und wird deshalb hier besonders bevorzugt angewandt.
Eine zweite bevorzugte Variante des erfindungsgemäßen Lackierverfahrens umfasst die Verfahrensschritte:
(I) Herstellen einer Füllerlackschicht durch Applikation eines Füllers auf das Substrat,
(II) Härtung der Füllerlackschicht, wodurch die Fülleriackierung resultiert,
(III) Herstellen einer. Basislackschicht durch Applikation eines Wasserbasislacks auf die Fülleriackierung,
(IV) Trocknen der Basislackschicht,
(V) Herstellen der erfindungsgemäßen Klarlackschicht durch Applikation der erfindungsgemäßen Dispersion auf die Basislackschicht und
(VI) gemeinsame Härtung der Basislackschicht und der erfindungsgemäßen Klarlackschicht, wodurch die Basislackierung und die erfindungsgemäße Klarlackierung resultieren (Nass-in- nass-Verfahren).
Eine dritte bevorzugte Variante des erfindungsgemäßen Lackierverfahrens umfasst die Verfahrensschritte:
(I) Herstellen einer Füllerlackschicht durch Applikation eines Füllers auf das Substrat,
(II) Trocknung der Füllerlackschicht,
(III) Herstellen einer Basislackschicht durch Applikation eines Wasserbasislacks auf die Füllerlackschicht,
(IV) Trocknen der Basislackschicht,
(V) Herstellen der erfindungsgemäßen Klarlackschicht durch Applikation der erfindungsgemäßen Dispersion auf die
Basislackschicht und
(VI) gemeinsame Härtung der Füllerlackschicht, der Basislackschicht und der erfindungsgemäßen Klarlackschicht, wodurch die Fülleriackierung, die Basislackierung und die erfindungsgemäße
Klarlackierung resultieren (erweitertes Nass-in-nass-Verfahren).
Eine vierte bevorzugte Variante des erfindungsgemäßen Lackierverfahrens umfasst die Verfahrensschritte:
(I) Abscheiden einer Elektrotauchlackschicht auf dem Substrat,
(II) Trocknen der Elektrotauchlackschicht,
(II) Herstellen einer ersten Basislackschicht durch Applikation eines ersten Basislacks auf der Elektrotauchlackschicht,
(III) gemeinsame Härtung der Elektrotauchlackschicht und der ersten Basislackschicht, wodurch die Elektrotauchlackierung und die erste Basislackierung resultieren (Nass-in-nass-Verfahren,
(IV) Herstellen einer zweiten Basislackschicht durch Applikation eines zweiten Basislacks auf die erste Basislackierung,
(V) Trocknen der zweiten Basislackschicht,
(VI) Herstellen der erfindungsgemäßen Klarlackschicht durch Applikation der erfindungsgemäßen Dispersion auf die Basislackschicht und
(VII) gemeinsame Härtung der zweiten Basislackschicht und der erfindungsgemäßen Klarlackschicht, wodurch die zweite Basislackierung und die erfindungsgemäße Klarlackierung resultieren (Nass-in-nass-Verfahren).
Die drei letztgenannten Varianten bieten insbesondere bei der Erstlackierung von Automobilkarosserien besondere Vorteile und werden deshalb hier ganz besonders bevorzugt angewandt.
Es ist ganz besonderer Vorteil der aus der erfindungsgemäßen Dispersion hergestellten Beschichtungen, dass sie auch auf bereits ausgehärteten Elektrotauchlackierungen, Füllerlackierungen, Basislackierungen oder üblichen und bekannten Klarlackierungen hervorragend haften, so dass sie sich ausgezeichnet für die Autoreparaturlackierung oder die Kratzfestausrüstung von exponierten Stellen von lackierten Automobilkarosserien eignen.
Die Applikation der erfindungsgemäßen Dispersion kann durch alle üblichen Applikationsmethoden, wie z.B. Spritzen, Rakeln, Streichen, Gießen, Tauchen, Tränken, Träufeln oder Walzen erfolgen. Dabei kann das zu beschichtende Substrat als solches ruhen, wobei die Applikationseinrichtung oder -anläge bewegt wird. Indes kann auch das zu beschichtende Substrat, insbesondere ein Coil, bewegt werden, wobei die Applikationsanlage relativ zum Substrat ruht oder in geeigneter Weise bewegt wird.
Vorzugsweise werden Spritzapplikationsmethoden angewandt, wie zum Beispiel Druckluftspritzen, Airless-Spritzen, Hochrotation, elektrostatischer Sprühauftrag (ESTA), gegebenenfalls verbunden mit Heißspritzapplikation wie zum Beispiel Hot-Air-Heißspritzen. Die Applikationen kann bei Temperaturen von max. 70 bis 80 °C durchgeführt werden, so dass geeignete Applikationsviskositäten erreicht werden, ohne dass bei der kurzzeitig einwirkenden thermischen Belastung eine Veränderung oder Schädigungen der erfindungsgemäßen Dispersion und ihres gegebenenfalls wiederaufzubereitenden Overspray eintreten. So kann das
Heißspritzen so ausgestaltet sein, dass die erfindungsgemäße Dispersion nur sehr kurz in der oder kurz vor der Spritzdüse erhitzt wird.
Die für die Applikation verwendete Spritzkabine kann beispielsweise mit einem gegebenenfalls temperierbaren Umlauf betrieben werden, der mit einem geeigneten Absorptionsmedium für den Overspray, z. B. der erfindungsgemäßen Dispersion selbst, betrieben wird.
Im allgemeinen werden die Elektrotauchlackschicht, Füllerlackschicht, Basislackschicht und Klarlackschicht in einer Nassschichtdicke appliziert, dass nach ihrer Aushärtung Schichten mit der für ihre Funktionen notwendigen und vorteilhaften Schichtdicken resultieren. Im Falle der Elektrotauchlackierung liegt diese Schichtdicke bei 10 bis 70, vorzugsweise 10 bis 60, besonders bevorzugt 15 bis 50 und insbesondere 15 bis 45 μm; im Falle der Fülleriackierung liegt sie bei 10 bis 150, vorzugsweise 10 bis 120, besonders bevorzugt 10 bis 100 und insbesondere 10 bis 90 μm; im Falle der Basislackierung liegt sie bei 5 bis 50, vorzugsweise 5 bis 40, besonders bevorzugt 5 bis 30 und insbesondere 10 bis 25 μm; und im Falle der erfindungsgemäßen Klariackierungen liegt sie bei 10 bis 100, vorzugsweise 15 bis 80, besonders bevorzugt 20 bis 70 und insbesondere 25 bis 60 μm. Es kann aber auch der aus der europäischen Patentanmeldung EP 0 817 614 A 1 bekannte Mehrschichtaufbau aus einer Elektrotauchlackierung, einer ersten Basislackierung, einer zweiten Basislackierung und einer erfindungsgemäßen Klarlackierung angewandt werden, worin die Gesamtschichtdicke der ersten und zweiten Basislackierung bei 15 bis 40 μm liegt und die Schichtdicke der ersten Basislackierung 20 bis 50% der besagten Gesamtschichtdicke beträgt.
Die Füllerlackschicht, Basislackschicht und erfindungsgemäße Klarlackschicht können thermisch oder thermisch und mit aktinischer Strahlung (Dual Cure) gehärtet werden.
Die Aushärtung kann nach einer gewissen Ruhezeit erfolgen. Sie kann eine Dauer von 30 s bis 2 h, vorzugsweise 1 min bis 1 h und insbesondere 1 min bis 45 min haben. Die Ruhezeit dient beispielsweise zum Verlauf und zur Entgasung der Lackschichten oder zum Verdunsten von flüchtigen Bestandteilen wie Lösemittel. Die Ruhezeit kann durch die Anwendung erhöhter Temperaturen bis 90 °C und/oder durch eine reduzierte Luftfeuchte < 10 g Wasser/kg Luft, insbesondere < 5 g/kg Luft, unterstützt und/oder verkürzt werden, sofern hierbei keine Schädigungen oder Veränderungen der Lackschichten eintreten, etwa eine vorzeitige vollständige Vernetzung.
Die thermische Härtung weist keine methodischen Besonderheiten auf, sondern erfolgt nach den üblichen und bekannten Methoden wie Erhitzen in einem Umluftofen oder Bestrahlen mit IR-Lampen. Hierbei kann die thermische Härtung auch stufenweise erfolgen. Eine weitere bevorzugte Härtungsmethode ist die Härtung mit nahem Infrarot (NIR-Strahlung). Besonders bevorzugt wird ein Verfahren angewandt, bei der der Bestandteil Wasser rasch aus den Nassschichten entfernt wird. Geeignete Verfahren dieser Art werden beispielsweise von Roger Talbert in Industrial Paint & Powder, 04/01, Seiten 30 bis 33, »Curing in Seconds with NIR«, oder in Galvanotechnik, Band 90 (11), Seiten 3098 bis 3100, »Lackiertechnik, NIR-Trocknung im Sekundentakt von Flüssig- und Pulverlacken«, beschrieben.
Vorteilhafterweise erfolgt die thermische Härtung bei einer Temperatur von 50 bis 200 °C, besonders bevorzugt 60 bis 190 °C und insbesondere
80 bis 180 ° C während einer Zeit von 1 min bis zu 2 h, besonders bevorzugt 2 min bis zu 1 h und insbesondere 3 min bis 45 min.
Weiterhin wird die Härtung mit aktinischer Strahlung mit UV-Strahlung und/oder Elektronenstrahlen durchgeführt. Vorzugsweise wird hierbei eine Dosis von 1.000 bis 3.000, bevorzugt 1.100 bis 2.900, besonders bevorzugt 1.200 bis 2.800, ganz besonders bevorzugt 1.300 bis 2.700 und insbesondere 1.400 bis 2.600 mJ/cm2 angewandt. Gegebenenfalls kann diese Härtung mit aktinischer Strahlung von anderen Strahlenquellen ergänzt werden. Im Falle von Elektronenstrahlen wird vorzugsweise unter Inertgasatmosphäre gearbeitet. Dies kann beispielsweise durch Zuführen von Kohlendioxid und/oder Stickstoff direkt an die Oberfläche der Lackschichten gewährleistet werden. Auch im Falle der Härtung mit UV- Strahlung kann, um die Bildung von Ozon zu vermeiden, unter Inertgas oder einer sauerstoffabgereicherten Atmosphäre gearbeitet werden.
Für die Härtung mit aktinischer Strahlung werden die üblichen und bekannten Strahlenquellen und optischen Hilfsmaßnahmen angewandt. Beispiele geeigneter Strahlenquellen sind Blitzlampen der Firma VIS1T, Quecksilberhoch- oder -niederdruckdampflampen, welche gegebenenfalls mit Blei dotiert sind, um ein Strahlenfenster bis zu 405 nm zu öffnen, oder Elektronenstrahlquellen. Die Anlagen und Bedingungen dieser Härtungsmethoden werden beispielsweise in R. Holmes, UN. and E.B. Curing Formulations for Printing Inks, Coatings and Paints, SITA Technology, Academic Press, London, United Kindom 1984, beschrieben. Weitere Beispiele geeigneter Verfahren und Vorrichtungen zur Härtung mit aktinischer Strahlung werden in der deutschen Patentanmeldung DE 198 18735 A 1, Spalte 10, Zeilen 31 bis 61, beschrieben.
Bei kompliziert geformten Werkstücken, wie sie für Automobilkarosserien vorgesehen sind, können die nicht direkter Strahlung zugänglichen
Bereiche (Schattenbereiche), wie Hohlräume, Falzen und andere konstruktionsbedingte Hinterschneidungen, mit Punkt-, Kleinflächen- oder Rundumstrahlern, verbunden mit einer automatischen
Bewegungseinrichtung für das Bestrahlen von Hohlräumen oder Kanten, (partiell) ausgehärtet werden.
Hierbei kann die Aushärtung stufenweise erfolgen, d. h. durch mehrfache Belichtung oder Bestrahlung mit aktinischer Strahlung. Dies kann auch alternierend erfolgen, d. h., dass abwechselnd mit UV-Strahlung und Elektronenstrahlung gehärtet wird.
Werden die thermische Härtung und Härtung mit aktinischer Strahlung zusammen angewandt, können diese Methoden gleichzeitig oder alternierend eingesetzt werden. Werden die beiden Härtungsmethoden alternierend verwendet, kann beispielsweise mit der thermischen Härtung begonnen und mit der Härtung mit aktinischer Strahlung geendet werden. In anderen Fällen kann es sich als vorteilhaft erweisen, mit der Härtung mit aktinischer Strahlung zu beginnen und hiermit zu enden.
Die erfindungsgemäßen Mehrschichtlackierungen weisen ein hervorragendes Eigenschaftsprofil auf, das hinsichtlich der Mechanik, Optik, Korrosionsbeständigkeit und Haftung sehr gut ausgewogen ist. So weisen die erfindungsgemäßen Mehrschichtlackierungen die vom Markt geforderte hohe optische Qualität und Zwischenschichthaftung auf und werfen keine Probleme wie mangelnde Schwitzwasserbeständigkeit, Rissbildung (mudcracking) oder Verlaufsstörungen oder Oberflächenstrukturen in den erfindungsgemäßen Klariackierungen auf.
Insbesondere weisen die erfindungsgemäßen Mehrschichtlackierungen einen hervorragenden Metallic-Effekt, einen hervorragenden D.O.I.
(distinctiveness of the reflected image), eine hohe Kratzfestigkeit und eine hervorragende Oberflächenglätte auf.
Demzufolge weisen die erfindungsgemäßen grundierten oder ungrundierten Substrate, die mit mindestens einer erfindungsgemäßen Beschichtung beschichtet sind, bei einem besonders vorteilhaften anwendungstechnischen Eigenschaftsprofil eine besonders lange Gebrauchsdauer auf, was sie wirtschaftlich, ästhetisch und technisch besonders wertvoll macht.
Beispiele und Vergleichsversuche
Herstellbeispiele 1.1 und 1.2
Die Herstellung der Dispersionen der erfindungsgemäß zu verwendenden Copolymerisate (A.1) und (A.2)
Herstellbeispiel 1.1:
In einem Reaktiongefäß, ausgerüstet mit einem Rührer und drei Zulaufgefäßen, wurden 1.361 ,7 Gewichtsteile deionisiertes Wasser vorgelegt und auf 75 °C erhitzt. Anschließend wurden bei dieser Temperatur zur Vorlage drei separate Zuläufe parallel und gleichmäßig zudosiert. Zulauf 1 bestand aus 24,4 Gewichtsteilen Acrylsäure, 44,0 Gewichtsteilen Methylmethacrylat und 3,6 Gewichtsteilen 1,1- Diphenylethylen. Zulauf 2 bestand aus 23, Gewichtsteilen einer 25 Gew.- %igen wäßrigen Ammoniaklösung. Zulauf 3 bestand aus einer Lösung von 5,4 Gewichtsteilen Ammoniumperoxodisulfat in 138,7 Gewichtsteilen deionisiertem Wasser. Die Zuläufe 1 bis 3 wurden während 30 min zudosiert. Nach Beendigung der Zugabe wurde das Reaktionsgemisch während 1 h bei 75 °C gerührt. Anschließend wurde es auf 90 °C erhitzt. Bei dieser Temperatur wurde über einen Zulauf 4 eine Monomermischung
aus 260 Gewichtsteilen n-Butylmethyacrylat, 208 Gewichtsteilen Styrol, 334 Gewichtsteilen Hydroxyethylmethacrylat und 234,4 Gewichtsteilen Ethylhexylmethacrylat während 4 h gleichmäßig zudosiert. Nach Beendigung der Zugabe schloss sich eine zweistündige Nachpolymerisation bei 90 °C an. Die resultierende erfindungsgemäß zu verwendende Dispersion (A.1) wies einen Festkörpergehalt von 41,8 Gew.-% auf..
Das Copolymerisat (A.1) wies bei pH-Werten von 2 bis 7 eine elektrophoretische Mobilität < -2 (μm/s)/(V/cm) auf. Die elektrophorethische Mobilität wurde mit Hilfe der Laser-Doppler- Elektrophorese bestimmt. Dabei wurde als Messgerät ein Zetasizer ® 3000 der Firma Malvern angewandt.
Herstellbeispiel 1.2:
Herstellbeispiel 1 wurde wiederholt, nur dass in der zweiten Stufe anstelle der dort beschriebenen Monomermischung eine Monomermischung aus 191,7 Gewichtsteilen n-Butylmethacrylat, 153,4 Gewichtsteilen Styrol, 93,3 Gewichtsteilen Hydroxypropylmethacrylat, 424,9 Gewichtsteilen Hydroxyethylmethacrylat und 173,1 Gewichtsteilen Ethylhexylmethacrylat verwendet wurde. Die resultierende erfindungsgemäß zu verwendende Dispersion (A.2) wies einen Festkörpergehalt von 41,7 Gew.-% auf.
Das Copolymerisat (A.2) wies bei pH-Werten von 2 bis 7 eine elektrophoretische Mobilität < -2 (μm/s)/(V/cm) auf.
Herstellbeispiele 2.1 bis 2.3
Die Herstellung von Böhmit-Solen
Herstellbeispiel 2.1:
2,78 Gewichtsteile Böhmit (Disperal ® P 3 der Firma Sasol Germany GmbH) wurden zu 25 Gewichtsteilen verdünnter Salzsäure (0,1 N) gegeben und bei Raumtemperatur solange gerührt, bis das Böhmit vollständig gelöst war. Anschließend wurde die kolloidale Lösung während 5 min in einem Ultraschallbad behandelt. Es resultierte das homogene Böhmit-Sol (2.1).
Herstellbeispiel 2.2: Herstellbeispiel 2.1 wurde wiederholt, nur dass anstelle von Salzsäure 0,1 N Essigsäure verwendet wurde. Es resultierte das homogene Böhmit-Sol (2.2).
Herstellbeispiel 2.3: Herstellbeispiel 2.1 wurde wiederholt, nur dass anstelle von Salzsäure 0,1 N Ameisensäure verwendet wurde. Es resultierte das homogene Böhmit- Sol (2.3).
Herstellbeispiele 3.1 bis 3.4
Die Herstellung von Dispersionen von oberflächenmodifizierten Nanopartikeln (B.1) bis (B.4)
Herstellbeispiel 3.1: Zu 27,78 Gewichtsteilen des Böhmit-Sois (2.1) des Herstellbeispiels 2.1 wurden an 20,8 Gewichtsteile Glycidyloxypropyltriethoxysilan gegeben. Das resultierende Reaktionsgemisch wurde während 10 h bei Raumtemperatur gerührt. Es resultierte das homogene oberflächenmodifizierte Böhmit-Sol (B.1).
Herstellbeispiel 3.2:
Herstellbeispiel 3.1 wurde wiederholt, nur dass anstelle des Böhmit-Sols (2.1) des Herstellbeispiels 2.1 das Böhmit-Sol (2.2) des Herstellbeispiels 2.2 verwendet wurde. Es resultierte das oberflächenmodifizierte Böhmit- Sol (B.2).
Herstellbeispiel 3.3:
Herstellbeispiel 3.1 wurde wiederholt, nur dass anstelle des Böhmit-Sols (2.1) des Herstellbeispiels 2.1 das Böhmit-Sol (2.3) des Herstellbeispiels 2.3 verwendet wurde. Es resultierte das oberflächenmodifizierte Böhmit- Sol (B.3).
Herstellbeispiel 3.4:
Zu 27,78 Gewichtsteilen einer wäßrigen Lösung von kationischen stabilisierten Siliziumdioxid-Nanopartikeln (Levasil ® 200S der Firma Bayer AG) wurden 27,8 Gewichtsteile Glycidyloxypropyltriethoxysilan gegeben. Das resultierende Reaktionsgemisch wurde während 10 h bei Raumtemperatur gerührt. Es resultierte das oberflächenmodifizierte Siliziumdioxid-Sol (B.4).
Vergleichsversuche V 1 bis V 4
Die Herstellung der nicht erfindungsgemäßen
Mehrschichtlackierungen V 1 bis V 4
Die Dispersionen (B.1) bis (B.4) der Herstellbeispiele 3.1 bis 3.4 wurden pneumatisch auf Prüftafeln, die mit einer ausgehärteten Elektrotauchlackierung, Fülleriackierung und Basislackierung (vgl. Beispiel 1) beschichtet waren, appliziert. Die resultierenden Klarlackschichten V 1 bis V 4 wurden während 22 min bei 140 °C ausgehärtet. Die resultierenden Klariackierungen V 1 bis V 4 waren hochkratzfest. Sie
konnten aber nicht in Schichtdicken > 30 μm hergestellt werden, weil sie dann Spannungsrisse aufwiesen.
Stahltafeln mit spannungsrissfreien Klariackierungen V 1 bis V 4 wurden dem Schwitzwasserkonstantklima-Test unterworfen. Dabei kam es bereits nach 240 h zu einer teilweisen Enthaftung.
Beispiel 1
Die Herstellung einer erfindungsgemäßen Dispersion und der erfindungsgemäßen Mehrschichtlackierung
Zu 90,25 Gewichtsteilen der Dispersion (B.1) gem. Herstellbeispiel 3.1 wurden 4,75 Gewichtsteile der Dispersion (A.1) gem. Herstellbeispiel 1.1 und 5,0 Gewichtsteile Isopropanol hinzugegeben. Die resultierende Dispersion wurde während 6 h bei Raumtemperatur gerührt.
Die erfindungsgemäße Dispersion war völlig lagerstabil. So stieg die Viskosität während der 30-tägigen Lagerung bei Raumtemperatur nur von 0,2 auf 0,4 dPas. Danach konnten noch immer klare, transparente, von Oberflächenstörungen freie, hochkratzfeste Beschichtungen hergestellt werden.
Die Dispersion wurde unmittelbar nach ihrer Herstellung pneumatisch auf Prüftafeln appliziert. Dazu wurde sie mit einem üblichen und bekannten Rheologiehilfsmittel auf Polyurethanbasis auf Spritzviskosität (DIN 4- Auslaufbecher: 18 s) eingestellt und gesiebt (Maschenweite 5μm)
Als Prüftafeln wurden Stahltafeln aus Karosseriestahl verwendet, die mit handelsüblicher Zinkphosphatlösung vorbehandelt worden waren. Die
Stahltafeln wurden nacheinander mit einer Elektrotauchlackierung einer
Schichtdicke von 18 bis 22 μm (während 15 min bei 175 °C gehärtet), einer konventionellen Fülleriackierung einer Schichtdicke von 35 bis 40 μm (während 20 min bei 160 °C gehärtet) und einer schwarzen Basislackierung einer Schichtdicke von 12 bis 15 μm (während 20 min bei 140 °C gehärtet) beschichtet. Die erfindungsgemäße Dispersion wurde mit einer Fließbecherpistole in mehreren Kreuzgängen pneumatisch appliziert. Die resultierenden Klarlackschichten wurden während 22 min bei 140 °C ausgehärtet und wiesen eine Schichtdicke von 35 μm auf.
Die resultierenden Klariackierungen waren frei von Spannungsrissen und anderen Oberflächendefekten.
Die Klariackierungen waren Steinschlagbeständigkeit (Multischlag: 2 bar, zweimal 500g Stahlschrot: Note 2 bis 3), außerordentlich haftfest (Gitterschnitttest und Tesaabrisstest nach DIN EN ISO 2409: GTO/0), flexibel (Pendelhärte nach König: 83) und hochkratzfest (Delta Glanz nach DIN 67530: nach dem Sandtest 4 Einheiten; nach dem Bürstentest: 0 Einheiten; nach dem Waschstraßensimulationstest: mit Reinigung mit Ethanol 4 Einheiten, ohne Reinigung 23 Einheiten).
Beim Sandtest wurde die Lackoberfläche mit Sand belastet (20g Quarz- Silbersand 1,5-2,0 mm). Der Sand wurde in einen Becher (Boden plan abgeschnitten) gegeben, der fest auf der Prüftafel befestigt wurde. Mittels eines Motorantriebes wurde die Tafel mit dem Becher und dem Sand in Schüttelbewegungen versetzt. Die Bewegung des losen Sandes verursachte dabei die Beschädigung der Lackoberfläche (100 Doppelhübe in 20 s). Nach der Sandbelastung wurde die Prüffläche vom Abrieb gereinigt, unter einem kalten Wasserstrahl vorsichtig abgewischt und anschließend mit Druckluft getrocknet. Gemessen wurde der Glanz nach DIN 67530 vor und nach Beschädigung (Meßrichtung senkrecht zur Kratzrichtung):
Bei dem Bürstentest wurden die Prüftafeln mindestens 2 Wochen bei Raumtemperatur gelagert, bevor die Prüfung durchgeführt wurde. Es wurde die in Fig. 2 auf Seite 28 des Artikels von P. Betz und A. Bartelt, Progress in Organic Coatings, 22 (1993), Seiten 27 - 37, beschriebene Vorschrift angewandt, wobei sie allerdings bezüglich des verwendeten Gewichts (2000 g statt der dort genannten 280 g) abgewandelt wurde. Bei dem Test wurde die Lackoberfläche mit einem Siebgewebe, welches mit einer Masse belastet wurde, geschädigt. Das Siebgewebe und die Lackoberfläche wurden mit einer Waschmittel-Lösung reichlich benetzt. Die Prüftafel wurde mittels eines Motorantriebs in Hubbewegungen unter dem Siebgewebe vor- und zurückgeschoben. Der Prüfkörper war mit Nylon-Siebgewebe (Nr. 11, 31 μm Maschenweite, Tg 50 °C) bespanntes Radiergummi (4,5 x 2,0 cm, breite Seite senkrecht zur Kratzrichtung). Das Auflagegewicht betrug 2000 g. Vor jeder Prüfung wurde das Siebgewebe erneuert, dabei war die Laufrichtung der Gewebemaschen parallel zur Kratzrichtung. Mit einer Pipette wurde ca. 1 ml einer frisch aufgerührten 0,25%'ιgen Persil-Lösung vor dem Radiergummi aufgebracht. Die Umdrehungszahl des Motors wurde so eingestellt, dass in einer Zeit von 80 s 80 Doppelhübe ausgeführt wurden. Nach der Prüfung wurde die verbleibende Waschflüssigkeit mit kaltem Leitungswasser abgespült, und die Prüftafel wurden mit Druckluft trockengeblasen. Gemessen wurde der Glanz nach DIN 67530 vor und nach Beschädigung (Meßrichtung senkrecht zur Kratzrichtung).
Bei dem Waschstraßensimulationstest wurde eine Laborwaschstraße der Firma Amtec Kistler verwendet (vgl. T. Klimmasch, T. Engbert, Technologietage, Köln, DFO, Berichtsband 32, Seiten 59 bis 66,1997).
Beispiel 2 und Vergleichsversuch V 5
Die Herstellung einer erfindungsgemäßen Mehrschichtlackierung (Beispiel 2) und einer nicht erfindungsgemäßen Mehrschichtlackierung (Vergleichsversuch V 5)
Für die Herstellung der erfindungsgemäßen Klarlackierung des Beispiels 2 wurde die erfindungsgemäße Dispersion des Beispiels 1 verwendet.
Für die Herstellung der nicht erfindungsgemäßen Klarlackierung des Vergleichsversuchs V 5 wurde die Dispersion (B.1) des Herstellbeispiels 3.1 verwendet.
Die erfindungsgemäße Dispersion des Beispiels 1 und die Dispersion (B.1) des Herstellbeispiels 3.1 wurden in Keilform pneumatisch auf Prüftafeln appliziert und ausgehärtet (vgl. zu den Einzelheiten Beispiel 1). Die Schichtdicken lagen bei 10 bis 80 μm. Während die resultierende erfindungsgemäße Klarlackierung selbst bei 80 μm keine Spannungsrisse zeigte, traten diese bei der nicht erfindungsgemäßen Klarlackierung (V 5) bereits ab einer Schichtdicke von 30 μm auf.
Beispiel 3
Die Herstellung einer erfindungsgemäßen Dispersion und einer erfindungsgemäßen Mehrschichtlackierung
Zu 90,25 Gewichtsteilen der Dispersion (B.1) gemäß Herstellbeispiel 3.1 wurden 4,75 Gewichtsteile der Dispersion (A.1) gemäß Herstellbeispiel 1.1 und 5 Gewichtsteile n-Butanol gegeben. Die resultierende erfindungsgemäße Dispersion wurde während 6 h bei Raumtemperatur gerührt und anschließend, wie Beispiel 1 beschrieben, auf die Prüftafeln
appliziert und gehärtet. Die erhaltenen erfindungsgemäßen Klariackierungen (3) wiesen die gleichen hervorragenden anwendungstechnischen Eigenschaften auf wie die Klariackierungen der Beispiele 1 und 2.
Beispiel 4
Die Herstellung einer erflndungsgemäßen Dispersion und einer erfindungsgemäßen Mehrschichtlackierung
Beispiel 4 wurde wiederholt, wobei anstelle von Butanol Propanol verwendet wurde. Die erhaltenen erfindungsgemäßen Klariackierungen wiesen die gleichen hervorragenden anwendungstechnischen Eigenschaften auf wie die Klariackierungen (1) bis (3) der Beispiele 1 bis 3.
Beispiel 5
Die Herstellung einer erfindungsgemäßen Dispersion und einer erfindungsgemäßen Mehrschichtlackierung
Beispiel 4 wurde wiederholt, dass anstelle von Butanol Isobutanol verwendet wurde. Die erhaltenen erfindungsgemäßen Klariackierungen wiesen die gleichen hervorragenden anwendungstechnischen Eigenschaften auf wie die Klariackierungen der Beispiele 1 bis 4.
Beispiel 6
Die Herstellung einer erfindungsgemäßen Dispersion und einer erfindungsgemäßen Mehrschichtlackierung
Zu 81,75 Gewichtsteilen der Dispersion (B.2) des Herstellbeispiels 3.2 wurden 13,25 Gewichtsteile der Dispersion (A.2) des Herstellbeispiels 1.2 und 5 Gewichtsteile Isopropanol zugegeben. Die resultierende erfindungsgemäße Dispersion wurde während 6 h bei Raumtemperatur gerührt und anschließend, in Beispiel 1 beschrieben, auf die Prüftafeln appliziert und gehärtet.
Es resultierten erfindungsgemäße Klariackierungen einer Schichtdicke von 35 μm, die frei von Spannungsrissen und anderen Oberflächenstörungen waren. Sie waren außerdem außergewöhnlich kratzfest, was anhand des Stahlwolle-Kratztests (Note 1) untermauert wurde.
Zur Durchführung des Stahlwolle-Kratztests wurde ein Hammer nach DIN 1041 (Gewicht ohne Stiel: 800 g; Stiellänge: 35 cm) verwendet. Die Prüftafeln wurden vor dem Test während 24 h bei Raumtemperatur gelagert.
Die flache Hammerseite wurde mit einer Lage Stahlwolle bespannt und mit Tesakrepp an den hochgeschlagenen Seiten befestigt. Der Hammer wurde im rechten Winkel auf die Klariackierungen aufgesetzt. Das Gewichtsstück des Hammers wurde ohne zu verkannten und ohne zusätzliche Körperkraft in einer Spur über die Oberfläche der Klariackierungen geführt.
Bei jeder Prüfung wurden 10 Doppelhübe in einer Zeit von etwa 15 s ausgeführt. Nach jeder zehnten Einzelprüfung wurde die Stahlwolle ausgetauscht.
Nach der Belastung wurden die Prüfflächen mit einem weichen Tuch von den Stahlwolleresten gereinigt. Die Prüfflächen wurden visuell unter Kunstlicht ausgewertet und wie folgt benotet:
Note Schädigungsbild
1 nicht vorhanden
2 geringen
3 mäßig
4 mäßig bis mittel
5 stark
6 sehr stark
Die Auswertung erfolgte unmittelbar nach Versuchsende.
Beispiel 7
Die Herstellung einer erfindungsgemäßen Dispersion und einer erfindungsgemäßen Mehrschichtlackierung
Beispiel 6 wurde wiederholt, nur dass anstelle der Dispersion (B.2) des Herstellbeispiels 3.2 die Dispersion (B.3) des Herstellbeispiels 3.3 verwendet wurde. Es wurden die gleichen hervorragenden Ergebnisse wie bei Beispiel 6 erhalten.
Beispiel 8
Die Herstellung einer erfindungsgemäßen Dispersion und einer erfindungsgemäßen Mehrschichtlackierung
Beispiel 6 wurde wiederholt, nur dass anstelle der Dispersion (B.2) des Herstellbeispiels 3.2 die Dispersion (B.4) des Herstellbeispiels 3.4 verwendet wurde. Es wurden die gleichen hervorragenden Ergebnisse wie bei den Beispielen 6 und 7 erhalten.
Beispiel 9
Die Herstellung einer erfindungsgemäßen farbgebenden Mehrschichtlackierung nach dem Nass-in-nass-Verfahren
Beispiel 1 wurde wiederholt, nur dass die Wasserbasislackschicht vor der Applikation der erfindungsgemäßen Dispersion nicht ausgehärtet, sondern während 10 min bei 100 °C vorgetrocknet wurde. Anschließend wurden die Wasserbasislackschicht und die erfindungsgemäße Klarlackschicht während 20 Minuten bei 140 °C gemeinsam ausgehärtet.
Die Schichtdicke der erfindungsgemäßen Klarlackierung lag bei 35 μm. Sie war frei von Spannungsrissen und anderen Oberflächenstörungen. Der Glanz nach DIN 67530 lag bei über 90 Einheiten. Sie war außerordentlich kratzfest (Stahlwolle-Kratztest: Note 1).
Beispiele 10
Die Herstellung einer erfindungsgemäßen Dispersion und einer erfindungsgemäßen Mehrschichtlackierung
Herstellbeispiel 3.1 wurde wiederholt, nur dass der durch die Kondensation entstandene Alkohol aus dem Böhmit-Sol (3.1) des Herstellbeispiels 3.1 durch Vakuumdestillation bei maximal 40 °C Wasserbadtemperatur entfernt wurde.
Zu 90,25 Gewichtsteilen des alkoholfreien Böhmit-Sols wurden 4,75
Gewichtsteile der Dispersion (A.1) des Herstellbeispiels 1.1 und 5 Gewichtsteile Isopropanol gegeben. Die resultierende erfindungsgemäße
Dispersion wurde während 6 h bei Raumtemperatur gerührt. Sie wies
einen Gehalt an flüchtigen organischen Stoffen von nur 5 Gew.-% auf. Anschließend wurde sie, wie Beispiel 1 beschrieben, auf Prüftafeln appliziert und ausgehärtet. Die resultierende erfindungsgemäße Klarlackierung der Mehrschichtlackierung wies eine Schichtdicke von 35 μm auf und war frei von Spannungsrissen und anderen Oberflächenstörungen.
Beispiele 11 bis 14
Die Herstellung erfindungsgemäßer Dispersionen und erfindungsgemäßer Mehrschichtlackierungen
Die Beispiele 1 und 3 bis 5 wurden wiederholt, nur dass anstelle der Dispersion (A.1) des Herstellbeispieis 1.1 die Dispersion (A.2) des Herstellbeispiels 1.2 verwendet wurden.
Die resultierenden erfindungsgemäßen Dispersionen der Beispiele 11 bis 14 wurden, wie Beispiel 1 beschrieben, auf Prüftafeln appliziert und gehärtet. Es wurden bei den erfindungsgemäßen Klariackierungen der Beispiele 11 bis 14 einer Schichtdicke von 35 μm dieselben hervorragenden Ergebnisse wie in den Beispielen 1 und 3 bis 5 erhalten. Insbesondere waren die erfindungsgemäßen Klariackierungen der Beispiele 11 bis 14 hochkratzfest (Stahlwolle-Kratztest: Note 1).
Beispiel 15
Die Herstellung einer erfindungsgemäßen Dispersion und einer erfindungsgemäßen Klarlackierung auf Glas
Zu 81,75 Gewichtsteilen der Dispersion (B.1) gemäß Herstellbeispiel 3.1 wurden 13,25 Gewichtsteile der Dispersion (A.2) des Herstellbeispiels 1.2
und 5 Gewichtsteile Isopropanol gegeben. Die resultierende erfindungsgemäße Dispersion wurde während 6 h bei Raumtemperatur gerührt. Anschließend wurde sie mit einer Rakel auf entfettete Glassubstrate appliziert und während 22 min bei 140 °C gehärtet. Die Schichtdicke der resultierenden Klarlackierung lag bei 35 μm. Es waren keine Spannungsrissen oder andere Oberflächenstörungen zu beobachten. Die Kratzfestigkeit war hervorragend (Stahlwolle-Kratztest: Note 1).
Beispiel 16
Die Herstellung einer erfindungsgemäßen Dispersion und einer erflndungsgemäßen Klarlackierung auf Kunststoff
Die erfindungsgemäße Dispersion des Beispiels 15 wurde mit 1 ,0 Gew.-%, bezogen auf die Dispersion, des Verlaufmittels Byk ® 301 der Firma Byk Chemie versetzt. Die resultierende Dispersion wurde pneumatisch auf beflammte Polycarbonatsubstrate (Makrolon ® der Firma Bayer AG) appliziert und während 22 min bei 140 °C gehärtet.
Die beschichteten und die unbeschichteten Polycarbonatsubstrate wurden dem Stahlwolle-Kratztest unterworfen. Die mit der erfindungsgemäßen Klarlackierung beschichteten Polycarbonatsubstrate wiesen keine sichtbaren Beschädigungen auf (Note 1), wogegen die unbeschichteten Polycarbonatsubstrate zerkratzt waren (Note 5).
Beispiel 17
Die Herstellung einer erfindungsgemäßen Dispersion und einer erfindungsgemäßen Klarlackierung auf Kunststoff
Beispiel 16 wurde wiederholt, nur dass anstelle der Polycarbonatsubstrate beflammte Substrate aus Polybutylenterephthalat (PBTP) verwendet wurden. Es wurden dieselben vorteilhaften Ergebnisse wie in Beispiel 16 erhalten.