WO2005040244A1 - Thermisch und mit aktinischer strahlung härtbare pulverslurries, verfahren zu ihrer herstellung und ihre verwendung - Google Patents

Thermisch und mit aktinischer strahlung härtbare pulverslurries, verfahren zu ihrer herstellung und ihre verwendung Download PDF

Info

Publication number
WO2005040244A1
WO2005040244A1 PCT/EP2004/052813 EP2004052813W WO2005040244A1 WO 2005040244 A1 WO2005040244 A1 WO 2005040244A1 EP 2004052813 W EP2004052813 W EP 2004052813W WO 2005040244 A1 WO2005040244 A1 WO 2005040244A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder slurries
groups
carbon
isocyanate
actinic radiation
Prior art date
Application number
PCT/EP2004/052813
Other languages
English (en)
French (fr)
Inventor
Berthold Austrup
Hubert Baumgart
Guido Wilke
Original Assignee
Basf Coatings Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Coatings Ag filed Critical Basf Coatings Ag
Priority to US10/595,209 priority Critical patent/US20080255308A1/en
Priority to JP2006536102A priority patent/JP2007510763A/ja
Priority to EP04791356A priority patent/EP1675884A1/de
Priority to CA002541612A priority patent/CA2541612A1/en
Publication of WO2005040244A1 publication Critical patent/WO2005040244A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/625Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
    • C08G18/6254Polymers of alpha-beta ethylenically unsaturated carboxylic acids and of esters of these acids containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/8096Masked polyisocyanates masked with compounds having only one group containing active hydrogen with two or more compounds having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen

Definitions

  • the present invention relates to new powder slurries curable thermally and with actinic radiation.
  • the present invention also relates to a new process for producing powder slurries which are curable thermally and with actinic radiation.
  • the present invention relates to the use of the new powder slurries curable thermally and with actinic radiation as coating materials, adhesives and sealing compounds.
  • the present invention relates to the use of the new powder slurries which are curable thermally and with actinic radiation as clearcoats and as color and / or effect coating materials for the production of clearcoats, single- or multi-layer coloring and / or effect coatings and combination effect layers in the fields the automotive painting, automotive refinishing, industrial painting, including coil coating, container coating and coating or impregnation of electrical components, the painting of furniture, windows, doors and structures indoors and outdoors.
  • Actinic radiation is to be understood here and in the following as electromagnetic radiation such as near infrared, visible light, UV radiation or X-rays, in particular UV radiation, and corpuscular radiation such as electron beams.
  • the combined hardening by heat and actinic radiation is also called dual-cure by experts. Accordingly, the new powder slurries, coating materials, adhesives and sealing compounds in question are referred to here and below as dual-cure powder slurries, coating materials, adhesives and sealing compounds.
  • a combination effect layer is to be understood as a coating which fulfills at least two functions in a coloring and / or effect coating. Functions of this type are in particular protection against corrosion, the imparting of adhesion, the absorption of mechanical energy and the coloring and / or Effect at. Above all, the combination effect layer serves the absorption of mechanical energy and the coloring and / or effect at the same time; it therefore fulfills the functions of a filler paint or stone chip protection primer and a base coat.
  • the combination effect layer preferably also has a corrosion protection effect and / or an adhesion-promoting effect (cf. Römpp Lexikon Lacke und Druckmaschinetician, Georg Thieme Verlag, Stuttgart, New York, 1998, pages 49 and 51, "Automobillacke").
  • the urethane (meth) acrylates known from German patent application DE 100 41 635 A1, which contain blocked isocyanate groups can be used. They can be prepared by reacting urethane (meth) acrylates containing free isocyanate groups, as are known, for example, from European patent application EP 0 928 800 A1, page 3, lines 18 to 51 and page 4, lines 41 to 55, with customary and known blocking agents. According to EP 0 928 800 A 1, reaction products of polyhydric alcohols with (meth) acrylic acid in one can also be used for the production of the urethane (meth) acrylates containing free isocyanate groups Molar ratio that the reaction products still contain a hydroxyl group can be used.
  • constituents (C) which do not contain any isocyanate groups and / or blocked isocyanate groups are preferably used.
  • the well-known dual-cure powder slurries are easy to manufacture and have excellent application behavior. They supply coatings, adhesive layers and seals, in particular coatings, such as clear coats, single or multi-layer color and / or effect coatings and combination effect layers, which have a very good profile of properties. On and in complex shaped three-dimensional substrates they have a very good application-related property profile, especially in terms of scratch resistance and chemical resistance, particularly in continuous operation, even when the shadow zones are not optimally, in particular not fully, so that the hardening with actinic radiation is apparatus-specific and simplified in terms of measurement and control technology, and the process time can be shortened.
  • the well-known dual-cure powder slurries have to be continually developed for their use, particularly in automotive OEM painting, in order to meet the growing demands of the market.
  • their stability must be increased, and the coatings produced from them, in particular the clearcoats, must have a gloss, haze, wetting, flow, surface quality, freedom from surface defects such as stoves, craters, cracks or microbubbles, weather stability, chemical stability, condensation resistance, adhesion, Hardness, flexibility, scratch resistance and stone chip resistance are continuously developed without losing the advantages achieved.
  • the object of the present invention is to provide new dual-cure powder slurries which are easy to produce and have a long shelf life.
  • the new coatings produced from this, in particular the new clear coats are intended with regard to gloss, haze, wetting, flow, surface quality, freedom from surface defects such as stoves, craters, cracks or microbubbles, weather resistance, chemical stability, condensation resistance, adhesion, hardness, flexibility, scratch resistance and stone chip resistance a very good, balanced one Show property profile without losing the advantages achieved so far.
  • the new powder slurries which are curable thermally and with actinic radiation have been found to contain solid and / or highly viscous particles containing dimensionally stable under storage and use conditions
  • At least one binder which is free from carbon-carbon double bonds which can be activated with actinic radiation comprising at least one (meth) acrylate copolymer with on average at least one isocyanate-reactive functional group and at least one ion-forming group in the molecule,
  • the new dual-cure powder slurries were easy to manufacture and stable in storage.
  • the new coatings produced from this, in particular the new clear coats showed in terms of gloss, haze, wetting, flow, surface quality, freedom from surface defects such as stoves, craters, cracks or microbubbles, weather resistance, chemical stability, condensation resistance, adhesion, hardness, flexibility, scratch resistance and Stone chip resistance without a very good, balanced property profile that the advantages achieved by the well-known dual-cure powder slurries were lost.
  • the new dual-cure powder slurries contain solid and / or highly viscous particles that are dimensionally stable under storage and application conditions.
  • “highly viscous” means that the particles behave essentially like solid particles under the customary and known conditions for the storage and use of powder slurries.
  • the particles are also dimensionally stable.
  • “dimensionally stable” means that the particles neither agglomerate nor disintegrate into smaller particles under the usual and known conditions of storage and application of powder slurries, but also essentially retain their original shape under the influence of shear forces.
  • the new dual-cure powder slurries are preferably free of organic solvents.
  • the average particle size of the solid particles is preferably 0.8 to 20 ⁇ m, and particularly preferably 3 to 15 ⁇ m.
  • the mean particle size is understood to mean the 50% median value determined by the laser diffraction method, i.e. 50% of the particles have a particle diameter ⁇ the median value and 50% of the particles have a particle diameter> the median value.
  • the new dual-cure powder slurries with particles with such medium particle sizes have better application behavior and, with the applied film thicknesses of> 30 ⁇ m, currently show in the automotive industry the final painting of automobiles are practiced, if at all, only a slight tendency towards stoves and to “mud cracking.
  • the upper limit of the particle size is when the particles can no longer run completely due to their size when they are burned in, and the film run is thus negatively influenced. In cases where the appearance requirements are lower, however, it can also be higher.
  • the upper limit is considered to be 30 ⁇ m, as from this particle size, the spray nozzles and delivery units of the highly sensitive application equipment are likely to become blocked.
  • the preferred particle sizes described above are preferably obtained even without the aid of additional external emulsifiers if the particles contain a total of ion-forming groups, corresponding to an average acid number or amine number of 3 to 56 g KOH / g solids (MEQ acid or Amine from 0.05 to 1.0 meq / g solids), preferably up to 28 (MEQ acid or amine: 0.5) and in particular up to 17 (MEQ acid or amine: 0.3).
  • MEQ acid or Amine from 0.05 to 1.0 meq / g solids
  • the ion-forming groups are exclusively or predominantly, i.e. more than 50, in particular more than 70 mol%, are present in the binders (A) described below.
  • a low content of such groups is generally preferred, since free groups of this type remain in the hardened lacquer and can reduce its resistance to environmental substances and chemicals. On the other hand, the content of such groups must still be high enough to ensure the desired stabilization.
  • the ion-forming groups are partially neutralized with the aid of neutralizing agents or even only to ⁇ 100%.
  • the amount of neutralizing agent is chosen such that the MEQ value of the new dual-cure powder slurry is below 1, preferably below 0.5 and in particular below 0.3 meq / g solids. It is advantageous if the amount of neutralizing agent corresponds to at least an MEQ value of 0.05 meq / g solids.
  • Acid groups such as carboxylic acid, sulfonic acid or phosphonic acid groups are suitable as groups forming anions. Accordingly, as
  • Neutralizing agent bases such as alkali metal hydroxides, ammonia or amines used.
  • Alkali metal hydroxides can only be used to a limited extent, since the alkali metal ions are not volatile when stoved and because of their incompatibility with organic substances, they can cloud the film and lead to loss of gloss. Therefore ammonia or amines are preferred.
  • water-soluble tertiary amines are preferred. Examples include N, N-dimethylethanolamine or aminomethylpropanolamine (AMP).
  • Groups which form cations are primary, secondary or tertiary amines. Accordingly, especially low molecular weight organic acids such as formic acid, acetic acid or lactic acid are used as neutralizing agents.
  • the new dual-cure powder slurries as dual-cure coating materials, adhesives or sealants, acid groups are preferred as ion-forming groups, since the coatings, adhesive layers or seals produced therefrom generally have better resistance to yellowing than the coatings, adhesive layers and seals that are made from the new dual-cure powder slurries based on particles with cationic groups.
  • cationic particles with groups that can be converted into cations such as amino groups
  • the first essential component of the particles of the new dual-cure powder slurries is at least one, in particular one, binder (A) which is free from carbon-carbon double bonds which can be activated with actinic radiation.
  • binder (A) which is free from carbon-carbon double bonds which can be activated with actinic radiation.
  • free of carbon-carbon double bonds means that the binders in question (A) have no or only traces of such double bonds due to technical reasons.
  • the binder (A) contains at least one, in particular one, (meth) acrylate copolymer (A) with an average of at least one, preferably at least two, particularly preferably at least three and in particular at least four isocyanate-reactive functional groups and at least one, preferably at least two and in particular or at least three ion-forming groups in the molecule.
  • suitable isocyanate-reactive functional groups are thiol, hydroxyl and primary and secondary amino groups, especially hydroxyl groups.
  • Suitable ion-forming groups are those described above.
  • the (meth) acrylate copolymer (A) preferably has one
  • Glass transition temperature Tg from -40 to +80 ° C, preferably -20 to + 50 ° C, particularly preferably 0 to + 30 ° C and in particular + 5 to + 25 ° C.
  • the content of hydroxyl groups in the (meth) acrylate copolymers (A) can vary widely.
  • the lower limit results from the requirement that at least one
  • the hydroxyl number is preferably 50 to 300, preferably 80 to 250, preferably 100 to 220, particularly preferably 100 to 200, very particularly preferably
  • the (meth) acrylate copolymers (A) preferably have an acid number of 3 to
  • the '(meth) acrylate copolymers (A) are prepared by radical copolymerization of at least two, preferably at least three and in particular at least four different olefinically unsaturated monomers (a).
  • One of the monomers (a) is an olefinically unsaturated monomer (a1) through which isocyanate-reactive functional groups are introduced into the (meth) acrylate copolymers (A).
  • At least one of the further monomers (a) are essentially olefinically unsaturated monomers (a2) which have no isocyanate-reactive functional groups.
  • These monomers (a2) can be free of reactive functional groups or have reactive functional groups which can undergo thermal crosslinking reactions with other complementary reactive functional groups, with the exception of isocyanate groups.
  • Suitable olefinically unsaturated monomers (a1) are - Hydroxyalkyl esters of alpha.beta-olefinically unsaturated carboxylic acids, such as hydroxyalkyl esters of acrylic acid, methacrylic acid and ethacrylic acid, in which the hydroxyalkyl group contains up to 20 carbon atoms, such as 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 3-hydroxybutyl , 4-hydroxybutyl acrylate, methacrylate or ethacrylate; 1, 4-bis (hydroxymethyl) cyclohexane, octahydro.
  • carboxylic acids such as hydroxyalkyl esters of acrylic acid, methacrylic acid and ethacrylic acid, in which the hydroxyalkyl group contains up to 20 carbon atoms, such as 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 3-hydroxybutyl , 4-hydroxybutyl acrylate, methacrylate or
  • Allyl ethers of polyols such as trimethylolpropane monoallyl ether or pentaerythritol mono-, di- or triallyl ether.
  • the higher functional monomers (a1) are generally only used in minor amounts.
  • minor amounts of higher-functional monomers are understood to mean amounts which do not lead to the crosslinking or gelling of the (meth) acrylate copolymers (A), unless the (meth) acrylate copolymers (A) are to be in the form of cross-linked microgel particles;
  • the reaction of acrylic or methacrylic acid with the glycidyl ester of a carboxylic acid with a tertiary alpha carbon atom can take place before, during or after the polymerization reaction.
  • the reaction product of acrylic and / or methacrylic acid with the glycidyl ester of VersaticO acid is preferably used as component (a1).
  • This glycidyl ester is commercially available under the name Cardura® E10.
  • Aminoalkyl esters of alpha.beta-olefinically unsaturated carboxylic acids such as aminoethyl acrylate, aminoethyl methacrylate or N-methylaminoethyl acrylate
  • Formaldehyde adducts of amino alkyl esters of alpha.beta-olefinically unsaturated carboxylic acids and of alpha.beta-unsaturated carboxylic acid amides such as N-methylol and N, N-dimethylol-aminoethyl acrylate, aminoethyl methacrylate, acrylamide and methacrylamide; such as
  • Olefinically unsaturated monomers containing acryloxysilane groups and hydroxyl groups which can be prepared by reacting hydroxy-functional silanes with epichlorohydrin and then reacting the intermediate with an alpha, beta-olefinically unsaturated carboxylic acid, in particular acrylic acid and methacrylic acid, or their hydroxyalkyl esters.
  • the hydroxyalkyl esters in particular the 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 3-hydroxybutyl, 4-hydroxybutyl esters of acrylic acid and methacrylic acid, are advantageous and are therefore used with particular preference.
  • olefinically unsaturated monomers (a2) are alpha.beta-olefinically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, maleic acid mono (meth) acryloyloxyethyl ester, succinic acid mono (meth) acryloyloxyacetate and methyl acryloyloxyethyl ester, and vinylbenzoic acid (all isomers) and alpha-methylvinylbenzoic acid (all isomers), in particular.
  • Alkyl and cycloalkyl esters of alpha, beta-olefinically unsaturated carboxylic acids, phosphonic acids and sulfonic acids such as (meth) acrylic acid, crotonic acid, ethacrylic acid, vinyl phosphonic acid or vinyl sulfonic acid alkyl or cycloalkyl esters with up to 20 carbon atoms in the alkyl radical, especially methyl -, Ethyl, propyl, n-butyl, sec.-butyl, tert.-butyl, hexyl, ethylhexyl, stearyl and lauryl acrylate, methacrylate, crotonate, ethacrylate or vinyl phosphonate or vinyl sulfonate; Cycloaliphatic (meth) acrylic acid, crotonic acid, ethacrylic acid, vinylphosphonic acid or vinylsulfonic acid esters, in particular cyclohexyl, isoborny
  • acrylic acid crotonic acid or alkyl or cycloalkyl ethacrylate
  • ethylene glycol propylene glycol, diethylene glycol, dipropylene glycol, butylene glycol, pentane-1, 5-diol, hexane-1, 6 -diol-, octahydro-4,7-methano-1 H-indene-dimethanol- or cyclohexane-1, 2-, -1,3- or -1,4-diol-di (meth) acrylate;
  • higher functional (meth) acrylic acid, crotonic acid or alkyl or cycloalkyl ethacrylate such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, butylene glycol, pentane-1, 5-diol, hexane-1, 6 -diol-, octahydro-4,7-methano-1 H-inden
  • minor amounts of higher-functional monomers (a2) are to be understood as amounts which do not lead to crosslinking or gelling of the (meth) acrylate copolymers (A), unless the (meth) acrylate copolymers (A) are intended are in the form of cross-linked microgel particles;
  • Allyl ethers of alcohols such as allyl ethyl ether, allyl propyl ether or allyl n-butyl ether, or of polyols, such as ethylene glycol diallyl ether,
  • Olefins such as ethylene, propylene, but-1-ene, pent-1-ene, hex-1-ene, cyclohexene, cyclopentene, norbornene, butadiene, isoprene, cyclopentadiene and / or
  • Amides of alpha, beta-olefinically unsaturated carboxylic acids such as (meth) acrylic acid amide, N-methyl, IM.N-dimethyl, N-ethyl, NN-diethyl, N-propyl, N, N-dipropyl, N -Butyl-, N, N-dibutyl- and / or N, N-cyclohexyl-methyl-
  • Monomers containing epoxy groups such as the glycidyl ester of acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid and / or itaconic acid;
  • vinyl aromatic hydrocarbons such as styrene, alpha-alkylstyrenes, in particular alpha-methylstyrene and vinyltoluene, and diphenylethylene or stilbene;
  • Nitriles such as acrylonitrile and / or methacrylonitrile; Vinyl compounds such as vinyl chloride, vinyl fluoride, vinylidene dichloride, vinylidene difluoride; N-vinylpyrrolidone; Vinyl ethers such as ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether and / or vinyl cyclohexyl ether; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl esters of Versatic® acids, which are sold under the brand name VeoVa® by Deutsche Shell Chemie (in addition, Römpp Lexikon Lacke und Druckmaschine, Georg Thieme Verlag, Stuttgart, New York, 1998, page 598 and pages 605 and 606, referenced) and / or the vinyl ester of 2-methyl-2-ethylheptanoic acid; and
  • Polysiloxane macromonomers which have a number average molecular weight Mn from 1,000 to 40,000, preferably from 2,000 to 20,000, particularly preferably 2,500 to 10,000 and in particular 3,000 to 7,000 and on average 0.5 to 2.5, preferably 0.5 to 1.5, ethylenically unsaturated
  • Mn number average molecular weight
  • the monomers (a1) and (a2) are selected so that the property profile of the (meth) acrylate copolymers (A) is essentially determined by the (meth) acrylate monomers (a1) and (a2) described above, the Monomers (a1) and / or (a2), which originate from other monomer classes, advantageously vary this property profile broadly and specifically.
  • the monomers (a) are selected so that the glass transition temperatures Tg described above and the hydroxyl numbers and acid numbers are established.
  • W n weight fraction of the nth monomer
  • the copolymerization has no peculiarities, but takes place with the aid of the methods and devices which are usually used for free-radical copolymerization in solution or in bulk in the presence of a free-radical initiator.
  • radical initiators which can be used are: dialkyl peroxides, such as di-tert-butyl peroxide or dicumyl peroxide; Hydroperoxides, such as cumene hydroperoxide or partial - butyl hydroperoxide; Peresters, such as tert-butyl perbenzoate, tert-butyl perpivalate, tert-butyl per-3,5,5-trimethyl hexanoate or tert-butyl per-2-ethyl hexanoate; peroxodicarbonates; Potassium, sodium or ammonium peroxodisulfate; Azo initiators, for example azo dinitriles such as azobisisobutyronitrile; C-C-cleaving initiators such as benzpinacol silyl ether; or a combination of a non-oxidizing initiator with hydrogen peroxide. Combinations of the initiators described above can also be used. Further examples of suitable initiators are described
  • the monomers (a) are then copolymerized with the aid of the above-mentioned free-radical initiators at reaction temperatures which are preferably below the lowest decomposition temperature of the monomers (a) used in each case.
  • the initiator feed be started some time, generally about 1 to 15 minutes, before the monomers feed.
  • a method is further preferred in which the initiator addition begins at the same time as the addition of the monomers and is terminated about half an hour after the addition of the monomers has ended.
  • the initiator is preferably added in a constant amount per unit of time. After the end of the initiator addition the reaction mixture is kept at the polymerization temperature (as a rule 1 to 6 hours) until all of the monomers (a) used have been essentially completely reacted.
  • Substantially completely converted is intended to mean that preferably 100% by weight of the monomers used have been reacted, but it is also possible that a low residual monomer content of at most up to about 0.5% by weight, based on the Weight of the reaction mixture can remain unreacted.
  • Reactors for the copolymerization are the customary and known stirred tanks, stirred tank cascades, tubular reactors, loop reactors or Taylor reactors, as described, for example, in patent specification DE 1 071 241 B1, patent applications EP 0498 583 A1 or DE 198 28 742 A1 or in which Articles by K. Kataoka in Chemical Engineering Science, Volume 50, Issue 9, 1995, pages 1409 to 1416.
  • the (meth) acrylate copolymer (A) is not subject to any restrictions with regard to the molecular weight distribution.
  • the copolymerization is advantageously carried out in such a way that a molecular weight distribution Mw / Mn, measured with the aid of gel permeation chromatography using polystyrene as the standard, results in ⁇ 4, preferably ⁇ 2 and in particular ⁇ 1, 5 and in individual cases also ⁇ 1, 3 ,
  • the content of the particles of the new dual-cure powder slurries in the binders (A) described above can vary widely and depends on the requirements of the individual case. What is essential here is the functionality of the binder (A) with regard to thermal crosslinking, ie. that is, the number of isocyanate-reactive groups contained in the binder mixture (A). The person skilled in the art can therefore easily determine the content on the basis of his general specialist knowledge, if necessary with the aid of simple orientation tests.
  • the content, based on the solids content of the new dual-cure powder slurry is preferably 10 to 80, preferably 15 to 75, particularly preferably 20 to 70, very particularly preferably 25 to 65 and in particular 30 to 60% by weight. ,
  • solid is understood to mean the sum of the components (A) described above and the components (B) and (C) described below and, if appropriate, (D), which after the application and curing of the new ones Dual-cure powder slurries build up the relevant coatings, adhesive layers or seals.
  • the particles of the new dual-cure powder slurries also contain at least one blocked and / or partially blocked, in particular at least one blocked, polyisocyanate (B).
  • partially blocked polyisocyanates (B) are understood to mean polyisocyanates whose free isocyanate groups are not 100 mol% blocked with the blocking agents described below.
  • Blocked polyisocyanates which can be used are all blocked polyisocyanates, as described, for example, in German patent applications DE 196 17 086 A1, DE 196 31 269 A1 or DE 199 14 896 A1 in European patent applications EP 0 004 571 A1 or EP 0 582 051 A1 or in the American patent US 4,444,954 A.
  • Blocked and / or partially blocked, in particular blocked, polyisocyanates (B) are preferably used which have at least one soft, flexible segment in the molecule which, as a component or building block of three-dimensional polymeric networks, lowers their glass transition temperature Tg.
  • the soft, flexibilizing segments are double-bonded organic residues.
  • Suitable soft, flexibilizing, divalent organic radicals are substituted or unsubstituted, preferably unsubstituted, linear or branched, preferably linear, alkanediyl radicals having 4 to 30, preferably 5 to 20 and in particular 6 carbon atoms, which can also contain cyclic groups within the carbon chain ,
  • linear alkanediyl radicals examples include tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonane-1, 9-diyl, decane-1, 10-diyl, undecane-1, 11-diyl dodecane-1, 12-diyl, Tridecane-1, 13-diyl, tetradecane-1, 14-diyl, pentadecane-1, 15-diyl, hexadecane-1, 16-diyl, heptadecane-1, 17-diyl, octadecane-1, 18-diyl, nonadecane 1, 19-diyl or eicosan-1, 20-diyl, preferably tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonane-1, 9-diyl,
  • alkanediyl radicals which also contain cyclic groups in the carbon chain are 2-heptyl-1-pentyl-cyclohexane-3,4-bis (non-9-yl), cyclohexane-1, 2-, -1, 4- or -1, 3-bis (methyl), cyclohexan-1, 2-, 1,4- or -1, 3-bis (eth-2-yl), cyclohexan-1, 3-bis (prop-3 -yl) or cyclohexan-1, 2-, 1, 4- or 1, 3-bis (but-4-yl).
  • Suitable double-bonded organic residues are divalent polyester residues with repeating polyester portions of the formula - (- CO- (CHR 1 ) m -
  • suitable divalent organic radicals are divalent linear polyether radicals, preferably with a number average molecular weight from 400 to 5,000, in particular from 400 to 3,000.
  • Linear or branched polyether radicals derived from poly (oxyethylene) glycols, poly (oxypropylene) glycols and poly (oxybutylene) glycols are mentioned as particularly suitable examples.
  • linear double-bonded siloxane residues such as those present in silicone rubbers, hydrogenated polybutadiene or polyisoprene residues, random or alternating butadiene-isoprene copolymer residues or butadiene-isoprene graft copolymer residues, which may also contain copolymerized styrene, and ethylene-propylene residues consideration.
  • Suitable inert organic radicals are alkyl groups, in particular methyl groups, halogen atoms, nitro groups, nitrile groups or alkoxy groups.
  • alkanediyl radicals which contain no cyclic groups in the carbon chain are advantageous and are therefore used with preference.
  • blocked or partially blocked polyisocyanates (B) there can only be one type of the soft, flexibilizing, double-bonded organic radicals described above. However, at least two different double-bonded organic radicals can also be used.
  • Suitable polyisocyanates which are suitable for preparing the blocked or partially blocked polyisocyanates (B) are acyclic aliphatic diisocyanates such as trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene pentamethyl-, hexamethylene diisocyanate, heptamethylene diisocyanate, ethylethylene diisocyanate, trimethylhexane diisocyanate or acyclic aliphatic diisocyanates having a cyclic group in its Contain carbon chains, such as diisocyanates, derived from dimer fatty acids, as sold by the Henkel company under the trade name DDI 1410 and described in the patents WO 97/49745 and WO 97/49747, in particular 2-heptyl-3,4-bis (9 - Isocyanatononyl) -1-pentyl-cyclohexane, or 1,2-, 1, 4- or 1, 3- bis (
  • acyclic aliphatic diisocyanates those which do not contain any cyclic groups in their carbon chain are particularly advantageous.
  • hexamethylene diisocyanate is again particularly advantageous and is therefore used with very particular preference.
  • suitable polyisocyanates which are suitable for the preparation of blocked polyisocyanates (B) are the oligomers of the abovementioned diisocyanates, in particular hexamethylene diisocyanate, the isocyanurate, urea, urethane, biuret, uretdione, iminooxadiazinedione, carbodiimide and / or contain allophanate groups.
  • blocking agents for producing the blocked and / or partially blocked polyisocyanates (B) are the blocking agents known from US Pat. No. 4,444,954 A or US Pat. No. 5,972,189 A, such as
  • phenols such as phenol, cresol, xylenol, nitrophenol, chlorophenol, ethylphenol, t-butylphenol, hydroxybenzoic acid, esters of this acid or 2,5-di-tert-butyl-4-hydroxytoluene;
  • lactams such as ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam or ß-propiolactam
  • Alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, n-amyl alcohol, t-amyl alcohol, lauryl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol ether Methoxymethanol, 2 - (- hydroxyethoxy) phenol, 2- (hydroxypropoxy) phenol, glycolic acid, glycolic acid ester, lactic acid, lactic acid ester, methylolurea, methylolmelamine, diacetone alcohol, Ethylene chlorohydrin, ethylene bromohydrin, 1, 3-dichloro-2-propanol, 1, 4-cyclohexyldim
  • mercaptans such as butyl mercaptan, hexyl mercaptan, t-butyl mercaptan, t-dodecyl mercaptan, 2-mercaptobenzothiazole, thiophenol, methylthiophenol or ethylthiophenol;
  • acid amides such as acetoanilide, acetoanisidinamide, acrylamide, methacrylamide, acetic acid amide, stearic acid amide or benzamide;
  • imides such as succinimide, phthalimide or maleimide
  • amines such as diphenylamine, phenylnaphthylamine, xylidine, N-phenylxylidine, carbazole, aniline, naphthylamine, butylamine, dibutylamine or butylphenylamine;
  • imidazoles such as imidazole or 2-ethylimidazole
  • ureas such as urea, thiourea, ethylene urea, ethylene thiourea or 1,3-diphenyl urea;
  • x) carbamates such as phenyl N-phenylcarbamate or 2-oxazolidone
  • oximes such as acetone oxime, formal doxime, acetaldoxime, acetoxime, methyl ethyl ketoxime, diisobutyl ketoxime, diacetyl monoxime, benzophenone oxime or chlorohexanone oxime;
  • xiii) salts of sulfurous acid such as sodium bisulfite or potassium bisulfite
  • hydroxamic acid esters such as benzyl methacrylohydroxamate (BMH) or allyl methacrylohydroxamate; or
  • the particles of the new dual-cure powder slurries contain at least one, in particular one, olefinically unsaturated component (C).
  • the olefinically unsaturated constituent (C) is free of any isocyanate-reactive functional groups except for any traces that are technically caused. Statistically, it contains at least two, preferably at least three, carbon-carbon double bonds in the molecule that can be activated with actinic radiation.
  • Well-suited carbon-carbon double bonds are, for example, in (meth) acryloyl, ethacryloyl, crotonate, cinnamate, vinyl ether, vinyl ester, ethenylarylene, dicyclopentadienyl, norbornenyl, isoprenyl, isoprenyl, isopropenyl, allyl - or butenyl groups; Ethenylarylene, dicyclopentadienyl, norbornenyl, isoprenyl, isopropenyl, allyl or butenyl ether groups or ethenylarylene, dicyclopentadienyl, norbornenyl, isoprenyl, isopropenyl, allyl or butenyl ester groups.
  • (meth) acryloyl groups in particular acryloyl groups, are of particular advantage and are therefore used with very particular preference in accordance with the invention.
  • the olefinically unsaturated constituents (C) contain on average at least one, preferably at least two, blocked with pyrazole and / or at least one, in particular one, substituted pyrazole, preferably a dialkylpyrazole, preferably a dimethylpyrazole and in particular 3,5-dimethylpyrazole isocyanate groups.
  • they contain on average at least two, in particular at least three, of the carbon-carbon double bonds described above which can be activated with actinic radiation in the molecule.
  • hydrophilic groups can also contain at least one hydrophilic group.
  • suitable hydrophilic groups are the potentially ionic groups described above, in particular the acid groups forming anions.
  • They can be prepared by reacting at least one, in particular one, of the polyisocyanates described above with pyrazole and / or at least one, in particular one, substituted pyrazole, preferably a dialkylpyrazole, preferably a dimethylpyrazole and in particular 3,5-dimethylpyrazole, and at least one compound, containing in the molecule an isocyanate-reactive functional group and at least two, in particular at least three, of the carbon-carbon double bonds described above which can be activated with actinic radiation.
  • Suitable compounds containing an isocyanate-reactive functional group and at least two carbon-carbon double bonds which can be activated with actinic radiation are the above-described monomers (a1), trimethylolpropane di (meth) acrylate, glycerol di (meth) acrylate, pentaerythritol trii ( meth) acrylate and dipentaerythritol penta (meth) acrylate.
  • the molar ratio of blocking agent to compound is chosen so that the resulting constituents (C) contain the required number of blocked isocyanate groups and groups with olefinically unsaturated carbon-carbon double bonds.
  • the polyisocyanates can also be reacted with at least one compound which has at least one isocyanate-reactive functional group, in particular a hydroxyl group, and at least one, in particular one of the above-described hydrophilic groups, preferably an acid group, in particular a carboxyl group.
  • suitable compounds of this type are hydroxyacetic acid and dimethylolpropionic acid.
  • the content of the olefinically unsaturated constituents (C) in the particles of the new dual-cure powder slurries can vary widely and depends on the requirements of the individual case, in particular on the crosslinking density, in the coatings according to the invention produced from the new dual-cure powder slurries , Adhesive layers and seals should be adjusted.
  • the content, based in each case on the solids content of the new dual-cure powder slurries, is preferably 5 to 60, preferably 5 to 55 and in particular 5 to 50% by weight.
  • the new dual-cure powder slurries can also contain at least one additive (D).
  • the new dual-cure powder slurries can be pigmented and / or filled and / or colored.
  • the particles of the new pigmented dual-cure powder slurries contain at least one pigment and / or at least one filler (D); i.e. the total amount of pigments and / or fillers (D) used is in the particles.
  • the new pigmented dual-cure powder slurries contain pigment-free particles and at least one powdered pigment (D) and / or at least one powdered filler (D); i.e. all pigments are in a separate solid phase.
  • D powdered pigment
  • D powdered filler
  • the new pigmented dual-cure powder slurries contain particles which are part of the pigments used and / or
  • Contain fillers (D) whereas the other part of the pigments and / or fillers (D) is a separate solid phase.
  • the proportion present in the particles can be the main amount, ie more than 50% of the pigments and / or fillers (D) used. However, there can also be less than 50% in the particles. With regard to the particle sizes, what has been said above also applies here analogously.
  • Suitable pigments (D) are coloring and / or effect-imparting, electrically conductive, magnetically shielding and / or fluorescent pigments or metal powders.
  • the pigments (D) can be organic or inorganic in nature.
  • suitable effect pigments (D) are metal flake pigments such as commercially available aluminum bronzes, aluminum bronzes chromated according to DE 36 36 183 A1, and commercially available stainless steel bronzes as well as non-metallic effect pigments, such as pearlescent or interference pigments, platelet-shaped effect pigments based on iron oxide, which is a color Has pink to brownish red or liquid crystalline effect pigments.
  • suitable inorganic color pigments (D) are white pigments such as titanium dioxide, zinc white, zinc sulfide or lithopone; Black pigments such as carbon black, iron-manganese black or spinel black; Colored pigments such as chromium oxide, chromium oxide hydrate green, cobalt green or ultramarine green, cobalt blue, ultramarine blue or manganese blue, ultramarine violet or cobalt and manganese violet, iron oxide red, cadmium sulfoselenide, molybdate red or ultramarine red; Iron oxide brown, mixed brown, Spinel and corundum phases or chrome orange; or iron oxide yellow, nickel titanium yellow, chrome titanium yellow, cadmium sulfide, cadmium zinc sulfide, chrome yellow or bismuth vanadate.
  • white pigments such as titanium dioxide, zinc white, zinc sulfide or lithopone
  • Black pigments such as carbon black, iron-manganese black or spinel black
  • organic coloring pigments (D) examples include monoazo pigments, bisazo pigments, anthraquinone pigments, benzimidazole pigments, quinacridone pigments, quinophthalone pigments, diketopyrrolopyrrole pigments, dioxazine pigments,
  • Indanthrone pigments isoindoline pigments, isoindolinone pigments, azomethine pigments, thioindigo pigments, metal complex pigments, perinone pigments, perylene pigments, phthalocyanine pigments or aniline black.
  • fluorescent pigments (D) zu (daylight pigments) are bis (azomethine) pigments.
  • Examples of suitable electrically conductive pigments (D) are titanium dioxide / tin oxide pigments.
  • Examples of magnetically shielding pigments (D) are pigments based on iron oxides or chromium dioxide.
  • suitable metal powders (D) are powders made of metals and metal alloys, such as aluminum, zinc, copper, bronze or brass.
  • Suitable organic and inorganic fillers (D) are chalk, calcium sulfates, barium sulfate, silicates such as talc, mica or kaolin, silicas, oxides such as aluminum hydroxide or magnesium hydroxide or organic fillers such as plastic powder, in particular made of polylamide or polyacrylonitrile.
  • silicas oxides such as aluminum hydroxide or magnesium hydroxide
  • organic fillers such as plastic powder, in particular made of polylamide or polyacrylonitrile.
  • platelet-shaped inorganic fillers (D) such as talc or mica
  • non-platelet-shaped inorganic fillers such as chalk, dolomite, calcium sulfate or barium sulfate
  • suitable transparent fillers (D) are those based on silicon dioxide, aluminum oxide or zirconium oxide, but in particular nanoparticles based on this. These transparent fillers can also be present in the unpigmented coating materials according to the invention, such as clear lacquers.
  • the proportion of pigments and / or fillers (D) in the pigmented new dual-cure powder slurries to be used according to the invention can vary very widely and depends on the requirements of the individual case, in particular on the effect to be set and / or the opacity of the pigments used in each case and / or fillers (D).
  • the content is preferably 0.5 to 80, preferably 0.8 to 75, particularly preferably 1.0 to 70, very particularly preferably 1.2 to 65 and in particular 1.3 to 60% by weight, based in each case on the Solid content of the new dual-cure powder slurry.
  • the new dual-cure powder slurries can contain, in addition to the pigments and / or fillers (D) or instead of these, molecularly dispersed dyes (D).
  • These molecularly disperse dyes (D) can be either in the particles or in the continuous, i.e. aqueous phase of the new dual-cure powder slurries.
  • the proportion present in the particles can be the main amount, ie more than 50% of the organic dyes used (D). However, there may also be less than 50% in the particles.
  • the distribution of the organic dyes (D) between the phases can correspond to the thermodynamic equilibrium which results from the solubility of the organic dyes (D) in the phases. The distribution can also be far from the thermodynamic equilibrium. All organic dyes (D) which are soluble in the new dual-cure powder slurries in the sense described above are suitable. Lightfast organic dyes are well suited. Lightfast organic dyes (D) with little or no tendency to migrate from the coatings, adhesive layers and seals made from the new dual-cure powder slurries are particularly suitable. The person skilled in the art can estimate the tendency to migrate on the basis of his general specialist knowledge and / or determine it with the aid of simple preliminary tests, for example in the context of sound tests.
  • the content of the new, dual-cure powder slurries in the molecularly dispersed organic dyes (D) can vary extremely widely and is based primarily on the color and shade to be adjusted, and on the amount of any pigments and / or or fillers (D).
  • Additives (D) which, depending on their physicochemical properties and their effects, are present in the particles and / or the continuous phase of the pigmented, filled and / or colored and unpigmented, filled and / or colored new dual-cure powder slurries are additional crosslinking agents, such as aminoplast resins, as described, for example, in Römpp Lexikon Lacke und Druckmaschine, Georg Thieme Verlag, 1998, page 29, “Aminoharze”, the textbook “Lackadditive” by Johan Bieleman, Wiley-VCH, Weinheim, New York, 1998, pages 242 ff., The book “Paints, Coatings and Solvents", second completely revised edition, Edit. D. Stoye and W.
  • the new dual-cure powder slurries preferably contain non-ionic and ionic thickeners (D) in the continuous phase. This effectively counteracts the tendency of the comparatively large, solid and / or highly viscous particles to sediment.
  • nonionic thickeners (D) are hydroxyethyl cellulose and polyvinyl alcohols.
  • nonionic associative thickeners are also available on the market in a wide range. They usually consist of water-dilutable polyurethanes, which are reaction products of water-soluble polyether diols, aliphatic diisocyanates and monofunctional hydroxylic compounds with an organophilic radical. Ionic thickeners (D) are also commercially available. These usually contain anionic groups and are based in particular on special polyacrylate resins with acid groups, which can be partially or completely neutralized.
  • Suitable thickeners (D) are from the textbook “Lackadditive” by Johan Bielemann, Wiley-VCH, Weinheim, New York, 1998, pages 31 to 65, or from German patent applications DE 199 08 018 A1, page 12, line 44 , up to page 14, line 65, DE 198 41 842 A1 or 198 35 296 A1.
  • the new dual-cure powder slurries can contain both of the thickener types (D) described above.
  • the amount of thickeners to be added and the ratio of ionic to nonionic thickeners depends on the desired viscosity of the slurry according to the invention, which in turn are determined by the required settling stability and the special requirements of the spray application. The person skilled in the art can therefore determine the amount of thickeners and the ratio of the thickener types to one another on the basis of simple considerations, possibly with the aid of preliminary tests.
  • a viscosity range of 50 to 1,500 mPas at a shear rate of 1,000 S " 1 and from 150 to 8,000 mPas at a shear rate of 10 s -1 and from 180 to 12,000 mPas at a shear rate of 1 s -1 is preferably set.
  • the new dual-cure powder slurries assume a low-viscosity condition, which ensures good processability. Without shear stress, however, the viscosity increases and in this way ensures that the dual-cure coating materials, adhesives or sealants on the substrates to be coated, glued and / or sealed after application have a reduced tendency to run off on vertical surfaces ("Runner formation").
  • the solids content of the new dual-cure powder slurries can vary very widely.
  • the content is preferably 10 to 80, preferably 12 to 75, particularly preferably 14 to 70, very particularly preferably 16 to 65 and in particular 18 to 60% by weight, in each case based on the new dual-cure powder slurry.
  • a first preferred variant of the production is based on a pigmented powder coating which, as in the product information from the company BASF Lacke + Wegner AG, “Powder Coatings", 1990 or the company lettering from BASF Coatings AG "Powder Coatings, Powder Coatings for Industrial Applications", January 2000, by homogenizing and dispersing, for example by means of an extruder or screw kneader, and grinding. After making the powder coatings these are prepared for dispersion by further grinding and, if necessary, sifting and sieving.
  • the aqueous powder coating dispersion can then be prepared from the powder coating by wet grinding or by stirring in dry powder coating. Wet grinding is particularly preferred.
  • the new dual-cure powder slurry is then filtered before use.
  • the particles of the dual-cure powder slurries can still be mechanically crushed in the wet state, which is referred to as wet grinding.
  • Conditions are preferably used here such that the temperature of the millbase does not exceed 70, preferably 60 and in particular 50 ° C.
  • the specific one is
  • Energy input during the grinding process 10 to 1,000, preferably 15 to 750 and in particular 20 to 500 Wh / g.
  • a wide variety of devices can be used for wet grinding, producing high or low shear fields.
  • suitable devices which generate low shear fields are customary and known stirred kettles, gap homogenizers, microfluidizers or dissolvers.
  • Suitable devices which generate high shear fields are conventional and known agitator mills or inline dissolvers.
  • the devices which generate high shear fields are particularly preferably used.
  • the agitator mills are particularly advantageous according to the invention and are therefore used with very particular preference.
  • the new dual-cure powder slurry is used in wet grinding with the aid of suitable devices, such as pumps, the devices described above fed and cycled over it until the desired particle size is reached.
  • the new dual-cure powder slurry to be ground is only a part, preferably 5 to 90, preferably 10 to 80 and in particular 20 to 70% by weight of the above-described thickeners ( D) contains. If this variant of the preferred method is used, the remaining amount of thickener (D) is to be added after the wet grinding.
  • the production of the new dual-cure powder slurries is preferably carried out with the exclusion of actinic radiation in order to avoid premature crosslinking or other damage to the new dual-cure powder slurries.
  • the new dual-cure powder slurries are outstandingly suitable as dual-cure coating materials, adhesives and sealants or for their manufacture
  • the new dual-cure coating materials are excellent for the production of single or multi-layer, color and / or effect, electrically conductive, magnetically shielding or fluorescent coatings, such as filler coatings, basecoats, solid-color coatings or
  • the new dual-cure adhesives are excellent for the production of adhesive layers, and the dual-cure sealants according to the invention are outstandingly suitable for the production of seals.
  • the new dual-cure coating materials are used for the production of color and / or effect multi-layer coatings by the wet-on-wet method, in which a basecoat, in particular a waterborne basecoat, is applied to the surface of a substrate, after which the resulting Basecoat, without curing, dries and covered with a clear coat. The two layers are then hardened together.
  • the application of the new dual-cure coating materials, adhesives and sealants has no special features, but can be done by all common application methods, such as spraying, knife coating, brushing, pouring, dipping, trickling or rolling.
  • Spray application methods are preferably used in the dual-cure coating materials according to the invention, such as, for example, compressed air spraying, airless spraying, high rotation, electrostatic spray application (ESTA), if appropriate combined with hot spray application such as, for example, hot-air hot spraying.
  • the application is preferably carried out in the absence of daylight in order to prevent premature crosslinking of the new dual-cure powder slurries.
  • Suitable substrates are all those whose surface is not damaged by the joint use of actinic radiation and heat in the curing of the dual-cure layers located thereon.
  • the substrates preferably consist of metals, plastics, wood, ceramics, stone, textiles, fiber composites, leather, glass, glass fibers, glass and rock wool, mineral and resin-bound building materials, such as gypsum and cement boards or roof tiles, as well as composites of these materials.
  • the new dual-cure coating materials, adhesives and sealing compounds are not only for applications in the fields of
  • Motor vehicle serial painting and automotive refinishing are excellently suitable, but also come for coating, gluing and that
  • Components such as motor windings or transformer windings (electrical).
  • primers can be used which are produced in a customary and known manner from electrocoat materials. Both anodic and cathodic electrocoat materials are used for this, in particular but cathodic electrodeposition paints into consideration.
  • non-functionalized and / or non-polar plastic surfaces these can be subjected to a pretreatment, such as with a plasma or with flame treatment, or provided with a hydro primer in a known manner before the coating.
  • the thermal curing of the applied dual-cure powder slurries according to the invention also has no special features in terms of method, but instead takes place according to the customary and known thermal methods, such as heating in a forced-air oven or irradiation with IR lamps.
  • Radiation sources such as high-pressure or low-pressure mercury vapor lamps, which may be doped with lead to open a radiation window up to 405 nm, or electron beam sources are suitable for curing with actinic radiation. Further examples of suitable methods and devices for curing with actinic radiation are described in German patent application DE 198 18 735 A1, column 10, lines 31 to column 12, line 22. A continuous UV system from IST is preferably used.
  • the resulting coatings in particular the single-layer or multi-layer color and / or effect coatings and clear coats according to the invention are easy to produce and have excellent optical properties and very high light, chemical, water and weather resistance. In particular, they are free from cloudiness and inhomogeneities. They are also tough, flexible and scratch-resistant. They have excellent interlayer adhesion between basecoat and clearcoat and good to very good adhesion to automotive refinish. As is known, in the case of serial refinishing of motor vehicles, the completely painted bodies are again overcoated with the original series paintwork (OEM).
  • OEM original series paintwork
  • the adhesive layers permanently bond a wide variety of substrates to one another and have a high chemical and mechanical stability even at extreme temperatures and / or temperature fluctuations.
  • the seals seal the substrates in the long term, and they even have high chemical and mechanical stability even in the case of extreme temperatures and / or temperature fluctuations. V. m. exposed to aggressive chemicals.
  • it is a very significant advantage of the new dual-cure powder slurries and the new dual-cure coating materials, adhesives and sealants that they can be used even in the shadow zones of complex three-dimensional substrates such as car bodies, radiators or electrical winding goods provide optimal, in particular complete, illumination of the shadow zones with actinic radiation coatings, adhesive layers and seals whose application properties profile at least approximates that of the coatings, adhesive layers and seals outside the shadow zones.
  • the coatings, adhesive layers and seals located in the shadow zones are no longer easily damaged by mechanical and / or chemical action.
  • the primed or unprimed substrates usually used in the technological fields listed above which are coated with at least one new coating, bonded with at least one new adhesive layer and / or sealed with at least one new seal, have a particularly long profile with a particularly advantageous application-related property profile Service life on what makes them economically particularly attractive.
  • Desmodur ® N 3300 isocyanurate-containing polyisocyanate from hexamethylene diisocyanate; isocyanate content according to DIN EN ISO 11909: 21,%; viscosity according to DIN EN ISO 3219 / A
  • Desmodur ® N 3300 isocyanurate-containing polyisocyanate from hexamethylene diisocyanate; isocyanate content according to DIN EN ISO 11909: 21,%; viscosity according to DIN EN ISO 3219 / A
  • a reaction vessel equipped with a heater, stirrer, internal thermometer, gas inlet and reflux condenser .3 at 23 ° C: 3,090 mPas; Bayer AG
  • the isocyanate content was 0.1% by weight.
  • the resulting solution of the hydrophilic component (C) was adjusted to a solids content of 74.2% by weight with further methyl ethyl ketone.
  • the viscosity was 1,760 mPas at 23 ° C.
  • Thermometer and nitrogen inlet tube 1,068 parts by weight of Desmodur® N 3300 and 380 parts by weight of methyl ethyl ketone were placed in and slowly heated to 40 ° C.
  • the preparation of the new dual-cure powder slurries 1 and 2 In a suitable glass mixing vessel equipped with a high-speed stirrer, 173.61 parts by weight of the solution of a methacrylate copolymer (A) (solids content: 57.6% by weight in methyl ethyl ketone; acid number : 32.4 mg KOH / g solid resin; hydroxyl number: 150 mg KOH / g solid resin; OH equivalent weight: 374 g / mol; glass transition temperature: 12.7 ° C), 80.55 parts by weight of the solution of the blocked polyisocyanate (B) des Preparation example 3, 2.85 parts by weight of dimethylethanolamine and, for example 1, 62.5 parts by weight of component (C) from preparation example 1 and for example 2, 62.5 parts by weight of component (C) from preparation example 2, and weighed together intensively.
  • A methacrylate copolymer
  • B blocked polyisocyanate
  • a photoinitiator mixture consisting of Irgacure® 184 (commercially available photoinitiator from Ciba Specialty Chemicals) and Lucirin® TPO (commercially available photoinitiator from BASF AG) in a weight ratio of 5: 1, 1.63 parts by weight of a commercially available UV -Absorbers (Tinuvin ® 400) and 1.63 parts by weight of a commercially available reversible radical scavenger (HALS; Tinuvin ® 123) added and also mixed well.
  • Irgacure® 184 commercially available photoinitiator from Ciba Specialty Chemicals
  • Lucirin® TPO commercially available photoinitiator from BASF AG
  • Deionized water was slowly added to this organic phase in an amount corresponding to a desired solids content of the dual-cure powder slurries 1 and 2 of 36 to 37% by weight, with stirring. After all the water had been added, the resulting dispersions were filtered through 1 ⁇ m Cuno ⁇ pressure filters. The methyl ethyl ketone was then distilled off under vacuum at a maximum of 35 ° C.
  • the dual-cure powder slurries 1 and 2 were obtained by adding 0.31 part by weight of a commercially available leveling agent (Baysilone® AI 3468 from Bayer AG) and 6.1 parts by weight of a commercially available thickener (Acrysol® RM-8W from the company Rohm & Haas) completed. Finally, they were filtered through 1 ⁇ m Cuno ⁇ pressure filters.
  • a commercially available leveling agent Boysilone® AI 3468 from Bayer AG
  • a commercially available thickener Acrysol® RM-8W from the company Rohm & Haas
  • the dual-cure powder slurries 1 and 2 had a solids content of 36.2% by weight and were stable in storage and easy to apply.
  • example 3 the dual-cure powder slurry from example 1 was used.
  • example 4 the dual-cure powder slurry of example 2 was used
  • the dual-cure powder slurries of Examples 1 and 2 were applied pneumatically with a gravity cup gun to steel sheets which had been pre-coated with a black water-based paint.
  • the wet layer thickness of the applied layers was chosen so that the cured clearcoats had a dry layer thickness of 30 ⁇ m. After a flash-off time of 5 minutes at 23 ° C, the applied layers were cured under dual-cure conditions.
  • the radiation curing was carried out with a UV continuous system from the company IST.
  • the irradiation was carried out under atmospheric air.
  • the radiation dose was determined using a commercially available dosimeter immediately before curing and, if necessary, varied by changing the belt speed.
  • the radiation source was a medium pressure mercury lamp.
  • Adhesive tape tear (characteristic value) 0 0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Sealing Material Composition (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Thermisch und mit aktinischer Strahlung härtbare Pulverslurries, enthaltend feste und/oder hochviskose, unter Lagerungs- und Anwendungsbedingungen dimensionsstabile Partikel, die (A) mindestens ein Bindemittel, das frei ist von Kohlenstoff-Kohlenstoff-Doppelbindungen, die mit aktinischer Strahlung aktivierbar sind, enthaltend mindestens ein (Meth)Acrylatcopolymerisat- mit im statistischen Mittel mindestens einer isocyanatreaktiven funktionellen Gruppe und mindestens einer Ionen bildenden Gruppe im Molekül, (B) mindestens ein blockiertes und/oder teilblockiertes Polyisocyanat und (C) mindestens einen olefinisch ungesättigten Bestandteil, der frei ist von isocyanatreaktiven funktionellen Gruppen und im statistischen Mittel mindestens eine mit Pyrazol oder mindestens einem substitiuierten Pyrazol blockierte Isocyanatgruppe und mindestens zwei mit aktinischer Strahlung aktivierbare Kohlenstoff-Kohlenstoff-Doppelbindungen im Molekül enthält, herstellbar durch die Umsetzung mindestens eines Polyisocyanats mit Pyrazol und/oder mindestens einem substitiuierten Pyrazol sowie mit mindestens einer Verbindung, enthaltend eine isocyanatreaktive funktionelle Gruppe und mindestens zwei mit aktinischer Strahlung aktivierbare Kohlenstoff-Kohlenstoff-Doppelbindungen enthalten; Verfahren zu ihrer Herstellung und ihre Verwendung.

Description

Thermisch und mit aktinischer Strahlung härtbare Pulverslurries, Verfahren zu ihrer Herstellung und ihre Verwendung
Die vorliegende Erfindung betrifft neue, thermisch und mit aktinischer Strahlung härtbare Pulverslurries. Außerdem betrifft die vorliegende Erfindung ein neues Verfahren zur Herstellung von thermisch und mit aktinischer Strahlung härtbaren Pulverslurries.
Des Weiteren betrifft die vorliegende Erfindung die Verwendung der neuen, thermisch und mit aktinischer Strahlung härtbaren Pulverslurries als Beschichtungsstoffe, Klebstoffe und Dichtungsmassen.
Insbesondere betrifft die vorliegende Erfindung die Verwendung der neuen, thermisch und mit aktinischer Strahlung härtbaren Pulverslurries als Klarlacke und als farb- und/oder effektgebende Beschichtungsstoffe für die Herstellung von Klarlackierungen, ein- oder mehrschichtigen färb- und/oder effektgebenden Beschichtungen und Kombinationseffektschichten auf den Gebieten der Kraftfahrzeugerstlackierung, Kraftfahrzeugreparaturlackierung, der industriellen Lackierung, inklusive Coil Coating, Container Coating und Beschichtung oder Imprägnierung von elektrotechnischen Bauteilen, der Lackierung von Möbeln, Fenstern, Türen und Bauwerken im Innen- und Außenbereich.
Unter aktinischer Strahlung ist hier und im Folgenden elektromagnetische Strahlung wie nahes Infrarot, sichtbares Licht, UV-Strahlung oder Röntgenstrahlung, insbesondere UV- Strahlung, und Korpuskularstrahlung wie Elektronenstrahlung zu verstehen.
Die kombinierte Härtung durch Hitze und aktinische Strahlung wird von der Fachwelt auch als Dual-Cure bezeichnet. Demgemäß werden hier und im Folgenden die in Rede stehenden neuen Pulverslurries, Beschichtungsstoffe, Klebstoffe und Dichtungsmassen als Dual-Cure-Pulverslurries, -Beschichtungsstoffe, -Klebstoffe und - Dichtungsmassen bezeichnet.
Hier und im Folgenden ist unter einer Kombinationseffektschicht eine Lackierung zu verstehen, die in einer färb- und/oder effektgebenden Beschichtung mindestens zwei Funktionen erfüllt. Funktionen dieser Art sind insbesondere der Schutz vor Korrosion, die Haftvermittlung, die Absorption mechanischer Energie und die Färb- und/oder Effektgebung. Vor allem dient die Kombinationseffektschicht der Absorption mechanischer Energie sowie der Färb- und/oder Effektgebung zugleich; sie erfüllt also die Funktionen einer Füllerlackierung oder Steinschlagschutzgrundierung und einer Basislackierung. Vorzugsweise hat die Kombinationseffektschicht darüber hinaus noch Korrosionsschutzwirkung und/oder haftvermittelnde Wirkung (vgl. Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seiten 49 und 51 , »Automobillacke«).
Thermisch und mit aktinischer Strahlung härtbare Pulverslurries, enthaltend feste und/oder hochviskose, unter Lagerungs- und Anwendungsbedingungen dimensionsstabile Partikel, enthaltend
(A) ein Bindemittel, das frei ist von Kohlenstoff-Kohlenstoff-Doppelbindungen, die mit aktinischer Strahlung aktivierbar sind, enthaltend mindestens ein (Meth)Acrylatcopolymerisat mit im statistischen Mittel mindestens einer isocyanatreaktiven funktionellen Gruppe und mindestens einer Ionen bildenden Gruppe im Molekül,
(B) mindestens ein blockiertes und/oder teilblockiertes Polyisocyanat und
(C) mindestens einen olefinisch ungesättigten Bestandteil, der frei ist von isocyanatreaktiven funktionellen Gruppen und im statistischen Mittel mehr als vier mit aktinischer Strahlung aktivierbare Kohlenstoff-Kohlenstoff- Doppelbindungen im Molekül enthält;
sind aus der deutschen Patentanmeldung DE 101 15 605 A 1 bekannt.
Als Bestandteil (C) können unter anderem die aus der deutschen Patentanmeldung DE 100 41 635 A 1 bekannten Urethan(meth)acrylate, die blockierte Isocyanatgruppen enthalten, verwendet werden. Sie sind herstellbar durch die Umsetzung von freie Isocyanatgruppen enthaltenden Urethan(meth)acrylaten, wie sie beispielsweise aus der europäischen Patentanmeldung EP 0 928 800 A 1 , Seite 3, Zeilen 18 bis 51 , und Seite 4,Zeilen 41 bis 55, bekannt sind, mit üblichen und bekannten Blockierungsmitteln. Für die Herstellung der freie Isocyanatgruppen enthaltenden Urethan(meth)acrylate können nach EP 0 928 800 A 1 unter anderem auch Umsetzungsprodukte von mehrwertigen Alkoholen mit (Meth)Acrylsäure in einem Molverhältnis, dass die Umsetzungsprodukte noch eine Hydroxylgruppe enthalten, verwendet werden.
Vorzugsweise werden aber Bestandteile (C) verwendet, die keine Isocyanatgruppen und/oder blockierte Isocyanatgruppen enthalten.
Die bekannten Dual-Cure-Pulverslurries sind einfach herstellbar und weisen ein hervorragendes Applikationsverhalten haben. Sie liefern Beschichtungen, Klebschichten und Dichtungen, insbesondere Beschichtungen, wie Klarlackierungen, ein- oder mehrschichtige färb- und/oder effektgebende Beschichtungen und Kombinationseffektschichten, die ein sehr gutes anwendungstechnisches Eigenschaftsprofil haben. Auf und in komplex geformten dreidimensionalen Substraten haben sie insbesondere im Durchlaufbetrieb auch bei nicht optimaler, insbesondere nicht vollständiger, Ausleuchtung der Schattenzonen mit aktinischer Strahlung ein sehr gutes anwendungstechnisches Eigenschaftprofil, insbesondere was die Kratzfestigkeit und die Chemikalienfestigkeit betrifft, so dass die Härtung mit aktinischer Strahlung apparativ und mess- und regeltechnisch vereinfacht und die Prozesszeit verkürzt werden können.
Für ihren Einsatz insbesondere in der Automobilserienlackierung müssen die bekannten Dual-Cure-Pulverslurries stetig weiterentwickelt werden, um den wachsenden Ansprüchen des Marktes zu genügen. Insbesondere muss ihre Stabilität gesteigert werden, und die aus ihnen hergestellten Beschichtungen, insbesondere die Klarlackierungen, müssen hinsichtlich Glanz, Haze, Benetzung, Verlauf, Oberflächenqualität, Freiheit von Oberflächenstörungen wie Kocher, Krater, Risse oder Mikrobläschen, Witterungsstabilität, Chemikalienstabilität, Schwitzwasserbeständigkeit, Haftung, Härte, Flexibilität, Kratzfestigkeit und Steinschlagbeständigkeit stetig weiterentwickelt werden, ohne dass dabei die erreichten Vorteile verloren gehen.
Aufgabe der vorliegenden Erfindung ist es, neue Dual-Cure-Pulverslurries bereitzustellen, die einfach herstellbar und lagerstabil sind. Die hieraus hergestellten neuen Beschichtungen, insbesondere die neuen Klarlackierungen, sollen hinsichtlich Glanz, Haze, Benetzung, Verlauf, Oberflächenqualität, Freiheit von Oberflächenstörungen wie Kocher, Krater, Risse oder Mikrobläschen, Witterungsstabilität, Chemikalienstabilität, Schwitzwasserbeständigkeit, Haftung, Härte, Flexibilität, Kratzfestigkeit und Steinschlagbeständigkeit ein sehr gutes, ausgewogenes Eigenschaftsprofil aufweisen, ohne dass dabei die bisher erreichten Vorteile verloren gehen.
Dem gemäß wurden die neuen, thermisch und mit aktinischer Strahlung härtbaren Pulverslurries gefunden, enthaltend feste und/oder hochviskose, unter Lagerungs- und Anwendungsbedingungen dimensionsstabile Partikel, enthaltend
(A) mindestens ein Bindemittel, das frei ist von Kohlenstoff-Kohlenstoff- Doppelbindungen, die mit aktinischer Strahlung aktivierbar sind, enthaltend mindestens ein (Meth)Acrylatcopolymerisat mit im statistischen Mittel mindestens einer isocyanatreaktiven funktionellen Gruppe und mindestens einer Ionen bildenden Gruppe im Molekül,
(B) mindestens ein blockiertes und/oder teilblockiertes Polyisocyanat und
(C) mindestens einen olefinisch ungesättigten Bestandteil, der frei ist von isocyanatreaktiven funktionellen Gruppen und im statistischen Mittel mindestens eine mit Pyrazol oder mindestens einem substitiuierten Pyrazol blockierte Isocyanatgruppe und mindestens zwei mit aktinischer Strahlung aktivierbare Kohlenstoff-Kohlenstoff-Doppelbindungen im Molekül enthält, herstellbar durch1 die Umsetzung mindestens eines Polyisocyanats mit Pyrazol und/oder mindestens einem substitiuierten Pyrazol sowie mit mindestens einer Verbindung, enthaltend eine isocyanatreaktive funktioneile Gruppe und mindestens zwei mit aktinischer Strahlung aktivierbare Kohlenstoff-Kohlenstoff- Doppelbindungen.
Im Hinblick auf den Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, dass die der Erfindung zugrundeliegende Aufgabe mit Hilfe der neuen Dual-Cure-Pulverslurries gelöst werden konnte.
Vor allem war es überraschend, dass die neuen Dual-Cure-Pulverslurries einfach herstellbar und lagerstabil waren. Die hieraus hergestellten neuen Beschichtungen, insbesondere die neuen Klarlackierungen, wiesen hinsichtlich Glanz, Haze, Benetzung, Verlauf, Oberflächenqualität, Freiheit von Oberflächenstörungen, wie Kocher, Krater, Risse oder Mikrobläschen, Witterungsstabilität, Chemikalienstabilität, Schwitzwasserbeständigkeit, Haftung, Härte, Flexibilität, Kratzfestigkeit und Steinschlagbeständigkeit ein sehr gutes, ausgewogenes Eigenschaftsprofil auf, ohne dass dabei die durch die bekannten Dual-Cure-Pulverslurries erreichten Vorteile verloren gingen.
Insbesondere überraschte die breite Anwendbarkeit der neuen Dual-Cure- Pulverslurries auf den unterschiedlichsten Anwendungsgebieten. So konnten sie auch als Klebstoffe und Dichtungsmassen zur Herstellung von Klebschichten und Dichtungen mit sehr guten anwendungstechnischen Eigenschaften eingesetzt werden.
Die neuen Dual-Cure-Pulverslurries enthalten feste und/oder hochviskose, unter Lagerungs- und Anwendungsbedingungen dimensionsstabile Partikel.
Im Rahmen der vorliegenden Erfindung bedeutet „hochviskos", dass sich die Partikel unter den üblichen und bekannten Bedingungen der Lagerung und der Anwendung von Pulverslurries im Wesentlichen wie feste Partikel verhalten.
Die Partikel sind außerdem dimensionsstabil. Im Rahmen der vorliegenden Erfindung bedeutet „dimensionsstabil", dass die Partikel unter den üblichen und bekannten Bedingungen der Lagerung und der Anwendung von Pulverslurries weder agglomerieren noch in kleinere Partikel zerfallen, sondern auch unter dem Einfluss von Scherkräften im wesentlichen ihre ursprünglichen Form bewahren.
Vorzugsweise sind die neuen Dual-Cure-Pulverslurries frei von organischen Lösemitteln. Im Rahmen der vorliegenden Erfindung bedeutet dies, dass sie einen Restgehalt an flüchtigen Lösemitteln von < 10 Gew.-%, bevorzugt < 5 Gew.-% und besonders bevorzugt < 1 Gew.-% haben. Erfindungsgemäß ist es von ganz besonderem Vorteil, wenn der Restgehalt unterhalb der gaschromatographischen Nachweisgrenze liegt.
Vorzugsweise liegt die mittlere Teilchengröße der festen Partikel bei 0,8 bis 20 μm, und besonders bevorzugt bei 3 bis 15 μm. Unter mittlerer Teilchengröße wird der nach der Laserbeugungsmethode ermittelte 50%-Medianwert verstanden, d.h., 50% der Partikel haben einen Teilchendurchmesser < dem Medianwert und 50% der Partikel einen Teilchendurchmesser > dem Medianwert.
Die neuen Dual-Cure-Pulverslurries mit Partikeln mit derartigen mittleren Teilchengrößen weisen ein besseres Applikationsverhalten auf und zeigen bei den applizierten Filmstärken von > 30 μm, wie sie derzeitig in der Automobilindustrie bei der Endlackierung von Automobilen praktiziert werden, eine - wenn überhaupt - nur geringe Neigung zu Kochern und zum „mudcracking.
Die Teilchengröße findet ihre obere Begrenzung dann, wenn die Partikel aufgrund ihrer Größe beim Einbrennen nicht mehr vollständig verlaufen können, und damit der Filmverlauf negativ beeinflusst wird. In Fällen geringerer Ansprüche an das Aussehen kann sie jedoch auch höher liegen. Als Obergrenze werden 30 μm für sinnvoll erachtet, da ab dieser Teilchengröße mit einer Verstopfung der Sprühdüsen und Förderaggregate der hochempfindlichen Applikationsapparaturen zu rechnen ist.
Vorzugsweise werden die vorstehend beschriebenen bevorzugten Teilchengrößen auch ohne Zuhilfenahme von zusätzlichen externen Emulgatoren erhalten, wenn die Partikel insgesamt einen Gehalt an Ionen bildenden Gruppen, entsprechend einer mittleren Säurezahl oder Amin-Zahl von 3 bis 56 g KOH/g Festkörper (MEQ-Säure oder -Amin von 0,05 bis 1 ,0 meq/g Festkörper), vorzugsweise bis 28 (MEQ-Säure oder -Amin: 0,5) und insbesondere bis 17 (MEQ-Säure oder -Amin: 0,3), aufweisen.
Es ist von Vorteil, wenn die Ionen bildenden Gruppen ausschließlich oder überwiegend, d.h. zu mehr als 50, insbesondere zu mehr als 70 Mol%, in den nachstehend beschriebenen Bindemitteln (A) vorliegen.
Es wird vorzugsweise generell ein niedriger Gehalt solcher Gruppen angestrebt, da freie Gruppen dieser Art im gehärteten Lack zurückbleiben und dessen Beständigkeit gegenüber Umweltstoffen und Chemikalien vermindern können. Andererseits muss der Gehalt an solchen Gruppen noch genügend hoch sein, um die gewünschte Stabilisierung zu gewährleisten.
Die Ionen bildenden Gruppen werden mit Hilfe von Neutralisationsmitteln zu 100% oder auch nur zu < 100% teilneutralisiert. Die Menge des Neutralisationsmittels wird in der Weise gewählt, dass der MEQ -Wert der neuen Dual-Cure-Pulverslurry unterhalb 1, vorzugsweise unterhalb 0,5 und insbesondere unterhalb 0,3 meq/g Festkörper liegt. Es ist von Vorteil, wenn die Menge des Neutralisationsmittels mindestens einem MEQ- Wert von 0,05 meq/g Festkörper entspricht.
Als Anionen bildende Gruppen kommen Säuregruppen wie Carbonsäure-, Sulfonsäure- oder Phosphonsäuregruppen in Betracht. Demgemäß werden als
Neutralisationsmittel Basen, wie Alkalimetallhydroxide, Ammoniak oder Amine verwendet. Alkalimetallhydroxide sind nur in beschränktem Maße einsetzbar, da die Alkalimetallionen beim Einbrennen nicht flüchtig sind und durch ihre Unverträglichkeit mit organischen Stoffen den Film trüben und zu Glanzverlusten führen können. Daher sind Ammoniak oder Amine bevorzugt. Im Falle von Aminen werden wasserlösliche tertiäre Amine bevorzugt. Beispielhaft seien N,N-Dimethylethanolamin oder Aminomethylpropanolamin (AMP) genannt.
Als Kationen bildende Gruppen kommen primäre, sekundäre oder tertiäre Amine in Betracht. Demgemäß werden als Neutralisationsmittel insbesondere niedermolekulare organische Säuren wie Ameisensäure, Essigsäure oder Milchsäure verwendet.
Für den bevorzugten Einsatz der neuen Dual-Cure-Pulverslurries als Dual-Cure- Beschichtungsstoffe, -Klebstoffe oder -Dichtungsmassen werden Säuregruppen als Ionen bildende Gruppen bevorzugt, da die hieraus hergestellten Beschichtungen, Klebschichten oder Dichtungen in der Regel eine bessere Resistenz gegen Vergilbung aufweisen als die Beschichtungen, Klebschichten und Dichtungen, die aus den neuen Dual-Cure-Pulverslurries auf der Basis von Partikeln mit kationischen Gruppen hergestellt werden.
Doch kationische Partikel mit in Kationen überführbaren Gruppen wie Aminogruppen sind prinzipiell ebenfalls verwendbar, sofern das Einsatzgebiet deren typische Nebeneigenschaften wie ihre Neigung zur Vergilbung verkraftet.
Der erste wesentliche Bestandteil der Partikel der neuen Dual-Cure-Pulverslurries ist mindestens ein, insbesondere ein, Bindemittel (A), das frei von Kohlenstoff- Kohlenstoff-Doppelbindungen ist, die mit aktinischer Strahlung aktivierbar sind. Im Rahmen der vorliegenden Erfindung bedeutet "frei von Kohlenstoff-Kohlenstoff- Doppelbindungen", dass die betreffenden Bindemittel (A) keine oder nur technisch bedingte Spuren solcher Doppelbindungen aufweisen.
Das Bindemittel (A) enthält mindestens ein, insbesondere ein, (Meth)Acrylatcopolymerisat (A) mit im statistischen Mittel mindestens einer, vorzugsweise mindestens zwei, besonders bevorzugt mindestens drei und insbesondere mindestens vier isocyanatreaktiven funktionellen Gruppen und mindestens eine, vorzugsweise mindestens zwei und insbesondere mindestens drei Ionen bildende Gruppem im Molekül, oder es besteht hieraus. Beispiele geeigneter isocyanatreaktiver funktioneller Gruppen sind Thiol-, Hydroxyl- und primäre und sekundäre Aminogruppen, insbesondere Hydroxylgruppen.
Beispiele geeigneter Ionen bildender Gruppen sind die vorstehend beschriebenen.
Vorzugsweise weist das (Meth)Acrylatcopolymerisat (A) eine
Glasübergangstemperatur Tg von -40 bis +80 °C, bevorzugt -20 bis + 50 °C, besonders bevorzugt 0 bis + 30 °C und insbesondere + 5 bis + 25 °C auf.
Der Gehalt der (Meth)Acrylatcopolymerisate (A) an Hydroxylgruppen kann breit variieren. Die Untergrenze ergibt sich aus der Maßgabe, dass mindestens eine
Hydroxylgruppe in den (Meth)Acrylatcopolymerisaten (A) enthalten sein muss.
Vorzugsweise liegt die Hydroxylzahl bei 50 bis 300, vorzugsweise 80 bis 250, bevorzugt 100 bis 220, besonders bevorzugt 100 bis 200, ganz besonders bevorzugt
100 bis 180 und insbesondere 100 bis 160 mg KOH/g.
Die (Meth)Acrylatcopolymerisate (A) weisen vorzugsweise eine Säurezahl von 3 bis
70, bevorzugt 3 bis 65, besonders bevorzugt 5 bis 60, ganz besonders bevorzugt 7 bis
55 und insbesondere 10 bis 50 mg KOH/g auf.
Die '(Meth)Acrylatcopolymerisate (A) werden durch radikalische Copolymerisation von mindestens zwei, vorzugsweise mindestens drei und insbesondere mindestens vier unterschiedlichen olefinisch ungesättigten Monomeren (a) hergestellt.
Bei einem der Monomeren (a) handelt es sich um ein olefinisch ungesättigtes Monomer (a1), durch das isocyanatreaktive funktionelle Gruppen in die (Meth)Acrylatcopolyιmerisate (A) eingeführt werden. Bei mindestens einem der weiteren Monomeren (a) handelt es sich im wesentlichen um olefinisch ungesättigte Monomere (a2), die keine isocyanatreaktiven funktionellen Gruppen aufweisen. Diese Monomeren (a2) können frei von reaktiven funktionellen Gruppen sein oder reaktive funktionelle Gruppen aufweisen, die mit anderen, komplementären reaktiven funktionellen Gruppen, ausgenommen Isocyanatgruppen, thermische Vernetzungsreaktionen eingehen können.
Beispiele geeigneter olefinisch ungesättigter Monomere (a1) sind - Hydroxyalkylester von alpha.beta-olefinisch ungesättigten Carbonsäuren, wie Hydroxyalkylester der Acrylsäure, Methacrylsäure und Ethacrylsäure, in denen die Hydroxyalkylgruppe bis zu 20 Kohlenstoffatome enthält, wie 2-Hydroxyethyl- , 2-Hydroxypropyl-, 3-Hydroxypropyl-, 3-Hydroxybutyl-, 4-Hydroxybutylacrylat, - methacrylat oder -ethacrylat; 1 ,4-Bis(hydroxymethyl)cyclohexan-, Octahydro- . 4,7-methano-1H-inden-dimethanol- oder Methylpropandiolmonoacrylat, - monomethacrylat, -monoethacrylat oder -monocrotonat; oder Umsetzungsprodukte aus cyclischen Estern, wie z.B. epsilon-Caprolacton und diesen Hydroxyalkylestern;
- olefinisch ungesättigte Alkohole wie Allylalkohol;
Allylether von Polyolen wie Trimethylolpropanmonoallylether oder Pentaerythritmono-, -di- oder -triallylether. Die höherfunktionellen Monomeren (a1) werden im Allgemeinen nur in untergeordneten Mengen verwendet. Im Rahmen der vorliegenden Erfindung sind hierbei unter untergeordneten Mengen an höherfunktionellen Monomeren solche Mengen zu verstehen, welche nicht zur Vernetzung oder Gelierung der (Meth)Acrylatcopolymerisate (A) führen, es sei denn, die (Meth)Acrylatcopolymerisate (A) sollen in der Form von vernetzten Mikrogelteilchen vorliegen;
Umsetzungsprodukte von alpha.beta-olefinisch Carbonsäuren mit Glycidylestern einer in alpha-Stellung verzweigten Monocarbonsäure mit 5 bis 18 Kohlenstoffatomen im Molekül. Die Umsetzung der Acryl- oder Methacrylsäure mit dem Glycidylester einer Carbonsäure mit einem tertiären alpha-Kohlenstoffatom kann vorher, während oder nach der Polymerisationsreaktion erfolgen. Bevorzugt wird als Komponente (a1) das Umsetzungsprodukt von Acryl- und/oder Methacrylsäure mit dem Glycidylester der VersaticO-Säure eingesetzt. Dieser Glycidylester ist unter dem Namen Cardura® E10 im Handel erhältlich. Ergänzend wird auf Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seiten 605 und 606, verwiesen;
Allylamin und Crotylamin;
- Aminoalkylester von alpha.beta-olefinisch ungesättigten Carbonsäuren, wie Aminoethylacrylat, Aminoethylmethacrylat oder N-Methylaminoethylacrylat; Formaldehydaddukte von Aminoalkylestern von alpha.beta-olefinisch ungesättigten Carbonsäuren und von alpha.beta-ungesättigten Carbonsäureamiden, wie N-Methylol- und N,N-Dimethylol-aminoethylacrylat, - aminoethylmethacrylat, -acrylamid und -methacrylamid; sowie
Acryloxysilangruppen und Hydroxylgruppen enthaltende olefinisch ungesättigte Monomere, herstellbar durch Umsetzung hydroxyfunktioneller Silane mit Epichlorhydrin und anschließender Umsetzung des Zwischenprodukts mit einer alpha,beta-olefinisch ungesättigten Carbonsäure, insbesondere Acryisäure und Methacrylsäure, oder ihren Hydroxyalkylestern.
Von diesen Monomeren (a1) sind die Hydroxyalkylester, insbesondere die 2- Hydroxyethyl-, 2-Hydroxypropyl-, 3-Hydroxypropyl-, 3-Hydroxybutyl-, 4- Hydroxybutylester der Acryisäure und Methacrylsäure von Vorteil und werden deshalb besonders bevorzugt verwendet.
Beispiele geeigneter olefinisch ungesättigter Monomere (a2) sind alpha.beta-olefinisch ungesättigte Carbonsäuren, wie Acryisäure, Methacrylsäure, Ethacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure, Itaconsäure, Maleinsäure-mono(meth)acryloyloxyethylester, Bernsteinsäuremono(meth)acryloyloxyethylester und Phthalsäuremono(meth)acryloyloxyethylester, sowie Vinylbenzoesäure (alle Isomere) und alpha-Methylvinylbenzoesäure (alle Isomere), insbesondere. Acryisäure und/oder Methacrylsäure;
Alkyl- und Cycloalkylester von alpha,beta-olefinisch ungesättigten Carbonsäuren, -phosphonsäuren und -sulfonsäuren, wie (Meth)Acrylsäure-, Crotonsäure-, Ethacrylsäure-, Vinylphosphonsäure- oder Vinylsulfonsäurealkyl- oder -cycloalkylester mit bis zu 20 Kohlenstoffatomen im Alkylrest, insbesondere Methyl-, Ethyl-, Propyl-, n-Butyl-, sec.-Butyl-, tert.-Butyl-, Hexyl-, Ethylhexyl-, Stearyl- und Laurylacrylat, -methacrylat, -crotonat, -ethacrylat oder -vinylphosphonat oder vinylsulfonat; cycloaliphatische (Meth)acrylsäure-, Crotonsäure-, Ethacrylsäure-, Vinylphosphonsäure- oder Vinylsulfonsäureester, insbesondere Cyclohexyl-, Isobornyl-, Dicyclopentadienyl-, Octahydro-4,7- methano-1 H-inden-methanol- oder tert.-Butylcyclohexyl(meth)acrylat, -crotonat, -ethacrylat, -vinylphosphonat oder vinylsulfonat. Diese können in untergeordneten Mengen höherfunktionelle (Meth)Acrylsäure-, Crotonsäure- oder Ethacrylsäurealkyl- oder -cycloalkylester wie Ethylengylkol-, Propylenglykol-, Diethylenglykol-, Dipropylenglykol-, Butylenglykol-, Pentan-1 ,5- diol-, Hexan-1 ,6-diol-, Octahydro-4,7-methano-1 H-inden-dimethanol- oder Cyclohexan-1 ,2-, -1,3- oder -1,4-diol-di(meth)acrylat;
Trimethylolpropantri(meth)acrylat; oder Pentaerythrittetra(meth)acrylat sowie die analogen Ethacrylate oder Crotonate enthalten. Im Rahmen der vorliegenden Erfindung sind hierbei unter untergeordneten Mengen an höherfunktionellen Monomeren (a2) solche Mengen zu verstehen, welche nicht zur Vernetzung oder Gelierung der (Meth)Acrylatcopolymerisate (A) führen, es sei denn, die (Meth)Acrylatcopolymerisate (A) sollen in der Form von vernetzten Mikrogelteilchen vorliegen;
Allylether von Alkoholen, wie Allylethylether, Allylpropylether oder Allyl-n- butylether, oder von Polyolen, wie Ethylenglykoldiallylether,
Trimethylolpropantriallylether oder Pentaerythrittetraallyläther. Hinsichtlich der höherfunktionellen Allylether (a2) gilt das vorstehend Gesagte sinngemäß;
Olefine wie Ethylen, Propylen, But-1-en, Pent-1-en, Hex-1-en, Cyclohexen, Cyclopenten, Norbonen, Butadien, Isopren, Cylopentadien und/oder
Dicyclopentadien;
Amide von alpha,beta-olefinisch ungesättigten Carbonsäuren, wie (Meth)Acrylsäureamid, N-Methyl -, IM.N-Dimethyl-, N-Ethyl-, N.N-Diethyl-, N- Propyl-, N,N-Dipropyl, N-Butyl-, N,N-Dibutyl- und/oder N,N-Cyclohexyl-methyl-
(meth)acrylsäureamid;
Epoxidgruppen enthaltende Monomere, wie der Glycidylester der Acryisäure, Methacrylsäure, Ethacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure und/oder Itaconsäure;
vinylaromatische Kohlenwasserstoffe, wie Styrol, alpha-Alkylstyrole, insbesondere alpha-Methylstyrol und Vinyltoluol, und Diphenylethylen oder Stilben;
Nitrile, wie Acrylnitril und/oder Methacrylnitril; Vinylverbindungen wie Vinylchlorid, Vinylfluorid, Vinylidendichlorid, Vinylidendifluorid; N-Vinylpyrrolidon; Vinylether wie Ethylvinylether, n- Propylvinylether, Isopropylvinylether, n-Butylvinylether, Isobutylvinylether und/oder Vinylcyclohexylether; Vinylester wie Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylpivalat, Vinylester der Versatic®-Säuren, die unter dem Markennamen VeoVa® von der Firma Deutsche Shell Chemie vertrieben werden (ergänzend wird auf Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seite 598 sowie Seiten 605 und 606, verwiesen) und/oder der Vinylester der 2-Methyl-2-ethylheptansäure; und
Polysiloxanmakromonomere, die ein zahlenmittleres Molekulargewicht Mn von 1.000 bis 40.000, bevorzugt von 2.000 bis 20.000, besonders bevorzugt 2.500 bis 10.000 und insbesondere 3.000 bis 7.000 und im Mittel 0,5 bis 2,5, bevorzugt 0,5 bis 1 ,5, ethylenisch ungesättigte Doppelbindungen pro Molekül aufweisen, wie sie in der DE 38 07 571 A 1 auf den Seiten 5 bis 7, der DE 37 06 095 A 1 in den Spalten 3 bis 7, der EP 0 358 153 B 1 auf den Seiten 3 bis 6, in der US 4,754,014 A 1 in den Spalten 5 bis 9, in der DE 44 21 823 A 1 oder in der der internationalen Patentanmeldung WO 92/22615 auf Seite 12, Zeile 18, bis Seite 18, Zeile 10, beschrieben sind.
Generell gilt, dass die Monomeren (a1) und (a2) so ausgewählt werden, dass das Eigenschaftsprofil der (Meth)Acrylatcopolymerisate (A) im wesentlichen von den vorstehend beschriebenen (Meth)Acrylatmonomeren (a1) und (a2) bestimmt wird, wobei die Monomeren (a1) und/oder (a2), die anderen Monomerklassen entstammen, dieses Eigenschaftsprofil in vorteilhafter Weise breit und gezielt variieren. Dabei werden die Monomeren (a) so ausgewählt, dass sich die vorstehend beschriebenen Glasübergangstemperaturen Tg sowie die Hydroxylzahlen und Säurezahlen einstellen.
Die Auswahl der Monomeren (a) kann vom Fachmann unter Zuhilfenahme der folgenden Formel von Fox, mit der die Glasübergangstemperaturen von
Polyacrylatharzen näherungsweise berechnet werden können, vorgenommen werden: n = x 1/Tg = Σ Wn/ Tgn; ∑n Wn = 1 n = 1 Tg = Glasübergangstemperatur des (Meth)Acrylatcopolymerisats
Wn = Gewichtsanteil des n-ten Monomers
Tgn = Glasübergangstemperatur des Homopolymers aus dem n-ten Monomer x = Anzahl der verschiedenen Monomeren
Methodisch gesehen weist die Copolymerisation keine Besonderheiten auf, sondern erfolgt mit Hilfe der Methoden und Vorrichtungen, wie sie üblicherweise für die radikalische Copolymerisation in Lösung oder in Masse in der Gegenwart eines radikalischen Initiators angewandt werden.
Als Beispiele für einsetzbare radikalische Initiatoren werden genannt: Dialkylperoxide, wie Di-tert.-Butylperoxid oder Dicumylperoxid; Hydroperoxide, wie Cumolhydroperoxid oder teil.- Butylhydroperoxid; Perester, wie tert.-Butylperbenzoat, tert.-Butylperpivalat, tert.-Butylper-3,5,5-trimethyl- hexanoat oder tert.-Butylper-2-ethylhexanoat; Peroxodicarbonate; Kalium-, Natrium- oder Ammoniumsperoxodisulfat; Azoinitiatoren, beispielsweise Azodinitrile wie Azobisisobutyronitril; C-C-spaltende Initiatoren wie Benzpinakolsilylether; oder eine Kombination eines nicht oxidierenden Initiators mit Wasserstoffperoxid. Es können auch Kombinationen der vorstehend beschriebenen Initiatoren eingesetzt werden. Weitere Beispiele geeigneter Initiatoren werden in der deutschen Patentanmeldung DE 196 28 142 A 1 , Seite 3, Zeile 49, bis Seite 4, Zeile 6, beschrieben.
In den organischen Lösungen oder in Masse werden dann die Monomeren (a) mit Hilfe der vorstehend genannten radikalbildenden Initiatoren bei Reaktionstemperaturen, die vorzugsweise unterhalb der niedrigsten Zersetzungstemperatur der jeweils eingesetzten Monomeren (a) liegen, copolymerisiert.
Beispiele organischer Lösemittel werden in »Paints, Coatings and Solvents«, Dieter Stoye und Werner Freitag (Editoren), Wiley-VCH, 2. Auflage, 1998, Seiten 327 bis 349, beschrieben.
Es ist bevorzugt, dass mit dem Initiatorzulauf einige Zeit, im Allgemeinen ca. 1 bis 15 Minuten, vor dem Zulauf der Monomeren begonnen wird. Ferner ist ein Verfahren bevorzugt, bei dem die Initiatorzugabe zum gleichen Zeitpunkt wie die Zugabe der Monomeren begonnen und etwa eine halbe Stunde, nachdem die Zugabe der Monomeren beendet worden ist, beendet wird. Der Initiator wird vorzugsweise in konstanter Menge pro Zeiteinheit zugegeben. Nach Beendigung der Initiatorzugabe wird das Reaktionsgemisch noch so lange (in der Regel 1 bis 6 Stunden) auf Polymerisationstemperatur gehalten, bis alle eingesetzten Monomere (a) im wesentlichen vollständig umgesetzt worden sind. „Im wesentlichen vollständig umgesetzt" soll bedeuten, dass vorzugsweise 100 Gew.-% der eingesetzten Monomere umgesetzt worden sind, dass es aber auch möglich ist, dass ein geringer Restmonomerengehalt von höchstens bis zu etwa 0,5 Gew.-%, bezogen auf das Gewicht der Reaktionsmischung, unumgesetzt zurückbleiben kann.
Als Reaktoren für die Copolymerisation kommen die üblichen und bekannten Rührkessel, Rührkesselkaskaden, Rohrreaktoren, Schlaufenreaktoren oder Taylorreaktoren, wie sie beispielsweise in der Patentschrift DE 1 071 241 B 1 , den Patentanmeldungen EP 0498 583 A 1 oder DE 198 28 742 A 1 oder in dem Artikel von K. Kataoka in Chemical Engineering Science, Band 50, Heft 9, 1995, Seiten 1409 bis 1416, beschrieben werden, in Betracht.
Hinsichtlich der Molekulargewichtsverteilung ist das (Meth)Acrylatcopolymerisat (A) keinerlei Beschränkungen unterworfen. Vorteilhafterweise wird aber die Copolymerisation so geführt, dass eine Molekulargewichtsverteilung Mw/Mn, gemessen mit Hilfe der Gelpermeationschromatographie unter Verwendung von Polystyrol als Standard, von < 4, bevorzugt < 2 und insbesondere < 1 ,5 sowie in einzelnen Fällen auch < 1 ,3 resultiert.
Der Gehalt der Partikel der neuen Dual-Cure-Pulverslurries an den vorstehend beschriebenen Bindemitteln (A) kann breit variieren und richtet sich nach den Erfordernissen des Einzelfalls. Wesentlich ist hierbei die Funktionalität des Bindemittels (A) hinsichtlich der thermischen Vernetzung, d. h., die Anzahl der in dem Bindemittelgemisch (A) enthaltenen isocyanatreaktiven Gruppen. Der Fachmann kann daher den Gehalt aufgrund seines allgemeinen Fachwissens gegebenenfalls mit Hilfe einfacher orientierender Versuche leicht ermitteln. Vorzugsweise liegt der Gehalt, bezogen auf den Festkörper der neuen Dual-Cure-Pulverslurry, bei 10 bis 80, bevorzugt 15 bis 75, besonders bevorzugt 20 bis 70, ganz besonders bevorzugt 25 bis 65 und insbesondere 30 bis 60 Gew.-%. .
Unter "Festkörper" wird hier und im Folgenden die Summe der vorstehend beschriebenen Bestandteile (A) sowie der nachstehend beschriebenen Bestandteile (B) und (C) sowie ggf. (D) verstanden, die nach der Applikation und Härtung der neuen Dual-Cure-Pulverslurries die betreffenden Beschichtungen, Klebschichten oder Dichtungen aufbauen.
Die Partikel der neuen Dual-Cure-Pulverslurries enthalten außerdem mindestens ein blockiertes und/oder teilblockiertes, insbesondere mindestens ein blockiertes, Polyisocyanat (B). Hier und im folgenden werden unter teilblockierten Polyisocyanaten (B) Polyisocyanate verstanden, deren freien Isocyanatgruppen nicht zu 100 Mol% mit den nachstehend beschriebenen Blockierungsmitteln blockiert sind.
Als blockierte Polyisocyanate (B) können alle blockierte Polyisocyanate angewandt werden, wie sie beispielsweise in den deutschen Patentanmeldungen DE 196 17 086 A 1 , DE 196 31 269 A 1 oder DE 199 14 896 A 1 in den europäischen Patentanmeldungen EP 0 004 571 A 1 oder EP 0 582 051 A 1 oder in dem amerikanischen Patent US 4, 444,954 A beschrieben werden.
Vorzugsweise werden indes blockierte und/oder teilblockierte, insbesondere blockierte, Polyisocyanate (B) verwendet, die mindestens ein weiches, flexibilisierendes Segment im Molekül aufweisen, das als Bestandteil oder Baustein dreidimensionaler polymerer Netzwerke deren Glasübergangstemperatur Tg erniedrigt.
Die weichen, flexibilisierden Segmente sind zweibindige organische Reste.
Beispiele geeigneter weicher, flexibilisierender, zweibindiger organischer Reste sind substituierte oder unsubstituierte, bevorzugt unsubstituierte, lineare oder verzweigte, vorzugsweise lineare, Alkandiyl-Reste mit 4 bis 30, bevorzugt 5 bis 20 und insbesondere 6 Kohlenstoffatomen, die innerhalb der Kohlenstoffkette auch cyclische Gruppen enthalten können.
Beispiele gut geeigneter linearer Alkandiyl-Reste sind sind Tetramethylen, Pentamethylen, Hexamethylen, Heptamethylen, Octamethylen, Nonan-1 ,9-diyl, Decan- 1 ,10-diyl, Undecan-1 ,11-diyl Dodecan-1 ,12-diyl, Tridecan-1 ,13-diyl, Tetradecan-1 ,14- diyl, Pentadecan-1 ,15-diyl, Hexadecan-1 ,16-diyl, Heptadecan-1 ,17-diyl, Octadecan- 1 ,18-diyl, Nonadecan-1 ,19-diyl oder Eicosan-1 ,20-diyl, bevorzugt Tetramethylen, Pentamethylen, Hexamethylen, Heptamethylen, Octamethylen, Nonan-1 ,9-diyl, Decan- 1 ,10-diyI, insbesondere Hexamethylen. Beispiele gut geeigneter Alkandiyl-Reste, die in der Kohlenstoffkette auch cyclische Gruppen enthalten, sind 2-Heptyl-1-pentyl-cyclohexan-3,4-bis(non-9-yl), Cyclohexan- 1 ,2-, -1 ,4- oder -1 ,3-bis(methyl), Cyclohexan-1 ,2-, 1,4- oder -1 ,3-bis(eth-2-yl), Cyclohexan-1 ,3-bis(prop-3-yl) oder Cyclohexan-1 ,2-, 1 ,4- oder 1 ,3-bis(but-4-yl).
Weitere Beispiele geeigneter zweibindiger organischer Reste sind zweiwertige Polyesterreste mit wiederkehrenden Polyesteranteilen der Formel -(-CO-(CHR1)m-
CH2-O-)- aus. Hierbei ist der Index m bevorzugt 4 bis 6 und der Substitutent R1 = Wasserstoff, ein Alkyl-, Cycloalkyl- oder Alkoxy-Rest. Kein Substituent enthält mehr als 12 Kohlenstoffatome.
Weitere Beispiele geeigneter zweibindiger organischer Reste sind zweiwertige lineare Polyetherreste, vorzugsweise mit einem zahlenmittleren Molekulargewicht von 400 bis 5.000, insbesondere von 400 bis 3.000. Gut geeignete Polyetherreste haben die allgemeine Formel -(-O-(CHR2)0-)pO-, wobei der Substituent R^ = Wasserstoff oder ein niedriger, gegebenenfalls substituierter Alkylrest ist, der Index o = 2 bis 6, bevorzugt 3 bis 4, und der Index p = 2 bis 100, bevorzugt 5 bis 50, ist. Als besonders gut geeignete Beispiele werden lineare oder verzweigte Polyetherreste, die sich von Poly(oxyethylen)glykolen, Poly(oxypropylen)glykolen und Poly(oxybutylen)glykolen ableiten, genannt.
Des weiteren kommen auch lineare zweibindige Siloxanereste, wie sie beispielsweise in Siliconkautschuken vorliegen, hydrierte Polybutadien- oder Polyisoprenreste, statistische oder alternierende Butadien-Isopren-Copolymerisatreste oder Butadien- Isopren-Pfropfmischpolymerisatreste, die noch Styrol einpolymerisiert enthalten können, sowie Ethylen-Propylen-Dienreste in Betracht.
Als Substituenten kommen alle organischen funktionellen Gruppen in Betracht, welche im Wesentlichen inert sind, d. h., dass sie keine Reaktionen mit den Bestandteilen der neuen Dual-Cure-Pulverslurries eingehen.
Beispiele geeigneter inerter organischer Reste sind Alkylgruppen, insbesondere Methylgruppen, Halogenatome, Nitrogruppen, Nitrilgruppen oder Alkoxygruppen. Von den vorstehend beschriebenen zweibindigen organischen Resten sind die Alkandiyl- Reste, die keine cyclischen Gruppen in der Kohlenstoffkette enthalten, von Vorteil und werden deshalb bevorzugt verwendet.
In den blockierten oder teilblockierten Polyisocyanaten (B) kann nur eine Art der vorstehend beschriebenen weichen, flexibilisierenden, zweibindigen organischen Reste vorliegen. Es können aber auch mindestens zwei unterschiedliche zweibindige organische Reste verwendet werden.
Beispiele gut geeigneter Polyisocyanate, die zur Herstellung der blockierten oder teilblockierten Polyisocyanate (B) geeignet sind, sind acyclische aliphatische Diisocyanate wie Trimethylendiisocyanat, Tetramethylendiisocyanat, Pentame- thylendiisocyanat, Hexamethylendiisocyanat, Heptamethylendiisocyanat, Ethylethylendiisocyanat, Trimethylhexandiisocyanat oder acyclische aliphatische Diisocyanate, die eine cyclische Gruppen in ihrer Kohlenstoffkette enthalten, wie Diisocyanate, abgeleitet von Dimerfettsäuren, wie sie unter der Handelsbezeichnung DDI 1410 von der Firma Henkel vertrieben und in den Patentschriften WO 97/49745 und WO 97/49747 beschrieben werden, insbesondere 2-Heptyl-3,4-bis(9- isocyanatononyl)-1-pentyl-cyclohexan, oder 1,2-, 1 ,4- oder 1 ,3- Bis(isocyanatomethyl)cyclohexan, 1 ,2-, 1 ,4- oder 1 ,3-Bis(2-isocyanatoeth-1- yl)cyclohexan, 1 ,3-Bis(3-isocyanatoprop-1-yl)cyclohexan oder 1 ,2-, 1 ,4- oder 1 ,3-Bis(4- isocyanatobut-1-yl)cyclohexan. Letztere sind im Rahmen der vorliegenden Erfindung aufgrund ihrer beiden aussschließlich an Alkylgruppen gebundenen Isocyanatgruppen trotz ihrer cyclischen Gruppen zu den acyclischen aliphatischen Diisocyanaten zu zählen.
Von diesen acyclischen aliphatischen Diisocyanaten sind diejenigen von besonderem Vorteil, die keine cyclischen Gruppen in ihrer Kohlenstoffkette enthalten. Von diesen ist wiederum Hexamethylendiisocyanat ganz besonders vorteilhaft und wird deshalb ganz besonders bevorzugt verwendet.
Weitere Beispiele geeigneter Polyisocyanate, die zur Herstellung von blockierten Polyisocyanaten (B) geeignet sind, sind die Oligomeren der vorstehend genannten Diisocyanate, insbesondere von Hexamethylendiisocyanat, die Isocyanurat-, Harnstoff- Urethan-, Biuret-, Uretdion-, Iminooxadiazindion, Carbodiimid- und/oder Allophanatgruppen enthalten. Beispiele geeigneter Herstellungsverfahren sind aus den Patentanmeldungen und Patenten CA 2,163,591 A, US 4,419,513 A, US 4,454,317 A, EP 0 646 608 A, US 4,801 ,675 A, EP 0 183 976 A 1 , DE 40 15 155 A 1 , EP 0 303 150 A 1 , EP 0 496 208 A 1 , EP 0 524 500 A 1 , EP 0 566 037 A 1 , US 5,258,482 A 1 , US 5,290,902 A 1 , EP 0 649 806 A 1 , DE 42 29 183 A 1 , DE 100 05 228 A 1 oder EP 0 531 820 A 1 bekannt.
Außerdem kommen die hochviskosen Polyisocyanate, wie sie in der deutschen Patentanmeldung DE 198 28 935 A 1 beschrieben werden, oder die an ihrer Oberfläche durch Harnstoffbildung und/oder Blockierung desaktivierten Polyisocyanatspartikel gemäß den europäischen Patentanmeldungen EP 0 922 720 A 1 , EP 1 013 690 A 1 und EP 1 029 879 A 1 in Betracht.
Desweiteren kommen die in der deutschen Patentanmeldung DE 196 09 617 A 1 beschriebenen Addukte von Polyisocyanaten mit isocyanatreaktiven funktionellen Gruppen enthaltenden Dioxanen, Dioxolanen und Oxazolidinen, die noch freie Isocyanatgruppen enthalten, als Polyisocyanate in Betracht.
Beispiele für geeignete Blockierungsmittel zur Herstellung der blockierten und/oder teilblockierten Polyisocyanate (B) sind die aus der US-Patentschrift US 4,444,954 A oder US 5,972,189 A bekannten Blockierungsmittel, wie
i) Phenole wie Phenol, Cresol, Xylenol, Nitrophenol, Chlorophenol, Ethylphenol, t- Butylphenol, Hydroxybenzoesäure, Ester dieser Säure oder 2,5- di-tert.-Butyl-4- hydroxytoluol;
ii) Lactame, wie ε-Caprolactam, δ-Valerolactam, γ-Butyrolactam oder ß- Propiolactam;
iii) Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, t-Butanol, n-Amylalkohol, t-Amylalkohol, Laurylalkohol, Ethylenglykolmonomethylether, Ethylenglykolmonoethylether, Ethylenglykolmonopropylether Ethylenglykolmonobutylether, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether, Diethylenglykolmonopropylether, Diethylenglykolmonobutylether Propylenglykolmonomethylether, Methoxymethanol, 2-(-Hydroxyethoxy)phenol, 2-(Hydroxypropoxy)phenol, Glykolsäure, Glykolsäureester, Milchsäure, Milchsäureester, Methylolharnstoff, Methylolmelamin, Diacetonalkohol, Ethylenchlorohydrin, Ethylenbromhydrin, 1 ,3-Dichloro-2-propanol, 1 ,4- Cyclohexyldimethanol oder Acetocyanhydrin;
iv) Mercaptane wie Butylmercaptan, Hexylmercaptan, t-Butylmercaptan, t- Dodecylmercaptan, 2-Mercaptobenzothiazol, Thiophenol, Methylthiophenol oder Ethylthiophenol;
v) Säureamide wie Acetoanilid, Acetoanisidinamid, Acrylamid, Methacrylamid, Essigsäureamid, Stearinsäureamid oder Benzamid;
vi) Imide wie Succinimid, Phthalimid oder Maleimid;
vii) Amine wie Diphenylamin, Phenylnaphthylamin, Xylidin, N-Phenylxylidin, Carbazol, Anilin, Naphthylamin, Butylamin, Dibutylamin oder Butylphenylamin;
viii) Imidazole wie Imidazol oder 2-Ethylimidazol;
ix) Harnstoffe wie Harnstoff, Thioharnstoff, Ethylenharnstoff, Ethylenthioharnstoff oder 1 ,3-Diphenylharnstoff;
x) Carbamate wie N-Phenylcarbamidsäurephenylester oder 2-Oxazolidon;
xi) Imine wie Ethylenimin;
xii) Oxime wie Acetonoxim, Formaldoxim, Acetaldoxim, Acetoxim, Methylethylketoxim, Diisobutylketoxim, Diacetylmonoxim, Benzophenonoxim oder Chlorohexanonoxime;
xiii) Salze der schwefeligen Säure wie Natriumbisulfit oder Kaliumbisulfit;
xiv) Hydroxamsäureester wie Benzylmethacrylohydroxamat (BMH) oder Allylmethacrylohydroxamat; oder
xv) substituierte Pyrazole, Ketoxime, Imidazole oder Triazole; sowie xvi) Gemische dieser Blockierungsmittel, insbesondere Dimethylpyrazol und Triazole, Dimethylpyrazol und Succinimid oder Butyldiglykol und Trimethylolpropan.
Der Gehalt der Partikel der neuen Dual-Cure-Pulverslurries an blockierten und/oder teilblockierten Polyisocyanaten (B) kann breit variieren und richtet sich vor allem nach der Funktionalität der Bindemittelgemische (A) bezüglich der thermischen Härtung, d. h. der Anzahl der hierin enthaltenen isocyanatreaktiven funktionellen Gruppen. Der Fachmann kann daher im Einzelfall den optimalen Gehalt anhand seines allgemeinen Fachwissens gegebenenfalls unter Zuhilfenahme einfacher Vorversuche leicht ermitteln. Vorzugsweise liegt der Gehalt an blockierten und/oder teilblockierten Polyisocyanaten (B), jeweils bezogen auf den Festkörper der neuen Dual-Cure- Pulverslurries, bei 10 bis 70, bevorzugt 10 bis 65, besonders bevorzugt 10 bis 60 und insbesondere 10 bis 50 Gew.-%.
Außerdem enthalten die Partikel der neuen Dual-Cure-Pulverslurries mindestens einen, insbesondere einen, olefinisch ungesättigten Bestandteil (C).
Der olefinisch ungesättigte Bestandteil (C) ist bis auf ggf. vorhandene technisch bedingte Spuren frei von isocyanatreaktiven funktionellen Gruppen. Er enthält im statistischen Mittel mindestens zwei, vorzugsweise mindestens drei, mit aktinischer Strahlung aktivierbare Kohlenstoff-Kohlenstoff-Doppelbindungen im Molekül.
Die Kohlenstoff-Kohlenstoff-Doppelbindungen bewirken nach ihrer Aktivierung mit aktinischer Strahlung die Dimehsierung, Oligomerisierung oder die Polymerisation der betreffenden olefinisch ungesättigten Gruppen.
Gut geeignete Kohlenstoff-Kohlenstoff-Doppelbindungen liegen beispielsweise in (Meth)Acryloyl-, Ethacryloyl-, Crotonat-, Cinnamat-, Vinylether-, Vinylester-, Ethenylarylen-, Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylgruppen; Ethenylarylen-, Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylethergruppen oder Ethenylarylen-, Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylestergruppen vor. Von diesen sind (Meth)Acryloylgruppen, insbesondere Acryloylgruppen, von besonderem Vorteil und werden deshalb erfindungsgemäß ganz besonders bevorzugt verwendet. Außerdem enthalten die olefinisch ungesättigten Bestandteile (C) im statistischen Mittel mindestens eine, vorzugsweise mindestens zwei, mit Pyrazol und/oder mindestens einem, insbesondere einem, substitiuierten Pyrazol, vorzugsweise einem Dialkylpyrazol, bevorzugt einem Dimethylpyrazol und insbesondere 3,5- Dimethyl pyrazol, blockierte Isocyanatgruppen.
Des Weiteren enthalten sie im statistischen Mittel mindestens zwei, insbesondere mindestens drei, der vorstehend beschriebenen, mit aktinischer Strahlung aktivierbaren Kohlenstoff-Kohlenstoff Doppelbindungen im Molekül.
Darüber hinaus können sie noch mindestens eine hydrophile Gruppe enthalten. Beispiele geeigneter hydrophiler Gruppen sind die vorstehend beschriebenen potenziell ionischen Gruppen, insbesondere die Anionen bildenden Säuregruppen.
Sie sind herstellbar durch Umsetzung mindestens eines, insbesondere eines, der vorstehend beschriebenen Polyisocyanate mit Pyrazol und/oder mindestens einem, insbesondere einem, substitiuierten Pyrazol, vorzugsweise einem Dialkylpyrazol, bevorzugt einem Dimethylpyrazol und insbesondere 3, 5-Dimethyl pyrazol, sowie mindestens einer Verbindung, enthaltend im Molekül eine isocyanatreaktive funktionelle Gruppe und mindestens zwei, insbesondere mindestens drei, der vorstehend beschriebenen, mit aktinischer Strahlung aktivierbaren Kohlenstoff- Kohlenstoff-Doppelbindungen.
Beispiele geeigneter Verbindungen, enthaltend eine isocyanatreaktive funktionelle Gruppe und mindestens zwei mit aktinischer Strahlung aktivierbare Kohlenstoff- Kohlenstoff-Doppelbindungen sind die vorstehend beschriebenen Monomeren (a1), Trimethylolpropan-di(meth)acrylat, Glyzerin-di(meth)acrylat, Pentaerythrit- trii(meth)acrylat und Dipentaerythritpenta(meth)acrylat.
Das Molverhältnis von Blockierungsmittel zu Verbindung wird so gewählt, dass die resultierenden Bestandteile (C) die erforderliche Anzahl von blockierten Isocyanatgruppen und Gruppen mit olefinisch ungesättigten Kohlenstoff-Kohlenstoff- Doppelbindungen enthalten.
Gegebenenfalls können die Polyisocyanate noch mit mindestens einer Verbindung umgesetzt werden, die mindestens eine isocyanatreaktive funktionelle Gruppe, insbesondere eine Hydroxylgruppe, und mindestens eine, insbesondere eine, der vorstehend beschriebenen hydrophilen Gruppen, vorzugsweise eine Säuregruppe, insbesondere eine Carboxylgruppe, enthalten. Beispiele geeigneter Verbindungen dieser Art sind Hydroxyessigsäure und Dimethylolpropionsäure.
Umsetzung der Polyisocyanate mit den Blockierungsmitteln und den Verbindungen sowie gegebenenfalls den hydrophile Gruppen enthaltenden Verbindungen wird solange durchgeführt, bis in den resultierenden Bestandteilen (C) keine freien Isocyanatgruppen mehr nachweisbar sind.
Der Gehalt der Partikel der neuen Dual-Cure-Pulverslurries an den olefinisch ungesättigten Bestandteilen (C) kann breit variieren und richtet sich nach den Erfordernissen des Einzelfalls, insbesondere nach der Vernetzungsdichte, die bei den aus den neuen Dual-Cure-Pulverslurriesn hergestellten erfindungsgemäßen Beschichtungen, Klebschichten und Dichtungen eingestellt werden soll. Vorzugsweise liegt der Gehalt, jeweils bezogen auf den Festkörper der neuen Dual-Cure- Pulverslurries, bei 5 bis 60, bevorzugt 5 bis 55 und insbesondere 5 bis 50 Gew.-%.
Die neuen Dual-Cure-Pulverslurries können darüber hinaus noch mindestens einen Zusatzstoff (D) enthalten.
So können die neuen Dual-Cure-Pulverslurries pigmentiert und/oder gefüllt und/oder gefärbt sein.
In einer ersten bevorzugten Ausführungsform enthalten die Partikel der neuen pigmentierten Dual-Cure-Pulverslurries mindestens ein Pigment und/oder mindestens einen Füllstoff (D); d.h., die Gesamtmenge der eingesetzten Pigmente und/oder Füllstoffe (D) befinden sich in den Partikeln.
In einer zweiten bevorzugten Ausführungsform enthalten die neuen pigmentierten Dual-Cure-Pulverslurries pigmentfreie Partikel und mindestens ein pulverförmiges Pigment (D) und/oder mindestens ein pulverförmiger Füllstoff (D); d.h., alle Pigmente liegen als separate feste Phase vor. Für deren Teilchengröße gilt das vorstehend Gesagte sinngemäß.
In einer dritten bevorzugten Ausführungsform enthalten die neuen pigmentierten Dual- Cure-Pulverslurries Partikel, die einen Teil der eingesetzten Pigmente und/oder
Füllstoffe (D) enthalten, wogegen der andere Teil der Pigmente und/oder Füllstoffe (D) als separate feste Phase vorliegt. Hierbei kann es sich bei dem in den Partikeln vorliegenden Anteil um die Hauptmenge, d.h. um mehr als 50% der eingesetzten Pigmente und/oder Füllstoffe (D) handeln. Es können sich indes auch weniger als 50% in den Partikeln befinden. Hinsichtlich der Teilchengrößen gilt das vorstehend Gesagte auch hier sinngemäß.
Welcher Variante der neuen pigmentierten Dual-Cure-Pulverslurries der Vorzug gegeben wird, richtet sich insbesondere nach der Natur der Pigmente und/oder Füllstoffe (D) sowie nach dem Verfahren, mit dem die jeweilige neue pigmentierte Dual-Cure-Pulverslurry hergestellt wird. In den meisten Fällen bietet die erste bevorzugte Ausführungsform besondere Vorteile, weswegen sie besonders bevorzugt ist.
Geeignete Pigmente (D) sind färb- und/oder effektgebende, elektrisch leitfähige, magnetisch abschirmende und/oder fluoreszierende Pigmente oder Metallpulver. Die Pigmente (D) können organischer oder anorganischer Natur sein.
Beispiele geeigneter Effektpigmente (D) sind Metallplättchenpigmente wie handelsübliche Aluminiumbronzen, gemäß DE 36 36 183 A 1 chromatierte Aluminiumbronzen, und handelsübliche Edelstahlbronzen sowie nichtmetallische Effektpigmente, wie zum Beispiel Perlglanz- bzw. Interferenzpigmente, plättchenförmige Effektpigmente auf der Basis von Eisenoxid, das einen Farbton von Rosa bis Braunrot aufweist oder flüssigkristalline Effektpigmente. Ergänzend wird auf Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, 1998, Seiten 176, »Effektpigmente« und Seiten 380 und 381 »Metalloxid-Glimmer-Pigmente« bis »Metallpigmente«, und die Patentanmeldungen und Patente DE 36 36 156 A 1 , DE 37 18 446 A 1 , DE 37 19 804 A 1 , DE 39 30 601 A 1 , EP 0 068 311 A 1 , EP 0 264 843 A 1 , EP 0 265 820 A 1 , EP 0 283 852 A 1 , EP 0 293 746 A 1 , EP 0 417 567 A 1 , US 4,828,826 A oder US 5,244,649 A verwiesen.
Beispiele für geeignete anorganische farbgebende Pigmente (D) sind Weißpigmente wie Titandioxid, Zinkweiß, Zinksulfid oder Lithopone; Schwarzpigmente wie Ruß, Eisen-Mangan-Schwarz oder Spinellschwarz; Buntpigmente wie Chromoxid, Chromoxidhydratgrün, Kobaltgrün oder Ultramaringrün, Kobaltblau, Ultramarinblau oder Manganblau, Ultramarinviolett oder Kobalt- und Manganviolett, Eisenoxidrot, Cadmiumsulfoselenid, Molybdatrot oder Ultramarinrot; Eisenoxidbraun, Mischbraun, Spinell- und Korundphasen oder Chromorange; oder Eisenoxidgelb, Nickeltitangelb, Chromtitangelb, Cadmiumsulfid, Cadmiumzinksulfid, Chromgelb oder Bismutvanadat.
Beispiele für geeignete organische farbgebende Pigmente (D) sind Monoazopigmente, Bisazopigmente, Anthrachinonpigmente, Benzimidazolpigmente, Chinacridonpigmente, Chinophthalonpigmente, Diketopyrrolopyrrolpigmente, Dioxazinpigmente,
Indanthronpigmente, Isoindolinpigmente, Isoindolinonpigmente, Azomethinpigmente, Thioindigopigmente, Metallkomplexpigmente, Perinonpigmente, Perylenpigmente, Phthalocyaninpigmente oder Anilinschwarz.
Ergänzend wird auf Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, 1998, Seiten 180 und 181 , »Eisenblau-Pigmente« bis »Eisenoxidschwarz«, Seiten 451 bis 453 »Pigmente« bis »Pigmentvolumenkonzentration«, Seite 563 »Thioindigopigmente«, Seite 567 »Titandioxid-Pigmente«, Seiten 400 und 467, »Natürlich vorkommende Pigmente«, Seite 459 »Polycyclische Pigmente«, Seite 52, »Azomethin- Pigmente«, »Azopigmente«, und Seite 379, »Metallkomplex-Pigmente«, verwiesen.
Beispiele für fluoreszierende Pigmente (D) zu (Tagesleuchtpigmente) sind Bis(azomethin)-Pigmente.
Beispiele für geeignete elektrisch leitfähige Pigmente (D) sind Titandioxid/Zinnoxid- Pigmente.
Beispiele für magnetisch abschirmende Pigmente (D) sind Pigmente auf der Basis von Eisenoxiden oder Chromdioxid.
Beispiele für geeignete Metallpulver (D) sind Pulver aus Metallen und Metallegierungen, wie Aluminium, Zink, Kupfer, Bronze oder Messing.
Beispiele geeigneter organischer und anorganischer Füllstoffe (D) sind Kreide, Calciumsulfate, Bariumsulfat, Silikate wie Talkum, Glimmer oder Kaolin, Kieselsäuren, Oxide wie Aluminiumhydroxid oder Magnesiumhydroxid oder organische Füllstoffe wie Kunststoffpulver, insbesondere aus Poylamid oder Polyacrlynitril. Ergänzend wird auf Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, 1998, Seiten 250 ff., »Füllstoffe«, verwiesen. Es ist von Vorteil, Gemische von plättchenförmigen anorganischen Füllstoffen (D) wie Talk oder Glimmer und nichtplättchenförmigen anorganischen Füllstoffen wie Kreide, Dolomit Calciumsulfate, oder Bariumsulfat zu verwenden, weil hierdurch die Viskosität und das Fließverhalten sehr gut eingestellt werden kann.
Beispiele geeigneter transparenter Füllstoffe (D) sind solche auf der Basis von Siliziumdioxid, Aluminiumoxid oder Zirkoniumoxid, insbesondere aber Nanopartikel auf dieser Basis. Diese transparenten Füllstoffe können auch in den nicht pigmentierten erfindungsgemäßen Beschichtungsstoffen, wie Klarlacken, vorhanden sein.
Der Anteil der Pigmente und/oder Füllstoffe (D) an den erfindungsgemäß zu verwendenden pigmentierten neuen Dual-Cure-Pulverslurries kann sehr breit variieren und richtet sich nach den Erfordernissen des Einzelfalls, insbesondere nach dem einzustellenden Effekt und/oder dem Deckvermögen der jeweils verwendeten Pigmente und/oder Füllstoffe (D). Vorzugsweise liegt der Gehalt bei 0,5 bis 80, bevorzugt 0,8 bis 75, besonders bevorzugt 1 ,0 bis 70, ganz besonders bevorzugt 1 ,2 bis 65 und insbesondere 1 ,3 bis 60 Gew.-%, jeweils bezogen auf den Festkörpergehalt der neuen Dual-Cure-Pulverslurry.
Die neuen Dual-Cure-Pulverslurries können zusätzlich zu den Pigmenten und/oder Füllstoffen (D) oder anstelle von diesen molekulardispers' verteilte Farbstoffe (D) enthalten.
Diese molekulardispers verteilten Farbstoffe (D) können dabei entweder in den Partikeln oder in der kontinuierlichen, d.h. wässrigen, Phase der neuen Dual-Cure- Pulverslurries vorhanden sein.
Sie können indes auch in den Partikeln und in der kontinuierlichen Phase vorliegen. Hierbei kann es sich bei dem in den Partikeln vorliegenden Anteil um die Hauptmenge, d.h. um mehr als 50% der eingesetzten organischen Farbstoffe (D) handeln. Es könnnen sich indes auch weniger als 50% in den Partikeln befinden. Die Verteilung der organischen Farbstoffe (D) zwischen den Phasen kann dem thermodynamischen Gleichgewicht entsprechen, das aus der Löslichkeit der organischen Farbstoffe (D) in den Phasen resultiert. Die Verteilung kann aber auch weit von dem thermodynamischen Gleichgewicht entfernt liegen. Geeignet sind alle organischen Farbstoffe (D), die in den neuen Dual-Cure- Pulverslurries im vorstehend geschilderten Sinne löslich sind. Gut geeignet sind lichtechte organische Farbstoffe. Besonders gut geeignet sind lichtechte organische Farbstoffe (D) mit einer geringen oder nicht vorhandenen Neigung zur Migration aus den aus den neuen Dual-Cure-Pulverslurries hergestellten Beschichtungen, Klebschichten und Dichtungen. Die Migrationsneigung kann der Fachmann anhand seines allgemeinen Fachwissens abschätzen und/oder mit Hilfe einfacher orientierender Vorversuche beispielsweise im Rahmen von Tönversuchen ermitteln.
Der Gehalt der neuen Dual-Cure-Pulverslurries an den molekulardispers verteilten organischen Farbstoffen (D) kann außerordentlich breit variieren und richtet sich in erster Linie nach der Farbe und dem Buntton, der eingestellt werden soll, sowie nach der Menge der gegebenenfalls vorhandenen Pigmenten und/oder Füllstoffen (D).
Zusatzstoffe (D), die je nach ihren physikalisch chemischen Eigenschaften und ihren Wirkungen in den Partikeln und/oder der kontinuierlichen Phase der pigmentierten, gefüllten und/oder gefärbten und der nicht pigmentierten, gefüllten und/oder gefärbten neuen Dual-Cure-Pulverslurries vorhanden sein können, sind zusätzliche Vernetzungsmittel, wie Aminoplastharze, wie sie beispielsweise in Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, 1998, Seite 29, »Aminoharze«, dem Lehrbuch „Lackadditive" von Johan Bieleman, Wiley-VCH, Weinheim, New York, 1998, Seiten 242 ff., dem Buch „Paints, Coatings and Solvents", second completely revised edition, Edit. D. Stoye und W. Freitag, Wiley-VCH, Weinheim, New York, 1998, Seiten 80 ff., den Patentschriften US 4 710 542 A oder EP 0 245 700 A 1 sowie in dem Artikel von B. Singh und Mitarbeiter "Carbamylmethylated Melamines, Novel Crosslinkers for the Coatings Industry", in Advanced Organic Coatings Science and Technology Series, 1991 , Band 13, Seiten 193 bis 207, beschrieben werden; Carboxylgruppen enthaltende Verbindungen oder Harze, wie sie beispielsweise in der Patentschrift DE 196 52 813 A 1 beschrieben werden, Epoxidgruppen enthaltende Verbindungen oder Harze, wie sie beispielsweise in den Patentschriften EP 0 299 420 A 1 , DE 22 14 650 B 1 , DE 27 49 576 B 1 , US 4,091 ,048 A oder US 3,781 ,379 A beschrieben werden; von den blockierten Polyisocyanaten (B) verschiedene blockierte Polyisocyanate und/oder Tris(alkoxycarbonylamino)-triazine, wie sie aus den Patentschriften US 4,939,213 A, US 5,084,541 A, US 5,288,865 A oder EP 0 604 922 A bekannt sind; sonstige strahlenhärtbare, von den olefinisch ungesättigten Bestandteilen (C) verschiedene Bestandteile, wie (meth)acrylfunktionelle (Meth)Acrylcopolymere, Polyetheracrylate, Polyesteracrylate, ungesättigte Polyester, Epoxyacrylate, verschiedene Urethanacrylate, Aminoacrylate, Melaminacrylate, Silikonacrylate und die entsprechenden Methacrylate; zusätzliche übliche und bekannte Bindemittel, die von den erfindungsgemäß zu verwendenden (Meth)Acrylatcopolymerisaten (A) verschieden sind, wie oligomere und polymere, thermisch härtbare, lineare und/oder verzweigte und/oder blockartig, kammartig und/oder statistisch aufgebaute Poly(meth)acrylate oder Acrylatcopolymerisate, insbesondere die in der Patentschrift DE 197 36 535 A 1 beschriebenen; Polyester; die in den Patentschriften DE 40 09 858 A 1 oder DE 44 37 535 A 1 beschriebenen, Alkyde, acrylierte Polyester; Polylactone; Polycarbonate; Polyether; Epoxidharz-Amin-Addukte; (Meth)Acrylatdiole; partiell verseifte Polyvinylester; Polyurethane und acrylierte Polyurethane, insbesondere die in den Patentanmeldungen EP 0 521 928 A 1 , EP 0 522 420 A 1 , EP 0 522 419 A 1 , EP 0 730 613 A 1 oder DE 44 37 535 A 1 beschriebenen; oder Polyharnstoffe; lacktypische Additive, wie thermisch härtbare Reaktiverdünner (vgl. die deutschen Patentanmeldungen DE 198 09 643 A 1 , DE 198 40 605 A 1 oder DE 198 05 421 A 1), UV-Absorber, Lichtschutzmittel, Radikalfänger, thermolabile radikalische Initiatoren, Photoinitiatoren, Katalysatoren für die Vernetzung, Entlüftungsmittel, Slipadditive, Polymerisationsinhibitoren, Entschäumer, Emulgatoren, Netzmittel, Haftvermittler, Verlaufmittel, filmbildende Hilfsmittel, rheologiesteuernde Additive, wie ionische und/oder nichtionische Verdicker; oder Flammschutzmittel; Weitere Beispiele geeigneter Lackadditive werden in dem Lehrbuch »Lackadditive« von Johan Bieleman, Wiley-VCH, Weinheim, New York, 1998, beschrieben.
Die neuen Dual-Cure-Pulverslurries enthalten in der kontinuierlichen Phase vorzugsweise nichtionische und ionische Verdicker (D). Hierdurch wird der Neigung der vergleichsweise großen festen und/oder hochviskosen Partikel zur Sedimentation wirksam begegnet. Beispiele nichtionischer Verdicker (D) sind Hydroxyethylcellulose und Polyvinylalkohole.
So genannte nichtionische Assoziativ-Verdicker (D) sind in vielfältiger Auswahl ebenfalls am Markt verfügbar. Sie bestehen in der Regel aus wasserverdünnbaren Polyurethanen, die Reaktionsprodukte von wasserlöslichen Polyetherdiolen, aliphatischen Diisocyanaten und monofunktionellen hydroxylischen Verbindungen mit organophilem Rest sind. Ebenfalls kommerziell erhältlich sind ionische Verdicker (D). Diese enthalten üblicherweise anionische Gruppen und basieren insbesondere auf speziellen Polyacrylatharzen mit Säuregruppen, die teilweise oder vollständig neutralisiert sein können.
Beispiele geeigneter Verdicker (D) sind aus dem Lehrbuch „Lackadditive" von Johan Bielemann, Wiley-VCH, Weinheim, New York, 1998, Seiten 31 bis 65, oder aus den deutschen Patentanmeldungen DE 199 08 018 A 1 , Seite 12, Zeile 44, bis Seite 14, Zeile 65, DE 198 41 842 A 1 oder 198 35 296 A 1 bekannt.
Die neuen Dual-Cure-Pulverslurries können beide der vorstehend beschriebenen Verdicker-Typen (D) enthalten. Die Menge der zuzusetzenden Verdicker und das Verhältnis von ionischem zu nichtionischem Verdicker richtet sich nach der gewünschten Viskosität der erfindungsgemäß Slurry, die wiederum von der benötigten Absetzstabilität und den speziellen Bedürfnissen der Spritzapplikation vorgegeben werden. Der Fachmann kann daher die Menge der Verdicker und das Verhältnis der Verdicker-Typen zueinander anhand einfacher Überlegungen gegebenenfalls unter Zuhilfenahme von Vorversuchen ermitteln.
Vorzugsweise wird ein Viskositätsbereich von 50 bis 1.500 mPas bei einer Scherrate von 1.000 S"1 und von 150 bis 8000 mPas bei einer Scherrate von 10 s-1 sowie von 180 bis 12.000 mPas bei einer Scherrate von 1 s-1 eingestellt.
Dieses als „strukturviskos" bekannte Viskositätsverhalten beschreibt einen Zustand, der einerseits den Bedürfnissen der Spritzapplikation und andererseits auch den Erfordernissen hinsichtlich Lager- und Absetzstabilität Rechnung trägt: Im bewegten
Zustand, wie beispielsweise beim Umpumpen der neuen Dual-Cure-Pulverslurries in der Ringleitung der Lackieranlage und beim Versprühen, nehmen die neuen Dual- Cure-Pulverslurries einen niederviskosen Zustand ein, der eine gute Verarbeitbarkeit gewährleistet. Ohne Scherbeanspruchung hingegen steigt die Viskosität an und gewährleistet auf diese Weise, dass die nach der Applikation auf den zu beschichtenden, zu verklebenden und/oder abzudichtenden Substraten befindlichen Dual-Cure-Beschichtungsstoffe, -Klebstoffe oder -Dichtungsmassen eine verringerte Neigung zum Ablaufen an senkrechten Flächen („Läuferbildung") zeigen. In gleicher Weise führt die höhere Viskosität im unbewegten Zustand, wie etwa bei der Lagerung, dazu, dass ein Absetzen der festen und/hochviksosen Partikel größtenteils verhindert wird oder ein Wiederaufrühren der während der Lagerzeit nur schwach abgesetzten neuen Dual-Cure-Pulverslurries gewährleistet ist.
Für die Verwendbarkeit der vorstehend beschriebenen Zusatzstoffe (D) ist es wesentlich, dass sie die Glasübergangstemperatur Tg oder die Mindestfilmbildetemperatur (MTF) (vgl. Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, S. 391 , »Mindestfilmbildetemperatur«) der Partikel der neuen Dual-Cure-Pulverslurries nicht so weit erniedrigen, dass sie koagulieren.
Der Festkörpergehalt der neuen Dual-Cure-Pulverslurries kann sehr breit variieren. Vorzugsweise liegt der Gehalt bei 10 bis 80, bevorzugt 12 bis 75, besonders bevorzugt 14 bis 70, ganz besonders bevorzugt 16 bis 65 und insbesondere 18 bis 60 Gew.-%, jeweils bezogen auf die neue Dual-Cure-Pulverslurry.
Die Herstellung der neuen Dual-Cure-Pulverslurries aus den vorstehend beschriebenen Bestandteilen weist keine methodischen Besonderheiten auf, sondern erfolgt im wesentlichen wie in den Patentanmeldungen DE 195 40 977 A 1 , DE 195 18 392 A 1 , DE 196 17 086 A 1 , DE-A-196 13 547, DE 196 18 657 A 1 , DE 196 52 813 A 1 , DE 196 17 086 A 1 , DE-A-198 14 471 A 1 , DE 198 41 842 A 1 oder DE 198 41 408 A 1 im Detail beschrieben, nur dass im Rahmen der vorliegenden Erfindung noch Pigmente und/oder Füllstoffe (D) mitverarbeitet werden können.
In einer ersten bevorzugten Variante der Herstellung wird von einem pigmentierten Pulverlack ausgegangen, der wie in der Produkt-Information der Firma BASF Lacke + Farben AG, „Pulverlacke", 1990 oder der Firmenschrift von BASF Coatings AG „Pulverlacke, Pulverlacke für industrielle Anwendungen", Januar 2000, durch Homogenisieren und Dispergieren, beispielsweise mittels eines Extruders oder Schneckenkneters, und Vermählen hergestellt wird. Nach Herstellung der Pulverlacke werden diese durch weiteres Vermählen und ggf. durch Sichten und Sieben für die Dispergierung vorbereitet.
Aus dem Pulverlack kann anschließend durch Nassvermahlung oder durch Einrühren von trocken vermahlenem Pulverlack die wässrige Pulverlack-Dispersion hergestellt werden. Besonders bevorzugt wird die Nassvermahlung. Anschließend wird die neue Dual-Cure-Pulverslurry vor ihrer Verwendung filtriert.
Erfindungsgemäß ist es von Vorteil, die neuen Dual-Cure-Pulverslurries mit Hilfe des in der deutschen Patentanmeldung DE 199 08 018 A 1 , Seite 15, Seite 37 bis 65, oder der deutschen Patentanmeldung DE 199 08 013 A 1 , Spalte 4, Zeile 22 bis 40, und Spalte 12, Zeile 38, bis Spalte 13, Zeile 23, beschriebenen Sekundärdispersionsverfahren herzustellen.
Die Partikel der Dual-Cure-Pulverslurries können im nassen Zustand noch mechanisch zerkleinert werden, was als Nassvermahlung bezeichnet wird. Vorzugsweise werden hierbei Bedingungen angewandt, dass die Temperatur des Mahlguts 70, bevorzugt 60 und insbesondere 50°C nicht überschreitet. Vorzugsweise beträgt der spezifische
Energieeintrag während des Mahlprozesses 10 bis 1.000, bevorzugt 15 bis 750 und insbesondere 20 bis 500 Wh/g.
Für die Nassvermahlung können die unterschiedlichsten Vorrichtungen angewandt werden, die hohe oder niedrige Scherfelder erzeugen.
Beispiele geeigneter Vorrichtungen, die niedrige Scherfelder erzeugen, sind übliche und bekannte Rührkessel, Spalthomogenisatoren, Microfluidizer oder Dissolver.
Beispiele geeigneter Vorrichtungen, die hohe Scherfelder erzeugen, sind übliche und bekannte Rührwerksmühlen oder Inline-Dissolver.
Besonders bevorzugt werden die Vorrichtungen, die hohe Scherfelder erzeugen, angewandt. Von diesen sind die Rührwerksmühlen erfindungsgemäß besonders vorteilhaft und werden deshalb ganz besonders bevorzugt verwendet.
Generell wird bei der Nassvermahlung die neue Dual-Cure-Pulverslurry mit Hilfe geeigneter Vorrichtungen, wie Pumpen, den vorstehend beschriebenen Vorrichtungen zugeführt und im Kreis hierüber gefahren, bis die gewünschte Teilchengröße erreicht ist.
Aus energetischen Gründen ist es insbesondere von Vorteil, wenn die zu vermählende neue Dual-Cure-Pulverslurry nur einen Teil, vorzugsweise 5 bis 90, bevorzugt 10 bis 80 und insbesondere 20 bis 70 Gew.-% der in ihr enthaltenen, vorstehend beschriebenen Verdicker (D) enthält. Sofern diese Variante des bevorzugten Verfahrens angewandt wird, ist die restliche Menge an Verdicker (D) nach der Nassvermahlung zuzusetzen.
Vorzugsweise wird die Herstellung der neuen Dual-Cure-Pulverslurries unter Ausschluss von aktinischer Strahlung durchgeführt, um eine vorzeitige Vernetzung oder anderweitige Schädigung der neuen Dual-Cure-Pulverslurries zu vermeiden.
Die neuen Dual-Cure-Pulverslurries eignen sich hervorragend als Dual-Cure- Beschichtungsstoffe, -Klebstoffe und -Dichtungsmassen oder zu deren Herstellung
Die neuen Dual-Cure-Beschichtungsstoffe sind hervorragend für die Herstellung von ein- oder mehrschichtigen, färb- und/oder effektgebenden, elektrisch leitfähigen, magnetisch abschirmenden oder fluoreszierenden Beschichtungen, wie Füllerlackierungen, Basislackierungen, Unidecklackierungen oder
Kombinationseffektschichten, oder von ein- oder mehrschichtigen Klarlackierungen geeignet.
Die neuen Dual-Cure-Klebstoffe sind hervorragend für die Herstellung von Klebschichten, und die erfindungsgemäßen Dual-Cure-Dichtungsmassen sind hervorragend für die Herstellung von Dichtungen geeignet.
Ganz besondere Vorteile resultieren bei der Verwendung der neuen Dual-Cure- Beschichtungsstoffe als Klarlacke für die Herstellung von ein- oder mehrschichtigen Klarlackierungen. Insbesondere werden die neuen Dual-Cure-Klarlacke zur Herstellung von färb- und/oder effektgebenden Mehrschichtlackierungen nach dem nass-in-nass Verfahren verwendet, bei dem ein Basislack, insbesondere ein Wasserbasislack, auf die Oberfläche eines Substrats appliziert wird, wonach man die resultierende Basislackschicht, ohne sie auszuhärten, trocknet und mit einer Klarlackschicht überschichtet. Anschließend werden die beiden Schichten gemeinsam gehärtet. Methodisch weist die Applikation der neuen Dual-Cure-Beschichtungsstoffe, - Klebstoffe und Dichtungsmassen keine Besonderheiten auf, sondern kann durch alle üblichen Applikationsmethoden, wie z.B. Spritzen, Rakeln, Streichen, Gießen, Tauchen, Träufeln oder Walzen erfolgen. Vorzugsweise werden bei den erfindungsgemäßen Dual-Cure-Beschichtungsstoffen Spritzapplikationsmethoden angewandt, wie zum Beispiel Druckluftspritzen, Airless-Spritzen, Hochrotation, elektrostatischer Sprühauftrag (ESTA), gegebenenfalls verbunden mit Heißspritzapplikation wie zum Beispiel Hot-Air- Heißspritzen. Vorzugsweise erfolgt die Applikation unter Ausschluß von Tageslicht, um eine vorzeitige Vernetzung der neuen Dual-Cure-Pulverslurries zu verhindern.
Als Substrate kommen all die in Betracht, deren Oberfläche durch die gemeinsame Anwendung von aktinischer Strahlung und Hitze bei der Härtung der hierauf befindlichen Dual-Cure-Schichten nicht geschädigt wird. Vorzugsweise bestehen die Substrate aus Metallen, Kunststoffen, Holz, Keramik, Stein, Textil, Faserverbunden, Leder, Glas, Glasfasern, Glas- und Steinwolle, mineral- und harzgebundene Baustoffen, wie Gips- und Zementplatten oder Dachziegel, sowie Verbunden dieser Materialien.
Demnach sind die neuen Dual-Cure-Beschichtungsstoffe, -Klebstoffe und - Dichtungsmassen nicht nur für Anwendungen auf den Gebieten der
Kraftfahrzeugserienlackierung und Kraftfahrzeugreparaturlackierungen hervorragend geeignet, sondern kommen auch für die Beschichtung, das Verkleben und das
Abdichten von Bauwerken im Innen- und Außenbereich und von Türen, Fenstern und
Möbeln, für die industrielle Lackierung, inklusive Coil Coating, Container Coating und die Imprägnierung und/oder Beschichtung elektrotechnischer Bauteile, sowie für die
Lackierung von weißer Ware, inklusive Haushaltsgeräte, Heizkessel und Radiatoren, in
Betracht. Im Rahmen der industriellen Lackierungen eignen sie sich für die Lackierung, das Verkleben oder das Abdichten praktisch aller Teile und Gegenstände für den privaten oder industriellen Gebrauch wie Haushaltsgeräte, Kleinteile aus Metall, wie Schrauben und Muttern, Radkappen, Felgen, Emballagen, oder elektrotechnische
Bauteile, wie Motorwicklungen oder Transformatorwicklungen (elektrische
Wickelgüter).
Im Falle elektrisch leitfähiger Substrate können Grundierungen verwendet werden, die in üblicher und bekannter Weise aus Elektrotauchlacken hergestellt werden. Hierfür kommen sowohl anodische als auch kathodische Elektrotauchlacke, insbesondere aber kathodische Elektrotauchlacke, in Betracht. Im Falle von nichtfunktionalisierten und/oder unpolaren Kunststoffoberflächen können diese vor der Beschichtung in bekannter Weise einer Vorbehandlung, wie mit einem Plasma oder mit Beflammen, unterzogen oder mit einer Hydrogrundierung versehen werden.
Auch die thermische Härtung der applizierten erfindungsgemäßen Dual-Cure- Pulverslurries weist keine methodischen Besonderheiten auf, sondern erfolgt nach den üblichen und bekannten thermischen Methoden, wie Erhitzen in einem Umluftofen oder Bestrahlen mit IR-Lampen.
Für die Härtung mit aktinischer Strahlung kommen Strahlenquellen wie Quecksilberhoch- oder -niederdruckdampflampen, welche gegebenenfalls mit Blei dotiert sind, um ein Strahlenfenster bis zu 405 nm zu öffnen, oder Elektronenstrahlquellen in Betracht. Weitere Beispiele geeigneter Verfahren und Vorrichtungen zur Härtung mit aktinischer Strahlung werden in der deutschen Patentanmeldung DE 198 18 735 A 1 , Spalte 10, Zeilen 31 , bis Spalte 12, Zeile 22, beschrieben. Vorzugsweise wird eine UV-Durchlaufanlage der Firma IST verwendet.
Die resultierenden Beschichtungen, insbesondere die erfindungsgemäßen ein- oder mehrschichtigen färb- und/oder effektgebenden Lackierungen und Klarlackierungen sind einfach herzustellen und weisen hervorragende optische Eigenschaften und eine sehr hohe Licht-, Chemikalien-, Wasser- und Witterungsbeständigkeit auf. Insbesondere sind sie frei von Trübungen und Inhomogenitäten. Außerdem sind sie hart, flexibel und kratzfest. Sie weisen eine hervorragende Zwischenschichthaftung zwischen Basislackierung und Klarlackierung und eine gute bis sehr gute Haftung zu Kraftfahrzeug-Serienreparaturlackierungen auf. Bekanntermaßen werden bei der Kraftfahrzeug-Serienreparaturlackierung die fertig lackierten Karosserien noch einmal insgesamt mit den Originalserienlackierungen (OEM) überlackiert.
Die Klebschichten verbinden die unterschiedlichsten Substrate auf Dauer haftfest miteinander und haben eine hohe chemische und mechanische Stabilität auch bei extremen Temperaturen und/oder Temperaturenschwankungen.
Desgleichen dichten die Dichtungen die Substrate auf Dauer ab, wobei sie eine hohe chemische und mechanische Stabilität auch bei extremen Temperaturen und/oder Temperaturschwankungen sogar i. V. m. der Einwirkung aggressiver Chemikalien aufweisen. Es ist aber ein ganz wesentlicher Vorteil der neuen Dual-Cure-Pulverslurries und der neuen Dual-Cure-Beschichtungsstoffe, -Klebstoffe und -Dichtungsmassen, dass sie auch in den Schattenzonen komplex geformter dreidimensionaler Substrate, wie Karosserien, Radiatoren oder elektrische Wickelgüter, auch ohne optimale, insbesondere vollständige, Ausleuchtung der Schattenzonen mit aktinischer Strahlung Beschichtungen, Klebschichten und Dichtungen liefern, deren anwendungstechnisches Eigenschaftsprofil an das der Beschichtungen, Klebschichten und Dichtungen außerhalb der Schattenzonen zumindest heranreicht. Dadurch werden die in den Schattenzonen befindlichen Beschichtungen, Klebschichten und Dichtungen auch nicht mehr leicht durch mechanische und/oder chemische Einwirkung geschädigt.
Demzufolge weisen die auf den vorstehend aufgeführten technologischen Gebieten üblicherweise angewandten grundierten oder ungrundierten Substrate, die mit mindestens einer neuen Beschichtung beschichtet, mit mindestens einer neuen Klebschicht verklebt und/oder mit mindestens einer neuen Dichtung abgedichtet sind, bei einem besonders vorteilhaften anwendungstechnischen Eigenschaftsprofil eine besonders lange Gebrauchsdauer auf, was sie wirtschaftlich besonders attraktiv macht.
Beispiele
Herstellbeispiel 1
Die Herstellung eines hydrophilen Bestandteils (C)
In einem Reaktionsgefäss, ausgerüstet mit Heizung, Rührer, Innenthermometer, Gaseinleitung und Rückflusskühler, wurden 420,4 Gewichtsteile Desmodur ® N 3300 (isocyanurathaltiges Polyisocyanat von Hexamethylendiisocyanat; Isocyanatgehalt nach DIN EN ISO 11909: 21 ,%; Viskosität nach DIN EN ISO 3219/A.3 bei 23 °C: 3.090 mPas; Bayer AG), 190 Gewichtsteile Methylethylketon, 0,8 Gewichtsteile 2,6-Di-tert.- butyl-4-methylphenol, und 0,003 Gewichtsteile Dibutylzinndilaurat vorgelegte und unter Rühren auf 60 °C erhitzt. Bei dieser Temperatur wurden portionsweise 105,7 Gewichtsteile 3,5-Dimethylpyrazol innerhalb von 45 Minuten zugegeben. Nach Beendigung der Zugabe wurden bei 60 °C 21 ,7 Gewichtsteile Dimethylolpropionsäure zugefügt. Das resultierende- Reaktionsgemisch wurde weiter bei 60 °C gerührt, bis der Isocyanatgehalt bei 4,3 Gew.-% lag (14 Stunden). Anschließend wurden unter Einleiten von Luft (1 l/h) 212,2 Gewichtsteile Pentaerythrittriacrylat während 3 Stunden zudosiert. Weitere 0,003 Gewichtsteile Dibutylzinndilaurat wurden hinzu gegeben. Nach weiteren 12 Stunden bei 60 °C betrug der Isocyanatgehalt des Reaktionsgemischs 2,5 Gew.-%. Es wurden weitere 218 Gewichtsteile Pentaerythrittriacrylat zudosiert. Nach weiteren 3 Stunden betrug der Isocyanatgehalt 0,1 Gew.-%. Die resultierende Lösung des hydrophilen Bestandteils (C) wurde mit weiterem Methylethylketon auf einen Festkörpergehalt von 74,2 Gew.-% eingestellt. Die Viskosität betrug bei 23 °C 1.760 mPas.
Herstellbeispiel 2
Die Herstellung eines Bestandteils (C)
Analog zu Herstellbeispiel 1 wurden 415,3 Gewichtsteile Desmodur ® N 3300, 190 Gewichtsteile Methylethylketon, 0,8 Gewichtsteile 2,6-Di-tert.- butyl -4-methylphenol und 0,003 Gewichtsteile Dibutylzinndilaurat vorgelegt und unter Rühren auf 60 °C erhitzt. Bei dieser Temperatur wurden portionsweise 135 Gewichtsteile 3,5- Dimethylpyrazol während 45 Minuten zugegeben. Es wurde weiter bei 60 °C gerührt bis der Isocyanatgehalt des Reaktionsgemischs bei 4 Gew.-% lag (2,5 Stunden). Anschließend wurden unter Einleiten von Luft (1 l/h) 209,7 Gewichtsteile Pentaerythrittriacrylat während einer Stunde zudosiert. Nach weiteren 9 Stunden bei 60 °C betrug der Isocyanatgehalt des Reaktionsgemischs 2,4 Gew.-%. Es wurden weitere 0,003 Gewichtsteile Dibutylzinndilaurat und weitere 244 Gewichtsteile Pentaerythrittriacrylat zudosiert. Nach weiteren 16 Stunden lag der Isocyanatgehalt des Reaktionsgemischs bei 0,8 Gew.-%. Abschließend wurden 20 Gewichtsteile 3,5- Dimethylpyrazol zugegeben. Nach weiteren 3 Stunden betrug der Isocyanatgehalt 0,1 Gew.-%. Die resultierende Lösung des Bestandteils (C) wies einen Festkörpergehalt von 61,7 Gew.-% auf. Die Viskosität lag bei 23 °C bei 4.330 mPas.
Herstellbeispiel 3
Die Herstellung eines blockierten Polyisocyanats (B)
In einem geeigneten Laborreaktor, ausgerüstet mit Rührer, Rückflusskühler,
Thermometer und Stickstoffeinleitungsrohr, wurden 1.068 Gewichtsteile Desmodur® N 3300 und 380 Gewichtsteile Methylethylketon vorgelegt und langsam auf 40 °C erhitzt.
Anschließend wurden insgesamt 532 Gewichtsteile 2,5-Dimethylpyrazol portionsweise derart hinzu gegeben, dass die Temperatur der Reaktionsmischung nicht höher als 80 °C stieg. Die Reaktionsmischung wurde so lange bei 80 °C gehalten, bis kein freies Isocyanat mehr nachweisbar war, und anschließend abgekühlt. Die resultierende Lösung des blockierten Polyisocyanats (B) wies einen Festkörpergehalt von 80 Gew.- % auf
Beispiele 1 und 2
Die Herstellung der neuen Dual-Cure-Pulverslurries 1 und 2 In einem geeigneten Rührgefäß aus Glas, ausgerüstet mit einem Schnellrührer, wurden 173,61 Gewichtsteile der Lösung eines Methacrylatcopolymerisats (A) (Festkörpergehalt: 57,6 Gew.-% in Methylethylketon; Säurezahl: 32,4 mg KOH/g Festharz; Hydroxylzahl: 150 mg KOH/g Festharz; OH-Äquivalentgewicht: 374 g/Mol; Glasübergangstemperatur: 12,7 °C), 80,55 Gewichtsteile der Lösung des blockierten Polyisocyanats (B) des Herstellbeispiels 3, 2,85 Gewichtsteile Dimethylethanolamin und für Beispiel 1 62,5 Gewichtsteile des Bestandteils (C) des Herstellbeispiels 1 und für Beispiel 2 62,5 Gewichtsteile des Bestandteils (C) des Herstellbeispiels 2 eingewogen und intensiv miteinander vermischt. Zu der resultierenden Mischung wurden 2 Gewichtsteile einer Photoinitiatormischung, bestehend aus Irgacure ® 184 (handelsüblicher Photoinitiator der Firma Ciba Specialty Chemicals) und Lucirin ® TPO (handelsüblicher Photoinitiator der Firma BASF AG) im Gewichtsverhältnis von 5 : 1 , 1 ,63 Gewichtsteile eines handelsüblichen UV-Absorbers (Tinuvin ® 400) und 1,63 Gewichtsteile eines handelsüblichen reversiblen Radikalfängers (HALS; Tinuvin ® 123) hinzu gegeben und ebenfalls gut vermischt.
Zu dieser organischen Phase wurde deionisiertes Wasser in einer Menge, entsprechend einem gewünschten Festkörpergehalt der Dual-Cure-Pulverslurries 1 und 2 von 36 bis 37 Gew.-%, langsam unter Rühren zugegeben. Nach der vollständigen Zugabe des Wassers wurden die resultierende Dispersionen über 1 μm Cuno ©-Druckfilter filtriert. Das Methylethylketon wurde anschließend unter Vakuum bei maximal 35 °C abdestilliert.
Die Dual-Cure-Pulverslurries 1 und 2 wurde durch Zugabe von 0,31 Gewichtsteilen eines handelsüblichen Verlaufmittels (Baysilone ® AI 3468 der Firma Bayer AG) sowie 6,1 Gewichtsteilen eines handelsüblichen Verdickers (Acrysol ® RM-8W der Firma Rohm & Haas) komplettiert. Abschließend wurden sie über 1 μm Cuno ©-Druckfilter filtriert.
Die Dual-Cure-Pulverslurries 1 und 2 wiesen einen Festkörpergehalt von 36,2 Gew.-% auf und waren lagerstabil und leicht zu applizieren.
Beispiele 3 und 4
Die Herstellung von farbgebenden Mehrschichtlackierungen mit Hilfe der Dual-Cure- Pulverslurries 1 und 2
Bei Beispiel 3 wurde die Dual-Cure-Pulverslurry des Beispiels 1 verwendet. Bei Beispiel 4 wurde die Dual-Cure-Pulverslurry des Beispiels 2 verwendet
Die Dual-Cure-Pulverslurries der Beispiele 1 und 2 wurden pneumatisch mit einer Fließbecherpistole auf Stahlbleche appliziert, die mit einem schwarzen Wasserbasislack vorlackiert waren. Die Nassschichtdicke der applizierten Schichten wurde so gewählt, dass die gehärteten Klarlackierungen eine Trockenschichtdicke von 30 μm aufwiesen. Nach einer Ablüftzeit von 5 Minuten bei 23 °C wurden die applizierten Schichten unter Dual-Cure-Bedingungen gehärtet.
Für die thermische Härtung wurden Umluftöfen der Firma Binder und der Firma Heraeus verwendet. Der angegebenen Temperaturen beziehen sich auf die Umluft.
Die Strahlenhärtung wurde mit einer UV-Durchlaufanlage der Firma IST durchgeführt. Die Bestrahlung erfolgte unter atmosphärischer Luft. Die Strahlungsdosis wurde mit einem handelsüblichen Dosimeter unmittelbar vor der Härtung ermittelt und gegebenenfalls durch die Veränderung der Bandgeschwindigkeit variiert. Die Strahlungsquelle war eine Quecksilbermitteldruckdampflampe.
Bei der Dual-Cure-Härtung wurden die folgenden Bedingungen angewandt:
Trocknung: 10 Minuten bei Raumtemperatur, 5 Minuten bei 60 °C, 15 Minuten bei 150 °C; UV-Härtung: Dosis 1 ,5 J/cm2; thermische Härtung: 15 Minuten bei 150 °C. Die Tabelle gibt einen Überblick über die durchgeführten Tests und die dabei erhaltenen Ergebnisse. Sie untermauern, dass die neuen Klarlackierungen der Beispiele 3 und 4 sehr gutes und ausgewogenes Eigenschaftsprofil aufwiesen.
Tabelle: Anwendungstechnische Eigenschaften der Klarlackierungen der Beispiele 3 und 4
Test Ergebnisse Beispiele: 3 4
Verlauf (visuell) in Ordnung in Orc Krater (visuell) keine keine Kocher (visuell) keine keine
Glanz 20 "(Einheiten) 85 87 Haze (Einheiten) 9 5
Verlauf (laseroptisch): Long wave 9,6 8,5 Short wave 32,3 32,3
MB-Kratzprobe (Kennwert) 1 ,5 1 ,5
Amtec:
Anfangsglanz 20 ° 85 86
Glanz 20 ° ohne Reinigung 31 30
Glanz 20 ° mit Reinigung 47 53
Glanz 20 ° nach Reflow
(zwei Stunden/80 °C): ohne Reinigung 37 36 mit Reinigung 54 61
DaimlerChrysler-Gradientenofen
(Schädigung ab °C):
Schwefelsäure 40 41
Wasser 60 65
DB Teer, 24 Stunden bei
Raumtemperatur: Oberflächenver- änderung nach 24 Stunden 0 0
DB Benzin, 10 Minuten bei
Raumtemperatur Oberflächenver
-änderung nach 24 Stunden 1 0
Steinschlagbeständigkeit: Kugelschuss:
Abplatzung (mm2)/Rostgrad 2/1 2/1
Steinschlag VDA DB, 2 bar: Abplatzung (mm2)/Rostgrad 1 ,5/0,5 1 ,5/0,5
Haftung:
Klebebandabriss (Kennwert) 0 0
Gitterschnitt (2 mm) (Kennwert) GT1 GT1
Schwitzwasserkonstantklima
(240 Stunden):
Blasengrad (Menge) 0 1
Blasengrad (Größe) 0 1 Gitterschnitt 2 mm: eine Stunde nach
Belastung (Kennwert) GT1 GT1
24 Stunden nach
Belastung (Kennwert) GT1 GT1

Claims

Patentansprüche
Thermisch und mit aktinischer Strahlung härtbare Pulverslurries, enthaltend feste und/oder hochviskose, unter Lagerungs- und Anwendungsbedingungen dimensionsstabile Partikel, enthaltend
(A) mindestens ein Bindemittel, das frei ist von Kohlenstoff-Kohlenstoff- Doppelbindungen, die mit aktinischer Strahlung aktivierbar sind, enthaltend mindestens ein (Meth)Acrylatcopolymerisat mit im statistischen Mittel mindestens einer isocyanatreaktiven funktionellen Gruppe und mindestens einer Ionen bildenden Gruppe im Molekül,
(B) mindestens ein blockiertes und/oder teilblockiertes Polyisocyanat,
(C) mindestens einen olefinisch ungesättigten Bestandteil, der frei ist von isocyanatreaktiven funktionellen Gruppen und im statistischen Mittel mindestens eine mit Pyrazol oder mindestens einem substitiuierten Pyrazol blockierte Isocyanatgruppe und mindestens zwei mit aktinischer Strahlung aktivierbare Kohlenstoff-Kohlenstoff-Doppelbindungen im Molekül enthält, herstellbar durch die Umsetzung mindestens eines Polyisocyanats mit Pyrazol und/oder mindestens einem substitiuierten Pyrazol sowie mit mindestens einer Verbindung, enthaltend eine isocyanatreaktive funktionelle Gruppe und mindestens zwei mit aktinischer Strahlung aktivierbare Kohlenstoff-Kohlenstoff- Doppelbindungen.
2. Pulverslurries nach Anspruch 1 , dadurch gekennzeichnet, dass das Bindemittel (A) eine Glasübergangstemperatur von + 5 bis + 25 °C hat.
3. Pulverslurries nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die isocyanatreaktiven Gruppen aus der Gruppe, bestehend aus Hydroxyl-, Thioi- sowie primären und sekundären Aminogruppen, ausgewählt sind.
4. Pulverslurries nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die isocyanatreaktiven Gruppen Hydroxylgruppen sind.
5. Pulverslurries nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das substitiuierte Pyrazol ein Dialkylpyrazol ist.
6. Pulverslurries nach Anspruch 5, dadurch gekennzeichnet, dass das Dialkylpyrazol 3,5-Dimethylpyrazol ist.
7. Pulverslurries nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Bestandteile (C) hydrophile Gruppen enthalten.
8. Pulverslurries nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Kohlenstoff-Kohlenstoff-Doppelbindungen in (Meth)Acryloyl-, Ethacryloyl-, Crotonat-, Cinnamat-, Vinylether-, Vinylester-, Ethenylarylen-, Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylgruppen; Ethenylarylen-, Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylethergruppen oder Ethenylarylen-, Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylestergruppen vorliegen.
9. Pulverslurries nach Anspruch 8, dadurch gekennzeichnet, dass die Kohlenstoff- Kohlenstoff-Doppelbindungen in (Meth)Acryloylgruppen vorliegen.
10. Verwendung der Pulverslurries gemäß einem der Ansprüche 1 bis 9 als Beschichtungsstoffe, Klebstoffe oder Dichtungsmassen.
11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, dass die Beschichtungsstoffe als Klarlacke und/oder als färb- und/oder effektgebende Beschichtungsstoffe für die Herstellung von Klarlackierungen, ein- und mehrschichtigen, färb- und/oder effektgebenden, elektrisch leitfähigen, magnetisch abschirmenden und/oder fluoreszierenden Beschichtungen und Kombinationseffektschichten verwendet werden.
12. Verwendung nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass die Beschichtungsstoffe, Klebstoffe oder Dichtungsmassen auf den Gebieten der Kraftfahrzeugserienlackierung, der Kraftfahrzeugreparaturlackierung, der Beschichtung von Bauwerken im Innen- und Außenbereich, der Lackierung von Möbeln, Fenstern oder Türen und der industriellen Lackierung, inklusive Coil Coating, Container Coating, der Imprägnierung oder Beschichtung elektrotechnischer Bauteile und der Beschichtung von weißer Ware, inklusive Haushaltsgeräte, Heizkessel und Radiatoren, verwendet werden .
13. Verfahren zur Herstellung der thermisch und mit aktinischer Strahlung härtbaren Pulverslurries gemäß einem der Ansprüche 1 bis 9 mit Hilfe eines Sekundärdispersionsverfahrens, gekennzeichnet durch die folgenden Verfahrensschritte:
(I) Emulgierung einer organischen Lösung, enthaltend die Bestandteile (A), (B) und (C) sowie gegebenenfalls (D), wodurch eine Emulsion vom Typ Öl-in-Wasser resultiert,
(II) Entfernen des organischen Lösemittels oder der organischen Lösemittel und (III) teilweisen oder völligen Ersatz des entfernten Lösemittelvolumens durch Wasser, wodurch die Pulverslurry resultiert.
PCT/EP2004/052813 2003-10-20 2004-10-12 Thermisch und mit aktinischer strahlung härtbare pulverslurries, verfahren zu ihrer herstellung und ihre verwendung WO2005040244A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/595,209 US20080255308A1 (en) 2003-10-20 2004-10-12 Powder Slurries Which can be Thermally Hardened with Actinic Radiation and Method for the Production and Use Thereof
JP2006536102A JP2007510763A (ja) 2003-10-20 2004-10-12 熱および化学線で硬化性の粉末スラリー、その製法およびその使用
EP04791356A EP1675884A1 (de) 2003-10-20 2004-10-12 Thermisch und mit aktinischer strahlung härtbare pulversluries, verfahren zu ihrer herstellung und ihre verwendung
CA002541612A CA2541612A1 (en) 2003-10-20 2004-10-12 Powder slurries which can be thermally hardened with actinic radiation and method for the production and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10348544.9 2003-10-20
DE10348544A DE10348544A1 (de) 2003-10-20 2003-10-20 Thermisch und mit aktinischer Strahlung härtbare Pulverslurries, Verfahren zu ihrer Herstellung und ihre Verwendung

Publications (1)

Publication Number Publication Date
WO2005040244A1 true WO2005040244A1 (de) 2005-05-06

Family

ID=34442108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052813 WO2005040244A1 (de) 2003-10-20 2004-10-12 Thermisch und mit aktinischer strahlung härtbare pulverslurries, verfahren zu ihrer herstellung und ihre verwendung

Country Status (8)

Country Link
US (1) US20080255308A1 (de)
EP (1) EP1675884A1 (de)
JP (1) JP2007510763A (de)
KR (1) KR20060107517A (de)
CN (1) CN1867601A (de)
CA (1) CA2541612A1 (de)
DE (1) DE10348544A1 (de)
WO (1) WO2005040244A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007015261A1 (de) * 2007-03-27 2008-10-02 Aacure Aadhesives Gmbh Reaktivmasse und Verfahren zur Aufbringung hierfür
US8628841B2 (en) * 2008-08-27 2014-01-14 Ngk Insulators, Ltd. Ceramic green body and method for producing the same
JP5183404B2 (ja) * 2008-10-02 2013-04-17 アサヒゴム株式会社 アクリルゾル組成物
JP5462562B2 (ja) * 2009-09-15 2014-04-02 アサヒゴム株式会社 アクリルゾル組成物
DE102013204124A1 (de) * 2013-03-11 2014-09-11 Evonik Industries Ag Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen die mittels Strahlung duroplastisch vernetzt werden

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041635A1 (de) * 2000-08-24 2002-03-28 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbare Einkomponentensysteme und ihre Verwendung
WO2002079334A1 (de) * 2001-03-29 2002-10-10 Basf Coatings Ag Thermisch und mit aktinischer strahlung härtbare wässrige dispersionen, verfahren zu ihrer herstellung und ihre verwendung
DE10143414A1 (de) * 2001-09-05 2003-03-27 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbare Polysiloxan-Sole, Verfahren zu ihrer Herstellung und ihre Verwendung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10115605A1 (de) * 2001-03-29 2002-10-24 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbare Pulverslurries, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10129970A1 (de) * 2001-06-21 2003-01-09 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbare Beschichtungsstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041635A1 (de) * 2000-08-24 2002-03-28 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbare Einkomponentensysteme und ihre Verwendung
WO2002079334A1 (de) * 2001-03-29 2002-10-10 Basf Coatings Ag Thermisch und mit aktinischer strahlung härtbare wässrige dispersionen, verfahren zu ihrer herstellung und ihre verwendung
DE10143414A1 (de) * 2001-09-05 2003-03-27 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbare Polysiloxan-Sole, Verfahren zu ihrer Herstellung und ihre Verwendung

Also Published As

Publication number Publication date
JP2007510763A (ja) 2007-04-26
DE10348544A1 (de) 2005-05-19
CA2541612A1 (en) 2005-05-06
CN1867601A (zh) 2006-11-22
US20080255308A1 (en) 2008-10-16
EP1675884A1 (de) 2006-07-05
KR20060107517A (ko) 2006-10-13

Similar Documents

Publication Publication Date Title
DE10115505B4 (de) Thermisch und mit aktinischer Strahlung härtbare wäßrige Dispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1373421B1 (de) Thermisch und mit aktinischer strahlung härtbares gemisch und seine verwendung
EP1242496A1 (de) Verfahren zur herstellung von beschichtungen aus thermisch und mit aktinischer strahlung härtbaren beschichtungsstoffen
WO2003016376A1 (de) Thermisch und mit aktinischer strahlung härtbare beschichtungsstoffe und ihre verwendung
WO2002079290A1 (de) Thermisch und mit aktinischer strahlung härtbare puverslurries, verfahren zu ihrer herstellung un dihre verwendung
EP1322718A1 (de) Verfahren zur herstellung eines thermisch und mit aktinischer strahlung härtbaren mehrkomponentensystems und seine verwendung
EP1274805B1 (de) Verfahren zur herstellung wässriger primärdispersionen und beschichtungsstoffe und deren verwendung
WO2003000812A1 (de) Thermisch und mit aktinischer strahlung härtbare beschichtungsstoffe, verfahren zu ihrer herstellung und ihre verwendung
EP1322689B1 (de) Lösemittelhaltiges, thermisch und mit aktinischer strahlung härtbares mehrkomponentensystem und seine verwendung
EP1373385B1 (de) Von flüchtigen organischen verbindungen freie oder im wesentlichen freie, wässrige dispersionen, verfahren zu ihrer herstellung und ihre verwendung
EP1322690B1 (de) Beschichtungsstoffsystem für die herstellung farb- und/oder effektgebender mehrschichtlackierungen auf der basis von mehrkomponentenbeschichtungsstoffen
DE10106566A1 (de) Von flüchtigen organischen Stoffen im wesentlichen oder völlig freier wäßriger Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung
DE10048275C1 (de) Thermisch und mit aktinischer Strahlung härtbares Mehrkomponentensystem und seine Verwendung
DE10042152A1 (de) Mit aktinischer Strahlung aktivierbares Thixotropierungsmittel, Verfahren zu seiner Herstellung und seine Verwendung
WO2002026852A1 (de) Thermisch und mit aktinischer strahlung härtbare mehrkomponentenbeschichtungsstoffe, -klebstoffe und -dichtungsmassen und ihre verwendung
DE19959928A1 (de) Wäßrige Primärdispersionen und Beschichtungsstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2002016462A1 (de) Thermisch und mit aktinischer strahlung härtbare einkomponentensysteme und ihre verwendung
WO2005040244A1 (de) Thermisch und mit aktinischer strahlung härtbare pulverslurries, verfahren zu ihrer herstellung und ihre verwendung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030162.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004791356

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10595209

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2541612

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006536102

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067007659

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004791356

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067007659

Country of ref document: KR