WO1997014584A1 - Dispositif avertisseur de distance entre voitures - Google Patents

Dispositif avertisseur de distance entre voitures Download PDF

Info

Publication number
WO1997014584A1
WO1997014584A1 PCT/JP1995/002124 JP9502124W WO9714584A1 WO 1997014584 A1 WO1997014584 A1 WO 1997014584A1 JP 9502124 W JP9502124 W JP 9502124W WO 9714584 A1 WO9714584 A1 WO 9714584A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
alarm
distance
danger
inter
Prior art date
Application number
PCT/JP1995/002124
Other languages
English (en)
French (fr)
Inventor
Mitsuru Iwasaki
Yasuhisa Nakahara
Takuya Yanaka
Original Assignee
Calsonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Corporation filed Critical Calsonic Corporation
Priority to JP51567397A priority Critical patent/JP3280033B2/ja
Priority to PCT/JP1995/002124 priority patent/WO1997014584A1/ja
Priority to DE69529481T priority patent/DE69529481T2/de
Priority to EP95934315A priority patent/EP0856433B1/en
Priority to KR1019980702404A priority patent/KR100335968B1/ko
Priority to US09/051,808 priority patent/US6097311A/en
Publication of WO1997014584A1 publication Critical patent/WO1997014584A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9322Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using additional data, e.g. driver condition, road state or weather data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons

Definitions

  • the present invention has two types of alarms, an inter-vehicle alarm and a rear-end collision alarm, and issues alarms using separate judgment formulas, distinguishes the type of the measured object, and makes a danger judgment according to the determined type of the measured object. By doing so, a reliable alarm can be issued when deceleration or braking is required, and false alarms due to guard rails are reduced. It relates to an alarm device. Background art
  • an inter-vehicle distance warning device for automobiles has been developed and put into practical use, which judges the danger and issues a warning in the event of danger to warn the driver's attention.
  • a one-beam or three-beam laser beam is emitted to measure a distance to an object to be measured. Comparisons are made to determine the presence or absence of a dangerous condition. In some cases, the user can freely adjust the timing at which a warning is issued by changing the safety distance in the judgment formula (for example, see Japanese Utility Model Application Publication No. 58-110198). See ⁇
  • the present invention provides a vehicular inter-vehicle distance alarm device that can reliably output an alarm even when the user sets the alarm sound to be difficult to output, or in a state that requires a brake operation or a brake operation.
  • the purpose is to:
  • Another object of the present invention is to provide a highly reliable inter-vehicle distance alarm device for a vehicle that can reduce false alarms caused by guardrails and the like. Disclosure of the invention
  • the present invention measures the distance between an object existing in front of the vehicle and an object, determines whether or not there is danger based on the obtained distance data, and issues an alarm when it is determined to be dangerous. Deceleration or braking The second thing that occurs when you are in a vigilant state
  • the first alarm and the second alarm each have 53 alarms. It is determined by a determination formula. This makes it possible to reliably issue an alarm (first alarm) when deceleration or braking is required.
  • the present invention also provides the above-mentioned inter-vehicle distance alarm device for an automobile, wherein the optical beam is emitted in a plurality of predetermined directions, and distance measuring means for measuring a distance to an object in the plurality of directions; The change in the distance in the same direction between the first and second times determined by the measuring means is compared with the travel distance of the own vehicle, and the object force existing in the direction (the moving object or the fixed object is determined. (1) When the first discriminating means determines that there is a predetermined number or more of fixed objects in front of the own vehicle, the distance data is regressed to obtain the standard deviation, and the obtained value is obtained.
  • a second determining unit that compares the standard deviation with a predetermined value to determine whether the fixed object is only an I or non-obstacle that does not hinder the traveling of the own vehicle, and the first determining unit or the second determining unit.
  • FIG. 1 is a block diagram showing the configuration of a preferred vehicle inter-vehicle distance alarm device according to the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the display unit 10 shown in FIG.
  • FIG. 3 is an explanatory diagram of the contents of a mode set by a user.
  • FIG. 4 is a diagram for explaining the content of the following distance information.
  • FIG. 5 is a main flowchart schematically showing the operation of the arithmetic processing unit 9 shown in FIG.
  • FIG. 6 is a flowchart of the distance measurement processing in FIG.
  • FIG. 7 is a flowchart of the data processing in FIG.
  • FIG. 8 is a flowchart of the object to be measured discriminating process in FIG.
  • FIG. 9 is a flowchart of the danger judgment process in FIG.
  • FIG. 10 is a flowchart of the danger determination process for a vehicle in FIG.
  • FIG. 11 is a flowchart following step S69 in FIG. 10.
  • FIG. 12 is a flowchart following step S70 in FIG.
  • Fig. 13 is a flowchart of the danger judgment process for fixed objects in Fig. 9.
  • FIG. 14 is a flowchart following step S98 in FIG.
  • FIG. 15 is a flowchart following step S99 in FIG.
  • FIG. 16 is a flowchart of the alarm display processing in FIG.
  • FIG. 17 is a diagram provided for explanation of an object-under-test discrimination process under a force condition.
  • FIG. 18 is a diagram which is used for explaining a process of determining an object under test in a T-junction.
  • Fig. 19 shows a graph showing the relationship between the vehicle speed V and the braking distance f (V).
  • FIG. 20 is a diagram showing an example of the relationship between the vehicle speed V and the inter-vehicle distance d during a safe stop.
  • FIG. 21 is a diagram illustrating an example of a relationship between the host vehicle speed V 2 and a reference value X (V 2) for comparison.
  • FIG. 1 shows the configuration of a preferred vehicle inter-vehicle distance alarm device according to the present invention.
  • This inter-vehicle distance alarm device emits a beam of laser light having a predetermined wavelength (for example, a near-infrared laser beam) in a plurality of predetermined directions (for example, six directions).
  • the light projecting unit 1 incorporates a light source such as a semiconductor laser diode that oscillates a near-infrared laser beam, and a launch plate for varying the launch ft degree of the near-infrared laser beam.
  • the light emitting unit 1 is connected to a pulse generating unit 2 that generates a pulse signal for intermittently oscillating a near-infrared laser beam at a predetermined cycle in the front light source.
  • the firing plate incorporated in the light emitting unit 1 is driven by a firing plate driving motor 3 within a predetermined movable range.
  • the launching plate drive module 3 is driven by the motor tail section 4.
  • Mo-Yu-ma Ma-Kube 4 is for Power Transits. ⁇ Consists of a signal conversion unit for positioning one element and module 3.
  • the near-infrared laser beam emitted from the light projecting unit 1 is reflected by the object to be measured, and the reflected light that is returned is detected by the light receiving unit 5.
  • the near-infrared laser beam is emitted from the light emitting unit 1 to the light receiving unit 5. Time to convert the time from emission to reflection on the object to be measured and return to the light receiving unit 5 to ⁇ E.
  • Z Voltage conversion unit 6 is connected.
  • the time-to-noise converter 6 is also connected to the pulse generator 2 in order to synchronize with the emission timing of the near-infrared laser beam.
  • the voltage analog signal (time data) output from the time conversion unit 6 is converted into a digital signal by the AZD converter 7 and then sent to a calculation processing unit 9 described later.
  • the AZD converter 7 is further connected to a host vehicle speed detection unit 8 for detecting the host vehicle speed.
  • An analog signal (own vehicle speed data) output from the own vehicle speed detection unit 8 is also converted to a digital signal by the analog-to-digital converter 7 and then sent to the arithmetic processing unit 9.
  • the arithmetic processing unit 9 calculates the distance to the device under test based on the time data from the time / voltage conversion unit 6, and determines the degree of danger based on the obtained distance data.
  • the arithmetic processing unit 9 is formed of, for example, a microcomputer and has a built-in memory such as a ROM and a RAM. As described above, the measurement of the distance is performed in six directions, and by performing such distance measurement in the six directions twice with a short interval, the type of the object to be measured is determined as described later in detail. be able to.
  • the arithmetic processing unit 9 has the above-mentioned information. Loose generator 2 and motor driver 4 are also connected.
  • the noise generating unit 2 and the motor driving unit 4 are started and stopped by an operation start / end signal from the arithmetic processing unit 9, and are synchronized with each other. Further, the arithmetic processing unit 9 is provided with a display unit 10 which displays the result of the calculation, that is, the distance to the object to be measured and the degree of danger, and issues an alarm.
  • the distance measuring means is the light emitting unit 1, pulse generating unit 2, launching plate driving motor: 3, motor driving unit 4, light receiving unit 5, time / ⁇ Hffi conversion unit 6, AZD converter 7, and arithmetic processing unit
  • the first determination means, the second determination means, and the danger determination means are drawn by the arithmetic processing unit 9
  • the alarm output means is drawn by the display unit 1.
  • inter-vehicle distance alarms a rear-end collision alarm as the first alarm and an inter-vehicle alarm as the second alarm, which are determined by separate judgment formulas as described later in detail. It has become.
  • the inter-vehicle warning is a case where the vehicle is in a state of caution because it is approaching the object to be measured ahead, but there is no problem without deceleration or depressing the brake. It means that it is necessary to decelerate or step on the brake because it is close to the object to be measured ahead. For example, when the distance between the preceding vehicle and the own vehicle is 1 Om and the speed of the own vehicle is 50 km / h, while the speed of the other vehicle is 50 km / h or more, deceleration is performed. Or, because there is no need for braking, an inter-vehicle warning is issued. On the other hand, if the speed of other vehicles is less than 50 km / h, a rear-end collision warning is issued because deceleration or braking is required.
  • the inter-vehicle distance warning device configured as described above can be mounted on various vehicles such as passenger cars, buses, trucks, special vehicles, and motorcycles that are mainly used on roads. It is designed to be able to detect objects within a width of about 8.5 m at about 1 OO m in front. That is, the light emitting unit 1 emits a near-infrared laser beam in six directions while changing the emission angle of the beam by 1 degree (:), so that the emission plate driving motor 3 driven by the motor drive unit 4 is emitted. While continuously varying the angle of the internal launching plate within a predetermined movable range, a predetermined period from the light source (semiconductor laser diode) according to the pulse signal generated by the pulse generator 2 synchronized with this.
  • the light source semiconductor laser diode
  • the angle of the front detection area is about 5 degrees (:).
  • FIG. 2 shows the configuration of the display unit 10 shown in FIG.
  • the display section 10 is roughly divided into an LED section 21 for displaying a numerical value, etc., a warning light 22 for indicating an alarm type, a user-set mode switch 23, a power ONZOFF switch 24, and an alarm sound. It is composed of a speaker 24.
  • the LED section 21 is composed of three 7-segment LEDs 21a, 21b, 21c and one decimal LED 21d.
  • the warning light 22 includes a green LED 22a, an orange LED 22b, and a red LED 22c.
  • the user-set mode switch 23 includes a mode selection switch 23a for selecting a mode, and an up (individual) switch 23 used for adding a numerical value displayed on the LED section 21 or selecting an ON state.
  • U) A switch 23c used to decrease the numerical value displayed on the LED section 21 or to select the OFF state.
  • FIG. 3 explains the contents of the user setting mode.
  • the inter-vehicle warning and the rear-end collision warning are determined by separate determination formulas. Further, the user can select his / her preference (reaction speed, It is possible to adjust the timing of alarms separately according to individual differences (character differences, etc.). The timing of the warning is adjusted, for example, by changing the so-called change time (reaction delay time of the reversing person).
  • change time reaction delay time of the reversing person.
  • inter-vehicle warnings there are two types of inter-vehicle warnings: an inter-vehicle danger warning and an inter-vehicle caution warning.
  • the vehicular caution warning is divided into two stages according to the risk of collision.
  • Mode 1 is a mode for setting the timing of the rear-end collision warning, and the user can freely set the changeover time T2 for the rear-end collision alarm by operating the up switch 23b and the down switch 23c. it can.
  • the set time T2 for rear-end collision warning is displayed on the 7-segment LEDs 21b and 21c.
  • Mode 2 is a switch mode for turning on and off the warning sound of the rear-end collision warning.
  • Mode 3 is a mode for setting the timing of an inter-vehicle alarm, and the changeover time T1 for the inter-vehicle alarm can be freely set by the up switch 23b and the down switch 23c.
  • the set interval time T1 of the inter-vehicle warning Rffl is displayed on the 7-segment LEDs 21b and 21c.
  • Mode 4 is a switch mode for turning on or off the warning sound of the car warning (in particular, the inter-vehicle danger warning).
  • Mode 5 is a mode for coaxial alignment, in which the target S for inspection is placed at a predetermined distance (for example, 10 m) in front of the main unit ⁇ , and the device S is maintained. If the distance can be measured, the optical axis alignment will be 0 Become.
  • Mode 6 is a mode for checking the current speed of the host vehicle, and the host vehicle speed detected by the host vehicle speed detection unit 8 is displayed on the 7-segment LEDs 21b and 21c.
  • Mode 7 is a mode for setting the volume of the alarm sound.
  • the volume can be set in two stages: HI (high) and LO (low).
  • the set volume level status (HI or LO) is displayed on the 7-segment LEDs 21b and 21c.
  • a normal mode is provided for displaying the measured vehicle distance on the 7-segment LEDs 21a to 21c in, for example, lm units during operation of the apparatus. This normal mode is set immediately after the frost source is turned on, and is set by pressing the mode: ⁇ ! Selection switch 23a once from the state of the mode 7 set by the user.
  • inter-vehicle distance alarms are roughly classified into inter-vehicle alarms that do not require a brake and the like and rear-end collision alarms that require a brake and the like.
  • the inter-vehicle warnings are divided into two types, depending on the degree of collision danger: a car danger warning and a car danger warning.
  • a car danger warning When a rear-end collision alarm is issued, the red LED22c flashes (displays a rear-end collision alarm). If the rear-end collision warning sound is set to ON, an alarm sound is emitted from the speed indicator 25.
  • the red LED 22c is lit (vehicle danger warning display), and if the warning sound of the vehicle danger report is set to ON, a warning tone ⁇ is further emitted from the speaker 25. .
  • the vehicle that emits an alert turns on the orange LED 22b if the risk is high, or the green LED 22a if the risk is low. (Car danger warning display). No warning sound is issued in the case of warnings about vehicles. What
  • FIG. 5 is a main flowchart schematically showing the operation of the arithmetic processing unit 9 shown in FIG.
  • a distance is measured in step S1.
  • a near-infrared laser beam is emitted in six directions shifted by 1 degree (°), and the distance of the object to be measured in six directions is measured.
  • Such distance measurement in six directions is performed twice at short intervals.
  • step S2 the data obtained in step S1 is processed (step S2), and the type of the device under test is determined based on the obtained data (step S3).
  • the outline is as follows. By comparing the distance change in the same direction between the first and second times and the travel distance of the own vehicle, a moving object (such as a moving automobile such as a four-wheeled or two-wheeled vehicle) or a fixed object (a stopped vehicle) , Obstacles, etc.), and if there is a fixed object, determine whether it is a small obstacle force or a large obstacle in three or more directions out of six directions.
  • the standard deviation is obtained by regressing the distance data to determine whether only non-obstacles such as guardrails or other obstacles are included depending on the magnitude.
  • step S4 it is determined whether or not any of the measured objects obtained in step S3 satisfy the danger determination execution conditions described later. If YES, a danger judgment process is performed (step S5), and an alarm display process is performed according to the result (step S6). If NO, the process immediately proceeds to step S7. In the danger judgment process of step S5, it will be described later. As described above, danger judgment is performed according to the type of the object to be measured, and in each case, an inter-vehicle warning and a follow-up warning are separately issued to issue an alarm according to a separate judgment formula.
  • FIG. 6 is a flowchart of the distance measurement processing in FIG.
  • step S11 an infrared laser beam is emitted from projector 1 in six directions to perform the first distance measurement in six directions L, and the obtained distance data in six directions Lll, L21, L3K
  • the L4K L5K L61 is stored in a memory (RAM, the same applies hereinafter) (step S11), and the own vehicle speed V1 at the time of the first measurement is detected by the own vehicle speed detector 8 and stored in the memory. It is stored (step S12).
  • step S12 After a short time from the first measurement, the distance measurement in the second 6 directions is performed L, and the obtained distance data in the 6 directions L12, L22, L32, L42, L52, L62 are obtained.
  • the vehicle speed V 2 at the time of the second measurement is detected by the vehicle speed detection unit 8 and stored in the memory (step S13).
  • FIG. 7 is a flowchart of the data processing in FIG.
  • V (vl + v2) / 2
  • Step S22 a small time difference ⁇ t between the first measurement and the second measurement is obtained (Step S23). From the first measurement of the own vehicle to the second measurement, the travel distance ⁇ d is calculated,
  • the result is stored in the memory (step S24).
  • FIG. 8 is a flowchart of an object to be measured discriminating process in FIG.
  • the j value which is a parameter indicating the direction
  • the first and second times in the j direction obtained in step S21 are performed.
  • the distance change ALj is compared with the travel distance Ad of the own vehicle obtained in step S24, and it is determined whether or not the absolute value (I ALj -A d I) of the difference between the two is equal to or less than a predetermined value (for example, lm) ( Step S 32).
  • Step S33 since the vehicle is moving only by a change in the measurement distance, it is determined that the object to be measured is an L or fixed object (Step S33). If the answer is NO, it is determined that the measured object is a moving object such as another vehicle (step S34).
  • moving objects on the road are considered to be mostly power ⁇ other vehicles, so the following description will focus on other vehicles as moving objects.
  • step S35 it is determined whether or not the j value is 6 (step S35). If the j value is 6, the process proceeds to step S37. The j value is incremented by 1 (step S34), and the process returns to step S32. That is, it is determined whether the measured object is a fixed object or another vehicle in each of the six measured directions. This result is stored in memory so as to have a relationship with at least the second distance data L12 to L62.
  • step S37 it is judged whether or not there is a fixed object in the six directions.
  • the type of the fixed object should be discriminated in more detail. Proceed to step S38,
  • step S38 it is first determined in step S38 whether the fixed object is present in, for example, three or more directions out of six directions. If the result of this determination is NO, since there is a fixed object in at most two of the six directions, it is determined that the fixed object is a small obstacle (step S39), and the process returns immediately. To the danger judgment process.
  • step S38 since there is a fixed object in three of the six directions, it is determined that the fixed object is a large L and an obstacle, and then it is determined that the vehicle is traveling. It is determined whether there is only a non-obstruction such as a gutter that does not interfere with the vehicle or whether it also includes an obstacle that interferes with the running of the vehicle.
  • the second distance data Lj2 determined as a fixed object is extracted from the memory (step S40), the extracted distance data Lj2 is regressed to calculate a standard deviation (step S41), and the obtained standard deviation is calculated. It is determined whether or not the absolute value is less than a predetermined value (for example, 0.5) (step S42). As a result of this judgment, in the case of YESS, the position of the detected fixed object is small and it can be determined that it is smoothly bent or straight, so that the fixed object can be used as a guardrail, road sign, mountain sign, etc. It is determined that the object is a non-obstacle such as a slope or a building wall, and the result is stored in the memory (step S43).
  • a predetermined value for example, 0.5
  • Step S45 the fixed object is Since it is only one drail, etc., it does not hinder the traveling of the vehicle. Therefore, as will be described later, the inter-vehicle distance d at the time of a safe stop, which is used for ⁇
  • step S44 Four Set to 0.2 times (see step S44).
  • the distance between safe vehicles is short, so that it is difficult to issue an alarm, and the occurrence of false alarms due to guard rails is greatly reduced.
  • the correction of the inter-vehicle distance d at the time of the safety stop in step S44 may be performed when calculating the inter-vehicle distances D, Dl, and D2, which will be described later.
  • step S4 in FIG. 5 it is determined whether or not any of the detected DUTs satisfies the conditions for performing the danger determination.
  • the conditions for performing the danger judgment are conditions for judging whether or not it is necessary to actually judge the danger.
  • a predetermined area is set according to the direction (angle) and distance of the emitted beam. The danger judgment is performed only for the DUT existing in this area.
  • the region may be set, for example, by placing an emphasis on an object located on the same lane as the lane in which the vehicle runs.
  • the scanning direction of the beam is direction 1, direction 2, direction 3, direction 4, direction 5, direction 6 from the left side, directions 1 and 6, which are both left and right sides, Set an area of 25 m, 4 ⁇ m for directions 2 and 5 inside, and 100 m for directions 3 and 4 on the center side.
  • FIG. 9 is a flowchart of the danger judgment process in FIG.
  • the shortest L having the measured distance Lj2, which is the shortest L measured from the measured objects satisfying the danger judgment execution conditions obtained in step S4, is extracted (step S51). It is determined whether the measured object power is another vehicle (step S52). As a result of this decision, in the case of YESS, a risk assessment program for vehicles is implemented (step S53), and NO In this case, that is, if the object is a fixed object, a danger judgment program for the object is executed (step S54).
  • the risk determination process is performed only for the subject vehicle and the L for the subject vehicle, but is not limited thereto. . For example, if there is a mixture of other vehicles and fixed objects, it is possible to judge the danger for each, and display an alarm for the most dangerous one.
  • FIGS. 10 to 12 are flowcharts of the danger determination process for a vehicle in FIG.
  • the speed VI of the preceding vehicle is calculated by the following equation (step S61).
  • VI V2 + AL) / A t
  • V2 own vehicle speed (for example, the own vehicle speed V2 at the time of the second measurement detected in step S14 is used)
  • Step S62 it is determined whether the vehicle is rainy or not.
  • the braking distance fl (VI) of the other vehicle and the braking distance f2 (V2) of the own vehicle are determined.
  • Each is corrected to, for example, 1.5 times the normal value (see Fig. 19) (step S63).
  • the vehicle braking distance f (V) is the distance from when the brake is applied to when the vehicle stops, and depends on the vehicle speed V.
  • the value of the braking distance f (V) should be set appropriately in advance in a normal case other than rainy weather, using the vehicle speed V as a parameter through experiments.
  • Fig. 19 Shows an example.
  • the braking distance f (V) data will be more accurate if it is set for each vehicle type. If it is not rainy, there is no need to correct the driving distance f (V), so the process immediately proceeds to step S64.
  • the distance to another vehicle is set. Specifically, the value of the second measurement distance Lj2 in the direction j of the other vehicle is used as the value of the distance Lc.
  • step S65 it is determined whether the deceleration of the own vehicle is, for example, 10% or more per second. This determination is made, for example, by the following equation. (vl- ⁇ 2) ⁇ t ⁇ 0.1
  • the deceleration of the vehicle is less than 10% per second, it is determined that the driver has not noticed the existence of the other vehicle and has not applied the brake.
  • Q) Calculate the safe inter-vehicle distance D taking into account the idling distance f 3 ( ⁇ ) by ⁇ .
  • the safety vehicle inter-vehicle distance D1 taking into account the change-over time T1 for the vehicle side alarm and the change-over time ⁇ 2 for the rear-end collision warning are considered.
  • the safe inter-vehicle distance D2 is determined.
  • the free running distance f3 ( ⁇ ) is calculated by the following formula.
  • the changeover time Tl for the vehicle warning set by the user is read from the memory (step S66), and the following formula is used to calculate the safe inter-vehicle distance D1 considering the changeover time T1 of Hffl. Is calculated (step S 67),
  • f 1 (VI) braking distance of another vehicle
  • the inter-vehicle distance d when the vehicle stops safely is the inter-vehicle distance when the vehicle safely stops, and varies depending on the speed V2 of the vehicle. This value is appropriately set in advance as a parameter for the vehicle speed V through experiments.
  • Fig. 20 shows an example.
  • step S65 If the result of the determination in step S65 is that the deceleration of the own vehicle is 10% or more per second, it is determined that the vehicle is already decelerating by a brake operation or the like, and the idle running distance f3 (T) is added. There is no need to calculate the safe inter-vehicle distance D according to the following formula (step S70), and proceed to the next step S80.
  • step S71 the distance Lc to the other vehicle set in step S64 is set as a step. It is determined whether the safety inter-vehicle distance D1 obtained in S67 is equal to or longer than the force, that is, whether the following formula (hereinafter, referred to as c ) is satisfied.
  • step S73 If the result of this determination is NO (Route P), the force immediately proceeds to step S73. If YES, the distance to the other vehicle Lc is the safety inter-vehicle distance D2 determined in step S69. Determine whether the force satisfies the following formula:
  • step S77 if YES is used, the risk of danger is not so high in consideration of either of the change times Tl and T2, so that the caution warning is selected (step S77).
  • the caution warning is selected (step S77).
  • the distance Lc to the other vehicle and the safe inter-vehicle distance D1 (Lc -D1) calculate the time when the brake can be stepped on backwards, and if the calculated time is at least (T1 +1.5) seconds, select the green inter-vehicle caution alarm and (T1 +0.5) seconds If it is less than (T1 + 1.5) seconds, select the orange warning alert.
  • the process proceeds to step S73.
  • the reference value X (T2) is a set value that changes according to the change interval T2, and is appropriately set in advance by experiments or the like from the viewpoint of the possibility of a rear-end collision.
  • FIG. 21 shows an example.
  • step S75 it is determined whether or not the speed difference S obtained in step S73 is larger than the reference value X (T2) obtained in step S74. This is called a judgment formula.
  • the route determined to be in step S75 is determined whether the route is P, that is, if the determination in step S71 is NO, or if the determination in step S72 is NO. Is determined (step S76).
  • the distance Lc to another vehicle is The inter-vehicle danger warning is selected because the warning distance is shorter than the inter-vehicle distance Dl (Lc Dl), but the degree of the warning is not so high (step S78).
  • step S71 that is, when the distance Lc to another vehicle is longer than the safe inter-vehicle distance D1 based on the inter-vehicle warning change time Tl (Lc ⁇ D1), and the driving force is also based on the premise that the inter-vehicle information is determined on the basis of the change time ⁇ , so the inter-vehicle warning is selected (step S77).
  • the headway warning is determined by the first determination formula (Le-Dl ⁇ 0), and the rear-end collision warning is determined by the second determination formula (S> X (T2)).
  • the user can specify the vehicle change warning time T1 and the vehicle collision warning change time T2 separately from each other by the user. It is possible to freely adjust the timing of the alarm for each of the alarms. Therefore, for example, if the user sets the changeover time T1 for the car warning to be shorter than the actual reaction speed of the driver in consideration of traffic congestion, the car danger warning with sound (It will follow the route of steps S71 ⁇ S72 ⁇ S73 ⁇ S74 ⁇ S75 ⁇ S76 ⁇ S77).
  • step S80 it is determined whether or not the distance Lc to the other vehicle set in step S64 is equal to or greater than the safe inter-vehicle distance D obtained in step S70. Expression) is determined.
  • step S84 an inter-vehicle warning is selected (step S84).
  • the point of calculating whether to select the green vehicle caution alert or the orange inter-vehicle caution alert is the same as in the above case.
  • step S86 a rear-end collision warning is selected (step S86), and if NO, an inter-vehicle danger alarm is selected (step S85).
  • FIGS. 13 to 15 are flowcharts of the danger determination process for fixed objects in FIG.
  • step S91 it is determined whether or not it is rainy (step S91). If it is rainy, the braking distance f2 (V2) of the vehicle is corrected to, for example, 1.5 times the normal value (see FIG. 19) (step S91). S 92). Next, the distance Ls to the fixed object is set (step S93). The distance Ls at this time is the value of the second measurement distance L j 2 in the direction j of the fixed object.
  • step S94 it is determined whether the deceleration of the own vehicle is 10% or more.
  • step S95 Read out the changeover time Tl for car police (step S95), calculate the safe car interrogation distance D1 by the following formula (step S96),
  • step S97 the changeover time T2 for the rear-end collision report is read (step S97), and the safe inter-vehicle distance D2 is calculated by the following equation (step S98).
  • the safe inter-vehicle distance D is calculated by the following formula because the deceleration is already in progress and it is not necessary to consider the change time (Step S).
  • the NO platform (Route P) is strong enough to immediately proceed to step S102.
  • YE S it is also necessary to determine whether the distance Ls to the fixed object is equal to or greater than the other safety inter-vehicle distance D2, ie, Judge whether the following formula is satisfied.
  • step S105 a caution warning is selected (step S105), and if NO, the flow proceeds to step S102.
  • a predetermined calculation is further performed to select the green warning warning or the orange warning warning.
  • step S102 the changeover time T2 for rear-end collision warning is read, and a reference value X (T2) (see FIG. 21) is obtained. Thereafter, it is determined whether the vehicle speed V2 is higher than the reference value X (T2), that is, whether the following formula (second determination formula) is satisfied (step S103).
  • a rear-end collision alarm is selected (step S107).
  • an inter-vehicle danger warning is selected (step S106)
  • a caution warning (step S105) ⁇
  • step S108 when the setting of the safe inter-vehicle distance D is completed on a platform where the deceleration of the own vehicle is 10% or more, first, it is checked whether the distance Ls to the fixed object is equal to or greater than the safe inter-vehicle distance D. It is determined whether or not the equation (first judgment equation) is satisfied (step S108),
  • an inter-vehicle warning is selected (step S111).
  • a predetermined calculation is further performed to select between a green car warning alarm and an orange car warning alarm.
  • the changeover time D2 for the rear-end collision warning is read to determine the reference value X (T2) (step S109), and whether the own vehicle speed V2 is larger than the reference value X (T2). It is determined whether or not the force, that is, whether or not the following expression (second determination expression) is satisfied (step S110).
  • a rear-end collision report is selected (step S113), and in the case of NO, a car danger warning is selected (step S112). Therefore, in this case, too, the vehicle warning is determined by the ⁇ 1 determination formula (L s -D1 ⁇ 0), and the rear-end collision warning is determined by the second determination formula (V2> X (T2)). Since the change time T1 for the inter-vehicle warning and the change time T2 for the rear-end collision report can be specified separately, for example, the change time T 1 for the inter-vehicle warning is set in consideration of traffic congestion. Even if it is set to make it difficult for the rear-end collision warning to be issued, as long as it is set to the actual reaction speed of the driver's own reaction speed, O
  • FIG. 16 is a flowchart of the alarm display processing in FIG.
  • step S121, step S122 it is determined which type of alarm has been selected in the danger determination processing in step S53 or step S54 (step S121, step S122), and the selected alarm is determined. If is a rear-end collision alarm, the rear-end collision warning display, that is, the red LED ED22c provided on the display unit 1 ⁇ blinks (step S123). The red LED 22c is turned on (step S124), and in the case of a caution warning, the orange LED 22b or the green LED 22a is turned on according to the danger level (step S124). S 125).
  • the warning sound is set to ON by the user (step S126), and the power, the power, and the brake are not depressed. Only (step S127), an alarm sound is generated to alert the driver (step S128).
  • the warning sound is set to OFF by the user or the brake is already depressed, the rear-end collision warning or the inter-vehicle danger report Does not sound. As described above, no warning sound is issued in the case of a caution warning.
  • step SI 29 c to be displayed on the LED unit 21 having a distance Lc or s until the measured object on the display unit 10 for example lm units

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

明 細 書 自動車用車間距離警報装置 技術分野
本発明は、 車間警報と追突警報の 2種類の警報を備え、 それぞれ別個 の判定式により警報を出すとともに、 被測定物の種類を判別し、 判別し た被測定物の種類に応じた危険判断を行うことにより、 減速またはブレ ーキ操作を必要とする状態で確実に警報を出すことができ、 しかもガー ドレールなどによる誤警報を低減することができる信頼性のすぐれた自 動車用車問距離警報装置に関する。 背景技術
最近、 自動車の利便性 (コンビ一二エンス) を高める技術の一つとし て、 事故を未然に防ぐアクティブセーフティの思想の下、 自車と先行車 両との車間距離を则定して衝突の危険性を判断し、 危険な場合には警報 を出して運転者の注意を促すようにした、 自動車用車間距離警報装置と 呼ばれる装置が開発され、 実用化されている。
従来の自動車用車間距離警報装置においては、 一般に、 1ビームまた は 3ビームのレーザ光を発射して被測定物までの距離を測定し、 1つの 判定式により測定距離と安全車問距離との比較を行つて危険状態の有無 を判断するようにしている。 中には、 判定式における安全車問距離を変 えることによりユーザが警報の出るタイミングを自由に調整できるよ ό にしたものもある (たとえば、 日本実開昭 5 8—1 0 1 9 8 公報参照) ο
し力、しな力ら、 このような従来の自動車用車問距離警報装 Sにあつて は、 1つの判定式により警報を出すかどうかを判断するため、 一般的に 言って、 ユーザが警報を出にくく設定した場合には、 いろいろ不都合な 点が想定される。 たとえば、 渋滞走行時においては、 警報音でうるさく なるのを避けるためユーザは警報を出にくく設定しがちであるので、 追 突の危険が一般的に高 L、状況であるにもかかわらず、 その時に警報が出 ない可お性が考えられる。 なお、 ユーザが警報の出るタイミングを調整 できないタイプの装置においても、 渋滞時に頻繁に謦報が出るのを避け るため一定の速度以下のときには警報が出ないようにしているものもあ り、 同様の問題が考えられる。
また、 従来の自動車用車間距離警報装置にあっては、 距離測定用のレ —ザ光の発射が 1ビーム式または 3ビーム式であるため、 自車の走行の 障害とならない、 たとえば、 ガードレールや道路標識などの道路付帯設 備、 山の斜面、 および建造物の壁などと、 自車の走行の障害となりうる 先行車両や道路上の障害物などとの判別を行うことができず、 ガードレ —ルなどによる誤警報の発生が多くなりがちである。
したがって、 本発明は、 ユーザが警報音を出にくく設定した場合であ つても ¾またはブレ一キ操作を必要とする状態で確実に警報を出すこ とができる自動車用車間距離警報装置を提供することを目的とする。 また、 本発明は、 ガードレールなどによる誤 ¾報を低減することがで きる信頼性のすぐれた自動車用車間距離警報装置を提供することを目的 とする。 発明の開示
本発明は、 自車の前方に存在する物体との問の距離を測定し、 得られ た距離データにより危険性の有無を判定し、 危険と判断される場合には 警報を発生する S動車用車間距離警報装置において、 減速またはブレー キをかけたりしなければならない警戒すべき状態にある時に発生する第
1警報と、 警戒すべき状態ではあるが減速またはブレーキを必要としな I、時に発生する第 2警報とを備え、 前記第 1簪報と前記第 2警報とはそ れぞれ 53リ個の判定式により判断される。 このことによって、 減速または ブレーキを必要とする状態で確実に警報 (第 1警報) を出すこと力《可能 と る。
また、 本発明は、 上記の自動車用車間距離警報装置において、 光ビ— ムを所定の複数の方向に発射し、 当該複数の方向の物体までの距離を測 定する距離測定手段と、 前記距離測定手段によって则定された第 1回目 と第 2回目の同方向の距離の変化を自車の移動距離と比較し、 当該方向 に存在する物体力 {移動物かまたは固定物かを判別する第 1判別手段と、 前記第 1判別手段により自車の前方に所定の数以上の固定物があると判 断されたときに、 それらの距離データを回帰して標準偏差を求め、 得ら れた標準偏差を所定値と比較して、 当該固定物が自車の走行に支障のな I、非障害物のみであるかどうかを判別する第 2判別手段と、 前記第 1判 別手段または前記第 2判別手段により判別された物体の種類に応じて、 所定の判定式により危険性の有無を判定する危険判定手段と、 前記危険 判定手段により危険と判断されたときに所定の警報を出力する警報出力 手段とを有する。 このように、 被測定物の種類を判別し、 判別された被 測定物の種類に応じた危険判断を行うことによって、 警報の信頼性が向 上し、 特にガードレ一ルなどの非障害物による誤警報を低減することが できる。 図面の簡単な説明
第 1図は、 本発明にかかる好ましい自動車用車間距離警報装置の構成 を示すブロック図である。 第 2図は、 第 1図で示した表示部 1 0の構成を示す概略図である。 第 3図は、 ユーザにより設定されるモードの内容の説明図である。 第 4図は、 車間距離 報の内容を説明するための図である。
第 5図は、 第 1図で示した演算処理部 9の動作を概略的に示すメイン フローチャートである。
第 6図は、 第 5図中の距離測定処理のフローチヤ一卜である。
第 7図は、 第 5図中のデータ処理のフローチヤ一卜である。
第 8図は、 第 5図中の被測定物判別処理のフロ一チヤ一トである。 第 9図は、 第 5図中の危険判断処理のフローチヤ一トである。
第 1 0図は、 第 9図中の対車両用危険判断処理のフロ—チヤ一トであ る。
第 1 1図は、 第 1 0図中のステップ S 6 9に続くフローチャートであ 第 1 2図は、 第 1 0図中のステップ S 7 0に続くフローチャートであ る。
第 1 3図は、 第 9図中の対固定物用危険判断処理のフローチヤ一卜で める。
第 1 4図は、 第 1 3図中のステップ S 9 8に続くフローチヤ一トであ る。
第 1 5図は、 第 1 3図中のステップ S 9 9に続くフローチヤ一トであ る。
第 1 6図は、 第 5図中の警報表示処理のフローチヤ一トである。 第 1 7図は、 力―ブの状況下における被測定物判別処理の説明に供す る図である。
第 1 8図は、 T字路の状況下における被測定物判別処理の説叨に供す る図である。 第 1 9図は、 車両速度 Vと制動距離 f (V) の関係の一冽を示す図で める。
第 2 0図は、 車両速度 Vと安全停止時の車問距離 dとの関係の一例を 示す図である。
第 2 1図は、 自車速度 V 2 と比較用の基準値 X (V 2 ) との関係の一 例を示す図である。 発明を実施するための最良の形態
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明 する。
第 1図は、 本発明にかかる好ましい自動車用車間距離警報装置の構成 を示している。
この車間距離警報装置は、 所定の波長を持つレーザ光のビーム (たと えば、 近赤外線レーザビーム) を所定の複数の方向 (たとえば、 6方向) に顺次問欠的に発射する投光部 1を有している。 好ましくは、 この投光 部 1は、 近赤外線レーザビームを発振する半導体レーザダイォ—ドなど の光源と、 近赤外線レーザビームの発射 ft度を可変するための発射板と を内蔵している。 投光部 1には、 前 光源において近赤外線レーザビ一 ムを所定の周期で間欠的に発振させるためのパルス信号を発生するパル ス発生部 2が接続されている。 投光部 1に内蔵されている発射板は発射 板駆動用モータ 3によって所定の可動範囲内で駆動される。 発射板駆動 用モ一夕 3はモ一タ尾区動部 4によつて駆動される。 モ一夕馬区動部 4はパ ワートランジス夕などのノ、。ヮ一素子とモ一夕 3を位置決めするための信 号変換部などからなっている。 投光部 1から発射された近赤外線レーザ ビーム力被測定物に当たって反射して返ってくる反射光は受光部 5によ つて検出される。 受光部 5には、 投光部 1から近赤外線レーザビームが 発射されてからそれが被測定物で反射して受光部 5に返ってくるまでの 時間を ¾Eに変換する時間 Z電圧変換部 6が接続されて L、る。 この時間 ノ ¾Ξ変換部 6は近赤外線レーザビームの発射のタイミングとの同期を とるためパルス発生器 2にも接続されている。 時間 変換部 6から 出力される電圧アナログ信号 (時間データ) は AZDコンバータ 7によ つてデジタル信号に変換された後、 後述する演算処理部 9に送られる。 AZDコンバータ 7には、 さらに、 自車の速度を検出する自車速度検出 部 8も接続されて L、る。 自車速度検出部 8から出力されるアナ口グ信号 (自車速度データ) もまた Aノ Dコンバータ 7によってデジタル信号に 変換された後、 演算処理部 9に送られる。 この演算処理部 9は、 時間ノ 電圧変換部 6からの時間データにより被測定物までの距離を算出し、 求 めた距離デー夕に基づ 、て危険の度合を判定するものである。 演算処理 部 9は、 たとえば、 マイクロコンピュータで構成されており、 R OMや R AMなどのメモリを内蔵している。 上述したように距離の则定は 6方 向についてなされ、 このような 6方向の距離測定を時間を少し置いて 2 回行うことにより、 後で詳述するように被測定物の種類を判別すること ができる。 演算処理部 9には上記したノ、。ルス発生部 2とモータ駆動部 4 もそれぞれ接続されている。 ノ、°ルス発生部 2とモータ駆動部 4は演算処 理部 9からの動作開始 終了信号によつてそれぞれ起動 停止し、 相互 の同期がとられている。 さらに演算処理部 9には、 これの演算結果、 す なわち、 被測定物までの距離や危険の度合などを表示し警報を出す表示 部 1 0力 <接統されている。 なお、 距離測定手段は投光部 1、 パルス発生 部 2、 発射板駆動用モータ: 3、 モータ駆動部 4、 受光部 5、 時問/ ^Hffi 変換部 6、 AZDコンバータ 7、 および演算処理部 9により、 第 1判別 手段、 第 2判別手段、 および危険判定手段は演算処理部 9により、 また、 警報出力手段は表示部 1◦によりそれぞれ描成されている。 ここでは、 車間距離警報として第 1警報としての追突警報と第 2警報 としての車間警報の 2種類が設けられており、 後で詳述するようにそれ らはそれぞれ別個の判定式により判断されるようになっている。 ここに、 車間警報とは、 前方の被測定物に接近しているので警戒すべき状態にあ るが減速したりブレーキを踏んだりしなくても支障がない場合であり、 追突警報とは、 前方の被測定物に接近しているので減速したりブレーキ を踏む必要がある場合を意味している。 たとえば、 先行する他車と自車 との車間距離が 1 O mで自車の速度が 5 0 km/hであるとき、 一方で他車 の速度が 5 0 km/h以上である場合は減速またはブレーキの必要がないの で車間警報が出され、 一方で他車の速度が 5 0 km/h未 である場合には 減速またはブレーキの必要があるので追突警報が出される。
このように構成された自動車用車間距離警報装置は、 主に道路上で使 用される、 乗用車、 バス、 トラック、 特別車、 二輪車などの各種自動車 に搭載可能であって、 たとえば、 本装置の前方約 1 O O mで約 8. 5 m の幅内にある物体を検知できるように構成されている。 すなわち、 投光 部 1は、 ビームの発射角度を 1度 (:。 ) ずつ変えながら 6方向に近赤外 線レーザビームを発射するよう、 モータ駆動部 4により駆動される発射 板駆動用モータ 3によって内部の発射板の角度を所定の可動範囲内で連 続的に可変しながら、 これと同期されているパルス発生器 2で発生され るパルス信号に従って光源 (半導体レーザダイォード) から所定の周期 で近赤外線レーザビームを発振させる。 よって、 この場合、 前方の検知 領域は角度にして約 5度 (:。 ) となる。 各方向に発射された近赤外線レ 一ザビームが被測定物に当たつて反射して返ってくるまでの時問を計測 すれば、 その方向にある被測定物までの距離が測定できる。 具体的には、 各方向について、 被測定物からの反射光を受光部 5で検出し、投光部 1 から発射されてから受光部 5に返ってくるまでの時間を時間ノ 変換 部 6でffi値の形で計測し、 A Z Dコンバータ 7を介して演算処理部 9 に送る。 演算処理部 9は、 時問 Z電圧変換部 6からの時間データと光の 速度とから被測定物までの距離を算出する。 このようにして 1回のスキ ャンで 6方向の距離測定力〈行われる。
第 2図は、 第 1図で示した表示部 10の構成を示している。
この表示部 10は、 大別して、 数値などを表示する LED部 21と、 警報の種類を示す警告灯 22と、 ユーザ設定のモ一ドスイッチ 23と、 電源の ONZOFFスィツチ 24と、 警報音を発するスピーカ 24とか ら構成されている。 L ED部 21は、 3つの 7セグメント L ED21 a、 21 b、 21 cと、 1つの小数細 LED21 dとからなっている。 警 告灯 22は、 緑色 LED22 a、 橙色 LED22 b、 および赤色 LED 22 cからなつている。 ユーザ設定のモードスィッチ 23は、 モードを 選択するモード選択スィツチ 23 aと、 L ED部 21に表示される数値 を增加させたりまたは ON状態を選択するときに使用するアップ (个) スィッチ 23 と、 L E D部 21に表示される数値を減少させたり OFF状態を選択するときに使用するダウン U ) スィッチ 23 cとで 構成されている。
第 3図は、 ユーザ設定のモードの内容を説明したものである。
本発明では、 上述したように車間警報と追突警報とをそれぞれ別個の 判定式により判断するようにしている力 さらには、 車間警報と追突警 報のそれぞれに対しユーザが自分の好み (反応速度や性格などによる個 人差) に従って別々に警報の出るタイミングを調整できるようになって いる。 警報の出るタイミングの調整は、 たとえば、 いわゆる踏替時間 (逆転者の反応遅れ時間) を変えることによって行われる。 ここでは、 このような追突ノ車間警報のタイミング設定に加えて、 警報音の ONZ OFFや光軸合わせ、 箬報音の音量設定なども可能となつている。 なお, ここでは、 後述するように、 車間警報には車間危険警報と車間注意警報 の 2種類があり、 さらに車問注意窨報も衝突の危険度に応じて 2段階に 分かれている。
すなわち、 電源 ONZOFFスィツチ 24により電源が投入された状 態においてモード選択スィツチ 23 aを 1回押すごとに順次モードを切 り替えることができる。 ここでは、 ユーザ設定モードとして 7つのモ一 ドが用意されている。 設定されたモードの番号は 7セグメント LED 21 aに表示される。 たとえば、 モード 1は、 追突警報のタイミングを 設定するためのモードであり、 ユーザはアップスィツチ 23 bとダウン スィッチ 23 cを操作して自由に追突警報用の踏替時問 T2 を設定する ことができる。 設定された追突警報用の踏替時間 T2 は 7セグメント LED21 b、 21 cに表示される。 モード 2は、 追突警報の警報音を ONZOF Fするためのスィツチモ一ドであり、 アップスィツチ 23 b を押せば ONが設定されダウンスィツチ 23 cを押せば 0 F Fが設定さ れる。 ONZOFFの設定状態は 7セグメント LED21 b、 21 cに 表示される。 モード 3は、 車間警報のタイミングを設定するためのモ一 ドであり、 アップスィツチ 23 bとダウンスィツチ 23 cにより自由に 車問警報用の踏替時問 T1 を設定することができる。 設定された車間警 幸 Rfflの踏替時間 T1 は 7セグメント LED 21 b、 21 cに表示される。 モード 4は、 車問警報 (ここでは特に車間危険警報) の警報音を ONノ OF Fするためのスィツチモードであり、 アップスィツチ 23 bを押せ ば ONが設定されダウンスィツチ 23 cを押せば OF Fが設定される。 ON/OFFの設定状態は 7セグメント LED21 b、 21 cに表示さ れる。 モード 5は、 う軸合わせのためのモードであり、 検査用の目標物 を本装^の前方所定距離 (たとえば、 10m) のところに置いた状態で 装 Sを作勁させ、 目標物までの距離が測定できれば光軸合わせは 0 と なる。 モード 6は、 現在の自車の速度を確認するためのモードであり、 自車速度検出部 8で検出された自車速度が 7セグメント LED21 b、 21 cに表示される。 モード 7は、 警報音の音量を設定するためのモー ドであり、 ここでは H I (大) と LO (小) の 2段階で音量を設定でき る。 設定された音量レベルの状態 (H Iまたは LO) は 7セグメント LED21b、 21 cに表示される。 なお、 上記のユーザ設定モードの ほかに、 本装置の作動中、 測定した車問距離を 7セグメント L E D 21 a〜21 cにたとえば lm単位で表示する通常モ一ドが設けられている。 この通常モードは、 霜源の投入直後に設定され、 また、 ユーザ設定のモ ―ド 7の状態からモード: ί!択スィツチ 23 aを 1回押すことにより設定 される。 すなわち、 モード選択スィッチ 23aを 1回押すごとに、 たと えば、 通常モード—モード 1—モード 2—モ一ド 3→モード 4—モード 5→モード 6→モード 7→通常モードの順序でモードが切り替わる。 第 4図は、 車間距離警報の内容を説明したものである。
上述したように、 本発明では、 車間距離警報には、 大別して、 ブレー キなどを必要としない車間警報と、 ブレーキなどを必要とする追突警報 とがある。 そして、 車間警報は、 衝突の危険度に応じて、 まず車問危険 警報と車問注意警報とに分力、れ、 さらに車問警報も 2種類に分かれてい る。 追突警報を出す場合は、 赤色 L ED22 cを点滅させ (追突警報表 示) 、 追突謦報の警報音が ONに設定されている場合にはさらにスピ一 力 25から警報音を発する。 車間危険警報を出す場合は、 赤色 LED 22 cを点灯し (車問危険警報表示) 、 車問 ¾報の警報音が ONに設定 されている場合にはさらにスピーカ 25から警幸 β音を発する。 車問注意 警報を出す場台は、 2段階のうち危険度が高、、方の場合には橙色 L E D 22 bを点灯し、 危険度が低い方の場合には緑色 L E D 22 aを点灯す る (車問危険警報表示) 。 車問注意箬報の場合は警報音を出さない。 な
0 お、 追突警報時や車間危険窨報時において、 ブレーキが踏まれていると きには、 たとえ警報音の設定が O Nになっている場合であっても、 警報 音を鳴らさないようになつている。
次に、 第 5図〜第 1 6図のフローチヤ一トを参照してこの車間距離警 報装置の動作を説明する。
第 5図は、 第 1図で示した演算処理部 9の動作を概略的に示すメイン フローチヤ一卜である。
電源 O NZO F Fスィッチ 24により電源が投入されて通常モードに 設定されると、 まず、 ステップ S 1で距離の測定を行う。 この距離測定 では、 近赤外線レーザビームを 1度 (° ) ずつずらして 6方向に発射し、 6方向の被測定物の距離を则定する。 このような 6方向の距離測定を時 間を少し置いて 2回行う。
次に、 ステップ S 1で求めたデータを処理し (ステップ S 2 ) 、 得ら れたデ一夕により被測定物の種類の判別を行う (ステップ S 3) 。 その 概略は、 第 1回目と第 2回目の同方向の距離変化と自車の移動距離とを 比較して移動物 (走行中の四輪車や二輪車などの自動車など) か固定物 (停止車両、 障害物など) かを判別し、 固定物が有る場合には 6方向中 3方向以上に固定物力《有るかどうかで小障害物力、大障害物かを判別し、 大障害物の場合にはさらに距離データを回帰して標準偏差を求めその大 小によりガ—ドレール等の非障害物のみかそれともそれ以外の障害物を 含むかを判断するというものである。
その後、 ステップ S 4で、 ステップ S 3で求めた被測定物の中に後述 する危険判断実施条件を満たすものが有るかどうかを判断する。 Y E S の場合には、 危険判断処理を行い (ステップ S 5 ) 、 その結果に従って 警報表示処理を行うが (ステップ S 6 ) 、 N Oの場合にはただちにステ ップ S 7に進む。 なお、 ステップ S 5の危険判断処理では、 後述するよ うに、 被測定物の種類に応じた危険判断を実施し、 さらには、 各場合に おいて車間警報と追^報とを分けてそれぞれ別個の判定式により警報 を出すようにしている。
そして、 このような一連の処理を終了の指示が有るまで繰り返す (ス テツプ S 7) 。
次に、 上記した各サブルーチンの内容を詳しく説明する。
第 6図は、 第 5図中の距離測定処理のフローチヤ一卜である。
この距離測定処理においては、 まず、 投光器 1から 6方向に赤外線レ 一ザビームを発射して第 1回目の 6方向の距離測定を行 L、、 得られた 6 方向の距離データ Lll、 L21、 L3K L4K L5K L61をメモリ (RA M、 以下同様。 ) に格納し (ステップ S 11) 、 また、 この第 1回目の 測定時の自車速度 V 1 を自車速度検出部 8により検出してメモリに格納 する (ステップ S 12) 。 次に、 第 1回目の測定から少しの時間を置い て第 2回目の 6方向の距離測定を行 L、、 得られた 6方向の距離デー夕 L12、 L22、 L32、 L42、 L52、 L62をメモリに格納し (ステップ S 12) 、 また、 この第 2回目の測定時の自車速度 V 2 を自車速度検出部 8により検出してメモリに格納する (ステップ S 13) 。
第 7図は、 第 5図中のデータ処理のフローチヤ一トである。
このデータ処理においては、 まず、 各方向ごとに第 1回目と第 2回目 の間の測定距離の差厶 Lj (j=l, 2 , '··, 6) を下記の式により算出し、 ALj =Ljl-Lj2 ( j = 1 , 2, ···, 6)
結果をメモリに格納する (ステップ S 21)。 次に、 第 1回目の则定と 第 2回目の測定の間における自車の平均速度 を下記の式、
V= (vl + v2 ) /2
により算出し (ステップ S22) 、 また、 第 1回目の測定と第 2回目の 測定の問のわずかな時間差 Δ tを求め (ステップ S 23) 、 下記の式に より、 自車の第 1回目の測定から第 2回目の则定までの移動距離 Δ dを 算出し、
厶 d ="v X Δ t
結果をメモリに格納する (ステップ S 24) 。
第 8図は、 第 5図中の被測定物判別処理のフローチャートである。 この被測定物判別処理においては、 まず、 方向を表わすパラメ一夕で ある j値を 1に設定した後 (ステップ S 31) 、 ステップ S 21で求め た j方向の第 1回目と第 2回目の距離変化 ALj をステップ S 24で求 めた自車の移動距離 Adと比較し、 両者の差の絶対値 ( I ALj -A d I ) が所定値 (たとえば、 lm) 以下かどうかを判断する (ステップ S 32) 。 この判断の結果として YE Sの場合は、 ほぼ測定距離の変化だ け自車が移動していることになるので、 被測定物を動かな L、固定物であ ると判断し (ステップ S 33) 、 NOの場合は、 被測定物を他の車両な どの移動物であると判断する (ステップ S 34) 。 なお、 道路上におい て移動物は大部分力《他の車両であると思われるので、 以下、 移動物とし ては他車両を念、頭において説明する。
ステップ S 33またはステップ S 34が終わると、 j値が 6かどうか を判断し (ステップ S 35) 、 j ί直が 6であればステップ S 37に進む が、 j値が 6未満であれば、 j値を 1だけインクリメントして (ステツ プ S 34) 、 ステップ S 32に戻る。 すなわち、 測定した 6方向のすべ てについてそれぞれ被測定物が固定物か他車両かを判断する。 この結果 は、 少なくとも第 2回目の距離デ一夕 L12〜L 62と関係を持たせてメモ リに格納しておく。
6方向のそれぞれにおける判別処理が終了すると、 続くステップ S 37で、 6方向中に固定物が有るかどうかを判断し、 YE Sの場合には、 さらに詳しく固定物の種類を判別すベく、 ステップ S 38に進むが、
3 NOの場合、 すなわち、 他車両しか検知しなかった場合には、 ただちに リターンして危険判断処理の方に移行する。
固定物が有る場合には、 ステップ S 38で、 まず、 6方向中たとえば 3方向以上に固定物が有るかどうかを判断する。 この判断の結果として NOの場合は、 6方向中多くても 2方向にしか固定物が存在しないので、 その固定物は小さい障害物であると判断し (ステップ S 39) 、 ただち にリターンして危険判断処理の方に移行する。
ステップ S 38の判断の結果として YE Sの場合は、 6方向中 3方向 に固定物が存在するので、 その固定物は大き L、障害物であると判断し、 続いてそれが自車の走行の障害とならないガ一ドレ一ル等の非障害物の みかそれともそれ以外に自車の走行の障害となる障害物を含むものかを 判別する。
すなわち、 メモリから固定物と判断された第 2回目の距離データ Lj2 を抽出し (ステップ S40) 、 抽出した距離データ Lj2を回帰して標準 偏差ひを算出し (ステップ S 41 ) 、 求めた標準偏差ひの絶対値が所定 値 (たとえば、 0. 5) 以下かどうかを判断する (ステップ S 42) 。 この判断の結果として YE Sの場合は、 検知された固定物について位置 のばらつきが小さく、 滑らかに曲がっているまたは直線的であるものと 判断できるので、 その固定物はガードレールや道路標識、 山の斜面、 建 造物の壁などの非障害物であると判断して結果をメモリに記憶し (ステ ップ S43) 、 NOの場合は、 位置のばらつきが大きく、 ガードレール 等のみであるとは判断できないので、 その固定物は少なくともガードレ ―ル等以外 1こ自車の走行の^害となる障¾物を含んでいるものと判断す る (ステップ S45) o 前者の場合には、 固定物はガ一ドレール等のみ であり、 自車の走-行の障害とはならないので、 後述するように安全車間 距離の ^に使用する、 安全停止時の車問距離 dを、 通常の値 (第 20
4 図参照) の 0. 2倍に設定する (ステップ S 44) 。 これにより、 被測 定物がガードレ一ルなどの非障害物である場合には安全車問距離が短く なるので警報が出にくくなり、 ガードレールなどによる誤警報の発生が 大幅に低減される。 これに対し、 後者の場合には、 ガードレール等以外 の障害物につ L、て通常の危険判断を行う必要があるので、 何ら補正を加 えることなくただちにリターンして危険判断処理の方に移行する。 なお、 ステップ S 44における安全停止時の車間距離 dの捕正は、 後述する安 全車間距離 D、 Dl 、 D2 を算出する際に行うようにしてもよい。
たとえば、 第 17図に示すようなカーブの状況下において自車 31の 中央前方でガードレール 32の手前に障害物 33が存在する場合には、 6方向すベての则定距離データ Lj2 (j=l, 2 ,··', 6) を回帰して標準偏差 ひを求めると、 手前の障害物 33の存在によりデー夕がばらつき標準偏 差ひの値 (絶対値) が大きくなるので、 ステップ S 42の判断により、 ガードレール 32の手前の障害物 33を検知することができる (ステツ プ S45) 。 また、 同様に、 第 18図に示すような T字路の状況下にお いて自車 31の左側前方で直線ガ一ドレール 34の手前に障害物 35が 存在する場合にも、 6方向の距離データ Lj2 (j=l, 2 ,···, 6) を回帰して 標準偏差ひを求めると、 手前の障害物 35の存在により標準偏差ひの値 (絶対値) 力く大きくなるので、 ステップ S42の判断により、 ガ一ドレ ール 34の手前の障害物 35を検知することができる (ステップ S45) 。 もし仮に第 17図または第 18図において障害物 33または 35力 <存 在しなければ、 6方向の距離デ一夕 Lj2 (j = l, 2 , ···, 6) を回帰して得ら れる標準偏差ひは小さくなるので、 ステップ S42の判断により、 自車 31の前方にはガードレール 32または 34のみが検知されることにな る (ステップ S43) 。
このようにして被測定物の種類の判別処理を終えると、 上記したよう に、 図 5中のステップ S4で、 検知された被測定物の中に危険判断実施 条件を満たすものが有るかどうかを判断する。 この危険判断実施条件は、 実際に危険判断を行う必要があるかどうかを判断するための条件であつ て、 発射されるビームの方向 (角度) と距離とにより所定の領域を設定 しておき、 この領域内に存在する被測定物についてのみ危険判断を実施 するというものである。 領域の設定は、 たとえば、 自車が走行するレ一 ンと同じレーンにある物体に重点を置 L、て作成すればよい。 ここでは、 —例として、 ビームのスキャンの方向を左側から順に方向 1、 方向 2、 方向 3、 方向 4、 方向 5、 方向 6としたときに、 左右の両端側となる方 向 1と 6については 25m、 それより内側の方向 2と 5については 4〇 m、 中央の側となる方向 3と 4については 100mという領域を設定す 。
こうして、 ステップ S4では、 2回の则定データのうち新しい第 2回 目の则定距離デ一夕 ALj2 (j = l, 2 , ···, 6) をもとにして、 L12く 25m、 L22<40m、 L32< 100m. L42< 100m, L52<40m、 L62 < 25mのいずれか 1つに該当する被測定物が有るかどうかを判断する。 この判断の結果として YE Sの場合は、 該当する被測定物をすベてピッ クアップし、 結果をメモリに記憶する。 NOの場合は、 被则定物はすべ て自車の走行の障害とならない位置にあるので、 危険判断を行う必要が なく、 ただちにステップ S 7に進む。
第 9図は、 笫 5図中の危険判断処理のフローチヤ一トである。
この危険判断処理においては、 まず、 ステップ S4で求めた、 危険判 断実施条件を満たす被測定物の中から最も測定距離 L j 2の短 L、ものを抽 出し (ステップ S 51) 、 抽出した被測定物力他車両であるかどうかを 判断する (ステップ S 52) 。 この判断の結果として YE Sの場合は、 対車両用の危険判断のプログラムを实行し (ステップ S 53) 、 NOの 場合、 すなわち、 固定物である場合には、 対固定物用の危険判断のプロ グラムを実行する (ステップ S 54) 。
なお、 ここでは、 危険判断実施条件を満たす被測定物のうち自車に一 番近 L、被測定物についてのみ危険判断処理を奕行するようにしているが、 これに限定されるわけではない。 たとえば、 他車両と固定物が混在する 場合、 それぞれについて危険判断を行い、 最も危険度の高いものについ ての警報表示を行うようにすることも可能である。
第 10図〜第 12図は、 第 9図中の対車両用危険判断処理のフローチ ヤートである。
この対車両用危険判断処理においては、 まず、 先行する他車の速度 VI を下記の式により算出する (ステップ S 61) 。
VI =V2 +AL) /A t
ここで、 V2 :自車速度 (たとえば、 ステップ S 14で検出した第 2 回目測定時の自車速度 V 2 を用いる)
ALj :当該他車の方向 jにおける第 1回目と第 2回目の測定 距離の差 (ステップ S 21で求めた値を用いる) Δ t :第 1回目と第 2回目の測定時間差 (ステップ S 23で 求めた値を用いる)
次に、 雨天かどう力、を判断し (ステップ S 62) 、 雨天の場合には、 路面が滑りやすいので、 他車の制動距離 f l (VI)と自車の制動距離 f 2 (V2)をそれぞれ通常の値 (第 19図参照) のたとえば 1. 5倍に補 正する (ステップ S 63) 。 これにより、 実際の道路状況に合ったもの となる。 車両の制動距離 f (V) とは、 ブレーキをかけてから車両が停 止するまでの距離であって、 車両速度 Vによって変わる。 制動距離 f (V) の値は、 雨天以外の通常の場合について、 実験などにより、 車 両速度 Vをパラメータとしてあらかじめ適当に設定しておく。 第 19図 は、 その一例を示したものである。 なお、 制動距離 f (V) のデータは、 車種ごとに設定すれば、 より一層正確である。 雨天でない場合には、 制 動距離 f (V) の補正の必要はないので、 ただちにステップ S 64に進 む。
次のステップ S 64では、 他車までの距離 を設定する。 具体的に は、 当該他車の方向 jにおける第 2回目の測定距離 Lj2の値をもって当 該距離 Lc の値とする。
その後、 自車の減速度がたとえば毎秒 10%以上かどうかを判断する (ステップ S 65) 。 この判断は、 たとえば、 下記の式によって行う。 (vl - ν2 ) ΖΔ t≥0. 1
自車の減速度が毎秒 10%未満の場合には、 ϋ転者はいまだ他車の存 在に気付かずブレーキをかけていないと判断されるので、 運転者の反応 遅れ時問 (踏替時問) Τによる空走距離 f 3(Τ) を加味して安全車間距 離 Dを計算する。 本発明では、 車間警報と追突 報をそれぞれ別々に判 断するため、 車問警報用の踏替時問 T1 を考應した安全車問距離 D1 と、 追突警報用の踏替時間 Τ2 を考慮した安全車間距離 D2 とをそれぞれ求 める。 なお、 空走距離 f 3(Τ) は、 下記の式によって計算する。
f 3(T) =V2 XT
すなわち、 ユーザによって設定された車問警報用の踏替時問 Tl をメ モリから読み出し (ステップ S 66) 、 下記の式により、 車間警幸 Hfflの 踏替時問 T1 を考慮した安全車間距離 D1 を算出し (ステップ S 67) 、
Dl = f 2(V2) + f 3(T1) - f 1 (VI)一 d
また、 同じくユーザによって設定された追突警報用の踏替時間 T 2 をメ モリから読み出し (ステップ S 68) 、 下記の式により、 追突警幸 の 踏替時間 Τ2 を考慮した安全車問距離 D2 を算出し (ステップ S 69) . 次のステップ S 71に進む。 D2 = f 2(V2) + f 3(T2) - f 1 (VI) - d
ここで、 f 1 (VI) :他車の制動距離
f 2(V2) :自車の制動距離
f 3(T1) :踏替時間 Tl による空走距離
f 3(T2) :踏替時間 Τ2 による空走距離
d :安全停止時の車間距離
なお、 安全停止時の車間距離 dは、 安全に止まつた時の車問距離であり、 自車の速度 V2 によって変わる。 この値は、 ¾験などにより、 車両速度 Vをパラメ一夕としてあらかじめ適当に設定しておく。 第 20図は、 そ の一例を示している。
ステップ S 65の判断の結果として自車の減速度が毎秒 10%以上の 場合には、 ブレーキ操作などによりすでに減速中であると判断されるの で、 空走距離 f 3(T) を加味する必要はなく、 下記の式により安全車間 距離 Dを計算し (ステップ S70) 、 次のステップ S80に進む。
D= f 2(V2) - f 1 (VI) - d
自車の減速度が 10%未満の場合で 2種類の安全車間距離 Dl 、 D2 の設定が終了した場合には、 続くステップ S 71で、 ステップ S 64で 設定した他車までの距離 Lc がステップ S 67で求めた安全車間距離 D1 以上であるかどう力、、 つまり、 下記の式 (以下、 第 1判定式という c ) を満たすかどうかを判断する。
Lc -Dl ≥0
この判断の結果として NOの場合 (ルート P) は、 ただちにステップ S 73に進む力 YESの場合は、 さらに同じく他車までの距離 Lc 力ス テツブ S 69で求めた安全車間距離 D 2以上であるかどう力、、 すなわち、 下記の式を満たすかどうかを判断する。
Lc -D2 ≥0
9 この判断の紡果として YE Sの ¾合は、 どちらの踏替時間 Tl 、 T2 を 考廒しても危険度はそれほど高くないので、 車問注意警報を選択する (ステップ S 77) 。 上述したように車間注意警報には緑色と橙色の 2 段階あるが (第 4図参照) 、 さらにどちらの警報を選択するかは、 他車 までの距離 Lc と安全車間距離 D1 との差 (Lc -D1 ) から、 ブレー キを踏む余裕時問を逆算し、 求めた余裕時問が (T1 +1. 5) 秒以上 あれば緑色の車間注意警報を選択し、 (T1 +0. 5) 秒以上 (T1 + 1. 5) 秒未満であれば橙色の車問注意警報を選択する。 これに対し、 NOの場合 (ルー卜 Q) はステップ S 73に進む。
ステップ S 73では、 自車と他車との速度差 S (=V2 一 VI ) を算 出し、 次のステップ S 74で、 メモリから追突警報用の踏替時間 T2 を 読み出し、 比較用の基準値 X (T2 ) を求める。 基準値 X (T2 ) は踏 替時問 T2 により変化する設定値であり、 追突の可能性の観点から、 実 験などによりあらかじめ適当に設定されている。 第 21図は、 その一例 を示している。
そして、 続くステップ S75で、 ステップ S 73で求めた速度差 Sが ステップ S 74で求めた基準値 X (T2 ) よりも大きいかどう力、、 すな わち、 下記の式 (以下、 第 2判定式という。 ) を満たすかど όかを判断 する。
S >Χ (Τ2 )
この判断の結果として YESの場合は、 追突警報を選択する (ステップ S79) 0
これに対し、 NOの埙合は、 さらに、 ステップ S 75の判断に至った ルートが Pかどう力、、 すなわち、 ステップ S 71の判断で NOとなった 場合かそれともステップ S 72の判断で NOとなった場合かを判断し (ステップ S76) 、 ルート Pの場合は、 他車までの距離 Lc が安全車 間距離 Dl よりも短く (Lc く Dl ) 警戒すべき状態であるが蓍戒度は それほど高くはないので、 車間危険警報を選択する (ステップ S 78) 。 これに対し、 ルート Qの場合は、 ステップ S 71で YE Sの場合、 すな わち、 他車までの距離 Lc が車間警報用の踏替時間 Tl による安全車間 距離 D1 以上の場合 (Lc ≥D1 ) であり、 し力、も、 前提として車間 ¾ 報は踏替時間 Ί を基準として判断するものであるから、 車間注意警報 を選択する (ステップ S 77) 。
すなわち、 車間警報は第 1判定式 (Le - Dl ≥0) によって判断さ れ、 追突警報は第 2判定式 (S >X (T2 ) ) によって判断される。 し 力、も、 上述したように車問警報用の踏替時問 T1 と追突警報用の踏替時 間 T2 はユーザによりそれぞれ別々に指定することができるから、 ユー ザは車問警報と追突警報のそれぞれに対し謦報のタイミングを自由に調 整することができる。 したがって、 たとえば、 渋滞走行を考慮してユー ザが車問警報用の踏替時間 T1 を遝転者自身の実際の反応速度よりも短 く設定した場合には、 警報音を伴う車問危険警報は出にくくなるが (主 に、 ステップ S 71→S 72→S 73→S 74→S 75→S 76→S 77の経路をたどるであろう。 ) 、 追突警報 J1]の踏替時問 T 2 を運転者 Θ身の実際の反応速度に設定している限り、 本当に必要な時にはきちん と追突警報が出されることになる (ステップ S 71→S 72→S 73→ S 74— S 75→S 79の経路) 。
他方、 自車の減速度が 10%以上の場合で安全車問距離 Dの設定力《終 了した場合にも、 基本的には同じ処理が行われる。 すなわち、 続くステ ップ S80で、 ステップ S 64で設定した他車までの距離 Lc がステツ ブ S 70で求めた安全車間距離 D以上であるかどう力、、 つまり、 下記の 式 (第 1判定式) を満たすかどうかを判断する。
Lc -D≥0 I丄 そして、 YESの場合は、 車間注意警報を選択する (ステップ S 84) 。 ここで、 緑色の車問注意窨報を選択するか橙色の車間注意警報を選択す るかの演算を行う点は、 上記の場合と同様である。 これに対し、 NOの 場合は、 自車と他車との速度差 S (=V2 -VI ) を算出し (ステップ S81) 、 メモリから追突窨報用の踏替時間 T2 を読み出して基準値 X (T2 ) を求め (ステップ S 82) 、 速度差 Sが基準値 X (T2 ) より も大きいかどう力、、 つまり、 下記の式 (笫 2判定式) を満たすかどうか を判断する。
S >X (T2 )
そして、 YESの場合は、 追突警報を選択し (ステップ S86) 、 NO の場合は、 車間危険警報を選択する (ステップ S 85) 。
第 13図〜第 15図は、 第 9図中の対固定物用危険判断処理のフロー チヤ—トである。
このフローチャートは、 基本的には第 10図〜第 12図に示す対車両 用危険判断処理のフローチャートと全く同じであって、 ただ、 固定物は 速度を考礅する必要がなく (他車速度 VI =0の場合と考えられる) 、 また、 固定物がガードレール等の場合には捕正された d値 (第 8図中の ステップ S44参照) を使う点で異なるのみであるから、 以下、 簡単に 説明するにとどめる。
まず、 雨天かどうかを判断し (ステップ S 91) 、 雨天の場合は、 自 車の制動距離 f 2 (V 2)を通常値 (第 19図参照) のたとえば 1. 5倍に 補正する (ステップ S 92)。 次に、 固定物までの距離 Ls を設定する (ステップ S 93) 。 このときの距離 Ls は、 固定物の方向 jにお ける第 2回目の測定距離 L j 2の値である。
その後、 自車の減速度が 10%以上であるかど όかを判断し (ステツ プ S94) 、 NOの場 は、 踏替時問を考嫩した危険判断を行うべく、 車問警 用の踏替時問 Tl を読み出して (ステップ S 95) 、 下記の式 により安全車問距離 D1 を計算し (ステップ S 96) 、
Dl = f 2(V2) + f 3(Tl)-d
また、 追突窨報用の踏替時間 T2 を読み出して (ステップ S 97) 、 下 記の式により安全車間距離 D 2 を計算する (ステップ S 98) 。
D2 - f 2 (V2) + f 3(T2)一 d
これに対し、 NOの場合は、 すでに減速中であり踏替時間を考墘する必 要はないので、 下記の式により安全車間距離 Dを計算する (ステップ S
99) o
D= f 2(V2)— d
なお、 上記の式で使用する d値 (安全停止時の車間距離) について、 固 定物がガードレール等の場合には、 ¾報を出にくくするため、 通常値 (第 20図参照) を補正した値 (第 8図中のステップ S44参照) を用 いることは前述したとおりである。
自車の減速度が 10%未満の場合において安全車間距離 Dl 、 D2 の 設定が終了すると、 固定物までの距離 Ls 力 <一方の安全車間距離 Dl 以 上であるかどう力、、 すなわち、 下記の式 (第 1判定式) を満たすかどう かを判断し (ステップ S 100) 、
Ls 一 Dl ≥0
NOの埸台 (ルート P) は、 ただちにステップ S 102に進む力く、 YE Sの場合は、 さらに同じく固定物までの距離 Ls がもう一方の安全車間 距離 D2以上であるかどう力、、 すなわち、 下記の式を満たすかどうかを 判断する。
Ls -D2 ≥0
この判断の結果として YESの場合は、 車問注意警報を選択し (ステツ プ S 105) 、 NOの場合は、 ステップ S 102に進む。 なお、 車問注 意警報を選択した場合は、 さらに所定の演算を行って緑色の車間注意警 報か橙色の車間注意警報かを選択する。
ステップ S 102では、 追突警報用の踏替時問 T2 を読み出し、 基準 値 X (T2 ) (第 21図参照) を求める。 その後、 自車速度 V2 力く基準 値 X (T2 ) よりも大きいかどう力、、 すなわち、 下記の式 (第 2判定式) を満たすかどうかを判断し (ステップ S 103) 、
V2 >X (T2 )
YE Sの場合は、 追突警報を選択する (ステップ S 107)。 NOの場 合は、 ステップ S 103の判断に至ったルートが Pか Qかを判断し (ス テツプ S 104) 、 ルート Pの埸合は、 車間危険警報を選択し (ステツ プ S 106) 、 ルート Qの場合は、 車問注意警報を選択する (ステップ S 105) α
他方、 自車の減速度が 10%以上の場台において安全車間距離 Dの設 定が終了すると、 まず、 固定物までの距離 Ls が安全車間距離 D以上で あるかどう力、、 すなわち、 下記の式 (第 1判定式) を満たすかどうかを 判断し (ステップ S 108) 、
Lc -D≥0
YE Sの場合は、 車間注意警報を選択する (ステップ S 1 1 1) 。 ここ でも、 さらに所定の演算を行って緑色の車 注意警報か橙色の車問注意 警報かを選択する。 これに対し、 NOの場合は、 追突警報用の踏替時間 丁 2 を読み出して基準値 X (T2 ) を求め (ステップ S 109) 、 自車 速度 V2 が基準値 X (T2 ) よりも大きいかどう力、、 つまり、 下記の式 (第 2判定式) を満たすかどうかを判断する (ステップ S 1 10) 。 S >X (T2 )
そして、 Y E Sの場合は、 追突謦報を選択し (ステップ S 1 13) 、 NOの場合は、 車問危険警報を選択する (ステップ S 1 1 2) 。 したがって、 この場合にも、 車問警報は笫 1判定式 (L s -D1 ≥0) により、 また、 追突警報は第 2判定式 (V2 >X (T2 ) ) によりそれ ぞれ判断され、 しかも、 車間警報用の踏替時間 T1 と追突窨報用の踏替 時間 T2 はそれぞれ別々に指定可能であるから、 たとえば、 渋滞走行を 考慮して車間警報用の踏替時間 T 1 を車間危険警報が出にくくなるよう に設定した場合であっても、 追突警報用の踏替時間 T2 力《運転者自身の 実際の反応速度に設定されている限り、 確实に追突警報が出されること に/よ o
第 16図は、 第 5図中の警報表示処理のフローチヤ一トである。
この警報表示処理においては、 まず、 ステップ S 53またはステップ S 54の危険判断処理にお L、てどの種類の警報が選択されたかを判断し (ステップ S 121、 ステップ S 122) 、 選択された警報が追突警報 の場合には、 追突警報表示、 すなわち、 表示部 1◦に設けられた赤色 L ED22 cを点滅させ (ステップ S 123) 、 車問危険警報の場合には、 車間危険警報、 すなわち、 赤色 LED 22 cを点灯させ (ステップ S 124) 、 車問注意警報の場合には、 車問注意警報、 すなわち、 その危 険度に応じて、 橙色 LED 22 bまたは緑色 LED22 aを点灯させる (ステップ S 125) 。
また、 追突警報または車問危険警報力^択された場合には、 それぞれ、 ユーザにより警報音が ONに設定されており (ステップ S 126) 、 力、 つ、 ブレーキが踏まれていない場台にのみ (ステップ S 127) 、 運転 者に注意を促すべく、 警報音を発生させる (ステップ S 128) 。 これ 以外の場合、 すなわち、 ユーザにより警報音が OFFに設定されていた りまたはブレーキがすでに踏まれている場合には、 追突警報または車間 危険罾報カ <週択された場合であっても警報音を鳴らさない。 なお、 上述 したように車問注意警報の場合には一切警報音を鳴らさない。 そして、 ステップ S I 29で、 当該被測定物までの距離 Lc またはs を表示部 10に設けた LED部 21にたとえば lm単位で表示する c

Claims

求 の 範 囲
1. Θ車の前方に存在する物体との問の距離を測定し、 得られた距 離データにより危険性の有無を判定し、 危険と判断される場合には警報 を発生する自動車用車間距離警報装置において、
減速またはブレーキをかけたりしなければならな L、警戒すベき状態に ある時に発生する第 1警報と、 警戒すべき状態ではあるが減速またはブ レーキを必要としない時に発生する第 2警報とを備え、 前記第 1警報と 前記第 2警報とはそれぞれ別個の判定式により判断されることを特徴と する自動車用車問距離警報装置。
2. 前記第 1警報および前記第 2警報の各発生タイミングはユーザ によりそれぞれ別々に調整可能であることを特徴とする請求の範囲第 1 記載の自動車用車間距離警報装置。
3. 前記第 1警報および前記第 2警報の各発生タイミングの調整は それぞれ踏替時間の設定によって行われることを特徴とする請求の範囲 第 2项記載の自動車用車問距離警報装置。
4. 前記第 1警報は赤色ランプの点滅によって表示され、 前記第 2 警報は少なくとも赤色ランプの点灯によって表示されることを特徴とす る請求の範囲第 1〜 3項のいずれか 1つに記載の自動車用車間距離警報
5. 自車の前方に存在する物体との間の距離を则定し、 得られた距離 データにより危険性の有無を判定し、 危険と判断される場合には警報を 発生する自勒車用車問距離警報装置において、
光ビ一ムを所定の複数の方向に発射し、 当該複数の方向の物体までの 距離を測定する距離測定手段と、
言己距離測定手段によって则定された第 1回目と第 2回目の同方向の 距離の変化を自車の移動距離と比較し、 当該方向に存在する物体が移動 物かまたは固定物かを判別する第 1判別手段と、
前記笫 1判別手段により自車の前方に所定の数以上の固定物があると 判断されたときに、 それらの距離データを回帰して標準偏差を求め、 得 られた標準偏差を所定値と比較して、 当該固定物が自車の走行に支障の ない非障害物のみであるかどうかを判別する第 2判別手段と、
前記第 1判別手段または前記第 2判別手段により判別された物体の種 類に応じて、 所定の判定式により危険性の有無を判定する危険判定手段 と、
前記危険判定手段により危険と判断されたときに所定の窨報を出力す る警報出力手段と、
を有することを特徴とする自動車用車問距離警報装置。
6. 前記距離測定手段は光ビームを所定の ft度置きに 6方向に発射 することを特徴とする請求の範囲第 5 i記載の自動車用車間距離警報装 置。
7. 前記危険判定手段は、 固定物が非障害物のみであるとき、警報 が出にくくなるように前記判定式を構成する所定のパラメ一夕の値を捕 正することを特徴とする請求の範囲第 5項または第ら 記載の自動車用 車間距離警報装置。
8. 前記危険判定手段は天候に応じて前記判定式を構成する所定の パラメ一タの値を補正することを特徴とする請求の範囲第 5〜 7 ¾のい ずれか 1つに記載の自動車用車問距離警報装匿。
9. Θ車の前方に存在する物体との間の距離を測定し、 得られた距 離デ一夕により危険性の有無を判定し、 危険と判断される場合には警報 を発生する S動車用車間距離警報装置において、
光ビームを所定の複数の方向に発射し、 当該複数の方向の物体までの 距離を測定する距離測定手段と、
前記距離则定手段によつて測定された第 1回目と第 2回目の同方向の 距離の変化を自車の移動距離と比較し、 当該方向に存在する物体が移動 物かまたは固定物かを判別する第 1判別手段と、
前記第 1判別手段により自車の前方に所定の数以上の固定物があると 判断されたときに、 それらの距離デ一夕を回帰して標準偏差を求め、 得 られた標準偏差を所定値と比較して、 当該固定物が自車の走行に支障の な L、非障害物のみであるかどうかを判別する第 2判別手段と、
減速またはブレーキをかけたりしなければならない警戒すべき状態に ある時に発生する第 1警報と、 警戒すべき状態ではあるが減速またはブ レーキを必要としない時に発生する第 2警報とを備え、 前記第 1判別手 段または前記第 2判別手段により判別された物体の種類に応じて、 前記 第 1警報および前記笫 2警報に対しそれぞれ別個の判定式により危険性 の有無を判定する危険判定手段と、
前記危険判定手段により危険と判断されたときに所定の警報を出力す る警報出力手段と、
を有することを特徴とする自動車/]]車問距離警報装置。
1 0. 前記第 1警報および前記第 2警報の各発生タイミングはユーザ によりそれぞれ別々に 整可能であることを特徴とする請求の範囲第 9 项記載の自動車用車問距離警報装置。
1 1. 前記笫 1警報および前記笫 2警報の各発生タイミングの 整は それぞれ踏替時問の設定によって行われることを特徴とする請求の範囲 第 1 0项記載の自動車川車問距離 ¾報装置。
1 2. 前 Ϊ己第 1警報は赤色ランプの点滅によって表示され、 前記第 2 警報は少なくとも赤色ランプの点灯によって表示されることを特徴とす る請求の範囲第 9 ~ 1 1项のいずれか 1つに記載の自動車用車問距離警 報装置。
1 3. 前 距離測定手段は光ビームを所定の角度 ilきに 6方向に発射 することを特徴とする請求の範囲第 9〜 1 2 の L、ずれか 1つに記載の 自動車用車間距離警報装置。
1 4. 前記危険判定手段は、 固定物が非障 ¾物のみであるとき、 警報 が出にくくなるように前記判定式を構成する所定のパラメータの艇を補 正することを特徴とする請求の範囲第 9〜 1 3项の L、ずれか 1つに記載 の自動車用車問距離警報装置。
1 5. 前 危険判定手段は天候に応じて前記判定式を構成する所定の パラメ一夕の iiSを補正することを特徴とする 求の範囲第 9〜 1 4項の 、ずれか 1つに記載の自動車用車間距離警報装置。
PCT/JP1995/002124 1995-10-17 1995-10-17 Dispositif avertisseur de distance entre voitures WO1997014584A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP51567397A JP3280033B2 (ja) 1995-10-17 1995-10-17 自動車用車間距離警報装置
PCT/JP1995/002124 WO1997014584A1 (fr) 1995-10-17 1995-10-17 Dispositif avertisseur de distance entre voitures
DE69529481T DE69529481T2 (de) 1995-10-17 1995-10-17 Warnungsvorrichtung für den abstand zwischen autos
EP95934315A EP0856433B1 (en) 1995-10-17 1995-10-17 Warning device for distance between cars
KR1019980702404A KR100335968B1 (ko) 1995-10-17 1995-10-17 자동차용차간거리경보장치
US09/051,808 US6097311A (en) 1995-10-17 1995-10-17 Warning device for distance between cars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/002124 WO1997014584A1 (fr) 1995-10-17 1995-10-17 Dispositif avertisseur de distance entre voitures

Publications (1)

Publication Number Publication Date
WO1997014584A1 true WO1997014584A1 (fr) 1997-04-24

Family

ID=14126386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002124 WO1997014584A1 (fr) 1995-10-17 1995-10-17 Dispositif avertisseur de distance entre voitures

Country Status (6)

Country Link
US (1) US6097311A (ja)
EP (1) EP0856433B1 (ja)
JP (1) JP3280033B2 (ja)
KR (1) KR100335968B1 (ja)
DE (1) DE69529481T2 (ja)
WO (1) WO1997014584A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065551A (ja) * 2006-09-06 2008-03-21 Fujitsu Ten Ltd 車両用通知装置および通知方法
US9487217B2 (en) 2013-05-22 2016-11-08 Denso Corporation Collision mitigation apparatus
CN108961745A (zh) * 2018-06-14 2018-12-07 交通运输部公路科学研究所 一种高速公路行驶预警系统和方法
WO2021172549A1 (ja) * 2020-02-28 2021-09-02 いすゞ自動車株式会社 運転支援装置及び運転支援方法
JP2022154525A (ja) * 2021-03-30 2022-10-13 本田技研工業株式会社 アプリケーションプログラム、情報提供方法、および情報提供装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936586B4 (de) * 1998-08-04 2015-04-09 Denso Corporation Vorrichtung und Verfahren zum Steuern eines Soll-Abstands und eines Warnabstands zwischen zwei sich bewegenden Fahrzeugen und Datenträger zum Speichern des Steuerverfahrens
JP3983404B2 (ja) * 1999-01-13 2007-09-26 本田技研工業株式会社 レーダ搭載車両用ゲート
US6785316B1 (en) 1999-08-17 2004-08-31 Lambda Physik Ag Excimer or molecular laser with optimized spectral purity
US6834066B2 (en) 2000-04-18 2004-12-21 Lambda Physik Ag Stabilization technique for high repetition rate gas discharge lasers
US6862307B2 (en) * 2000-05-15 2005-03-01 Lambda Physik Ag Electrical excitation circuit for a pulsed gas laser
DE10332502A1 (de) * 2003-07-17 2005-02-03 Daimlerchrysler Ag Verfahren und Vorrichtung zur Gefahrenwarnanzeige, insbesondere in einem Kraftfahrzeug
US6813562B2 (en) 2002-10-15 2004-11-02 General Motors Corporation Threat assessment algorithm for forward collision warning
US20080042814A1 (en) * 2006-08-18 2008-02-21 Motorola, Inc. Mode sensitive vehicle hazard warning apparatuses and method
US7609150B2 (en) * 2006-08-18 2009-10-27 Motorola, Inc. User adaptive vehicle hazard warning apparatuses and method
US20080306666A1 (en) * 2007-06-05 2008-12-11 Gm Global Technology Operations, Inc. Method and apparatus for rear cross traffic collision avoidance
RU2509009C1 (ru) * 2012-07-24 2014-03-10 Максим Петрович Смирнов Безопасное транспортное средство
JP5411976B1 (ja) * 2012-09-21 2014-02-12 株式会社小松製作所 作業車両用周辺監視システム及び作業車両
DE102014211607A1 (de) * 2014-06-17 2015-12-17 Volkswagen Aktiengesellschaft Bestimmen eines Zustands eines Fahrzeugs und Unterstützung eines Fahrers beim Führen des Fahrzeugs
JP6775285B2 (ja) * 2015-09-24 2020-10-28 アルパイン株式会社 後側方車両検知警報装置
US10059261B2 (en) 2015-11-24 2018-08-28 Thunder Power New Energy Vehicle Development Company Limited Collision warning system
US9725038B2 (en) 2015-11-24 2017-08-08 Thunder Power New Energy Vehicle Development Company Limited Collision warning system
US10026319B2 (en) * 2015-12-30 2018-07-17 Thunder Power New Energy Vehicle Development Limited Collision warning system
US9511730B1 (en) * 2015-12-30 2016-12-06 Thunder Power Hong Kong Ltd. Collision warning system
RU2632238C2 (ru) * 2016-01-26 2017-10-03 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Способ повышения безопасности транспортного средства при групповых столкновениях
CN109878513A (zh) * 2019-03-13 2019-06-14 百度在线网络技术(北京)有限公司 防御性驾驶策略生成方法、装置、设备及存储介质
CN111696387B (zh) * 2020-05-21 2022-04-29 东南大学 一种基于前向障碍物识别的自适应防撞分级预警方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810198A (ja) 1981-07-13 1983-01-20 Nec Corp 冷却用フアンの回転数制御装置
JPH04213200A (ja) 1990-12-07 1992-08-04 Mitsubishi Motors Corp 車間距離検知・警報装置
JPH04134770U (ja) 1991-06-07 1992-12-15 日産デイーゼル工業株式会社 自動車の追突警報装置
JPH04372100A (ja) 1991-06-20 1992-12-25 Omron Corp 衝突防止システム
JPH0567299A (ja) * 1991-09-09 1993-03-19 Nissan Motor Co Ltd 追従車両選択装置
JPH07277041A (ja) * 1994-04-15 1995-10-24 Honda Motor Co Ltd 車両用走行支援装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL102097A (en) * 1992-06-04 1995-05-26 Davidian Dan Anti-collision system for vehicles
WO1994019705A1 (en) * 1993-02-16 1994-09-01 Silicon Heights Ltd. A vehicle anti-collision device
JP3189560B2 (ja) * 1994-03-25 2001-07-16 株式会社デンソー 車間距離検知装置および車間距離警報装置
DE69516934T2 (de) * 1994-04-15 2000-10-05 Honda Giken Kogyo K.K., Tokio/Tokyo Vorrichtung zur Fahrhilfe eines Fahrzeugs
US5631639A (en) * 1994-04-20 1997-05-20 Nippondenso Co., Ltd. Collision alarm system for automotive vehicle
US5594414A (en) * 1994-08-02 1997-01-14 Namngani; Abdulatif Collision probability detection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810198A (ja) 1981-07-13 1983-01-20 Nec Corp 冷却用フアンの回転数制御装置
JPH04213200A (ja) 1990-12-07 1992-08-04 Mitsubishi Motors Corp 車間距離検知・警報装置
JPH04134770U (ja) 1991-06-07 1992-12-15 日産デイーゼル工業株式会社 自動車の追突警報装置
JPH04372100A (ja) 1991-06-20 1992-12-25 Omron Corp 衝突防止システム
JPH0567299A (ja) * 1991-09-09 1993-03-19 Nissan Motor Co Ltd 追従車両選択装置
JPH07277041A (ja) * 1994-04-15 1995-10-24 Honda Motor Co Ltd 車両用走行支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0856433A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065551A (ja) * 2006-09-06 2008-03-21 Fujitsu Ten Ltd 車両用通知装置および通知方法
JP4739153B2 (ja) * 2006-09-06 2011-08-03 富士通テン株式会社 車両用通知装置
US9487217B2 (en) 2013-05-22 2016-11-08 Denso Corporation Collision mitigation apparatus
CN108961745A (zh) * 2018-06-14 2018-12-07 交通运输部公路科学研究所 一种高速公路行驶预警系统和方法
WO2021172549A1 (ja) * 2020-02-28 2021-09-02 いすゞ自動車株式会社 運転支援装置及び運転支援方法
JP2021133892A (ja) * 2020-02-28 2021-09-13 いすゞ自動車株式会社 運転支援装置及び運転支援方法
JP7211387B2 (ja) 2020-02-28 2023-01-24 いすゞ自動車株式会社 運転支援装置及び運転支援方法
JP2022154525A (ja) * 2021-03-30 2022-10-13 本田技研工業株式会社 アプリケーションプログラム、情報提供方法、および情報提供装置
JP7253000B2 (ja) 2021-03-30 2023-04-05 本田技研工業株式会社 アプリケーションプログラム、情報提供方法、および情報提供装置
US11935412B2 (en) 2021-03-30 2024-03-19 Honda Motor Co., Ltd. Information supply method and storage medium

Also Published As

Publication number Publication date
KR100335968B1 (ko) 2002-06-20
US6097311A (en) 2000-08-01
EP0856433A4 (en) 1999-11-17
DE69529481D1 (de) 2003-02-27
EP0856433A1 (en) 1998-08-05
DE69529481T2 (de) 2003-11-27
EP0856433B1 (en) 2003-01-22
JP3280033B2 (ja) 2002-04-30
KR19990063931A (ko) 1999-07-26

Similar Documents

Publication Publication Date Title
WO1997014584A1 (fr) Dispositif avertisseur de distance entre voitures
CN201166707Y (zh) 一种基于gps的车载测距系统
KR20160092959A (ko) 과속 및 신호위반에 의한 교차로 교통사고 예방 방법 및 그 시스템
CN108922245B (zh) 一种公路视距不良路段预警方法及系统
KR20120053176A (ko) 차량의 전후방 충돌 경보장치 및 이를 이용한 충돌 경보방법
JPH0377560B2 (ja)
KR20110057837A (ko) 나이트 뷰 시스템 및 제어방법
KR20160131322A (ko) 교통 정체 구간 차선 변경 방법 및 시스템
JP4221166B2 (ja) 車間距離警報装置及びその方法
JP3903752B2 (ja) 対象物検出装置および方法
KR101076984B1 (ko) 다수의 레이저 빔을 이용한 차선 이탈 방지 장치
JP2594482B2 (ja) 反射体検出装置
JPH1142991A (ja) 衝突警報装置
JP2803514B2 (ja) 車間距離警報装置
JPH08254577A (ja) 車両用衝突警報装置
JPH0867223A (ja) 車間距離測定方法
JPH06174848A (ja) 障害物検出装置
JPH08160138A (ja) 車間距離警報装置
KR101896653B1 (ko) 차량용 알림 시스템
JPH11125535A (ja) 車両速度表示方法およびその装置
JPH07110900A (ja) 車間距離警報装置
JPH08179042A (ja) 車間距離警報装置
JPH07146369A (ja) レーザ光を用いた車載用対象物検出装置
JPH0580154A (ja) 衝突警報装置
JP2578664Y2 (ja) 自動車の追突警報装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980702404

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995934315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09051808

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995934315

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980702404

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980702404

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995934315

Country of ref document: EP