WO1997014143A1 - Procede et dispositif d'enregistrement d'informations optiques - Google Patents

Procede et dispositif d'enregistrement d'informations optiques Download PDF

Info

Publication number
WO1997014143A1
WO1997014143A1 PCT/JP1996/002897 JP9602897W WO9714143A1 WO 1997014143 A1 WO1997014143 A1 WO 1997014143A1 JP 9602897 W JP9602897 W JP 9602897W WO 9714143 A1 WO9714143 A1 WO 9714143A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
power
pulse
cooling
pulse train
Prior art date
Application number
PCT/JP1996/002897
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Sakaue
Kenichi Nishiuchi
Eiji Ohno
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP96932820A priority Critical patent/EP0797193B1/en
Priority to MX9704098A priority patent/MX9704098A/es
Priority to JP51490497A priority patent/JP4145958B2/ja
Priority to DE69612833T priority patent/DE69612833T2/de
Publication of WO1997014143A1 publication Critical patent/WO1997014143A1/ja
Priority to HK98104407A priority patent/HK1005275A1/xx

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/006Overwriting
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0055Erasing
    • G11B7/00557Erasing involving phase-change media

Definitions

  • the present invention relates to a recording method of an optical disk for recording / reproducing information at high speed and at a high density using optical means such as a laser beam, and a recording apparatus therefor.
  • Optical discs can be broadly classified into read-only, write-once, and rewritable types.
  • the read-only type has been put into practical use, for example, as a compact disk or a laser disk
  • the write-once type or rewritable type has been put into practical use as a damaged file, a data file, or the like.
  • the rewritable optical disks there are mainly a magneto-optical type and a phase change type.
  • the phase change optical disk utilizes the fact that the recording layer reversibly changes its state by irradiation with a laser beam or the like, for example, between an amorphous phase and a crystal, or between a crystal and a crystal having a different structure.
  • the laser beam irradiation changes at least one of the refractive index and the extinction coefficient of the thin film to perform recording, and the amplitude of transmitted light or reflected light changes in this part, and as a result, the detection system A signal is reproduced by detecting a change in the amount of transmitted light or reflected light.
  • alloys such as Te, Se, In, and Sb are mainly used as typical materials that cause a state change between amorphous and crystalline.
  • one beam over one write can be used for rewriting a recording mark.
  • One-beam-over-write means that the laser power is modulated by the recording signal between the recording power and the bias power (also called the erasing power) lower than the recording power, and irradiated onto the signal track. Is a method of recording a new signal while erasing an already recorded old signal.
  • the overwrite itself requires only two levels, the recording power level and the bias power level. However, in consideration of recording 'erase' / reproduction, three levels are required: recording power level, bias power level, and reproduction power level.
  • the area irradiated at the recording level becomes amorphous because it cools rapidly after melting, regardless of whether the original state is amorphous or crystalline, and it is irradiated with an erasure level. Since the heated region rises above the crystallization temperature, it crystallizes regardless of the original state, and new signals are overwritten.
  • optical disk rotation methods there are roughly two types of optical disk rotation methods. One is to rotate the disk so that the linear velocity is the same on the inner and outer circumferences of the disk (hereinafter CLV), and the other is to rotate the disk at a constant angular velocity (hereinafter CAV).
  • CLV linear velocity
  • CAV constant angular velocity
  • CAV CAV is used because it takes time and time to change the disk rotation speed.
  • the linear velocity in the circumferential direction of the disk is faster on the outer circumference and slower on the inner circumference.
  • modulation between marks also called mark position
  • modulation of mark length also called mark edge
  • mark length modulation recording marks of various lengths are recorded at various mark intervals, and during reproduction, signals are detected by detecting the positions at both ends of the mark.
  • the mark length modulation method can double the density compared to the mark-to-mark modulation method.
  • Laser recording on a phase change optical disk is in principle in the heat mode. Therefore, when recording a long mark, the end of the mark becomes thicker than the tip due to the heat storage effect, and the mark is distorted like tears. As a result, the position of both ends of the distortion mark also shifts in the reproduced waveform.
  • a recording method has been proposed in which a recording waveform for forming one recording mark is composed of a recording pulse train composed of a plurality of pulses (also referred to as multi-pulse recording).
  • a recording pulse train composed of a plurality of pulses
  • multi-pulse recording also referred to as multi-pulse recording.
  • Japanese Patent Application Laid-Open No. 7-129959 has been proposed.
  • the amount of thermal interference is predicted in advance, and in the multi-pulse recording, the positions of the start end and the end of the recording pulse train are changed according to the recording mark length and the mark interval, thereby suppressing the thermal interference between the marks. This is to improve the signal characteristics.
  • a recording method in which a recording pulse is modulated into three steps of a recording power, a bias power, and a power lower than a bias power provided immediately after the recording power in one beam overwrite (for example, see Japanese Patent Application Laid-Open No. H10-163,197). 6 3—1 1 1 3 9 3 8 bulletin).
  • the cooling power irradiation time is changed depending on the mark interval (Japanese Patent Application No. 5-84049).
  • a so-called optical disk such as an optical disk using a rewritable phase-change material is irradiated with light from a light source such as a semiconductor laser to generate a physical state change and record a signal
  • heat generated by the light from the light source is used.
  • the temperature of the recording layer reaches several hundred degrees, and the recording thin film is melted.
  • the causes of signal deterioration include the destruction of the dielectric layer and the recording layer, and a phenomenon called material flow in the recording layer.
  • Material flow is a phenomenon in which the recording layer and its surroundings become hot during recording, so that the material in the recording layer moves in the track direction due to multiple cycles, and the thin and thick portions of the recording film occur on the same track. As a result, the reproduced waveform of the signal is changed, and the signal cannot be reproduced in the relevant portion. In any case, if the signal deterioration due to multiple cycles is large, the use of the optical disc is limited thereby.
  • the optical disc device irradiates light with a semiconductor laser to cause a physical state change
  • a semiconductor laser for example, when recording a signal on an optical disc using a rewritable phase change material
  • the recording layer heated by the laser beam is cooled.
  • the shape of the recording mark changes depending on the direction.
  • the recording layer when heat is stored, the recording layer once melted crystallizes instead of becoming amorphous. As a result, the size of the recording mark becomes smaller, or the shape of the recording mark becomes distorted, and the reproduction signal quality deteriorates.
  • the heat retention at the rear end of the mark is reduced and amorphousization becomes easier, but in some cases, the cooling rate becomes too high at the rear end. As a result, the amorphous region may be larger than the mark tip.
  • the overwrite characteristics may be degraded.
  • the cause is considered to be that the recording mark becomes too large in the horizontal direction at the rear end, so that the mark is rather distorted, or the erased portion is left by overwriting.
  • CZN is the ratio between carrierlevel and noize 1 eve 1.
  • the overwrite characteristics may be degraded. This is because the recording marks become too large in the horizontal direction, It is possible that the data is left unerased due to the data.
  • the cooling condition of heat at the rear end of the mark is finely controlled, the recording mark is formed into a desired shape, the quality of a reproduction signal can be further improved, and damage due to ripening can be reduced, and good cycle characteristics can be obtained. It is intended to provide a recording method and a recording device capable of obtaining the following. Disclosure of the invention
  • the recording method of the present invention comprises: in modulation recording of a mark length and a mark, after irradiating a laser beam with a recording power, reducing the laser power to a cooling power lower than the bias power, and setting the laser power to a predetermined value. After maintaining the recording time, the recording system is again raised to the bias line, and the laser beam irradiation at the recording line and the irradiation with the cooling power immediately after the recording power are performed with the bias power. The light irradiation is performed.
  • recording is performed by a recording method in which the laser power is reduced to a cooling power lower than the bias power after laser light irradiation with multi-pulses, maintained for a certain period of time, and then increased again to the bias power.
  • the cooling power irradiation time and the cooling power start time is changed.
  • the start time of the cooling power is changed according to the radius of the disc in the CAV mode.
  • the cooling power irradiation time and the cooling power start time is changed according to the radius of the disc in the CAV mode.
  • the recording pulse train is composed of pulses which are alternately switched at a period of one cycle or less of the data clock between the start pulse, the end pulse, and the start / end pulse
  • the cooling pulse is generated after the end pulse of the recording pulse train.
  • the laser beam irradiation is performed with a bias power between the end pulse of the recording pulse train and the laser beam irradiation with the cooling power.
  • the recording pulse train is composed of pulses that are alternately switched at a cycle of one cycle or less of a data clock between a start pulse, an end pulse, and a start / end pulse, and the recording is performed according to a mark length and a mark interval.
  • the irradiation time of the laser beam with the cooling power is constant and the laser light irradiation with the cooling power is independent of the position of the start pulse and the end pulse of the recording pulse train.
  • the time until the end of the recording pulse train is constant from the start of laser beam irradiation, or the timing of starting laser beam irradiation with cooling power is based on the timing.
  • the recording apparatus for realizing the above recording method includes a starting pulse generating circuit for generating a starting pulse having a constant width at a starting position of the data Hi period, and a mark of the mark when the data Hi period is long. If the burst gate signal is generated at the intermediate position and the data Hi period is short, a burst gate generator circuit that does not generate the burst gate signal and a fixed width end pulse is generated at the end position of the data Hi period When the end pulse generation circuit and the data Hi period are n clocks, an nT mark signal including the start pulse and the end pulse is generated, and when the data L0 period is m clocks, the end at both ends of the space.
  • a matrix length detection circuit for generating an mT space signal including a pulse and a start pulse (where n and m are natural numbers present in the data sequence); the nT mask signal and the mT space signal From infra start selector and termination selector
  • a starting selector for selecting and outputting one, a starting set value output of the starting selector being updated only when the starting pulse comes, and a starting sample holding circuit for holding the previous value when not coming,
  • a delay amount is changed by a start-point setting value of an output of a start-end sample no-hold circuit, and a start-end programmable delay line that outputs a delayed start-end pulse obtained by delaying the start-end pulse; Selects one of the values and outputs it to the terminal select
  • the termination pulse is updated only when the termination pulse comes, and the termination pulse is changed by changing the delay amount according to the termination set value of the output of the termination sample / hold circuit and the termination sample / hold circuit that holds the previous value when the termination pulse does not come.
  • a programmable delay line for termination that outputs a delayed termination pulse obtained by delaying the termination pulse, a delay line for a cooling pulse that outputs a delayed cooling pulse by changing the delay i of the cooling pulse, and the burst pulse.
  • An AND gate for taking a logical product of clocks and outputting a burst pulse; an OR gate for taking a logical sum of the delay start pulse, the burst pulse and the delay end pulse and outputting a recording signal; and a cooling pulse delay line
  • An inverter for inverting the cooling pulse signal from the inverter and a bias current of the laser diode.
  • a bias current source a recording current source that supplies a laser diode recording current in parallel with the bias current source, and a reproduction light current source that supplies a reproduction light current to the laser diode in parallel with the bias current source.
  • the configuration includes a laser diode for recording a disk signal driven in parallel by a recording current source and a reproduction optical current source.
  • another recording apparatus for enabling the recording method includes a start pulse generating circuit that generates a start pulse having a constant width at the start of the data Hi period, and when the data Hi period is long, If a burst gate signal is generated at the middle position of the mark and the data Hi period is short, a burst gate generation circuit that does not generate a burst gate signal and a fixed width termination pulse is placed at the end position of the data Hi period
  • the generated end pulse generating circuit generates an nT mark signal including the start pulse and the end pulse when the Hi period of data is n clocks, and generates the nT mark signal including the start pulse and the end pulse when the L0 period of data is m clocks.
  • a mark / space length detection circuit (where n and m are natural numbers present in the data string) for generating an mT space signal including an end pulse and a start pulse, and the nT mask signal and the mT space signal
  • An encoder for generating a select signal for controlling a start-end selector and an end-selector to be described later, and a cooling pulse generator for generating a cooling pulse having a fixed width from the end pulse output from the end pulse generating circuit.
  • a circuit a starting selector for selecting and outputting one from a plurality of starting set values by the selector signal, and a starting set value output of the starting selector being updated only when the starting pulse comes, and A delay start pulse obtained by delaying the start pulse is output by changing a delay amount with a start sample hold circuit holding a previous value and a start setting value of an output of the start sample hold circuit.
  • a programmable delay line for the start end, an end selector for selecting and outputting one from a plurality of end set values according to the selector signal, The termination setting value output of the termination selector is updated only when the termination pulse arrives, and otherwise, the previous value is retained.
  • the termination sample Z-hold circuit, and the termination termination output of the termination sample // hold circuit is set.
  • a delay line for a cooling pulse to output a delayed cooling pulse, an AND gate to output a burst pulse by taking a logical edge between a burst pulse and a clock from the burst gate generating circuit, and a delay start end pulse and the burst An OR gate for taking a logical sum of a pulse and the delay end pulse to output a recording signal; an inverter for inverting the delayed cooling pulse signal from the cooling pulse delay line; and supplying a laser diode bias current.
  • a bias current source and a recording current of a laser diode are supplied in parallel with the bias current source.
  • a recording current source for supplying a reproduction light current to a laser diode in parallel with the bias current source; a switch for turning the current of the recording current source on / off with the recording signal; A switch for turning the bias current source on and off with a cooling pulse signal; and a laser diode for recording a disk signal driven in parallel by the bias current source, the recording current source, and the reproduction light current source. It is a recording device of the result.
  • mark rear end a pulse train as a cooling pulse different from the recording pulse train for adjusting the shape of the rear end portion of the recording mark (hereinafter, mark rear end) (Correction pulse train).
  • the mark rear end correction pulse train irradiates a laser beam with at least two or more different powers including a power smaller than a bias power.
  • the laser beam irradiation with the bias power is performed between the mark trailing end correction pulse train and
  • the start time of the mark rear end correction pulse train and the pulse shape of the mark rear end correction pulse train are changed.
  • the start time of the mark rear end correction pulse train and the pulse shape of the mark rear end correction pulse train are changed according to the radius.
  • the rear end of the recording mark can be formed in a desired shape, and good reproduction signal characteristics can be obtained. Further, according to the optical information recording method and the recording apparatus of the present invention, Ripe damage can be remarkably reduced, and good cycle characteristics can be obtained.
  • FIG. 1 is a diagram of a recording waveform used in one embodiment of the present invention.
  • FIG. 2 is a structural diagram of an optical disk used in one embodiment of the present invention.
  • FIG. 3 is a diagram of an optical disk device used in an embodiment of the present invention.
  • FIG. 4 is a diagram of a recording pulse train used in one embodiment of the present invention.
  • FIG. 5 is a diagram of a recording waveform used in one embodiment of the present invention.
  • ⁇ 6 is a diagram of a recording waveform used in one embodiment of the present invention.
  • FIG. 7 is a diagram of a recording waveform used in one embodiment of the present invention.
  • FIG. 8 is a diagram of a recording waveform used in one embodiment of the present invention.
  • FIG. 9 is a diagram of a recording waveform used in one embodiment of the present invention.
  • FIG. 10 is a diagram of a recording waveform used in one embodiment of the present invention.
  • FIG. 11 is a block diagram of a disk recording device used in one embodiment of the present invention.
  • FIG. 12 is a signal waveform diagram of each part of the disk recording device used in one embodiment of the present invention.
  • FIG. 13 is a block diagram of a disk recording device used in one embodiment of the present invention.
  • FIG. 14 is a signal waveform diagram of each part of the disk recording device used in one embodiment of the present invention.
  • FIG. 15 is a diagram of a recording waveform used in one embodiment of the present invention.
  • Bias pulse laser light irradiation is performed before the start of laser light irradiation with the recording pulse train and cooling power.
  • the recording method of the present invention provides a method of
  • the recording method of the present invention is applied to a mark length modulation recording in which a recording pulse train is composed of a pulse which is alternately switched at a period of one cycle or less of a data clock between a start pulse, an end pulse, and a start / end pulse.
  • the recording pulse train is composed of pulses that alternately switch at a cycle of one cycle or less of the data clock between the start pulse and the end pulse and the start and end pulses, and the positions of the start pulse and the end pulse are respectively If it changes according to the mark length and mark interval,
  • the recording apparatus of the present invention comprises a starting pulse generating circuit for generating a starting pulse having a fixed width at the starting position of the Hi period of data, and a burst gate at an intermediate position of the mark when the Hi period of data is long.
  • a burst gate generating circuit that generates a signal and does not generate a burst gate signal when the data Hi period is short, and a terminal pulse generating circuit that generates a fixed width terminal pulse at the terminal position of the data Hi period.
  • a mark space length detection circuit (where n and m are natural numbers present in the data string) for generating an mT space signal including the start pulse, and a start selector and a start selector to be described later are used based on the nT mark signal and the mT space signal.
  • a cooling pulse data that outputs a delayed cooling pulse by changing the delay amount of the cooling pulse output from the cooling pulse generation circuit.
  • a cooling pulse is generated by inputting a delay termination pulse from the termination programmable delay line to this cooling pulse generation circuit.
  • the cooling pulse is generated by inputting the terminal pulse from the terminal pulse generating circuit to this cooling pulse generating circuit.
  • the recording method according to the present invention provides a method for performing mark length modulation recording.
  • a mark trailing edge correction pulse train as a cooling pulse for irradiating laser light with at least two different powers including a power smaller than the bias power is provided.
  • the dielectric layer, the recording layer, and the reflection layer are formed on the transparent substrate 51 by a normal thin film forming method such as vacuum evaporation or sputtering.
  • a first dielectric 52, a recording layer 53, a second dielectric layer 54, and a reflection layer 55 are sequentially provided.
  • a protective layer 56 closely attached is provided thereon.
  • an optical disk having a structure without the reflective layer 55 or the protective layer 56 is applicable.
  • One laser beam for recording and reproducing is made incident from the substrate 51 side.
  • the substrate 51 glass, quartz, polycarbonate, or polymethyl methacrylate can be used. Further, the substrate may be a flat plate or a substrate having grooves on the surface for tracking guide.
  • a resin dissolved in a solvent, applied and dried, or a resin plate bonded with an adhesive can be used.
  • a chalcogen alloy which changes a phase between amorphous and crystal is well known, for example, SbTe type, Ge SbTe type, Ge SbTe Se type, Ge SbTe Pd type. , TeGe SnAu system, Ag S bTe system, GeTe, Ga Sb, InSe, InSb, InSbTe, InSbSe, InSbTeAg, etc. Alloys containing other elements can be used as long as they do not affect the temperature.
  • S i 0 2 as the dielectric layer 52, 54, S i 0, T I_ ⁇ 2, MgO, T a 2 ⁇ 5, A 12 ⁇ 3 Ge0 2, S i 3lSU, BN, A 1 N, S i C, ZnS, ZnSe, ZnTe, PbS and the like or a mixture thereof can be used.
  • the reflective layer 55 a material mainly composed of a metal material such as Au, A, Cu, Cr, Ni, Ti, or a mixture thereof, or a dielectric multilayer film having a large reflectance at a predetermined wavelength. Etc. can be used.
  • the disk used in the present embodiment described later is a substrate having a ⁇ 13 Omm polycarbonate signal recording track, and ZnS—Si 2 O 3 is formed on the substrate as a first dielectric layer.
  • the mixed film was formed by sputtering at a thickness of 1300A.
  • the recording layer composition of a disk used in Embodiment 1, the second embodiment described later Ge S b Te " also, the recording layer composition of the disk used in the embodiment 3 ⁇ 18 G e 21 S b 26 Te 53 and then, 250A recording layer, Z n S- S i 0 2 mixed film was a thickness 20 OA formed as a second ⁇ layer.
  • the reflective layer was formed film by 0.99 OA sputtering a 1 film. Then, a protective layer of polycarbonate was provided thereon.
  • the optical disc 61 is attached to a spindle motor 62 and is rotatable.
  • the optical head 63 uses a semiconductor laser as a light source, and forms a laser spot on an optical disk by a collimator lens, an objective lens, and the like.
  • the semiconductor laser is driven by a laser drive circuit 64.
  • the input signal is waveform-corrected by a waveform correction circuit 65, and then the laser drive circuit 6 Entered in 4.
  • FIG. 4 shows a specific shape of the recording pulse train used in the embodiment.
  • recording pulse trains A to D in FIG. 4 show typical recording pulse train patterns in the case of recording a 6T mark in mark length modulation recording.
  • the first power of the laser beam is the recording power
  • the second power is the bias power
  • the cooling power and the minimum of the mark rear end correction pulse train as the cooling pulse are all used.
  • the following shows the results of using power as the playback power. It is preferable that the first power be the recording power, the second power be the bias power, and the minimum power be the reproduction power, because the configuration of the waveform correction circuit can be particularly simplified.
  • the power of the light is not limited to this, the first power is equal to or higher than the recording power, the second power is at least lower than the first power, and the minimum power is the second power or bias power.
  • the level is lower and the power is lower than any of the above, it can be set freely.
  • a recording pulse train A is composed of a starting pulse composed of 15 T of the first power of the laser beam and a first pulse and a second power of 0.5 T in a cycle of 0.5 T in order to form a recording mark. It is a recording pulse train composed of switched pulses.
  • the T here is a word of mouth.
  • the recording pulse train B is composed of a start pulse composed of the first power of the laser beam, 1.OT, and the first power and the second power, which are exchanged at a period of 0.5 T.
  • This is a recording pulse train composed of alternately switched pulses and a terminal pulse having a first power of 1.0 T.
  • the recording pulse train C has the same pulse configuration as the recording pulse train B, and the positions of the start pulse and the end pulse of the recording pulse train change depending on the mark length to be recorded and the interval between preceding and following marks.
  • the recording pulse train D is a recording pulse train composed of pulses in which the first power and the second power of the laser light are alternately switched at a 0.5 T period in order to form a recording mark.
  • the pulse widths of the recording pulse train (the starting pulse width, the ending pulse width, the pulse width between the starting and ending pulses, the pulse width of the recording pulse train in the case of the recording pulse train D, etc.) applicable to the present invention are shown in FIG. Of course, it is not limited to those that can be set freely.
  • FIG. 5 shows a specific shape of a recording waveform employed when a cooling pulse is added in inter-mark modulation recording in the present embodiment.
  • Input waveform A is an example of a (2, 7) modulation method.
  • the mark width in this case is 0.5 T.
  • a case is shown in which the mark interval is 2.0, 3.5 T, 1.5 mm.
  • the recording waveform ⁇ is for recording the input waveform ⁇ , and the recording pulse width is 0.25 T.
  • the recording waveform F is for recording the input waveform A, in which the cooling power level was irradiated immediately after the recording power irradiation.
  • the recording pulse width was 0.25 T
  • the cooling pulse irradiation time was 0.25 T.
  • Recorded waveform G is for recording input waveform A. Irradiation at the power level is performed, and then irradiation at the cooling power level.
  • the recording pulse width is 0.25T
  • the cooling power irradiation time is 0.25
  • the cooling power start time is 0.25T.
  • FIG. 1 shows a specific shape of a recording waveform used when a cooling pulse is added in mark length modulation recording in the present embodiment.
  • FIG. 1 shows a case where the recording pulse train A of FIG. 4 is used.
  • An input waveform B is an example of an input waveform of an EFM (EightotFourneteModulation) signal.
  • EFM modulation modulates data using a combination of signals of nine different lengths between 3T and 11T, where T is a word.
  • the recording waveform H is for recording the input waveform B, with no cooling pulse added.
  • the recording waveform I is a recording waveform to which a cooling pulse is added when recording the input waveform B. Regardless of the immediately preceding recording mark length, the cooling power irradiation time is fixed at 0.5T and the cooling power start time is fixed at 0. Is added.
  • Recording waveform J is a recording waveform to which a cooling pulse is added when recording input waveform B.
  • the cooling power irradiation time is 0.5T and the cooling power start time is 0.25 ° regardless of the immediately preceding recording mark length. It is added by making it constant.
  • the evaluation conditions for the optical disk were as follows: the wavelength of the laser beam was 680 nm, and the recording Set the clock T so that the NA of the objective lens of the optical head used for production is 0.55, and (2, 7) the minimum mark pitch is 2.1 ⁇ , and record 100 times with one beam bar light Then, the reproduced signal was differentiated to perform peak detection, and the jitter value: osum / Tw (%) of the detected signal was measured.
  • is the standard deviation of the jitter
  • Tw is the window width of the detection system.
  • the linear velocity is 6. OmZs.
  • signal recording is performed by writing a single frequency with a mark pitch of 2. ⁇ and overwriting the signal with the recording power at which the CZN saturates and the signal with a mark bit of 5.6 ⁇ .
  • the median power with the power margin where the erasure rate exceeds 120 dB was set.
  • the recording waveform and jitter used in this embodiment are shown in (Table 1) and (Table 2), respectively. ⁇ table 1 ⁇
  • Recorded waveform 1-1 in Table 1 is the case where no cooling pulse is added as in recorded waveform E in Fig.5.
  • Recording waveforms 1 and 2 show a case where a cooling pulse is added immediately after the irradiation of the laser beam at the recording power, as in recording waveform F in FIG. However, the cooling pulse irradiation time at that time is 0.25 T.
  • the recorded waveforms 1 and 3 correspond to the recorded waveform G in FIG. In this case, the irradiation with the bias power is performed after the irradiation with the recording power, and then the irradiation with the cooling power is performed. However, the cooling power irradiation time at that time was 0.25 T, and the cooling power start time was delayed 0.20 T after the end of the irradiation with the recording power.
  • the case of the reproduction power is taken up as an example of the cooling power, but similar results were obtained when the cooling power was between the bias power and the laser off level.
  • the evaluation conditions were as follows: the disk rotation speed was constant at 150 rpm, and the (2, 7) modulation signal was changed by changing the clock T so that the shortest mark pitch was always 2.1 m, and 1 beam overwriting was performed.
  • the jitter a sum / Tw (%) was measured at the positions of radii of 2330, 37, 43, 50, and 57 mm.
  • is the standard deviation of the jitter
  • w is the window width of the detection system.
  • each linear velocity at this radius The degrees are about 3.6, 4.7, 5.8, 6.8, 7.9, 9. OmZs.
  • the disk and other measurement conditions are the same as in the first embodiment.
  • Recorded waveform 2-1 in (Table 3) is a case where no cooling pulse is added as in recorded waveform E in Fig. 5.
  • Recording waveform 2-2 is a case where laser light irradiation at the cooling power is performed after laser light irradiation at the recording power as shown in recording waveform F in FIG. However, the cooling power irradiation time at that time is 0.30T.
  • recording waveform 2-3 is a case where irradiation with bias power is performed after irradiation with recording power, followed by irradiation with cooling power, as shown in recording waveform G in FIG. However, the cooling power irradiation time at that time is 0.30, and the cooling power start time is 0.10T after the end of the recording power irradiation. You.
  • the recording waveform 2-2 is applied to the inner circumference of the disk
  • the recording waveform 2-3 is applied to the outer circumference of the disk, for example, so that the cooling is performed at the inner circumference of the disk.
  • the jitter can be reduced and the recording can be performed over the entire circumference of the disk by increasing the cooling power start time in the inner peripheral portion of the disk.
  • the results are for the case where the cooling power is the reproduction power, as in the first embodiment, but similar results can be obtained when the cooling power is between the bias power and the laser off level. Of course.
  • the evaluation conditions of the optical disk were as follows: the wavelength of the laser beam was 680 nm, the NA of the objective lens of the optical head used for recording and playback of the recording device was 0.55, and the EF was 8-14 modulated. Clock T is set so that the shortest mark length of the input signal is 0.90 / m. From 3 to 11 when recording 100 times with one beam overwrite The jitter value at the zero-crossing point of the reproduced signal was measured as: osumZTw (%). here.
  • Tw is the window width of the detection system.
  • the linear velocity is 4. OmZs.
  • the recording power when recording a single frequency with a recording mark length of 0.9 wm, the recording power is the recording power at which the C / N is saturated.
  • the median power of the power margin at which the erasure rate exceeds 120 dB was set, and the bias power was set as the bias power.
  • the recording waveform and jitter used in this embodiment are shown in (Table 5) and (Table 6), respectively.
  • Table 5 shows the cooling power irradiation time and cooling power start time when recording marks of each mark length from 3 to 11 T for each of the three types of recording waveforms.
  • the recording pulse train A shown in FIG. 4 is used.
  • Recorded waveform 3-1 in (Table 5) is the case where no cooling pulse is added as in the recorded waveform H in Fig. 1.
  • Recording waveform 3-2 is a case where laser light irradiation with cooling power is performed immediately after the recording pulse train as shown in recording waveform I in FIG. However, the cooling power irradiation time at that time is constant at 0.5 T regardless of the mark length from 3 to 11 T, and the cooling power start time is 0.
  • Recording waveform 3-3 is the case where irradiation with bias power is performed immediately after the recording pulse train and then irradiation with cooling power is performed as in recording waveform J in FIG. However, the cooling power irradiation time and cooling power start time at that time are 0.5 and 0.2 T, respectively, regardless of the mark length.
  • Table 6 shows that in the case of the recording waveform 3-1, the jitter is worse than that of the other recording waveforms. The jitter was improved when the recording waveform 3-1 was used as compared with the recording waveform 3-1. On the other hand, in the case of the recording waveform 3-3 in which the cooling power start time is delayed according to the present invention, the symmetry at the front end and the rear end of the mark is better controlled, and therefore, compared to other recording waveforms. Jitter is small.
  • recording with low jitter can be performed by irradiating the laser beam at the bias power between the recording laser beam irradiation and the cooling power laser beam irradiation.
  • the cooling power is the reproduction light power. Similar results were obtained when the cooling power was 0 to less than the bias power and the power was lower than the bias power.
  • the case where the second pulse of the recording pulse train is the bias pulse has been described.
  • the second power was not less than 0 and not more than the recording power.
  • the case of the recording pulse train A in FIG. 4 is shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • the recording waveform and jitter are shown in (Table 7) and (Table 8), respectively.
  • the measurement conditions are the same as in the third embodiment.
  • Table 7 the cooling power irradiation time and the cooling power start time when recording marks of each mark length from 3T to 11T are shown for each of the four types of recording waveforms.
  • the recording pulse train ⁇ of FIG. 4 is used.
  • Recorded waveform 411 in Table 7 is the case where no cooling pulse is added as in the recorded waveform H in FIG.
  • the recording waveform 412 is a case where the cooling power irradiation time is fixed at 0.10 T regardless of the mark length as in the recording waveform I of FIG. 1, and the cooling power irradiation is started immediately after the recording pulse train.
  • the recording waveforms 413 are the cases where irradiation with cooling power is performed immediately after the recording pulse train as in the recording waveform I of FIG. However, the cooling power irradiation time at that time is set to 0.50 T longer than the recording waveform 412.
  • the recording waveform 4-4 is obtained by irradiating with cooling power immediately after the recording pulse train, as shown in recording waveform I in Fig. 1. The cooling power irradiation time is shorter when the mark length is shorter. How long ⁇
  • the recording waveform 414 in which the shorter the recording mark length according to the present invention, the longer the irradiation time of the cooling bar, the more the symmetry at the front end and the rear end of the mark becomes greater for each mark length. Due to good control, the jitter value is greatly improved compared to other recording waveforms.
  • the case where the second power of the recording pulse train is the bias power is shown, but similar results were obtained when the second power was 0 or more and the recording power or less.
  • the case of the recording pulse train A in FIG. 4 is shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • Table 9 shows the cooling page irradiation time and the cooling paper start time when recording marks of each mark length from 3 T to 11 T for each of the three types of recording waveforms.
  • the recording pulse train A shown in FIG. 4 is used.
  • Recorded waveform 5-1 in (Table 9) is the case where no cooling pulse is added unlike the recorded waveform H in Fig. 1.
  • the recording waveform 5-2 changes the irradiation of the cooling power immediately after the irradiation of the recording pulse train only when the mark length is 3 to 6 T, as shown in the recording waveform I in Fig. 1.
  • the power irradiation time is longer when the recording mark length is shorter.
  • Recording waveform 5-3 is the case where the cooling power irradiation time is long only when the mark length is 3 T, and the cooling pulse is added immediately after the irradiation of the recording pulse train.
  • the recording waveform 5-3 added with a long cooling power irradiation time only when the recording mark length is 3 T according to the present invention, although the jitter is larger than the recording waveform 5-2, the recording waveform 5-1 The jitter is improved as compared with.
  • the case where the second power of the recording pulse train is the bias power is shown, but similar results were obtained when the second power was 0 or more and the recording power or less.
  • the case of the recording pulse train A in FIG. 4 is shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B and CD in FIG.
  • Table 11 the cooling pulse irradiation time and the cooling power start time when recording marks of each mark length from 3 to 11 T are shown for each of the four types of recording waveforms.
  • the recording pulse train A shown in FIG. 4 is used.
  • the recording waveform 6-1 in (Table 11) is the case where no cooling pulse is added after the irradiation of the recording pulse train like the recording waveform H in Fig. 1.
  • Recording waveform 6-2 is a case where cooling power irradiation is performed immediately after recording pulse train irradiation as in recording waveform I in FIG. However, the cooling power irradiation time is 0.50 T regardless of the mark length to be recorded.
  • the recording waveform 6_3 is a case where the irradiation is performed at the via space after the irradiation of the recording panel array as in the recording waveform J of FIG. 1, and then the irradiation is performed at the cooling power.
  • the cooling power irradiation time is 0.50
  • the cooling power start time is 0.4 T
  • the cooling power irradiation time is constant regardless of the mark length to be recorded.
  • the cooling power irradiation time is 0.50 T, which is constant regardless of the mark length. This is the case when it is advanced.
  • the jitter is worse for the recording waveform 6-1 than for the other recording waveforms.
  • the recording waveform 6-2 and the recording waveform 6-3 are used, the jitter is improved compared to the recording waveform 6-1.
  • the recording waveform 6-4 in which the shorter the recording mark length according to the present invention, the earlier the cooling pulse start time, the jitter becomes smaller as compared with other recording waveforms.
  • the cooling power is the reproduction light power.
  • the cooling power was from 0 to a power smaller than the bias power and the cooling power was 0.
  • the case where the second power of the recording pulse train is the bias power is shown, but similar results were obtained when the second power was 0 or more and the recording power or less.
  • the case of the recording pulse train A in FIG. 4 was shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • Table 13 shows the cooling bar irradiation time and the cooling paper start time when recording marks of each mark length from 3 to 11 T for each of the three types of recording waveforms.
  • the recording pulse train A of FIG. 4 was used.
  • Recorded waveform 7-1 in (Table 13) is the case where no cooling pulse is added as in the recorded waveform H in Fig. 1.
  • Recording waveform 7-2 is a case where irradiation with a bias power is performed after irradiation with a recording pulse train, followed by irradiation with a cooling power as shown in recording waveform J in Fig. 1, and the mark length to be recorded is 3T to 6T.
  • T the shorter the mark length, the earlier the cooling pulse start time.
  • the cooling power irradiation time is 0.50 It is constant regardless of T and mark length
  • the cooling pulse is recorded immediately after the irradiation of the pulse train only when recording the 3 T mark, and the cooling power start time is set to 0 when recording the mark of 4 T to 11 mm. This is the case where it is constant at 20 °.
  • the recording waveform 7-1 has worse jitter than the other recording waveforms.
  • the recording waveform 7-2 in which the cooling power start time is shortened as the mark length becomes shorter has improved ginta compared to the recording waveform 7-1.
  • the jitter is large as compared with the recording waveform 712 but the recording waveform 7-1. And jitter have been improved.
  • the case where the second pulse of the recording pulse train is the bias pulse has been described.
  • the second power was not less than 0 and not more than the recording power.
  • the case of the recording pulse train ⁇ in FIG. 4 was shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • the recorded waveform and jitter are shown in (Table 15) and (Table 16), respectively.
  • the measurement conditions are the same as in the third embodiment.
  • Recorded waveform 8-1 in (Table 15) is the case where no cooling pulse is added as in the recorded waveform H in Fig. 1.
  • irradiation with the bias power after recording pulse train irradiation is performed only when the mark length to be recorded is 3 T to 6 T as shown in the recording waveform J in Fig. 1, and then irradiation with cooling power. This is the case.
  • a cooling pulse with a cooling power irradiation time of 0.43 and a cooling pulse start time of 0.08 mm is added.
  • a cooling pulse with a constant cooling power irradiation time of 0.43 mm and a constant cooling power start time of 0.08 was added only when the mark length to be recorded was 3 mm. Is the case.
  • the cooling power is the reproduction light power.
  • the cooling power was from 0 to less than the bias power.
  • the case where the second pulse of the recording pulse train is the bias pulse has been described.
  • the second power was not less than 0 and not more than the recording power.
  • the case of the recording pulse train A in FIG. 4 is shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • a cooling pulse is added only when a mark having a length equal to or less than a predetermined mark length is recorded on the periphery of the disc when the optical disc is rotated at a constant angular velocity.
  • the evaluation conditions were as follows: The disk rotation speed was 1000 rpm, the EFM signal was recorded 100 times with one beam overwrite, changing the clock T so that the shortest mark length was always 0.90 m.
  • is the standard deviation of the jitter
  • Tw is the window width of the detection system.
  • the linear velocities at this radius are about 2.4, 3.1, 3.9, 4.5, 5.2, and 6. OmZs.
  • the other measurement conditions are the same as in the third embodiment.
  • the recording waveform and jitter are shown in (Table 17) and (Table 18), respectively.
  • Table 17 shows the cooling power irradiation time and the cooling power start time when recording marks of each mark length from 3 to 11 T for each of the three types of recording waveforms.
  • the recording pulse train A shown in FIG. 4 is used.
  • the recording waveform 9-1 in (Table 17) is the case where no cooling pulse is added as in the recording waveform H in Fig. 1. 17
  • Table 18 shows that in the case of the recording waveform 911, the jitter is worse especially in the inner circumference than in the other recording waveforms.
  • the recording waveform 9-1 with a cooling pulse applied thereto has improved jitter at the periphery of the disk as compared with the recording waveform 9-1.
  • the recording waveform 9-3 to which the cooling pulse is applied only when recording the 3T mark the jitter is improved in the inner peripheral portion of the disk as compared with the recording waveform 911. Therefore, for example, the recording waveform 9-1 or 9-3 may be used for the outer circumference of the disk with a radius of up to 37 mm or 43 mm, and the recording waveform 9-1 may be used for the outer circumference. .
  • the recording waveform 9-1 or 9-1-3 on the inner periphery of the disk and the recording waveform 9-1 without adding the cooling pulse on the outer periphery, good jitter can be obtained at any radius of the disk. Is obtained.
  • the case where the second power of the recording pulse train is the bias power is shown, but similar results were obtained when the second power was 0 or more and the recording power or less.
  • the case of the recording pulse train A in FIG. 4 is shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • Table 19 the cooling pulse irradiation time and the cooling pulse start time when recording marks of each mark length from 3 to 11 T are shown for each of three types of recording waveforms.
  • the recording pulse train A shown in FIG. 4 is used.
  • Recorded waveform 10-1 in (Table 19) is the case where the cooling pulse is not applied unlike the recorded waveform H in FIG.
  • the recording waveform 10-2 is a case where irradiation with cooling power is performed immediately after the irradiation of the recording pulse train as shown in recording waveform I in FIG.
  • the cooling bar irradiation time differs depending on the mark length to be recorded. The shorter the mark length, the longer the cooling power irradiation time.
  • the recording waveform 10-3 is a case where irradiation with a bias power is performed after irradiation with a recording pulse train, and then irradiation with a cooling power is performed as shown in a recording waveform J in FIG.
  • the cooling power irradiation time is 0.50 T
  • the cooling power start time varies depending on the mark length to be recorded. The shorter the mark length, the earlier the start time.
  • the recording waveform 10-2 or the recording waveform 10-3 at the inner peripheral portion of the disk and by using the recording waveform 10-1 at the outer peripheral portion of the disk to simplify the recording circuit.
  • Good jitter can be obtained at any radius of the disk.
  • the shorter the mark length the longer the cooling power irradiation time or the earlier the cooling power start time in the inner circumference of the disc, so that the radius of the disc can be increased at any radius. This also enables recording with low jitter.
  • the same result was obtained when the power cooling power shown in the case where the cooling power was the reproduction light power was 0 to a value smaller than the bias power and the power was lower.
  • the second power of the recording pulse train is the bias power
  • similar results were obtained when the second power was not less than 0 and not more than the recording power.
  • the case of the recording pulse train A in FIG. 4 is shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • the recording pulse train A shown in FIG. 4 is used. Immediately after the recording pulse train, various trailing edge correction pulse trains were added. The measurement conditions are the same as in the third embodiment.
  • FIG. 6 shows a typical recording waveform pattern when a 4i6T mark is recorded.
  • the recording waveform 1 1 1 1 is a case where the mark rear end correction pulse train is not added.
  • the recording waveforms 111 and 122 are obtained by irradiating a laser beam with a reproducing light power for 0.5 T immediately after a recording pulse train and then irradiating a laser beam with a bias power.
  • the recording waveform 1 1-1 3 is irradiated with laser light for 0.25 T immediately after the recording pulse train with the power reduced to the intermediate level between the bias power and the reproducing light power, and immediately thereafter, the power is reduced to the reproducing light power.
  • a pulse train for correcting the trailing edge of the mark, which is to be irradiated with laser light for 0.25 times, is added, and then the laser light is irradiated with bias power.
  • the recording waveform 11-4 is irradiated with laser light for a period of 0.15 T at a power of 2 mW higher than the bias power immediately after the recording pulse train, and immediately thereafter, reproduced light pulse for a period of 0.35 T.
  • the recording waveform 11-5 is irradiated with the laser light for 0.2T with the reproduction light power immediately after the recording pulse train, and then irradiated with the bias power for 0.1T for the period immediately after.
  • the recording waveform 11-16 is obtained by continuously decreasing the power from the bias power to the reproducing light power over a period of 0.2T immediately after the recording pulse train, and irradiating for 0.3T with the reproducing light power. , A mark end correction pulse train was added, and then laser light irradiation was performed with bias power.
  • the recording waveform 11-17 is obtained by continuously decreasing the power from the bias power to the reproducing light power over a period of 0.25T immediately after the recording pulse train, and then over a period of 0.25T0, A pulse train for correcting the trailing edge of the mark, which continuously increases the power from the power to the bias power, was added, and then laser light irradiation was performed with the bias power.
  • Table 21 shows the recorded waveforms and the jitter values after overwriting 100 times.
  • the recording waveforms 11 13, 11-4, 11-5, 11-6, and 11-17 to which the mark trailing edge correction pulse train is added have the mark leading edge and trailing edge Since the symmetry in the section is better controlled, the jitter is further improved compared to the recording waveforms 14 and 12.
  • the cooling power is the reproduction light power
  • similar results were obtained when the cooling power was set to a power smaller than 0 and the bias power.
  • the case where the second power of the recording pulse train is the bias power has been described. However, similar results were obtained when the second power was not less than 0 and less than the recording power.
  • the recording pulse train A shown in FIG. 4 is used.
  • the measurement conditions are Form 11 Same as 1.
  • FIG. 7 shows a typical recording waveform pattern for recording a 6T mark.
  • the recording waveform 12-1 is the same recording waveform as the recording waveform 11-13 of the embodiment 11.
  • the recording waveform 12-2 obtained by irradiating the laser beam with the bias pulse between the recording pulse train and the mark rear end correction pulse train of the present invention has a laser beam irradiation with the bias power of 0 after the recording pulse train. Performed for 2 T, then reduced the power to the middle of the bias power and playback power, irradiated with laser light for 0.25 T, and immediately thereafter reduced the power to the playback power to 0.25 Laser light irradiation was performed for a period of T, and thereafter laser light irradiation was performed with bias power.
  • the recording waveform 12-2-2 obtained by irradiating laser light with bias power between the recording pulse train and the mark rear end correction pulse train has the mark Since the symmetry between the front end and the rear end is improved, the jitter is further improved compared to the recorded waveform 12-1.
  • the case where the power of the mark rear end correction pulse train is changed in two stages has been described. However, when the power is changed to three or more stages, or when the laser beam is continuously applied immediately after the recording pulse train. Of course, a similar result can be obtained in the case of a mark rear end correction pulse train having a period of changing to a power smaller than the bias power.
  • the case of the recording pulse train A in FIG. 4 was shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG. -In this embodiment, the case where the cooling power is the reproduction light power has been described. However, similar results were obtained when the cooling power was set to a value smaller than the bias power from 0.
  • the case where the second power of the recording pulse train is the bias power has been described, but similar results were obtained when the second power was 0 or more and the recording power or less.
  • FIG. 8 shows a typical recording waveform pattern when a 6T mark is recorded.
  • the measurement conditions are the same as those in Embodiment 11.
  • the recording pulse train of the recording waveforms 13-1, 3 and 2 is the recording pulse train B of FIG. 4 described above.
  • the recording waveform 13-1 is a case where the trailing edge correction pulse train is not added.
  • the recording waveform 13-2 is obtained by irradiating the laser beam with the reproduction light power for 0.5 T immediately after the recording pulse train, and then irradiating the laser beam with the bias power.
  • the power was reduced to the intermediate level between the bias level and the reproducing light power immediately after the recording pulse train, and the laser light was irradiated for 0.25 T, and immediately thereafter, the power was reduced to the reproducing light power.
  • the laser beam was irradiated for a period of 0.25 T, a pulse train for correcting the trailing edge of the mark was added, and then the laser light was irradiated with bias power.
  • the recording waveforms 13-4, 5, and 6 are the recording pulse train C of FIG. 4 described above, and the recording waveforms 13-4 are the case where the trailing edge correction pulse train is not added.
  • the recording waveform 13-5 is obtained by irradiating the laser light with the reproduction light power for 0.5 T immediately after the recording pulse train, and then irradiating the laser light with the bias power.
  • the recording waveform 13-6 is a case where the same trailing edge correction pulse train as that of the recording waveform 13-3 is added immediately after the recording pulse train, and then the laser beam is irradiated with the bias power.
  • the recording waveforms 13-7, 8 and 9 are the recording pulse train D of FIG. 4 described above, and the recording waveform 13-7 is a case where the trailing edge correction pulse train is not added.
  • the recording waveform 13-8 is obtained by irradiating the laser beam with the reproduction light power for 0.5 T immediately after the recording pulse train, and then irradiating the laser beam with the bias power.
  • Recording waveform 13-9 is the same mark trailing edge as recording waveform 13-3 immediately after the recording pulse train. In this case, a correction pulse train is added, and then laser light irradiation is performed with bias power.
  • the recording waveform 13-3 added with the mark rear end correction pulse train, Has less jitter compared to the recorded waveform 13-2.
  • the addition of the mark rear end correction pulse train improves the symmetry at the front end and the rear end of the mark, thereby improving the jitter.
  • the addition of the mark rear end correction pulse train improves the symmetry at the front and rear ends of the mark, thus improving the jitter. .
  • the case where the second power of the recording pulse train is the bias power has been described, but similar results were obtained when the second power was 0 or more and the recording power or less.
  • the measurement conditions are the same as those in Embodiment 11.
  • the recording pulse train A shown in FIG. 4 is used.
  • 55 Various recording waveforms used in the present embodiment will be described using (Table 24), [Table 24].
  • the recording waveform 1411 is irradiated with laser light for a period of 0.25 T immediately after the recording pulse train, with the power reduced to an intermediate level between the bias level and the reproducing light power. Immediately after the power was reduced to the reproduction light power, the laser light was irradiated for 0.25 T, and then the laser light was irradiated with the bias power.
  • the recording waveform 141-2 has the same mark trailing edge correction pulse train as the recording waveform 141-1, and the start time of the mark trailing edge correction pulse train is 11 T, the shorter the mark length, the faster the start time by 0.1 T.
  • To record a 3 ⁇ mark add a trailing edge correction pulse train immediately after the recording pulse train, and then apply a bias. Laser light irradiation was performed with power.
  • the recording waveform 14-2 in which the start time of the mark trailing end correction pulse train is changed by the mark length is marked by the entire mark length compared to the recording waveform 14-1.
  • the symmetry at the front end and the rear end is improved, and the center is further improved.
  • the case where the second power of the recording pulse train is the bias power is shown, but similar results were obtained when the second power was 0 or more and the recording power or less.
  • the case of the recording pulse train A in FIG. 4 is shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • a recording pulse train (recording pulse train A in FIG. 4) is used.
  • the measurement conditions are the same as those in Embodiment 11.
  • the recording waveform 15-1 in FIG. 9 shows a typical recording waveform pattern when recording a 6T mark.
  • the recording waveform 15-2 shows the recording waveform pattern only for 3 to 5T, 10 and 11T among the mark lengths from 3 to 11T.
  • the recording waveform 15-1 is the same as the recording waveform 11-3 of the embodiment 11.
  • the recording waveform 15-2 is obtained by changing the power immediately after the recording pulse train so as to decrease as the recording mark length decreases, as in the present invention. Specifically, when recording a 3T mark, the power of the reproducing light is higher than that of the reproducing light for the 4T mark, which is 1/8 of the power between the bias power and the reproducing light pulse. When the laser beam is irradiated with the power for 0.25 T for a period of 0.25 T, the power is reduced to the reproduction light power immediately after that, and the laser beam is irradiated for 0.25 T. At this time, a mark trailing edge correction pulse train was added, and then laser light irradiation was performed with bias power.
  • the case where the power of the mark rear end correction pulse train is changed in two stages has been described. However, when the power is changed to three or more stages, or when the laser beam is continuously applied immediately after the recording pulse train, Of course, a similar result can be obtained also in the case of a mark trailing end correction pulse train having a period of changing to a power smaller than the bias power. Further, in the present embodiment, the same result was obtained when the cooling power was 0 to a power smaller than the bias power, which was shown when the cooling power was the reproduction light power. Further, in the present embodiment, the case where the second power of the recording pulse train is the bias power is shown, but similar results were obtained when the second power was 0 or more and the recording power or less.
  • the case of the recording pulse train A in FIG. 4 is shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • the optical disk is rotated at a constant angular velocity and the start time of the mark rear end correction pulse train is changed according to the radial position of the disk will be described.
  • the clock T was changed so that the disk rotation speed was 1000 rpm and the shortest mark length of the EFM signal was always 0.9 Oum according to the radius.
  • the same recording pulse train (recording pulse train A in FIG. 4) as in Embodiment 11 is used.
  • the recording waveform 16-1 shows the case where the trailing edge correction pulse train is not added.
  • the recording waveform 16-2 is the same as the recording waveform 11-13 of the embodiment 11.
  • the recording waveform 16-3 also has the same mark trailing edge correction pulse train as the recording waveform 111-3 of Embodiment 11, but the start time of the mark trailing edge correction pulse train as in the present invention. Is that the radial position of the disk becomes shorter toward the inner circumference.
  • the mark trailing edge correction pulse train is added immediately after the recording pulse train until the radius is 23 to 34 mm, the mark trailing edge correction pulse train start time is delayed by 0.2 for 35 to 46 mm, and 47 to 5 The start time of the mark rear end correction pulse train was delayed by 0.5 T up to 7 mm.
  • Table 28 shows the recording waveforms and the jitter values after 100 times overwriting. The measurement was performed at each radius of 26 mm on the inner circumference, 38 mm on the middle circumference, and 5 Omm on the outer circumference. The linear velocities at this radius are about 2.7, 4.0 and 5.2m / s, respectively. Other measurement conditions were the same as those in Embodiment 11. [Table 28]
  • the jitter is further improved because the heat control is further finely performed in the middle and outer peripheral portions. I have.
  • the case where the power of the mark rear end correction pulse train is changed in two stages has been described.
  • the power is changed to three or more stages, or when the laser beam is continuously applied immediately after the recording pulse train.
  • a similar result can be obtained also in the case of a mark trailing end correction pulse train having a period of changing to a power smaller than the bias power.
  • the same result was obtained when the cooling power was 0 to a power smaller than the bias power, which was shown when the cooling power was the reproduction light power.
  • the case where the second power of the recording pulse train is the bias power is shown, but similar results were obtained when the second power was 0 or more and the recording power or less.
  • the case of the recording pulse train A in FIG. 4 is shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • the same recording pulse train (recording pulse train A in FIG. 4) as in Embodiment 11 is used.
  • the measurement conditions are the same as those in Embodiment 16.
  • FIG. 10 shows a typical recording pulse train pattern for recording a 6T mark.
  • the recording waveform 17-2 shows the recording waveform in the disk, at the middle, and at the outer periphery.
  • the recording waveform 17-1 has the same shape of the trailing edge correction pulse train regardless of the position of the disc in the radial direction, and the recording waveform is the same as the recording waveform 11-13 of the embodiment 11. is there.
  • the recording waveform 17-2 is obtained by changing the power of the mark rear end correction pulse train immediately after the recording pulse train so that the power becomes smaller as the position in the disk radial direction becomes closer to the inner circumference side.
  • the power immediately after the recording pulse train is 1 mW higher than the reproduction light power up to a radius of 23 to 34 mm, and the power between the bias power and the reproduction light power up to 35 to 46 mm.
  • the power is set to a power of 1 mW lower than the bias power for 47 to 57 mm, and the laser beam is irradiated with the power for 0.25 T, and immediately after that, the power is reduced to the reproduction light power to 0.25 T.
  • a pulse train for correcting the trailing edge of the mark, which is to be irradiated with laser light during period T, is added, and then laser light irradiation is performed with bias power.
  • the recording waveform 17-2 in which the power of the mark trailing edge correction pulse train immediately after the recording pulse train is reduced toward the inner circumference side of the disc as in the present invention indicates that the mark front end portion is located at the inner and outer circumferences. Since the symmetry at the rear end is good, the jitter is improved compared to the recording waveform 17-1.
  • the case where the power of the mark rear end correction pulse train is changed in two stages has been described. However, when the power is changed to three or more stages, or when the laser beam is continuously applied immediately after the recording pulse train. Of course, a similar result can be obtained in the case of a mark rear end correction pulse train having a period of changing to a power smaller than the bias power. Further, in the present embodiment, similar results were obtained when the cooling power was from 0 to a power smaller than the bias power, which was shown when the cooling power was the reproduction light power.
  • the case where the second power of the recording pulse train is the bias power is shown, but the same result is obtained when the second power is 0 or more and the recording power or less. was gotten.
  • the case of the recording pulse train A in FIG. 4 is shown as the recording pulse train, but similar results were obtained in the case of the recording pulse trains B, C, and D in FIG.
  • data 1 is a clock unit length, and is PWM data having a Hi period of two or more clock periods and an L0 period (FIG. 12a).
  • the i period is recorded on the disc in correspondence with the mark, and the L period is recorded in accordance with the space.
  • the width of the start pulse 3 and the end pulse 7 is one cycle of the clock, and the width of one burst pulse 27 is one-half cycle of the clock.
  • the cooling pulse width was set to one-half cycle of the clock, and the time from the end pulse of the recording pulse train to the start of laser beam irradiation with cooling power was set to one-half cycle of the clock.
  • the mark Z space length detection circuit 8 detects a mark length where a peak shift occurs due to a space length in which thermal interference between marks occurs in high-density recording and a frequency characteristic of a reproducing system.
  • the start pulse generating circuit 2 generates a start pulse 3 having a one-cycle width of the clock at the start of the Hi period of data 1 (FIG. 12b).
  • the burst gate generation circuit 4 generates a burst gate signal 5 at the middle position of the mark with a length obtained by subtracting three clocks from the mark length. However, the mark length is 3 When the lock is less than the lock, the burst gate signal is not generated (Fig. 12c).
  • the terminal pulse generating circuit 6 generates a terminal pulse 7 having one cycle width of the clock at the terminal part of the Hi period of data 1 (FIG. 12E).
  • the mark space length detection circuit 8 detects data of 2 clock widths, that is, 2T mark and 2T space, and when the 2T mark comes, 2T clock of 2T width is included to include the start pulse end pulse of 2T mark.
  • a mark signal 9 is generated (Fig. 12i) and a 2 ⁇ space arrives, a 2 ⁇ ⁇ ⁇ ⁇ space signal 10 with a 4-clock width is generated so as to include the start pulse at both ends of the 2 ⁇ space (Fig. 12 g)
  • the attributes of the start pulse 3 and the end pulse 7 are determined by the 2T mark signal 9 and the 2T space signal 10, and are output as the select signal 12.
  • a mark of 3T or more marks a space of 3T or more as nor ma 1
  • a mark of 3T or more marks 2 ⁇ s of a space of 2T a mark of 3T or more marks 2 ⁇ s of a space of 2T
  • a mark of 2T marks a space of 3T or more as 2Tm
  • a mark of 2T marks a space of 2T. It is classified into four types of attributes named 2 Ts—2 Tm (Fig. 12h).
  • the update is performed only when the start-end pulse 3 comes.
  • the previous value is retained and output as the hold start-end set value 39 (Fig. 12i). .
  • the start-end pulse 3 is delayed by the delay start-end pulse 18 after the delay time of the value based on the hold start-end setting value 39. And output (Fig. 12j).
  • the termination selector 20 selects one from a plurality of termination settings ⁇ Sl9 by the select signal 12, outputs the selected termination setting value 21, and outputs the termination sample / hold circuit 2.
  • the value is updated only when the end pulse 7 arrives. When the end pulse 7 does not come, the previous value is retained and output as the hold end set value 45 (Fig. 12k).
  • the termination pulse 7 is output as the delay termination pulse 24 after a delay time of a value based on the hold termination setting value 45 (FIG. 12-21).
  • the cooling pulse generation circuit 36 generates a cooling pulse for a half cycle of the clock at the rising timing of the delay end pulse (FIG. 12 ⁇ ).
  • the cooling pulse 41 output from the cooling pulse generating circuit 36 is delayed by a fixed amount, and the cooling pulse signal 42 is output.
  • the signal passes through an inverter 38 and is output as a delayed cooling pulse signal 43 in which Hi and Lo are inverted (FIG. 12p).
  • the OR gate 28 performs a logical OR of the delay start pulse 18, the burst pulse 27, and the delay end pulse 24 to generate a recording signal 29.
  • the laser diode 35 is biased by the reproducing light current source 32 so as to emit the reproducing light power of the phase change optical disk.
  • a bias level current source 31 and a recording level current source 30 are provided in parallel with the reproduction light current source 32, and the current of the recording level current source 30 is set by the switch 33, and the bias level current source 3 is set by the switch 34.
  • the driving current of the laser diode 35 can be switched between the recording level current, the bias level current, and the reproduction light level current.
  • the laser diode 35 can emit light while switching between the recording power, the bias power, and the cooling power.
  • an optical head containing a laser diode 35 marks and spaces are formed on a phase-change optical disk by a recording method to which a cooling pulse is added (FIG. 12q).
  • a cooling pulse 48 is output from the cooling pulse generating circuit 46 at the same timing as the rising of the terminal pulse output from the terminal pulse generating circuit 6 (FIG. 14f).
  • a cooling pulse with a constant delay is output (FIG. 14 ⁇ ).
  • the disk recording apparatus of the present embodiment adds the laser light irradiation with the cooling power to record the positions of the start end and the end of the mark, and the recording length.
  • the mark and the space corresponding to the data can be recorded by changing the space length before and after the mark length.
  • the mark / space length detection circuit has four patterns of the shortest inversion interval, 2T mark, 2T space, and mark and space of 2T or more.
  • the edge position accuracy of each mark can be further improved.
  • the optimal pulse width can be selected according to the force S with the start pulse and the end pulse being 1T width and the burst pulse being 0.5T width, the relative speed between the recording thin film or the recording medium and the optical spot, etc. It is.
  • the cooling pulse width is set to a fixed value of 0.5T, the total energy can be further reduced by changing the cooling pulse width according to the mark length or the mark interval.
  • the evaluation conditions of the optical disk were as follows: the wavelength of one laser beam was 680 nm, the NA of the objective lens of the optical head used for recording and playback of the recording device was 0.55, and the (1-7) RLL signal was the shortest mark.
  • the clock T was set so that the length was 0.60 ⁇ , and the jitter value at the zero-cross point of the reproduced signal from 2 T to 8 T during recording: asumZTw (%) was measured.
  • ⁇ sum is the standard deviation of the total jitter from 2 T to 8 T
  • Tw is the window width of the detection system.
  • the linear velocity is 4. Om / s.
  • the recording power is the recording power at which the C / N is saturated.
  • the median value of the power margin at which the erasure rate exceeded -20 dB was set as the bias power.
  • Judgment of the disc's cycle characteristics is based on the number of cycles at which the jitter value at the zero crossing point of the reproduced signal from 2 T to 8 signals: I decided.
  • FIG. 15 shows a typical recording waveform pattern when a 7T mark is recorded.
  • the recording pulse train B of Fig. 4 is used for the recording waveforms 18-1 to 3
  • the recording pulse train C of Fig. 4 is used for the recording waveforms 18-4 to 7.
  • the recording waveform 18-1 has a starting pulse width of 1.0 T, a ending pulse width of 1.0 mm, and a laser beam of 0.5 mm at the second power and 0.5 mm at the first power alternately between the starting and ending pulses. This is the case where a recording pulse pulse train for irradiating light is used and no cooling pulse is added.
  • a cooling pulse having a cooling power irradiation time of 0.5 mm was added to the recording waveform 18-1 immediately after the end pulse of the recording pulse train, regardless of the recording mark length. Is the case.
  • the recording waveform 18-3 is the same as the recording waveform 18-1 above, regardless of the recording mark length, the irradiation time at the cooling power is 0.5 mm, and the laser at the cooling power starts from the trailing edge of the end pulse of the recording pulse train. This is the case where a cooling pulse is added where the time until the start of light irradiation is constant at 0.5 mm.
  • the position of the start pulse and the end pulse of the recording pulse train changes depending on the mark length recorded in the recording waveform 18-1 and the mark interval before and after, and the cooling pulse is applied. If not.
  • the recording waveform 18-5 is the same as the recording waveform 18-4 except that the cooling pulse whose irradiation time at the cooling power is 0.5 mm immediately after the last pulse of the recording pulse train, regardless of the recording mark length. This is the case when it is added.
  • Recording waveform 18-6 is the same as recording waveform 18-4, regardless of the recording mark length, the irradiation time at the cooling pulse is 0.5 mm, and the recording pulse train cools from the rising edge of the last pulse. This is the case where a cooling pulse is added, where the time until the start of laser beam irradiation with power is constant at 1.5 T.
  • the recording waveform 18-7 is the same as the recording waveform 18-4, regardless of the recording mark length, the irradiation time at the cooling power is 0.5, and the irradiation at the cooling power starts with the sub-pulse (start pulse and This is the case where a cooling pulse was added, which was delayed 2.5 pulses from the rising edge of the last pulse of the last pulse. That is, the case where the cooling pulse irradiation start time is based on the mouthpiece.
  • the recording waveform 18-5 with a cooling pulse added thereto is provided.
  • the thermal damage was improved compared with the recording waveform 18-14 without the addition of the cooling pulse, so that the number of cycles satisfying the jitter ⁇ 13% was also good.
  • the mark shape can be controlled more than when no change is made. ing.
  • irradiation with bias power must be performed between the end pulse of the recording pulse train and laser light irradiation with cooling power, as in the recording waveforms 18-6 and 18-7 of the present invention.
  • the jitter value at 100 cycles and the number of cycles that satisfy the jitter ⁇ 13% are further improved, and the laser beam irradiation with cooling power is performed immediately after the recording pulse train. Values have been obtained.
  • the laser beam irradiation with the bias power is inserted between the end of the recording pulse train and the laser beam irradiation with the cooling power. Good recording is possible even when jitter is performed at zero cycle and when multiple cycles are performed.
  • the cooling power is the reproduction light power. Similar results were obtained when the cooling power was from 0 to less than the bias power.
  • the case where the second power of the recording pulse train is the bias power is shown, but similar results were obtained when the second power was 0 or more and the recording power or less.
  • INDUSTRIAL APPLICABILITY The recording method of the present invention suppresses mark length fluctuation due to thermal interference between recording marks and improves the symmetry between the front end and the rear end of the recording mark. Thus, even if the density of the optical disk is increased and the rotation method of the disk is constant angular velocity, the quality of the reproduced signal can be improved. In addition, signal degradation due to thermal damage during multiple cycles can be reduced, and good cycle characteristics can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

明 細 書 光学的情報の記録方法および記録装置 技術分野
本発明は、 レーザ光線等の光学的手段を用いて情報を高速かつ高密度に記録 · 再生する光ディスクの記録方法およびその記録装置に関するものである。 背景技術
レーザ光線を利用して高密度な情報の再生あるいは記録を行う技術は公知であ り、 おもに光ディスクとして実用化されている。
光ディスクは、 再生専用型、 追記型、 書き換え型に大別することができる。 再生専用型は、 例えばコンパク トディスクやレーザディスクとして、 また追記 型や書き換え型は文害ファイル、 データファイル等として実用化されている。
更に、 書き換え型光ディスクの中には、 おもに光磁気と相変化型がある。
相変化光ディスクは、 記録層がレーザ光線等の照射によって、 例えばァモルフ ァスと結晶間、 あるいは結晶とさらに異なる構造の結晶間の何れか等で、 可逆的 に状態変化を起こすことを利用する。 これは、 レーザ光照射により、 薄膜の屈折 率あるいは消衰係数のうち少なくとも何れか一つが変化して記録を行い、 この部 分で透過光あるいは反射光の振幅が変化し、 その結果検出系に至る透過光量ある いは反射光量が変化することを検出して信号を再生する。 なお、 アモルファスと 結晶間で状態変化を起こす代表的な材料としては、 T e、 S e、 I n、 S b等の 合金が主に用いられている。 また、 相変化光ディスクでは、 記録マークの書き換えに 1ビームオーバ一ライ トを用いることができる。 1ビームオーバ一ライトとは、 記録信号によりレーザ パワーを記録パワーと、 当該記録パワーよりも低いパワーのバイアスパワー (消 去パワーとも称される) の間で変調して信号トラック上に照射することにより、 既に記録されている古い信号を消去しながら新しい信号を記録する方法である。 オーバ一ライ ト自体では記録パワーレベルとバイアスパワーレベルの 2レベルで 済むが、 記録 '消去 '再生を考慮すると、 記録パワーレベル、 バイアスパワーレ ベノレ及び再生パワーレベルの 3レベルが必要である。
例えば結晶 · アモルファス間の相変化光ディスクでは、 記録レベルで照射され た領域は、 元の状態がアモルファスか結晶かに関わらず、 溶融後急速に冷却され るためアモルファスとなり、 消去レべノレで照射された領域は、 結晶化温度以上に 昇温するため、 元の状態に関わらず結晶化して、 新しい信号がオーバ一ライ 卜さ れる。
一方、 光ディスクの記録再生装置では、 光ディスクの回転方式は大別して 2つ ある。 ディスクの内外周で線速度が同じになるようにディスクを回転させる方法 (以下 C L V) と、 ディスクを一定の角速度で回転させる方法 (以下 C AV) で ある。
例えば、 コンピューター用の外部メモリ等に用いられるデータファイルの様に 高速なアクセスが必要とされる場合には、 ディスク回転数を変えるには時間がか 力 るため C AVが使用されており、 この場合、 ディスクの周方向の線速度が外周 で速く内周で遅くなる。
又、 記録変調方式には、 マーク間 (マ一クポジションとも称される) 変調とマ ーク長 (マークエッジとも称される) 変調の 2種類がある。 マーク間変調記録は、 マーク間隔を変化させて記録し、 再生時にはマークの位 置を検出して信号検出するものである。
マーク長変調記録は、 種々の長さのマークを種々のマーク間隔で記録し、 再生 時にはマークの両端の位笸を検出して信号を検出するものである。 マーク長変調 方式は、 マーク間変調方式に比べて原理的に 2倍の高密度化が可能である。 相変化光ディスク上へのレーザ記録は、 原理的にはヒートモードによるもので あり、 従って長いマークを記録する場合には、 蓄熱効果によってマークの先端よ り終端が太くなってマークが涙状に歪み、 結果として再生波形も歪みマークの両 端の位置がずれてしまう。
そこで、 上述のマーク長変調方式においては、 一つの記録マークを形成するた めの記録波形を、 複数のパルスからなる記録パルス列で構成 (マルチパルス記録 とも称される) する記録方法が提案されている (例えば、 特開平 3— 1 8 5 6 2 8号公報) 。 これにより、 単パルスにより記録する方法に比べて記録膜が受ける 熱が制御でき、 マーク形状が単パルスの場合のようにマークの始終端で非対称に ならず良好なマーク形状となる。
しかし、 上記のようなマルチパルス記録方式でも、 高密度化の要請のためにマ ーク間隔を狭くすると、 マーク間で熱千涉を起こしてマークの長さや形状が変化 する。
これを改善する方法として、 例えば特開平 7— 1 2 9 9 5 9号公報が提案され ている。 当該公報では、 熱干渉量を予め予測し、 前記マルチパルス記録において 記録マーク長およびマーク間隔によつて記録パルス列の始端部分と終端部分の位 置を変化させ、 マーク間の熱干渉を抑制し、 信号特性を良好にするというもので ある。 また、 1 ビームオーバ一ライ トにおいて記録パルスを記録パワー、 バイアスパ ヮー、 および記録パワーの直後に設けたバイアスパワーより低いパワーの 3段階 に変調する記録方法が提案されている (例えば、 特開昭 6 3— 1 1 3 9 3 8号公 報) 。
さらに、 マルチパルス記録方式にバイアスパワーより低いパワーでのレ一ザ光 照射を付加した記録方法も提案されている (例えば、 特開平 6— 2 9 5 4 4 0号 公報) 。
また、 マーク間隔によって、 冷却パワーでの照射時間 (以下、 冷却パワー照射 時間) を変化させるという記録方法が提案されている (特願平 5— 8 0 4 9 1 ) 。 書き換え可能な相変化材料を用いた光ディスク等のいわゆる光ディスクに、 例 えば半導体レーザー等の光源により光を照射し、 物理的状態変化を生じさせ信号 を記録する場合、 光源の光に起因した熱よつて、 記録層の温度は数百度にまで達 し、 記録薄膜は溶融される。 '
従って、 書き換え回数を重ねるすなわち多サイクルすることにより、 熱ダメー ジによる信号劣化が生じる。
信号劣化の原因としては、 誘電体層や記録層の破壊と、 記録層の物質流動と呼 ばれる現象がある。 物質流動とは、 記録時に記録層およびその周辺が高温となる ため、 多サイクルすることにより記録層物質がトラック方向に移動し、 同一トラ ック上に記録膜の薄いところと厚いところが生じる現象であり、 その結果として 信号の再生波形が撗れてしまい、 当該部分では信号が再生できなくなる。 何れに しても、 多サイクルによる信号劣化が大きい場合には、 それによつて光ディスク の用途が限定されてしまう。 また、 光ディスク装置で半導体レーザーにより光を照射して物理的状態変化を 生じさせる場合、 例えば書き換え可能な相変化材料を用いた光ディスクにおいて 信号を記録する場合、 レーザ光によって加熱された記録層の冷え方によって記録 マーク形状が変化する。
すなわち、 熱がこもった様な場合には、 一度溶融された記録層がアモルファス 化せず結晶化してしまう。 その結果として、 記録マークが小さくなつたり、 ある いは記録マークの形状が歪んだりし、 再生信号品質が悪化する。
そして、 従来の様な冷却パルスを採用した場合、 マーク後端部での熱のこもり が低減されてアモルファス化は容易になるが、 場合によっては後端部で冷却速度 が大きくなりすぎることに起因して、 ァモルファス領域がマーク先端部より大き くなることがある。
さらに、 冷却パワーやその照射時間の条件によっては、 オーバライ ト特性が悪 化する場合がある。 この原因は、 記録マークが後端で横方向に大きくなりすぎる ため、 かえってマ一ク歪となったり、 あるいはオーバライ トにより消し残りが発 生するためと考えられる。
更なる高密度な記録を考えた場合には、 マークの前端部と後端部との対称性が 充分でないために、 オーバーライ ト後の再生ジッタが大きく、 再生信号品質とし ては充分ではなかった。
また、 マーク間変調記録では冷却パルスを付加することにより、 マークを大き く形成し、 CZNを大きくし良好な信号品質を実現できる。 ここで CZNとは c a r r i e r l e v e l と n o i z e 1 e v e 1の比をとつたものである。 しかしながら、 冷却パワーの条件によっては、 オーバライ ト特性が悪化する場 合がある。 この原因は、 記録マークが横方向に大きくなりすぎるため、 ォ一バラ ィ トにより消し残りが発生するため等が考えられる。
本発明は、 マーク後端部での熱の冷却条件を細かく制御し、 記録マークを所望 の形状に形成し、 再生信号品質が更に向上可能で、 また熟によるダメージを緩和 し、 良好なサイクル特性を得ることが可能な記録方法及び記録装置を提供するも のである。 発明の開示
上記目的を達成するための本発明の記録方法は、 マーク長、 マーク問変調記録 において、 記録パワーでのレーザ光照射後に、 バイアスパワーよりパワーが低い 冷却パワーまでレーザパワーを低下させ、 それを所定時間維持した後、 再びバイ ァスパヮ一まで上昇させる記録方式にぉ 、て、 記録パヮ一でのレーザ光照射と、 当該記録パワーの直後の冷却パワーでの照射との間に、 バイアスパワーでのレー ザ光照射を行うものである。
また、 マーク長記録では、 マルチパルスでのレ一ザ光照射後にバイアスパワー より低い冷却パワーまでレーザパワーを低下させ、 それを一定時間維持した後再 びバイアスパワーまで上昇させる記録方式において、 記録するマーク長によって 冷却パワー照射時間あるいは冷却パワー開始時間の少なくともいづれか一方を変 化させるものである。
また、 マーク間変調記録において、 C AVモードでディスクの半径に応じて冷 却パワー開始時問を変化させるものである。
また、 マーク長変調記録において、 C AVモードでディスクの半径に応じて冷 却パワー照射時間あるいは冷却パワー開始時間の少なくともいずれか一方を変化 させるものである。 さらに、 マーク長変調記録において、 記録パルス列が始端パルスと終端パルス と始端 ·終端パルス間のデータクロックの 1周期以下の周期で交互に切り換わる パルスからなる場合、 前記記録パルス列の終端パルス後に冷却パヮ一でのレーザ 光照射を行う、 あるいは前記記録パルス列の終端パルスと冷却パヮ一でのレーザ 光の照射の間にバイァスパワーでのレーザ光照射を行うものである。
そして、 マーク長変調記録において、 記録パルス列が始端パルスと終端パルス と始端 ·終端パルス間のデータクロックの 1周期以下の周期で交互に切り換わる パルスからなり、 マーク長およびマーク間隔に応じて前記記録パルス列の始端パ ルス、 終端パルスの位置が変化する場合、 冷却パワーでのレーザ光照射時間は一 定で記録パルス列の始端パルスや終端パルスの位置によらず、 冷却パワーでのレ —ザ光照射までの時間が記録パルス列の終端パルスのレーザ光照射開始から一定 である、 あるいは冷却パワーでのレーザ光照射開始のタイミングがク口ックに基 づいた構成を備える。
また、 上記記録方法を実現するための記録装置は、 データの H i期間の始端位 篋に一定幅の始端パルスを発生する始端パルス発生回路と、 データの H i期間が 長い場合は、 マークの中間位置にバーストゲート信号を発生し、 データの H i期 間が短い場合は、 バーストゲート信号を発生しないバーストゲート発生回路と、 データの H i期間の終端位置に一定幅の終端パルスを発生する終端パルス発生回 路と、 データの H i期間が nクロックの時、 前記始端パルスと終端パルスを含む n Tマーク信号を発生し、 データの L 0期間が mクロックの時、 スペース両端の 前記終端パルスと始端パルスを含む mTスペース信号を発生するマ一クノスべ一 ス長検出回路 (ただし、 n , mはデータ列に存在する自然数) と、 前記 n Tマ一 ク信号と mTスペース信号とから、 後記始端用セレクタおよび終端用セレクタを 制御するためのセレクト信号を発生するエンコーダと、 後記終端用プログラマブ ルディ レイラインからの遅延終端パルスから一定幅の冷却パルスを発生する冷却 パルス発生回路と、 前記セレクタ信号により複数の始端設定値から一つを選択し て出力する始端用セレクタと、 前記始端用セレクタの始端設定値出力を前記始端 パルスがきた時だけ更新し、 こないときは前の値を保持する始端用サンブルノホ ールド回路と、 前記始端用サンブルノホールド回路の出力の始端設定値で遅延量 を変化させて、 前記始端パルスを遅延させた遅延始端パルスを出力する始端用ブ ログラマブルディレイラインと、 前記セレクタ信号により複数の終端設定値から —つを選択して出力する終端用セレクタと、 前記終端用セレクタの終端設定値出 力を前記終端パルスがきたときだけ更新し、 こないときは前の値を保持する終端 用サンブルノホールド回路と、 前記終端用サンプル/ホールド回路の出力の終端 設定値で遅延量を変化させて、 前記終端パルスを遅延させて、 前記終端パルスを 遅延させた遅延終端パルスを出力する終端用プログラマブルディレイラインと、 冷却パルスの遅延 iを変化させ遅延冷却パルスを出力する冷却パルス用ディレイ ラインと、 前記バーストパルスとクロックの論理積をとりバーストパルスを出力 する AN Dゲートと、 前記遅延始端パルスと前記バーストパルスと前記遅延終端 パルスとの論理和をとり記録信号を出力する O Rグートと、 前記冷却パルス用デ ィレイラインからの冷却パルス信号を反転させるィンバ一タと、 レ一ザダイォ一 ドのバイァス電流を供給するバイァス電流源と、 前記バイァス電流源と並列にレ 一ザダイォードの記録電流を供給する記録電流源と、 前記バイアス電流源と並列 にレーザダイォードに再生光電流を供給する再生光電流源と、 前記記録電流源の 鼋流を前記記録信号で O n ZO ί f するスィッチと、 前記バイアス電流源の電流 を冷却パルス信号で O n ZO f ίするスィッチと、 前記バイアス電流源と前記記 録電流源と再生光電流源で並列駆動されたディスク信号を記録するレーザダイォ 一ドとを備えた構成である。
また、 前記記録方法を可能にするための他の記録装置は、 データの H i期間の 始 置に一定幅の始端パルスを発生する始端パルス発生回路と、 データの H i 期間が長い場合は、 マークの中間位置にバーストゲート信号を発生し、 データの H i期間が短い場合は、 バーストゲート信号を発生しないバーストゲート発生回 路と、 データの H i期間の終端位置に一定幅の終端パルスを発生する終端パルス 発生回路と、 データの H i期間が nクロックの時、 前記始端パルスと終端パルス を含む n Tマーク信号を発生し、 データの L 0期間が mクロックの時、 スペース 両端の前記終端パルスと始端パルスを含む m Tスペース信号を発生するマーク / スペース長検出回路 (ただし、 n, mはデータ列に存在する自然数) と、 前記 n Tマ ク信号と m Tスペース信号とから後記始端用セレクタおよび終端用セレク タを制御するためのセレク ト信号を発生するエンコーダと、 前記終端パルス発生 回路から出力された終端パルスから一定幅の冷却パルスを発生する冷却パルス発 生回路と、 前記セレクタ信号により複数の始端設定値から一つを選択して出力す る始端用セレクタと、 前記始端用セレクタの始端設定値出力を前記始端パルスが きた時だけ更新し、 こないときは前の値を保持する始端用サンプルノホールド回 路と、 前記始端用サンブルノホールド回路の出力の始端設定値で遅延量を変化さ せて、 前記始端パルスを遅延させた遅延始端パルスを出力する始端用プログラマ ブルディレイラインと、 前記セレクタ信号により複数の終端設定値から一つを選 択して出力する終端用セレクタと、 前記終端用セレクタの終端設定値出力を前記 終端パルスがきたときだけ更新し、 こないときは前の値を保持する終端用サンブ ル Zホールド回路と、 前記終端用サンブル/ /ホールド回路の出力の終端設定値で 遅延量を変化させて、 前記終端パルスを遅延させて、 前記終端パルスを遅延させ た遅延終端パルスを出力する終端用プログラマブルディレイラインと、 冷却パル ス回路から出力される冷却パルスの遅延量を変化させて遅延冷却パルスを出力す る冷却パルス用ディレイラインと、 前記バーストゲート発生回路からのバース卜 パルスとクロックとの論理稜をとりバース トパルスを出力する ANDゲートと、 前記遲延始端パルスと前記バーストパルスと前記遅延終端パルスとの論理和をと り記録信号を出力する O Rゲートと、 前記冷却パルス用ディレイラインからの遅 延冷却パルス信号を反転させるインバータと、 レーザダイォードのバイアス電流 を供給するバイアス電流源と、 前記バイアス電流源と並列にレーザダイォードの 記録電流を供給する記録電流源と、 前記バイアス電流源と並列にレーザダイォ一 ドに再生光電流を供給する再生光電流源と、 前記記録電流源の電流を前記記録信 号で O n /O f f するスィッチと、 前記バイアス電流源の電流を冷却パルス信号 で O nZO f fするスィッチと、 前記バイアス電流源と前記記録電流源と再生光 電流源で並列駆動されたディスク信号を記録するレーザダイォードとを備えた構 成の記録装置である。
また、 マーク長変調記録において、 1つの記録マークを形成するための記録パ ルス列後に、 記録マークの後端部分の形状を整える前記記録パルス列とは異なる 冷却パルスとしてのパルス列 (以下、 マーク後端補正パルス列) を付加するもの である。
マーク後端補正パルス列とは具体的には、 バイアスパワーより小さいパワーを 含む少なくとも 2つ以上の異なったパワーでレーザ光を照射する、
あるいは、 記録パルス列でのレーザ光照射から、 連続的にパワーが記録パルス 列の低レ、パワーまたはバイァスパヮ一の何れかより小さいパワーまで変化する期 間を有するものである。
また、 記録パルス列後、 マーク後端補正パルス列までの間にバイアスパワーで のレーザ光照射を行う、
あるいは記録マーク長毎に、 マーク後端補正パルス列開始時間、 マーク後端補 正パルス列のパルス形状を変化する、
あるいは、 光ディスクを角速度一定で回転する場合、 半径に応じてマーク後端 補正パルス列開始時間、 マーク後端補正パルス列のパルス形状を変化するもので ある。
本発明の光学的情報記録方法によれば、 記録マーク後端部を所望の形状に形成 でき、 良好な再生信号特性が得られ、 また本発明の光学的情報記録方法及び記録 装置によれば、 熟的ダメージを著しく緩和でき、 良好なサイクル特性が得られる。 図面の簡単な説明
図 1は、 本発明の一実施の形態に用いた記録波形の図
図 2は、 本発明の一実施の形態に用いた光ディスクの構造図
図 3は、 本発明の一実施の形態に用いた光ディスク装置の図
図 4は、 本発明の一実施の形態に用いた記録パルス列の図
図 5は、 本発明の一実施の形態に用いた記録波形の図
囡 6は、 本発明の一実施の形態に用いた記録波形の図
図 7は、 本発明の一実施の形態に用いた記録波形の図
図 8は、 本発明の一実施の形態に用いた記録波形の図
図 9は、 本発明の一実施の形態に用いた記録波形の図
図 1 0は、 本発の一実施の形態に用いた記録波形の図 図 1 1は、 本発明の一実施の形態に用いたディスク記録装置のブロック図 図 1 2は、 本発明の一実施の形態に用いたディスク記録装置の各部の信号波形 図
図 1 3は、 本発明の一実施の形態に用いたディスク記録装置のブロック図 図 1 4は、 本発明の一実施の形態に用いたディスク記録装置の各部の信号波形 図
図 1 5は、 本発明の一実施の形態に用いた記録波形の図
(符号の説明)
1 データ
3 始端パルス
5 バース トゲート信号
7 "終端パルス
9 2 Tマーク信号
1 0 2 Tスペース信号
1 2 セレク ト信号
1 3 複数の始端設定値
1 5 選択始端設定値
1 8 遅延始端パルス
1 9 複数の終端設定値
2 1 選択終端設定値
2 4 遅延終端パルス
2 5 クロック
2 6 ANDゲート ノくース トノ ノレス
O Rゲート
記録信号
記録電流源
バイアス電流源
再生光電流源
スィッチ
スィッチ
レーザダイオード インバータ
ホールド始端設定値
-冷却パルス
遅延冷却パルス
遅延冷却パルス (反転) ホールド終端設定値 冷却パルス発生回路 冷却パルス用ディレイライン 基板
第 1の誘電体層
記録 «
第 2の誘電体層
反射層
保護層 6 1 光ディスク
6 2 スピンドノレモータ
6 3 光学へッド
6 4 レーザー駆動回路
6 5 波形補正回路 発明を実 ί¾するための最良の形態 本発明の記録方法はマーク長変調記録において、
(Α) 記録パルス列と冷却パワーでのレーザ光の照射開始までにバイアスパヮ —でのレーザ光照射を行う。
( Β ) 記録マ一ク長に応じて冷却パワー照射時間あるいは冷却パワーでのレー ザ光照射開始時間を変化させる。
( C ) 記録マーク長が予め決められたものより短い場合にのみ、 冷却パワー照 射時間あるいは冷却パヮ一でのレーザ光照射開始時間を変化させる。
(D) 記録マーク長が予め決められたものより短い場合にのみ、 一定の冷却パ ヮー照射時間および冷却パワー開始時間の冷却パルスを付加する。
( Ε) 光ディスクを角速度一定で回転させる時、 ディスク内周部において予め 決められたマーク長さ以下のマークを記録する時のみ、 冷却パルスを付加する。
(F ) 光ディスクを角速度一定で回転させる時、 ディスクの半径に応じて冷却 パワー照射時間、 冷却パワー開始時間を変化させる。
また、 本発明の記録方法は、 マーク間変調記録において、
(G) 記録パヮ一と冷却パヮ一でのレーザ光の照射開始までにバイァスパワー でのレーザ光照射を行う。
(H) 光ディスクを角速度一定で回転させる時、 ディスクの半径に応じて冷却 パワー開始時間を変化させる。
の何れかの構成としたものであるため、 マーク前端部 ·後端部での形状の非対称 性を抑制し、 記録マークを所望の形状に形成し、 良好な再生信号品質が実現でき る。
そして、 本発明の記録方法は、 マーク長変調記録において、 記録パルス列が始 端パルスと終端パルスと始端 ·終端パルス間のデータクロックの 1周期以下の周 期で交互に切り換わるパルスからなる場合に、
( I ) 前記記録パルス列の終端パルス後に冷却パワーでのレーザ光照射を行う、 ( J ) 前記記録パルス列の終端パルスと冷却パワーでのレーザ光の照射開始ま でにバイァスパワーでの照射を行う、
また、 マーク長変調記録において、 記録パルス列が始端パルスと終端パルスと 始端 ·終端パルス間のデータクロックの 1周期以下の周期で交互に切り換わるバ ルスからなり、 始端パルスと終端パルスの位置がそれぞれマ一ク長およびマーク 間隔に応じて変化する場合に、
(K) 冷却パワーでのレーザ光照射時間は一定で、 is録パルス列の始端バルス や終端パルスの位置によらず、 冷却パワーでのレーザ光照射開始までの時間が、 記録パルス列の終端パルスから一定、 または冷却パワーでのレーザ光照射開始の タイミングがクロックに基づく、
の何れかの構成としたものであるため、 始端パルスと終端パルスの位置を変動 させることで、 記録マーク間の熟干渉によるマーク長変動が抑制されるため、 高 密度記録が可能であると同時に、 バイアスレベルの一部を冷却パワーとすること で、 記録薄膜の記録時のトータルエネルギーが低滅でき、 多サイクルした場合の 熱的ダメージによる信号劣化を軽減し良好なサイクル特性も実現できる。
また、 本発明の記録装置は、 データの H i期間の始端位置に一定幅の始端パル スを発生する始端パルス発生回路と、 データの H i期間が長い場合はマークの中 間位置にバーストゲート信号を発生し、 データの H i期間が短い場合はバースト ゲート信号を発生しないバーストゲ一卜発生回路と、 データの H i期間の終端位 置に一定幅の終端パルスを発生する終端パルス発生回路と、 データの H i期間が nクロックの時、 前記始端パルスと終端パルスを含む n Tマーク信号を発生し、 データの L o期問が mク口ックの時、 スペース両端の前記終端パルスと始端パル スを含む mTスペース信号を発生するマーク スペース長検出回路 (ただし、 n , mはデータ列に存在する自然数) と、 前記 n Tマーク信号と mTスペース信号と から後述の始端用セレクタおよび終端用セレクタを制御するためのセレク ト信号 を発生するエンコーダと、 後述の終端用プログラマブルディレイラインからの遅 延終端パルスから一定幅の冷却パルスを発生する冷却パルス発生回路と、 前記セ レクタ信号により複数の始端設定値から一つを選択して出力する始端用セレクタ と、 前記始端用セレクタの始端設定値出力を前記始端パルスがきた時だけ更新し、 こないときは前の値を保持する始端用サンプルノホールド回路と、 前記始端用サ ンブルノホールド回路の出力の始端設定値で遅延量を変化させて、 前記始端パル スを遅延させた遅延始端パルスを出力する始端用プログラマブルディレイライン と、 冷却パルス発生回路から出力される冷却パルスの遅延量を変化させて遅延冷 却パルスを出力する冷却パルス用ディレイラインと、 前記セレクタ信号により複 数の終端設定値から一つを選択して出力する終端用セレクタと、 前記終端用セレ クタの終端設定値出力を前記終端パルスがきたときだけ更新し、 こないときは前 の値を保持する終端用サンブル Zホールド回路と、 前記終端用サンプル ホール ド回路の出力の終端設定値で遅延量を変化させて、 前記終端パルスを遅延させて、 前記終端パルスを遅延させた遅延終端パルスを出力する終端用プログラマブルデ ィレイラインと、 を備え、
( L ) この冷却パルス発生回路に、 終端用プログラマブルディレイラインから の遅延終端パルスを入力することにより、 冷却パルスを発生させる、
(M) この冷却パルス発生回路に、 終端パルス発生回路からの終端パルスを入 力することにより、 冷却パルスを発生させる、
構成としたものであり、 上記記録方法と同様の作用により、 記録薄膜の記録時の トータルエネルギーを低減でき、 多サイクル記録した場合の熱的ダメージによる 信号劣化を軽減し、 良好なサイクル特性を有する装置を提供できる。
さらに、 本発明の記録方法は、 マーク長変調記録する場合に、
(N) 1つの記録マークを形成するための記録パルス列後に、 バイアスパワー より小さいパワーを含む少なくとも 2つ以上の異なったパワーでレ一ザ光を照射 する冷却パルスとしてのマーク後端補正パルス列を設ける、
(O) 記録パルス列でのレーザ光照射後、 連続的にバイアスパワーより小さい パワーまでパワーが変化する期間を有する冷却パルスとしてのマーク後端補正パ ルス列を設ける、
( P ) 記録パルス列後、 冷却パルスとしてのマーク後端補正パルス列までの間 にバイアスパワーでのレーザ光照射を行う、
(Q) 記録するマーク長に応じて、 冷却パルスとしてのマーク後端補正パルス 列開始時間または、 冷却パルスとしてのマーク後端補正パルス列のパルス形状を 変化させる、 (R) 光ディスクを角速度一定で回転させる時、 ディスクの半径方向の位置に 応じて、 前記 2つのマーク後端補正パルス列開始時間または、 マーク後端補正パ ルス列のパルス形状を変化させる、
の何れかの構成としたものであるため、 マーク前端部 ·後端部での形状の非対 称性を抑制し、 記録マークを所望の形状に形成し、 良好な再生信号品質が実現で きる。
以下、 図面を用いて本発明の具体的実施の形態を挙げ、 本発明をより詳細に説 明する。
図 2を用いて本実施の形態で用いたディスクの構造について説明する。 誘電体 層、 記録層、 反射層は真空蒸着またはスパッタリングなどの通常の薄膜形成方法 で、 透明基板 51上に形成する。 基板 51上に、 第 1の誘電体 52、 記録層 53、 第 2の誘電体層 54、 反射層 55を順次設ける。 さらにその上に、 密着した保護 層 56を設ける。 また、 光ディスクとしては、 反射雇 55や保護層 56のない構 造の光ディスクでも適用可能である。 記録、 再生を行うレーザ一光は基板 51側 から入射させる。
基板 51の材質は、 ガラス、 石英、 ボリカーボネート、 あるいは、 ポリメチル メタクリレートを使用できる。 また、 基板は平滑な平板でも表面にトラッキング ガイド用の溝状の凸凹があるものでもよい。
保護届 56としては、 樹脂を溶剤に溶かして塗布 ·乾燥したものや、 樹脂板を 接着剤で接着したもの等が使える。
記録層 53に用いる記録層材料としては、 アモルファス ·結晶間の相変化をす るカルコゲン合金がよく知られており、 例えば SbTe系、 Ge S bTe系、 G e SbTe S e系、 Ge SbTe Pd系、 TeGe SnAu系、 Ag S bTe系、 GeTe系、 Ga Sb系、 I nS e系、 I nS b系、 I n S b T e系、 I n S b S e系、 I nSbTeAg系等、 例えば上記系統の合金の相変化特性または光学 特性に影響を及ぼさない範囲で他の元素を含む合金等が使える。
誘電体層 52、 54としては S i 02、 S i 0、 T i〇2、 MgO、 T a 25、 A 12θ3 Ge02、 S i 3lSU、 BN、 A 1 N、 S i C、 Zn S、 Zn S e、 Z n Te、 P b S等あるいはこれらの混合物が使える。
反射層 55としては Au、 Aし Cu、 C r、 N i、 T i等の金属材料を主成 分とした材料、 あるいはこれらの混合物、 さらには所定の波長における反射率の 大きな誘電体多層膜等が使える。
上記材料の内、 後述の本実施の形態で用いたディスクは、 Φ 13 Ommのポリ カーボネート製信号記録用トラックを持つ基板を用い、 基板上に第 1の誘 体層 として ZnS— S i 02混合膜を厚さ 1300Aスパッタリングにより形成した。 また、 後述の実施の形態 1、 2で用いたディスクの記録層組成は Ge S b Te"、 また、 実施の形態 3〜18で用いたディスクの記録層組成は G e 21 S b 26 Te 53とし、 記録層を 250A、 第 2の誘鼋体層として Z n S— S i 02混合膜 を厚さ 20 OA形成した。 反射層は A 1膜を 150 OAスパッタリングにより成 膜を行った。 そしてその上にポリカーボネートの保護層を設けた。
ここで、 後述するすべての本実施の形態で用いた光ディスク装置について、 図 3を用いて説明する。 光ディスク 61は、 スピンドルモータ 62に取り付けられ 回転可能である。 光学ヘッド 63は半導体レーザを光源とし、 コリメータレンズ、 対物レンズ等により光ディスク上にレーザスポットを形成する。
半導体レーザはレーザ駆動回路 64により駆動されるが、 信号を記録する場合 には、 入力信号は波形補正回路 65により波形補正されたのち、 レーザ駆動回路 6 4へ入力される。
一般に、 波形補正回路を複雑なものにすることはコス卜の面からも望まれるも のではなく、 それ故に波形補正に関してもできるだけ簡素なパターン、 例えば全 てのマーク長それぞれに対して記録波形を変化するのではなく、 予め決められた マーク長についてのみ記録波形を変化するという方がよいと考えられる。
実施の形態で用いた具体的な記録パルス列の一形状を図 4に示す。 但し、 図 4 の記録パルス列 A〜Dにはマーク長変調記録において、 6 Tマークを記録する場 合の代表的な記録パルス列パタ一ンを示す。
なお、 本実施の形態のマーク長変調記録においては、 すべて、 レーザ光の第 1 のパワーを記録パワー、 第 2のパワーをバイアスパワー、 冷却パワーや冷却パル スとしてのマーク後端補正パルス列の最低パワーを再生パワーとして行った結果 をしめす。 この様に第 1のパワーを記録パワー、 第 2のパワーをバイアスパヮ一 及び最低パヮ一を再生パヮ一とすると、 特に波形補正回路の構成が簡略化できる ため好ましいが、 本発明に適用するレ ザ光のパヮ一はこれに限定されるもので はなく、 第 1のパワーは記録パワー以上、 第 2のパワーは少なくとも第 1のパヮ —よりも低いパワー、 最低パワーを第 2のパワーまたはバイアスパワーの何れか より低レ、パヮ一であれば自由に設定できること勿論である。
図 4において、 記録パルス列 Aは、 記録マークを形成するために、 レーザ光第 1のパワー 1 5 Tからなる始端パルスと、 第 1と第 2のパワーを 0 . 5 Tの周 期で交互に切り換えたパルスより構成された記録パルス列である。 ここでいう T とはク口ックのことである。
記録パルス列 Bは、 記録マークを形成するために、 レーザ光第 1のパワー 1 . O Tからなる始端パルスと、 第 1のパワーと第 2のパワーを 0 . 5 Tの周期で交 互に切り換えたパルスと、 第 1のパワー 1 . 0 Tからなる終端パルスより構成さ れた記録パルス列である。
記録パルス列 Cは、 記録パルス列 Bと同じパルス構成であり、 かつ記録するマ ーク長および前後のマーク間隔により、 記録ノくルス列の始端パルスと終端パルス の位置が変化するものである。
記録パルス列 Dは、 記録マークを形成するために、 レーザ光第 1のパワーと第 2のパワーを 0 . 5 T周期で交互に切り換えたパルスより構成された記録パルス 列である。
なお、 本発明に適応する記録パルス列のパルス幅 (始端パルス幅、 終端パルス 幅、 始端.終端パルス間のパルスの幅、 記録パルス列 Dの場合の記録パルス列の パルス幅等) は、 図 4に示したものに限定されるものではなく、 自由に設定でき るこ はもちろんである。
また、 本実施の形態で、 マーク間変調記録で冷却パルスを付加した場合に採用 した具体的な記録波形の一形状を図 5に示す。
入力波形 Aは (2、 7 ) 変調方式の一例である。 この場合のマーク幅は 0 . 5 Tである。 ここではマーク間隔を 2 . 0丁、 3 . 5 T、 1 . 5 Τとした場合を示 してある。
記録波形 Εは入力波形 Αを記録する場合であり、 記録パルス幅は 0 . 2 5 Tで ある。
記録波形 Fは入力波形 Aを記録する場合であり、 記録パワー照射直後に冷却パ ヮ一レベルを照射したものである。 記録パルス幅は 0 . 2 5 Tで冷却パヮ一照射 時間は 0 . 2 5 Tである。
記録波形 Gは入力波形 Aを記録する場合であり、 記録パヮ一レベル照射後にバ ィァスパワーレベルでの照射を行い、 その後、 冷却パワーレベルでの照射を行つ たものである。 記録パルス幅は 0. 25Tで、 冷却パワー照射時間は 0. 25丁、 冷却パワー開始時間は 0. 25 Tである。
また、 本実施の形態でマーク長変調記録で冷却パルスを付加した場合に採用し た具体的な記録波形の一形状を図 1に示す。 図 1では、 図 4の記録パルス列 Aを もちいた場合について示す。
入力波形 Bは EFM (E i g h t t o F ou r t e e n Mo du l a t i o n) 信号の入力波形の一例である。 EFM変調は、 3Tから 11 Tの間の 9 種類の長さの信号の組合せによつてデータを変調するもので、 ここでいう Tとは ク口ックのことである。
記録波形 Hは入力波形 Bを記録する場合であり、 冷却パルスを付加しない場合 である。
記録波形 Iは入力波形 Bを記録する場合に冷却パルスを付加した記録波形であ り、 直前の記録マーク長によらず、 冷却パワー照射時間を 0. 5T、 冷却パワー 開始時間を 0と一定にして付加したものである。
記録波形 Jは入力波形 Bを記録する場合に冷却パルスを付加した記録波形であ り、 直前の記録マーク長によらず冷却パワー照射時間を 0. 5T、 冷却パワー開 始時間を 0. 25 Τと一定にして付加したものである。
以下、 具体的実施の形態をもつて本発明をさらに詳細に説明する。
(実施の形態 1 )
本実施の形態ではマーク間変調で、 記録パヮ一と冷却パヮ一とのレーザ光照射 の間に、 バイアスパワーでのレーザ光照射を行った場合について説明する。
光ディスクの評価条件は、 レーザー光の波長が 680 n m、 記録装篋の記録再 生に用いる光学ヘッドの対物レンズの NAを 0. 55、 (2、 7) 変調を最短マ ークピッチが 2. 1 μπιとなるようにクロック Tを設定し、 1ビームォ一バーラ イ トにより 100回記録し、 再生信号を微分しピーク検出を行い、 その検出信号 のジッタ値: osum/Tw (%) を測定した。 ここで σはジッタの標準偏差、 Tw は検出系のウィンドウ幅である。 線速度は、 6. OmZsである。
このディスクについて、 信号の記録は、 マークピッチが 2. Ι μπιとなる単一 周波数を記録したとき、 CZNが飽和する記録パワーと、 その信号をマークビッ チが 5. 6 μπιとなる信号でオーバライ トした場合に消去率が一 20 dBを越え るパワーマ一ジンとの中央値のパワーを設定した。 本実施の形態で用いた記録波形とジッタをそれぞれ (表 1) 、 (表 2) に示す。 【表 1】
Figure imgf000025_0001
【表 2】
Figure imgf000025_0002
(表 1) の記録波形 1—1は、 図 5の記録波形 Eのように冷却パルスを付加し ない場合である。 記録波形 1一 2は、 図 5の記録波形 Fのように冷却パルスを記 録パワーでのレーザ光照射直後に付加した場合である。 但し、 その時の冷却パヮ 一照射時間は 0. 25 Tである。 また、 記録波形 1一 3は、 図 5の記録波形 Gの ように記録パワーでの照射後バイアスパワーでの照射を行い、 その後、 冷却パヮ 一での照射をおこなう場合である。 但し、 その時の冷却パワー照射時問を 0 . 2 5 Tとし、 冷却パワー開始時間を記録パワーでの照射終了後 0 . 2 0 T遅らせた 場合である。
(表 2 ) から、 記録波形 1一 1の場合は、 他の記録波形に比べてジ'ンタが悪く なっている。 記録波形 1—2の場合は、 記録波形 1—1に比べるとジッタが改善 されているが、 記録波形 1一 3と比べると悪い。 すなわち、 本発明による冷却パ ヮー開始時間を遅らせた記録波形 1一 3の場合は、 他の記録波形に比べてジッタ が改善される。
以上のように、 マーク間変調で冷却パルスの開始を遅らせることにより、 ジン タの小さい記録が可能となる。
なお、 本実施の形態では、 冷却パワーの一例として再生パワーの場合を取り上 げたが、 冷却パワーがバイアスパワーとレーザオフレベルとの間の場合について も同様な結果が得られた。
(実施の形態 2 )
本実施の形態では、 光ディスクを角速度一定で回転させ、 マーク間変調で記録 した時、 冷却パワー開始時間をディスクの半径に応じて変化させた場合について 説明する。
評価条件は、 ディスクの回転数 1 5 0 0 r p mと一定で、 (2、 7 ) 変調信号 を最短マークピッチが常に 2 . 1 ; mとなるようにクロック Tを変えて、 1ビー ムオーバーライトにより 1 0 0回記録し、 ジッタ : a sum/ T w (%) を半径 2 3 3 0、 3 7、 4 3、 5 0、 5 7 mmの位置で測定した。 ここで σはジッタの標準 偏差、 丁 wは検出系のウィンドウ幅である。 また、 この半径でのそれぞれの線速 度は、 約 3. 6、 4. 7、 5. 8、 6. 8、 7. 9、 9. OmZsである。 なお、 デイスクおよびその他の測定条件は実施の形態 1と同じである。
本実施の形態で用いた記録波形とジッタをそれぞれ (表 3) 、 (表 4) に示す。 【表 3】
Figure imgf000027_0001
【表 4】
Figure imgf000027_0002
(表 3) の記録波形 2—1は、 図 5の記録波形 Eのように冷却パルスを付加し ない場合である。 記録波形 2— 2は、 図 5の記録波形 Fのように冷却パワーでの レーザ光照射を記録パワーでのレーザ光照射後に行う場合である。 但し、 その時 の冷却パワー照射時間は 0. 30Tである。 また、 記録波形 2— 3は、 図 5の記 録波形 Gのように記録パワーでの照射後、 バイアスパワーでの照射を行い、 その 後冷却パワーでの照射を行う場合である。 但し、 その時の冷却パワー照射時間は 0. 30丁、 冷却パワー開始時間は記録パワーでの照射終了後 0. 10T後であ る。
(表 4 ) 力 、 記録波形 2— 1の場合は、 他の記録波形に比べてジッタがディ スクの內外周で悪ィヒしている。 記録波形 2— 2を用いた場合には、 ディスク内周 部で他の記録波形に比べてジッタが改善されている。 また、 記録波形 2— 3を用 いた場合には、 ディスク内周部で記録波形 2— 2よりジッタが悪化している。 し かし、 ディスク外周部では他の記録波形よりジッタが改善している。
以上のことから、 本発明のように、 ディスク内周部では例えば記録波形 2— 2 を適用し、 ディスク外周部では例えば記録波形 2— 3を適用するという様に、 デ イスク内周部で冷却パワー開始時間を早めた記録波形を用いることにより、 再生 ジッタの良好な記録が可能となる。
以上のように光ディスクを角速度一定で回転させる場合、 ディスク内周部にお いて冷却パヮ一開始時間を早くすることにより、 ディスク全周でジッタの小さレ、 記録が可能となる。
なお、 本実施の形態では実施の形態 1と同様に冷却パワーが再生パワーの場合 についての結果であるが、 冷却パワーがバイアスパワーとレーザオフレベルの間 の場合についても同様な結果が得られることは勿論である。
(実施の形態 3 )
本実施の形態では、 マーク長変調で、 記録パワーと冷却パワーとのレーザ光照 射の間に、 バイアスパワーでのレ一ザ光照射を行った場合について説明する。 光ディスクの評価条件は、 レーザ一光の波長が 6 8 0 n m、 記録装置の記録再 生に用いる光学ヘッ ドの対物レンズの N Aを 0 . 5 5とし、 8— 1 4変調 (E F ) された入力信号を最短マーク長が 0 . 9 0 / mとなるようにクロック Tを設 定し、 1ビームオーバーライ 卜により 1 0 0回記録した時の 3丁から 1 1丁まで の再生信号のゼロクロス点のジッタ値: osumZTw (%) を測定した。 ここで。
sumは 3 Tから 1 1 Tまでのジッタの総和の標準偏差、 Twは検出系のウィンドウ 幅である。 線速度は、 4. OmZsである。
このディスクにおいて、 信号の記録は、 記録マーク長が 0. 9 wmとなる単一 周波数を記録したとき、 C/Nが飽和する記録パワーを記録パワーとし、 その 3 Tマークの信号を、 1 1 T相当の単一周波数でオーバーライトした場合に、 消去 率が一 20 d Bを越えるパワーマージンの中央値のパワーを設定し、 バイアスパ ヮ一とした。
本実施の形態で用いた記録波形とジッタをそれぞれ (表 5) 、 (表 6) に示す。
【表 5】 記ほ
マーク長 3 T 4 T 5丁 6 T 7 T 8 T 9 T 1 0 T 1 1 T 波形
冷却
ノ ヮ一 0T 0T 0T 0T 0T 0T 0T 0T 0T 照射時間
3-1
冷却
パワー 0T 0T 0T 0T 0T 0T 0T 0T 0T 閱始時間
冷却
パワー 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 照射時間
3-2
冷却
パワー 0T 0T 0T 0T 0T 0T 0T 0T 0T 開始時問
冷却
パワー 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 照射時間
3-3
冷却
パワー 0.20T 0.20T 0.20T 0.20T 0.20T 0.20T 0.20T 0.20T 0.20丁 開始時間 【表 6】
Figure imgf000030_0001
(表 5 ) では、 3丁〜 1 1 Tまでの各マーク長のマークを記録する場合の冷却 パワー照射時問と冷却パワー開始時間とを、 3種類の記録波形毎に示してある。 本実施の形態では、 図 4の記録パルス列 Aを用いた。
(表 5 ) の記録波形 3— 1は、 図 1の記録波形 Hのように冷却パルスを付加し ない場合である。 記録波形 3— 2は、 図 1の記録波形 Iのように記録パルス列直 後に冷却パワーでのレーザ光照射を行う場合である。 但し、 その時の冷却パワー 照射時間は、 マーク長 3丁〜 1 1 Tによらず 0 . 5 Tと一定とし、 冷却パワー開 始時間は 0とした場合である。 また、 記録波形 3— 3は、 図 1の記録波形 Jのよ うに記録パルス列直後にバイアスパワーでの照射を行い、 その後冷却パワーでの 照射を行う場合である。 但し、 その時の冷却パワー照射時間、 冷却パワー開始時 間は、 マーク長によらずそれぞれ 0 . 5丁と 0 . 2 Tである。
(表 6 ) ら、 記録波形 3— 1の場合には、 他の記録波形に比べてジンタが悪 くなつている。 記録波形 3— 2を用いた場合には、 記婊波形 3— 1に比べてジッ タが改善されている。 一方、 本願発明による冷却パワー開始時間を遅らせた記録 波形 3— 3の場合には、 マーク前端部 ·後端部での対称性がより良好に制御され ているため、 他の記録波形に比べてジッタが小さくなっている。
以上のように、 記録パワーと冷却パワーとのレーザ光照射の間に、 バイアスパ ヮ一でのレーザ光照射を入れることにより、 ジッタの小さい記録が可能となる。 なお、 本実施の形態では冷却パワーを再生光パワーの場合について示したが、 冷却パヮ一が 0からバイアスパワーより小さレ、パワーの場合にも同様な結果が得 られた。
また、 本実施の形態では記録パルス列の第 2のパヮ一がバイァスパヮ一の場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの場合につ いて示したが、 図 4の記録パルス列 B、 C、 Dの場合にも同様な結果が得られた。
(実施の形態 4 )
本実施の形態では、 冷却パヮ一照射時間のみを記録マーク長によって変化させ た場合について説明する。
ぞれぞれの記録波形とジッタをそれぞれ (表 7 ) 、 (表 8 ) に示す。 なお、 測 定条件は実施の形態 3と同じである。
(表 7 ) では、 3 T〜 1 1 Tまでの各マーク長のマークを記録する場合の冷却 パワー照射時間と冷却パヮー開始時間とを、 4種類の記録波形毎に示してある。 本実施の形態では、 図 4の記録パルス列 Αを用いた。
(表 7 ) の記録波形 4一 1は、 図 1の記録波形 Hのように冷却パルスを付加し ない場合である。 記録波形 4一 2は、 図 1の記録波形 Iのように冷却パワー照射 時間をマーク長によらず 0 . 1 0 Tと一定とし、 その冷却パワー照射開始を記録 パルス列直後とした場合である。 また、 記録波形 4一 3は、 図 1の記録波形 Iの ように記録パルス列直後に冷却パワーでの照射を行う場合である。 但し、 その時 の冷却パワー照射時間は、 記録波形 4一 2より長く 0 . 5 0 Tとした場合である。 さらに、 記録波形 4— 4は、 図 1の記録波形 Iのように記録パルス列直後に冷却 パワーでの照射を行うものであり、 その冷却パワー照射時間はマーク長が短いほ ど長くした場合である <
【表 7】
Figure imgf000032_0001
【表 8】 記録波形 4一 1 4 - 2 4 - 3 4 - 4 ジッタ 1 1. 6 % 1 0. 3 % 9. 6 % 7. 5 % (表 7 ) から、 記録波形 4—1の場合には、 他の記録波形に比べてジッタが悪 くなつている。 記録波形 4— 2、 4— 3を用いた場合には、 ジッタは記録波形 4 - 1よりは改善されているものの、 記録波形 4一 4に比べると悪い値である。
—方、 本願発明による記録マーク長が短いほど冷却バヮ一照射時間を長く した 記録波形 4一 4の場合には、 マーク前端部 ·後端部での対称性が各マーク長につ いてより良好に制御されているために、 ジッタ値が他の記録波形に比べて大きく 改善されている。
以上のように、 記録マーク長に応じて冷却パワー照射時間を変化させることに より、 ジッタの小さい記録が可能となる。
なお、 本実施の形態では冷却パワーを再生光パワーとした場合について示した が、 冷却パヮ一が 0からバイアスパワーより小さいパワーの場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列の第 2のパワーがバイアスパワーの場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの場合につ いて示したが、 図 4の記録パルス列 B、 C、 Dの場合にも同様な結果が得られた。
(実施の形態 5 )
本実施の形態では、 マーク長が予め決めたものより短い時にだけ冷却バヮ一照 射時間をマークの長さに応じて変化させた場合について説明する。
ぞれぞれの記録波形とジッタをそれぞれ (表 9 ) 、 (表 1 0 ) に示す。 なお、 測定条件は実施の形態 3と同じである。 【表 9】
Figure imgf000034_0001
【表 1 0】
Figure imgf000034_0002
(表 9 ) では、 3 T〜 1 1 Tまでの各マーク長のマークを記録する場合の冷却 ペヮー照射時間と冷却パヮー開始時間とを、 3種類の記録波形毎に示してある。 本実施の形態では、 図 4の記録パルス列 Aを用いた。
(表 9 ) の記録波形 5— 1は、 図 1の記録波形 Hのように冷却パルスを付加し ない場合である。 記録波形 5— 2は、 図 1の記録波形 Iのように記録パルス列照 射直後に冷却パワーの照射をマーク長が 3丁〜 6 Tのマーク長が短い場合にのみ 変化させるものであり、 冷却パワー照射時間は記録マーク長が短いほど長く した 場合である。 また、 記録波形 5— 3は、 マーク長が 3 Tの場合のみ冷却パワー照 射時間が長く、 冷却パルスを記録パルス列照射直後に付加した場合である。
(表 1 0 ) ら、 記録波形 5— 1の場合には、 他の記録波形に比べてジッタが 悪くなつている。 一方、 本願発明による 3丁〜 6 Tの記録マーク長の場合、 その マーク長が短いほど冷却パワー照射時間を長くした記録波形 5— 2では、 記録波 形 5— 1に比べてジッタが改善されている。
また、 本願発明による記録マーク長が 3 Tの場合のみ長い冷却パワー照射時間 を付カ卩した記録波形 5— 3では、 記録波形 5— 2に比べるとジッタは大きいもの の、 記録波形 5 — 1に比べてジッタが改善されている。
以上のように、 予め決められた記録マーク長以下の場合にのみ冷却パルス照射 時間を変化させて付加することにより、 ジッタの小さい記録が可能となる。 この 記録波形では、 記録回路的にも簡素になりコストの面からも良いと考えられる。 なお、 本実施の形態では冷却パワーを再生光パワーの場合について示したが、 冷却パワーが 0からバイアスパワーより小さいパワーの場合にも同様な結果が得 られた。
また、 本実施の形態では記録パルス列の第 2のパワーがバイアスパワーの場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。 また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの埸合につ いて示したが、 図 4の記録パルス列 B、 C. Dの場合にも同搽な結果が得られた。
(実施の形態 6)
本実施の形態では、 冷却パワー照射時間がマーク長によらず一定で冷却パワー 開始時間のみを、 記録するマーク長に応じて変化させた場合について ί¾明する。
ぞれぞれの記録波形とジッタをそれぞれ (表 11) 、 (表 12) に示す。 なお、 測定条件は実施の形據 3と同じである。
ほ 11】 お緑
マーク長 3 T 4 T 5丁 6 T 7丁 8 T 9 T 1 0 T 1 1 T 波形
冷却
パワー 0T 0T 0T 0T 0T 0T 0T 0T 0T 照射時 Μ
6-1
泠却
パワー 0T 0T 0T 0T 0T 0T 0T 0T 0T 閱始時間
冷却
バヮ一 0.50T 0.50T 0.50T 0.50丁 0.50T 0.50T 0.50T 0.50丁 0.50丁 照射時間
6-2
泠却
パワー 0T 0T 0T 0T 0T 0T 0T 0T 0T 開始時 Γ4
冷却
パワー 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T
¾射時 IBJ
6-3
パワー 0.40T 0.40T 0.40T 0.40T 0.40T 0.40T 0.40T 0.40T 0.40T 開始時 nq
冷却
パワー 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 0.50T 照射時 M
6-4
泠却
パワー 0T 0.05T 0.10T 0.15T 0.20T 0.25T 0.30T 0.35T 0.40T 開始時 M
1 【表 1 2】
Figure imgf000037_0001
(表 1 1 ) では、 3丁〜 1 1 Tまでの各マーク長のマークを記録する場合の冷 却パヮ一照射時間と冷却パワー開始時間とを、 4種類の記録波形毎に示してある。 本実施の形態では、 図 4の記録パルス列 Aを用いた。
(表 1 1 ) の記録波形 6— 1は、 図 1の記録波形 Hのように記録パルス列照射 後に冷却パルスを付加しない場合である。 記録波形 6— 2は、 図 1の記録波形 I のように記録パルス列照射直後に冷却パワーの照射を行う場合である。 但し、 冷 却パワー照射時間は、 記録するマーク長によらず 0 . 5 0 Tである。 また、 記録 波形 6 _ 3は、 図 1の記録波形 Jのように記録パノレス列照射後バイァスパヮ一で の照射を行い、 その後冷却パワーでの照射を行う場合である。 但し、 冷却パワー 照射時間は 0 . 5 0丁、 冷却パワー開始時間を 0 . 4 Tとし、 記録するマーク長 に関わらず一定とした場合である。 さらに、 記録波形 6— 4は、 記録波形 6— 3 同様に、 冷却パワー照射時間は 0 . 5 0 Tとマーク長によらず一定であるが、 冷 却パワー開始時間を記録マーク長が短いほど早めた場合である。
(表 1 2 ) から、 記録波形 6— 1の場合には、 他の記録波形に比べてジッタが 悪くなつている。 記録波形 6— 2、 記録波形 6— 3を用いた場合には、 記録波形 6— 1に比べてジッタは改善されている。 一方、 本願発明による記録マーク長が 短いほど冷却パヮ一開始時間を早めた記録波形 6— 4の場合には、 他の記録波形 に比べてさらにジッタが小さくなる。
以上のように、 記録マーク長に応じて冷却パワー開始時間を変化させることに より、 ジッタの小さい記録が可能となる。
なお、 本実施の形態では冷却パワーを再生光パワーとした場合について示した が、 冷却バヮ一が 0からバイアスパワーより小さレ、パヮ一の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列の第 2のパワーがバイアスパワーの場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの場合につ いて示したが、 図 4の記録パルス列 B、 C , Dの場合にも同様な結果が得られた。
(実施の形態 7 )
本実施の形態では、 冷却パワー照射時間が一定で、 マーク長が予め決めたもの よ 短い時にだけ、 冷却パワー開始時間を記録するマークの長さによって変化さ せた場合について説明する。
ぞれぞれの記録波形とジッタをそれぞれ (表 1 3 ) 、 (表 1 4 ) に示す。 なお、 測定条件は実施の形態 3と同じである。
(表 1 3 ) では、 3丁〜 1 1 Tまでの各マーク長のマークを記録する場合の冷 却バヮー照射時間と冷却パヮー開始時間とを、 3種類の記録波形毎に示してある 本実施の形態では、 図 4の記録パルス列 Aを用いた。
(表 1 3 ) の記録波形 7— 1は、 図 1の記録波形 Hのように冷却パルスを付加 しない場合である。 記録波形 7— 2は、 図 1の記録波形 Jのように記録パルス列 照射後バイアスパワーでの照射を行い、 その後冷却パワーでの照射を行う場合で あり、 かつ記録するマーク長が 3 T〜 6 Tの場合には、 マーク長が短いほど冷却 パルス開始時間を早くした場合である。 但し、 冷却パワー照射時間は、 0 . 5 0 Tとマーク長によらず一定である《
【表 13】
Figure imgf000039_0001
ほ 1 "
記錄波形 7一 1 7-2 7-3 ジッタ 1 1. 6 % 8. 4 % 9. 0 % また、 記録波形 7— 3は、 3 Tマークを記録する場合のみ、 冷却パルスを記録 パルス列照射直後に行い、 4 T〜 1 1 Τのマ一クを記録する場合には冷却パワー 開始時間を 0 . 2 0 Τと一定とした場合である。
(表 1 4 ) から、 記録波形 7— 1の場合には、 他の記録波形に比べてジッタが 悪くなつている。 一方、 本願発明による 3 Τ〜 6 Τの記録マーク長の場合、 その マーク長が短いほど冷却パワー開始時間を早くした記録波形 7— 2では、 記録波 形 7— 1に比べてジンタが改善されている。 また、 本願発明による 3 Τの記録マ ーク長の場合のみ冷却パルス開始時間を早めた記録波形 7— 3では、 記録波形 7 一 2に比べると、 ジッタは大きいが記録波形 7— 1に比べるとジッタが改善され ている。
以上のように、 予め決められた記録マーク長以下の場合にのみ、 冷却パルス関 始時間を変化させ付加することにより、 ジッタの小さい記録が可能となる。 この 記録波形では、 記録回路的にも簡素になりコストの面からも良いと考えられる。 なお、 本実施の形態では冷却パワーを再生光パワーとした場合について示した 力 冷却パワーが 0からバイアスパワーより小さいパワーの場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列の第 2のパヮ一がバイァスパヮ一の場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Αの場合につ いて示したが、 図 4の記録パルス列 B、 C , Dの場合にも同様な結果が得られた。
(実施の形態 8 )
本実施の形態では、 予め決められた長さ以下のマークを記録する場合にのみ、 一定の冷却パワー照射時問および一定の冷却パワー開始時間の冷却パルスを付加 する場合について税明する。
ぞれぞれの記録波形とジッタをそれぞれ (表 15) 、 (表 16) に示す。 なお、 測定条件は実施の形態 3と同じである。
【表 15】
Figure imgf000041_0001
【表 16】 記録波形 8一 1 8 -2 8 - 3 - シッタ 1 1. 6% 8. 7 % 9. 8 % (表 1 5 ) では、 3 T〜 1 1 Tまでの各マーク長のマークを記録する場合の冷 却パワー照射時間と冷却パワー開始時間とを、 3種類の記録波形毎に示してある。 本実施の形態では、 図 4の記録パルス列 Αを用いた。
(表 1 5 ) の記録波形 8—1は、 図 1の記録波形 Hのように冷却パルスを付加 しない場合である。 記録波形 8— 2は、 図 1の記録波形 Jのように記録するマー ク長が 3 T〜 6 Tの場合のみ記録パルス列照射後バイアスパワーでの照射を行い、 その後、 冷却パワーでの照射を行う場合である。 但し、 マーク長が 3 Τ〜6 Τま での場合、 冷却パワー照射時間を 0 . 4 3丁、 冷却パヮ一開始時間は 0 . 0 8 Τ とした冷却パルスを付加した場合である。 また、 記録波形 8— 3は、 記録するマ —ク長が 3 Τの場合のみ冷却パワー照射時間を 0 . 4 3 Τ、 冷却パワー開始時間 は 0 . 0 8と一定とした冷却パルスを付加した場合である。
- (表 1 6 ) 力 、 記録波形 8— 1の場合には、 他の記録波形と比べてジッタが 悪くなつている。 一方、 本願発明による予め決められたマーク長以下のマークを 記録する時のみ、 冷却パルス幅および開始時間を一定にした冷却パルスを付加し た記録波形 8— 2を用いた場合には、 記録波形 8— 1の場合よりもジッタが改善 されている。 また、 本願発明による最短マーク長のマークを記録する時のみ冷却 パルスを付加した記録波形 8— 3を用いた場合には、 記録波形 8— 2には劣るも のの、 記録波形 8— 1に比べてジッタが改善されている。
以上のように、 予め決められたマーク長以下のマークを記録する時のみ冷却パ ルス幅および開始時間を一定とした冷却パルスを付加することにより、 ジッタの 小さい記録が可能となる。 この記録波形では、 記録回路的にも簡素になりコスト の面からも良いと考えられる。
なお、 本実施の形態では冷却パワーを再生光パワーとした場合について示した が、 冷却パワーが 0からバイアスパワーより小さいパワーの場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列の第 2のパヮ一がバイァスパヮ一の場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの場合につ いて示したが、 図 4の記録パルス列 B、 C、 Dの場合にも同様な結果が得られた。
(実施の形態 9)
本実施の形態では、 光ディスクを角速度一定で回転させた時、 ディスク內周部 において予め決められたマーク長さ以下のマークを記録する時のみ、 冷却パルス を付加する場合について説明する。
評価条件は、 ディスクの回転数 1000 r pm、 E FM信号を最短マーク長が 常に 0. 90 mとなるようにクロック Tを変えて、 1ビームオーバ一ライ トに より 100回記録し、 3Tから 11 Tまでの再生信号のゼロクロス点のジッタ値 : σ/Tw (%) を、 半径 23、 30、 37、 43、 50、 57 mmの位置で測 定した。 ここで σはジッタの標準偏差、 Twは検出系のウィンドウ幅である。 ま た、 この半径でのそれぞれの線速度は、 約 2. 4、 3. 1、 3. 9、 4. 5、 5. 2、 6. OmZsである。 なお、 その他の測定条件は実施の形態 3と同じである。 ぞれぞれの記録波形とジッタをそれぞれ (表 17 ) 、 (表 18 ) に示す。
(表 17) では、 3〜 11 Tまでの各マーク長のマークを記録する場合の冷却 パワー照射時間と冷却パヮー開始時間とを、 3種類の記録波形毎に示してある。 本実施の形態では、 図 4の記録パルス列 Aを用いた。 (表 17) の記録波形 9 - 1は、 図 1の記録波形 Hのように冷却パルスを付加しない場合である。 ほ 17】
Figure imgf000044_0001
【表 18】 半径 記録波形 9一 1 記録波形 9一 2 記録波形 9一 3
2 3mm 1 4. 0 % 1 1. 5 % 1 2. 8 %
30 mm 1 3. 3 % 9. 8 % 1 0. 8 %
3 7 mm 1 1. 8 % 9. 0 % 1 0. 0 %
4 3mm 1 0. 9 % 1 0. 5 % 1 0. 7%
5 0 mm 1 1. 4 % 1 2. 2 % 1 1. 8 %
5 7 mm 1 2. 3 % 1 3. 4 % 1 2. 5 % 記録波形 9— 2は、 3 T〜 6 Tマークを記録する時のみ、 図 1の記録波形 Jのよ うに記録パルス列照射後、 バイアスパワーでの照射を行い、 その後に冷却パヮ一 での照射を行う場合である。 但し、 その冷却パワー照射時間を 0 . 4 3丁、 冷却 パワー開始時間を 0 . 0 8 Tと均一である。 また、 7丁〜 1 1 Tマークを記録す る場合には、 冷却パルスは付加しない。 また、 記録波形 9一 3は、 3 Tマークを 除いて、 図 1の記録波形 Hのように冷却パルスを付加しない場合である。 但し、 3 Tマークを記録する時のみ冷却パワー照射時間を 0 . 4 3丁、 冷却パワー開始 時間を 0 . 0 8 Tとしている。
(表 1 8 ) ら、 記録波形 9一 1の場合には、 ジッタが他の記録波形に比べて 特に内周で悪くなつている。 一方、 短いマ一クを記録する時に冷却パルスを付カロ した記録波形 9一 2を用いた場合には、 ディスク內周部で記録波形 9一 1に比べ てジッタが改善されている。 また、 3 Tマークを記録する時のみ冷却パルスを付 加した記録波形 9— 3を用いた場合にも、 ディスク内周部で記録波形 9一 1に比 ベてジッタが改善されている。 従って、 例えば、 半径 3 7mm、 あるいは 4 3 mmま でのディスク內周部には、 記録波形 9一 2または 9— 3を用い、 それより外周部 には、 記録波形 9—1を用いればよい。
本願発明の様に、 ディスク内周部では記録波形 9一 2あるいは 9一 3を、 外周 部では冷却パルスを付加しない記録波形 9— 1をもちいることにより、 ディスク のどの半径においても良好なジッタが得られる。
以上のように、 光ディスクを角速度一定で回転させる場合、 所定の半径の内側 となるディスク內周部において、 予め決められたマーク長より短いマークを記録 する時のみ冷却パルスを付加することにより、 ディスクのどの半径においてもジ ッタの小さい良好な記録が可能となる。 この記録波形では、 記録回路的にも簡素 になりコストの面からも良いと考えられる。
なお、 本実施の形態では冷却パワーを再生光パワーとした場合について示した が、 冷却パヮ一が 0からバイアスパワーより小さレ、パヮ一の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列の第 2のパワーがバイアスパワーの場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの場合につ いて示したが、 図 4の記録パルス列 B、 C、 Dの場合にも同様な結果が得られた。
(実施の形態 1 0 )
本実施の形態では、 光ディスクを角速度一定で回転させた時、 ディスクの半径 に応じて冷却パワー照射時間、 冷却パワー開始時間を変化させた場合について説 明する。
ぞれぞれの記録波形とジッタをそれぞれ (表 1 9 ) 、 (表 2 0 ) に示す。 なお、 測定条件は実施の形態 9と同じである。
(表 1 9 ) では、 3〜1 1 Tまでの各マーク長のマークを記録する場合の冷却 パヮ一照射時間と冷却パヮ一開始時間とを、 3種類の記録波形毎に示してある。 本実施の形態では、 図 4の記録パルス列 Aを用いた。
(表 1 9 ) の記録波形 1 0— 1は、 図 1の記録波形 Hのように冷却パルスを付 加しない場合である。 記録波形 1 0— 2は、 図 1の記録波形 Iのように記録パル ス列照射直後、 冷却パワーでの照射を行う場合である。 但し、 その冷却バヮ一照 射時間は、 記録するマーク長により異なり、 マ一ク長が短いほど冷却パワー照射 時間が長くなつている。 【表 1 9】
Figure imgf000047_0001
【表 20】
半径 記録波形 1 0 - 1 錄波形 1 0 - 2 記録波形 1 0— 3
2 3 mm 1 4. 0 % 1 1. 5 % 1 1. 3 %
3 0 mm 1 3. 3 % 1 0. 2 % 1 0. 4 %
3 7 mm 1 1. 8 % 8. 0 % 8. 3 %
4 3 ram 1 0. 9 % 9. 9 % 1 0. 4 %
5 0 mm 1 1. 4 % 1 1. 9 % 1 2. 2 %
5 7 mm 1 2. 3 % 1 3. 5 % 1 4. 2 % また、 記録波形 1 0— 3は、 図 1の記録波形 Jのように記録パルス列の照射後、 バイアスパワーでの照射を行い、 その後冷却パワーでの照射を行う場合である。 但し、 その冷却パワー照射時間は 0 . 5 0 T、 冷却パワー開始時間は記録するマ ーク長により変化し、 そのマーク長が短いほど開始時間は早くなるものである。
(表 2 0 ) から、 記録波形 1 0— 1の場合には、 ジッタが内周で他の記録波形 に比べて悪くなつている。 一方、 記録波形 1 0— 2を用いた場合には、 記録波形 1 0 - 1に比べてディスク内周部ではジッタが改善されているが、 外周部ではジ ッタが逆に悪化している。 記録波形 1 0— 3を用いた場合には、 記録波形 1 0— 1に比べて、 ディスク內周部ではジッタが改善されているが、 外周部ではジッタ が逆に悪化している。 従って、 所定の半径より内側の領域、 例えば、 半径 4 3 mm までのディスク内周部には、 記録波形 1 0— 2または 1 0— 3を用い、 それより 外周部には、 記録波形 1 0— 1を用いればよい。
本願発明のようにディスク内周部では記録波形 1 0—2、 あるいは記録波形 1 0— 3を、 ディスク外周部では、 記録回路を簡素にする点からも記録波形 1 0— 1を用いることにより、 ディスクのどの半径においても良好なジッタが得られる。 以上のように、 光ディスクを角速度一定で回転させる場合、 ディスク内周部に おいて、 マーク長が短いほど冷却パワー照射時間を広げる、 あるいは冷却パワー 開始時間を早くすることにより、 ディスクのどの半径においてもジッタの小さい 記録が可能となる。
なお、 本実施の形態では冷却パワーを再生光パワーとした場合について示した 力 冷却パヮ一が 0からバイアスパワーより小さレ、パヮ一の場合にも同搽な結果 が得られた。
また、 本実施の形態では記録パルス列の第 2のパワーがバイアスパワーの場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの場合につ いて示したが、 図 4の記録パルス列 B、 C、 Dの場合にも同様な結果が得られた。
(実施の形態 1 1 )
種々の冷却パルスとしてのマーク後端補正パルス列を記録パルス列直後に付加 した場合について説明する。
本実施の形態では、 図 4の記録パルス列 Aを用いた。 そして、 その記録パルス 列直後に種々のマーク後端補正パルス列を付加した。 測定条件は実施の形態 3と 同じである。
本実施の形態でもちいた種々の記録波形を図 6をもちいて説明する。 但し、 図 6に 4i 6 Tマークを記録する場合の代表的な記録波形パターンを示す。
記録波形 1 1一 1は、 マーク後端補正パルス列を付加しない場合である。
記録波形 1 1一 2は、 記録パルス列直後に再生光パワーで 0 . 5 Tの期間レー ザ光を照射し、 その後バイアスパワーでレーザ光照射を行ったものである。
記録波形 1 1一 3は、 記録パルス列直後にバイアスパワーと再生光パワーの中 間レベルまでパワーを落として 0 . 2 5 Tの期間レーザ光を照射し、 その直後に 再生光パワーまでパワーを落として 0 . 2 5丁の期間レーザ光を照射するところ の、 マーク後端補正パルス列を付加し、 その後はバイアスパワーでレーザ光照射 を行ったものである。
記録波形 1 1—4は、 記録パルス列直後にバイアスパワーより 2 mW高いパヮ 一で 0 . 1 5 Tの期間レーザ光を照射し、 その直後に 0 . 3 5 Tの期間再生光パ ヮ一でレーザ光を照射するところの、 マーク後端補正パルス列を付加し、 その後 はバイアスパワーでレーザ光照射を行ったものである。
記録波形 11— 5は、 記録パルス列直後に再生光パワーで 0. 2Tの期間レー ザ光を照射し、 その直後、 0. 1 Tの期間バイアスパワーで照射し、 その直後、 再生光パワーで 0. 2 Tの期間照射するところの、 マーク後端補正パルス列を付 加し、 その後は、 バイアスパワーでのレーザ光照射を行ったものである。
記録波形 11一 6は、 記録パルス列直後から 0. 2Tの期間をかけて、 バイァ スパワーから再生光パワーまで連続的にパワーを落としていき、 再生光パワーで 0. 3 Tの期間照射するところの、 マーク後端補正パルス列を付加し、 その後は バイアスパワーでレーザ光照射を行ったものである。
記録波形 11一 7は、 記録パルス列直後から 0. 25Tの期間をかけて、 バイ ァスパワーから再生光パワーまで連続的にパワーを落としていき、 その後 0. 2 5 T0期間をかけて、 再生光パワーからバイアスパワーまで連続的にパワーを上 げるところの、 マーク後端補正パルス列を付加し、 その後はバイアスパワーでレ —ザ光照射を行ったものである。 ぞれぞれの記録波形と、 100回オーバ一ライ ト後のジッタ値を (表 21) に示す。
【表 21】 記録波形 ジッ夕
記録波形 1 1 一 1 1 1. 6 %
記録波形 1 1 一 2 9. 6 %
記録波形 1 1一 3 7. 8 %
記録波形 1 1 — 4 8. 4 %
記録波形 1 1 一 5 8. 7 %
記録波形 1 1 — 6 8. 0 %
記録波形 1 1一 7 8. 4 % (表 2 1 ) から記録波形 1 1—1に比べ、 記録波形 1 1—2のように記録マー ク後端補正パルスとしてバイアスパワーよりも低い (冷却パワーとも称される) 再生パワーでのレーザ光照射を付加した方が、 1 0 0回オーバ一ライ ト後のジッ タ値が改善している。
一方、 本発明のように、 マーク後端補正パルス列を加えた記録波形 1 1一 3、 1 1—4、 1 1 - 5 , 1 1— 6、 1 1一 7では、 マーク前端部 '後端部での対称 性がより良好に制御されているため、 記録波形 1 4一 2よりさらにジッタが改善 している。
以上のように、 記録パルス列後にマーク後端補正パルス列を付加することによ り、 1 0 0回オーバーライトでのジッタが良好な記録が可能となる。
なお、 本実施の形態では、 マーク後端補正パルス列のパワーを 2段階に変化さ せた-場合を示したが、 前記パワーを 3段喈以上にした場合にも同様な結果が得ら ることは勿論である。
また、 本実施の形態では、 冷却パワーを再生光パワーとした場合について示し たが、 冷却パワーを 0からバイアスパワーより小さいパワーに設定した場合にも 同様な結果が得られた。
また、 本実施の形態では、 記録パルス列の第 2のパワーがバイアスパワーの場 合について示したが、 第 2のパワーが 0以上記録パワー未満の場合にも同様な結 果が得られた。
(実施の形態 1 2 )
次に、 記録パルス列とマーク後端補正パルス列間にバイアスパワーでのレーザ 光照射を行った場合について説明する。
本実施の形態では、 図 4の記録パルス列 Aをもちいた。 また、 測定条件は実施 の形態 1 1とおなじである。
本実施の形態でもちいた種々の記録波形を図 7をもちいて説明する。 但し、 図
7には 6 Tマークを記録する場合の代表的な記録波形パターンを示す。
記録波形 1 2— 1は、 実施の形態 1 1の記録波形 1 1一 3と同じ記録波形であ る。
—方、 本願発明の記録パルス列とマーク後端補正パルス列との間にバイアスパ ヮ一でのレーザ光照射を行った記録波形 1 2— 2は、 記録パルス列後にバイアス パワーでのレーザ光照射を 0 . 2 Tの期間行って、 その後、 バイアスパワーと再 生パワーの中閒までパワーを落として 0 . 2 5 Tの期間レーザ光を照射し、 その 直後に再生パワーまでパワーを落として 0 . 2 5 Tの期間レーザ光を照射し、 そ の後はバイアスパワーでレーザ光照射を行ったものである。
ぞれぞれの記録波形と、 1 0 0回ォ一バーライ ト後のジッタ値を (表 2 2 ) に 示す。
【表 2 2】
Figure imgf000052_0001
(表 2 2 ) から、 本発明のように、 記録パルス列とマーク後端補正パルス列と の間にバイアスパワーでのレ一ザ光照射を行った記録波形 1 2— 2では、 マーク 前端部と後端部との対称性が良くなつているため、 記録波形 1 2— 1よりさらに ジッタが改善している。
以上のように、 記録パルス列とマーク後端補正パルス列間にバイアスパワーで のレーザ光照射を行うことにより、 1 0 0回オーバーライ ト後のジッタが良好な 記録が可能となる。
なお、 本実施の形態ではマーク後端補正パルス列のパワーを 2段階に変化させ た場合を示したが、 前記パワーを 3段階以上にした場合や、 レーザ光を記録パル ス列直後から連続的にバイアスパワーより小さいパワーまで変化させる期間を有 したマーク後端補正パルス列の場合にも同様な結果が得られること勿論である。 また、 本実施の形態では、 記録パルス列として図 4の記録パルス列 Aの場合に ついて示したが、 図 4の記録パルス列 B、 C、 Dの場合にも同様な結果が得られ た。 - また、 本実施の形態では、 冷却パワーを再生光パワーとした場合について示し たが、 冷却パヮーを 0からバイアスパワーより小さいパヮ一に設定した場合にも 同様な結果が得られた。
また、 本実施の形態では、 記録パルス列の第 2のパワーがバイアスパワーの場 合について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結 果が得られた。
(実施の形態 1 3 )
次に、 種々の記録パルス列にマーク後端補正パルス列を付加した場合について 説明する。
本実施の形態でもちいた種々の記録波形を図 8をもちいて説明する。 但し、 図 8には 6 Tマークを記録する場合の代表的な記録波形パターンを示す。 なお、 測定条件は実施の形態 1 1とおなじてある。
記録波形 1 3— 1、 2、 3の記録パルス列は、 先述した図 4の記録パルス列 B である。
記録波形 1 3—1は、 マーク後端補正パルス列を付加しない場合である。 記録波形 1 3— 2は、 記録パルス列直後に再生光パワーで 0 . 5 Tの期間レー ザ光を照射し、 その後バイアスパワーでレーザ光照射を行ったものである。 記録波形 1 3— 3は、 記録パルス列直後にバイアスレベルと再生光パワーとの 中間レベルまでパワーを落として 0 . 2 5 Tの期間レーザ光を照射し、 その直後 に再生光パワーまでパワーを落として 0 . 2 5 Tの期間レーザ光を照射するとこ ろの、 マーク後端補正パルス列を付加し、 その後はバイアスパワーでレーザ光照 射をおこなったものである。
記録波形 1 3— 4、 5、 6は、 先述した図 4の記録パルス列 Cであり、 記録波形 1 3— 4は、 マーク後端補正パルス列を付加しない場合、
記録波形 1 3— 5は、 記録パルス列直後に再生光パワーで 0 . 5 Tの期間レ一 ザ光を照射し、 その後バイアスパワーでレーザ光照射を行った場合、
記録波形 1 3— 6は、 記録パルス列直後に記録波形 1 3— 3と同じマーク後端 補正パルス列を付加し、 その後はバイァスパワーでレーザ光照射をおこなった場 合である。
記録波形 1 3— 7、 8、 9は、 先述した図 4の記録パルス列 Dであり、 記録波形 1 3— 7は、 マーク後端補正パルス列を付加しない場合、
記録波形 1 3— 8は、 記録パルス列直後に再生光パワーで 0 . 5 Tの期間レ一 ザ光を照射し、 その後バイアスパワーでレーザ光照射を行つた場合、
記録波形 1 3— 9は、 記録パルス列直後に記録波形 1 3— 3と同じマーク後端 補正パルス列を付加し、 その後はバイアスパワーでレーザ光照射をおこなった場 合である。
ぞれぞれの記録波形と、 1 0 0回オーバーライト後のジッタ値を (表 2 3 ) に 示す。
【表 2 3】
Figure imgf000055_0001
(表 2 3 ) から、 記録波形 1 3—1に比べ、 記録波形 1 3— 2のように記録パ ルス列直後に再生パワーでのレーザ光照射を付加した方が、 1 0 0回オーバ一ラ ィ ト後でのジッタ値が改善している。
—方、 本発明のように、 マーク後端補正パルス列を加えた記録波形 1 3— 3で は、 記録波形 1 3— 2と比較してもジッタが小さい。 この様に図 4の記録パルス 列 Bにおいても、 マーク後端補正パルス列を付加した方がマーク前端部 ·後端部 での対称性がよくなつているためジッタが改善している。
同様に、 図 4の記録パルス列 C、 Dの場合にも、 マーク後端補正パルス列を付 加した方がマーク前端部 ·後端部での対称性がよくなつているためジッタが改善 している。
以上のように、 図 4の記録パルス B、 C、 Dにマーク後端補正パルス列を付加 することにより、 1 0 0回オーバーライ ト後のジッタが良好な記録が可能となる。 なお、 本実施の形態では、 マーク後端補正パルス列のパワーを 2段喈に変化さ せた場合を示したが、 前記パワーを 3段階以上にした場合や、 レーザ光を記録パ ルス列直後から連続的にバイァスパワーより小さいパワーまで変化させる期間を 有じたマーク後端補正パルス列の場合にも同様な結果が得られること勿論である。 また、 本実施の形態では、 冷却パワーを再生光パワーとした場合について示し たが、 冷却パヮ一が 0からバイアスパワーより小さいパヮ一の場合にも同様な結 果が得られた。
また、 本実施の形態では、 記録パルス列の第 2のパワーがバイアスパワーの場 合について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結 果が得られた。
(実施の形態 1 4 )
次に、 記録マーク長によってマーク後端補正パルス列開始時閒を変化させた場 合について説明する。
本実施の形態では、 実施の形態 1 1とおなじ測定条件である。 また、 本実施の 形態では図 4の記録パルス列 Aをもちいた。 55 本実施の形態でもちいた種々の記録波形を (表 2 4 ) をもちいて説明する, 【表 2 4】
Figure imgf000057_0001
記録波形 1 4一 1は、 記録マーク長によらず、 記録パルス列直後にバイアスレ ベルと再生光パワーとの中間レベルまでパワーを落として 0 . 2 5 Tの期間レ一 ザ光を照射し、 その直後に再生光パワーまでパワーを落として 0 . 2 5 Tの期間 レーザ光を照射し、 その後はバイアスパワーでレーザ光照射をおこなったもので ある。
記録波形 1 4一 2は、 記録波形 1 4一 1と同じマーク後端補正パルス列を有し、 そのマーク後端補正パルス列の開始時間は 1 1丁マークを記録する場合が ο · 8 Tであり、 マーク長が短いほど開始時間を 0 . 1 Tずつ早くしていき、 3 Τマ一 クを記録する場合には、 記録パルス列直後にマーク後端補正パルス列を付加し、 その後はバイアスパワーでレーザ光照射をおこなったものである。
ぞれぞれの記録波形と、 1 0 0回オーバ一ライ ト後のジッタ値を (表 2 5 ) に 示す。
【表 2 5】
Figure imgf000058_0001
2 5 ) から、 本発明のように、 マーク後端補正パルス列開始時間をマーク 長によって、 変化させた記録波形 1 4— 2では、 記録波形 1 4一 1に比べて全マ —ク長でマーク前端部 ·後端部での対称性が良くなつてジ'ンタがさらに改善して いる。
以上のように、 マーク後端補正パルス列開始時間を、 記録するマーク長に応じ て変化させることにより、 1 0 0回オーバーライト後のジッタが良好な記録が可 能となる。
なお、 本実施の形態では、 マーク後端捕正パルス列のパワーを 2段階に変化さ せた場合を示したが、 前記パワーを 3段喈以上にした場合や、 レーザ光を記録バ ルス列直後から連続的にバイアスパワーより小さいパワーまで変化させる期間を 有したマーク後端補正パルス列の場合にも同様な結果が得られること勿論である c また、 本実施の形態では冷却パワーを再生光パワーとした場合について示した が、 冷却パワーが 0からバイアスパワーより小さいパワーの場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列の第 2のパワーがバイアスパワーの場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの場合につ いて示したが、 図 4の記録パルス列 B、 C、 Dの場合にも同様な結果が得られた。
(実施の形態 1 5 )
次に、 記録マーク長によってマーク後端補正パルス列のパルス形状を変化させ た場合について説明する。
本実施の形態では、 記録パルス列 (図 4の記録パルス列 A) をもちいた。 また、 測定条件も実施の形態 1 1とおなじである。
本実施の形態でもちいた種々の記録波形を図 9をもちいて説明する。 但し、 図 9の記録波形 1 5— 1には、 6 Tマークを記録する場合の代表的な記録波形バタ ーンを示す。 また、 記録波形 1 5— 2には、 3〜 1 1 Tまでのマーク長のうち、 3〜 5 Tと 1 0、 1 1 Tについてのみ記録波形パターンを示す。
記録波形 1 5— 1は、 実施の形態 1 1の記録波形 1 1— 3と同じである。
記録波形 1 5— 2は、 本願発明のように、 記録パルス列直後のパワーを記録マ —ク長が短いほど小さくなるように変化させたものである。 具体的には 3 Tマー クを記録する場合は再生光パワー、 4 Tマークでは再生光よりバイアスパワーと 再生光パヮ一との間の 8分の 1の大きいパワーと、 マーク長が長くなるほど順々 にパヮ一を大きくし、 0 . 2 5 Tの期間そのパワーでレ一ザ光を照射し、 その直 後に再生光パワーまでパワーを落として 0 . 2 5 Tの期間レーザ光を照射すると ころの、 マーク後端補正パルス列を付加し、 その後はバイアスパワーでレーザ光 照射をおこなったものである。
ぞれぞれの記録波形と、 1 0 0回オーバ一ライト後のジッタ値を (表 2 6 ) に 示す。
【表 2 6】
Figure imgf000060_0001
(表 2 6 ) から、 本発明の記録波形 1 5— 2のように、 記録マーク長に応じて マーク後端補正パルス列の形状を変化させた記録波形では、 記録波形 1 5— 1に 比べて 1 0 0サイクルでのジッタ値が改善している。
以上のように、 マーク後端補正パルス列のパルス形状を、 記録するマーク長に 応じて変化させることにより、 マーク前端部と後端部との対称性がよくなり再生 信号品質が良好な記録が可能となる。
なお、 本実施の形態では、 マーク後端補正パルス列のパワーを 2段階に変化さ せた場合を示したが、 前記パワーを 3段階以上にした場合や、 レーザ光を記録パ ルス列直後から連続的にバイアスパワーより小さいパワーまで変化させる期間を 有したマーク後端補正パルス列の場合にも同様な結果が得られること勿論である。 また、 本実施の形態では冷却パワーを再生光パワーとした場合について示した 力 冷却パワーが 0からバイアスパワーより小さいパワーの場合にも同様な結果 が得られた。 また、 本実施の形態では記録パルス列の第 2のパワーがバイアスパワーの場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの場合につ いて示したが、 図 4の記録パルス列 B、 C、 Dの場合にも同様な結果が得られた。
(実施の形態 16)
次に、 光ディスクを角速度一定で回転させた場合、 ディスクの半径方向の位置 に応じてマーク後端補正パルス列の開始時間を変ィ匕させた場合について説明する。 また、 ディスクの回転数を 1000 r pm、 半径に応じて E FM信号を最短マ —ク長が常に 0· 9 Oumとなるようにクロック Tを変えた。
本実施の形態では、 実施の形態 11とおなじ記録パルス列 (図 4の記録パルス 列 A) をもちいた。
本実施の形態でもちいた種々の記録波形を (表 27) を用いて説明する。
【表 27】 記録波形 記録パルス列からのマーク後端補正パルス列開始時間
1 6 - 1
1 6 - 2 0 T
内周 0 T
1 6 - 3 中周 0. 2 T
外周 0. 5 T 記録波形 1 6— 1は、 マーク後端補正パルス列を付加しない場合である。 記録波形 1 6— 2は、 実施の形態 1 1の記録波形 1 1一 3と同じである。 記録波形 1 6— 3も、 実施の形態 1 1の記録波形 1 1一 3と同じマーク後端補 正パルス列を有しているが、 本願発明のようにそのマーク後端補正パルス列の開 始時間がディスク半径位置が内周側ほど短くしたものである。 具体的には、 半径 が 23〜 34mmまではマーク後端補正パルス列は記録パルス列直後に付加し、 35〜4 6 mmまではマーク後端補正パルス列開始時間を 0. 2丁遅らせ、 4 7 〜5 7 mmまではマーク後端補正パルス列開始時間を 0. 5 T遅らせた。 それぞれの記録波形と、 1 00回オーバーライ ト後のジッタ値を (表 28) に 示す。 なお、 測定は内周が 26mm、 中周が 38mm、 外周が 5 Ommの各半径 でお-こなった。 また、 この半径でのそれぞれの線速度は約 2. 7、 4. 0、 5. 2m/ sである。 また、 その他の測定条件は実施の形態 1 1と同じとした。 【表 28】
ジッタ
記録波形
内周 中周 外周
1 6 - 1 1 3. 5 % 1 1. 6 % 1 1. 4 %
1 6 - 2 9. 0 % 7. 8 % 9. 3 %
1 6 - 3 9. 0 % 6. 7 % 8. 0 % (表 2 8 ) から、 記録波形 1 6— 1では、 熱のこもりのためジッタが悪化して いるが、 記録波形 1 6— 2のようにマーク後端補正パルス列を付加すると、 熱の こもりがなくなるため、 1 0 0回オーバーライ トでのジッタ値がディスクの全周 にわたつて改善している。
一方、 本発明のように、 マーク後端補正パルス列開始時間をディスク半径方向 位置によって変化させた記録波形 1 6— 3では、 中外周部で熱制御をさらに細か くおこなったためジッタもさらに改善している。
以上のように、 マーク後端補正パルス列開始時間をディスク半径位置に応じて 変化させることにより、 1 0 0回オーバーライ トでのジッタが良好な記録が可能 となる。
なお、 本実施の形態では、 マーク後端補正パルス列のパワーを 2段階に変化さ せた場合を示したが、 前記パワーを 3段階以上にした場合や、 レーザ光を記録パ ルス列直後から連続的にバイアスパワーより小さいパワーまで変化させる期間を 有したマーク後端補正パルス列の場合にも同様な結果が得られること勿論である。 また、 本実施の形態では冷却パワーを再生光パワーとした場合について示した 力 冷却パワーが 0からバイアスパワーより小さいパワーの場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列の第 2のパワーがバイアスパワーの場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの場合につ いて示したが、 図 4の記録パルス列 B、 C、 Dの場合にも同様な結果が得られた。
(実施の形態 1 7 ) 次に、 光ディスクを角速度一定で回転させた時、 ディスクの半径方向の位置に よってマーク後端補正パルス列の形状を変化した場合について説明する。
本実施の形態では、 実施の形態 1 1とおなじ記録パルス列 (図 4の記録パルス 列 A) を用いた。
また、 実施の形態 1 6とおなじ測定条件である。
本実施の形態でもちいた記録波形を図 1 0をもちいて説明する。 伹し、 図 1 0 には 6 Tマークを記録する場合の代表的な記録パルス列パターンを示す。 また、 記録波形 1 7— 2では、 ディスク内、 中、 外周での記録波形を示す。
記録波形 1 7— 1は、 ディスクの半径方向の位置によらずマーク後端補正パル ス列の形状は同じであり、 その記録波形は実施の形態 1 1の記録波形 1 1一 3と 同じである。
記録波形 1 7— 2は、 記録パルス列直後のマーク後端補正パルス列のパワーを ディスク半径方向の位置が内周側にあるほど小さくなるように変化させたもので ある。 具体的には、 記録パルス列直後のパワーをそれぞれ、 半径が 2 3〜3 4 m mまでは再生光パワーより l mW高いパワー、 3 5〜4 6 mmまではバイアスパ ヮ一と再生光パワーの中間のパワー、 4 7〜 5 7 mmまではバイアスパワーより l mW低いパワーとし、 0 . 2 5 Tの期間そのパワーでレーザ光を照射し、 その 直後に再生光パワーまでパワーを落として 0 . 2 5 Tの期間レーザ光を照射する ところの、 マーク後端補正パルス列を付加し、 その後はバイアスパワーでレーザ 光照射をおこなったものである。
ぞれぞれの記録波形と、 1 0 0回オーバーライト後のジッタ値を (表 2 9 ) に 示す。 【表 2 9】
Figure imgf000065_0001
(表 2 9 ) から、 本発明のように、 記録パルス列直後のマーク後端補正パルス 列のパワーをディスクの内周側ほど小さくした記録波形 1 7— 2では、 内外周部 においてマーク前端部 ·後端部での対称性がよいためジッタが記録波形 1 7—1 に比べて改善している。
上のように、 マーク後端補正パルス列のパルス形状をディスクの半径方向の 位置に応じて変化させることにより、 1 0 0回オーバーライ ト後のジッタが良好 な記録が可能となる。
なお、 本実施の形態ではマーク後端補正パルス列のパワーを 2段階に変化させ た場合を示したが、 前記パワーを 3段階以上にした場合や、 レーザ光を記録パル ス列直後から連続的にバイアスパワーより小さいパワーまで変化させる期間を有 したマーク後端補正パルス列の場合にも同様な結果が得られること勿論である。 また、 本実施の形態では冷却パワーを再生光パワーとした場合について示した 冷却パワーが 0からバイアスパワーより小さいパワーの場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列の第 2のパワーがバイアスパワーの場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列として図 4の記録パルス列 Aの場合につ いて示したが、 図 4の記録パルス列 B、 C、 Dの場合にも同様な結果が得られた。
(実施の形態 1 8 )
まず、 本発明の內、 記録パルス列の終端パルスから、 冷却パワーでのレーザ光 照射を開始するまでの時間が一定である場合の動作の説明を、 図 1 1のディスク 記録装 のプロック図、 図 1 2の各部の信号波形図を用いて行う。
なお、 本実施の形態では、 データ 1はクロック単位の長さで、 クロックの 2周 期以上の H i期間、 および L 0期間を持つ PWMデータ (図 1 2 a ) とし、 デ一 タの H i期間をディスク上でマーク、 L o期間をスペースに対応させて記録する。 また、 始端パルス 3および終端パルス 7の幅はクロックの 1周期、 1つのバー ストパルス 2 7の幅はク口ックの 2分の 1周期とする。
冷却パルス幅はクロックの 2分の 1周期、 記録パルス列の終端パルスから冷却 パワーでのレーザ光照射開始までの時間もクロックの 2分の 1周期とした。
更に、 マーク Zスペース長検出回路 8は、 高密度記録でマーク間の熱干渉が発 生するスペース長および再生系の周波数特性によって、 ピークシフ卜が発生する マークノスペース長について検出する。
本実施の形態では、 記録すべきデータ列に存在する最短の 2 Tマークおよび 2 Tスペースを検出するものとする。
まず、 始端パルス発生回路 2において、 データ 1の H i期間の始端部分に、 ク ロックの 1周期幅の始端パルス 3を発生する (図 1 2 b ) 。
バーストゲート発生回路 4において、 マークの中間位置に、 マーク長から 3ク ロック分減じた長さでバース トゲート信号 5を発生する。 但し、 マ一ク長が 3ク ロック以下の時は、 バーストゲート信号は発生しない (図 12 c) 。
終端パルス発生回路 6において、 データ 1の H i期間の終端部分に、 クロック の 1周期幅の終端パルス 7を発生する (図 12 e) 。
マーク スペース長検出回路 8において、 2クロック幅のデータ、 すなわち 2 Tマークと 2Tスペースを検出し、 2Tマークがきたときは、 2Tマークの始端 パルス終端パルスを含むように、 2クロック幅の 2 Tマーク信号 9を発生し (図 12 i) 、 2Τスペースがきたときは、 2 Τスペースの両端の終端パルス始端パ ルスを含むように、 4クロック幅の 2 Τスペース信号 10を発生する (図 12 g) エンコーダ 11において、 2 Tマーク信号 9と 2 Tスペース信号 10とにより、 始端パルス 3および終端パルス 7の属性を決定し、 セレク ト信号 12として出力 する。 すなわち、 3T以上のマークで 3T以上のスペースを n o r ma 1、 3 T 以上のマークで 2Τスペースを 2Τ s、 2 Tマークで 3 T以上のスペースを 2 T m、 2 Tマークで 2 Tスペースを 2 T s— 2 Tmという名称の 4種類の属性に分 類する (図 12 h) 。
次に、 始端用セレクタ 14において、 複数の始端設定値 13、 すなわち n o r m a 1の時の始端設定値、 2 T sの時の始端設定値、 2 Tmの時の始端設定値、 2T s— 2Tmの時の始端設定値の中から、 セレク 卜信号 12により 1つを選択 し、 選択始端設定値 15を出力する。
始端用サンプル Zホールド回路 16において、 始端パルス 3がきたときだけ更 新し、 始端パルス 3がこない時は、 前の値を保持してホールド始端設定値 39と して出力する (図 12 i) 。
そして、 始端用プログラマブルディレイライン 17において、 始端パルス 3は、 ホールド始端設定値 39に基づいた値の遅延時間の後に、 遅延始端パルス 18と して出力される (図 1 2 j ) 。
同様に、 終端用セレクタ 2 0において、 複数の終端設定 ^S l 9の中からセレク ト信号 1 2により 1つを選択し、 選択終端設定値 2 1を出力し、 終端用サンプル /ホールド回路 2 2において、 終端パルス 7がきたときだけ更新し、 終端パルス 7が来ない時は、 前の値を保持してホールド終端設定値 4 5として出力する (図 1 2 k ) 。
そして、 終端用プログラマブルディレイライン 2 3において、 終端パルス 7は、 ホールド終端設定値 4 5に基づいた値の遅延時間の後に、 遅延終端パルス 2 4と して出力される (図 1 2 1 ) 。
ここで遅延冷却パルス信号の出力について説明する。
冷却パルス発生回路 3 6において、 遅延終端パルスの立ち上がりのタイミング で、 -冷却パルスをクロックの 2分の 1周期分発生させる (図 1 2 η ) 。
次に、 冷却パルス用ディレイライン 3 7において、 冷却パルス発生回路 3 6か ら出力される冷却パルス 4 1を一定量遅延し、 冷却パルス信号 4 2が出力される
(図 1 2 0 ) 。
それをインバ一タ 3 8を通し、 H i と L oを反転した遅延冷却パルス信号 4 3 として出力する (図 1 2 p ) 。
更に、 ANDゲート 2 6において、 前記バース トゲート信号 5とクロック 2 5 との論理積をとり、 バース トパルス 2 7を発生する (図 1 2 m) 。
O Rゲート 2 8において、 遅延始端パルス 1 8とバース トパルス 2 7と遅延終 端パルス 2 4との論理和をとり、 記録信号 2 9を発生させる。
レ一ザダイオード 3 5は、 再生光電流源 3 2により、 相変化光ディスクの再生 光パワーを発光するようにバイアスが付加されている。 再生光電流源 3 2と並列にバイアスレベル電流源 3 1と記録レベル電流源 3 0 とを設け、 スィッチ 3 3により記録レベル電流源 3 0の電流を、 スィッチ 3 4に よりバイアスレベル電流源 3 1を 0 n Z o f f すると、 レ一ザダイォ一ド 3 5の 駆動電流が、 記録レベル電流、 バイアスレベル電流、 再生光レベル電流の 3者の 間でスィツチングできる。
すなわち、 このスィッチ 3 3を前記記録信号 2 9で、 スィッチ 3 4を遅延冷却 パルス信号 4 3で制御することにより、 レーザダイオード 3 5を記録パワー、 バ ィァスパワー、 冷却パワーで切り換えながら発光させることができ、 レーザダイ オード 3 5を內蔵した光学へッドを用いて、 相変化光ディスクにマークおよびス ペースを冷却パルスを付加した記録方法で形成する (図 1 2 q ) 。
次に、 冷却パワーでの光照射開始のタイミングが、 クロックに基づいている場 合の遅延冷却パルス信号の作製方法を、 図 1 3のディスク装置のブロック図と図 1 4の各部の信号波形図を用いて説明する。
この場合には、 終端パルス発生回路 6から出力された終端パルスの立ち上がり と同じタイミングで、 冷却パルス発生回路 4 6から冷却パルス 4 8が出力される (図 1 4 f ) 。
冷却パルス用ディレイライン 3 7において、 遅延量が一定の遅延をほどこした 冷却パルスを出力する (図 1 4 ο ) 。
その他の動作原理については上記場合と同じである。
以上の一連の動作で、 本実施の形態のディスク記録装置は、 冷却パワーでのレ 一ザ光照射を付加して、 マークの始端部分と終端部分との位置を記録するマーク 長、 および当該記録するマーク長の前後のスペース長に応じてそれぞれ変化させ、 データに対応したマークおよびスペースを記録することができる。 なお、 本実施の形態では (1— 7) RLLコード信号記録を想定し、 マーク/ スペース長検出回路では最短反転間隔である 2 Tマーク、 2 Tスペースと 2T以 上のマークとスペースの 4パターンで示したが、 さらに 3 T以上についても分類 することでさらに各マークのエッジ位置精度を高めることができる。
また、 始端パルス、 終端パルスは 1T幅、 バース トパルスは 0. 5T幅とした 力 S、 記録薄膜あるいは記録媒体と光スポッ トとの相対速度等により、 最適なパル ス幅を選択することも可能である。
また、 冷却パルス幅は一定値の 0 · 5 Tとしたが、 マーク長あるいはマーク間 隔に応じて変化させることによりさらに、 トータルエネルギーを低減させること も可能である。
光ディスクの評価条件は、 レーザ一光の波長が 680 nm、 記録装 gの記録再 生に-用いる光学ヘッ ドの対物レンズの N Aを 0. 55とし、 (1— 7) RLL信 号を最短マーク長が 0. 60 μπιとなるようにクロック Tを設定し、 記録した時 の 2 Tから 8 Tまでの再生信号のゼロクロス点のジッタ値: asumZTw (%) を 測定した。 ここで σ sumは 2 Tから 8 Tまでのジッタの総和の標準偏差、 Twは検 出系のウィンドウ幅である。 線速度は、 4. Om/sである。
このディスクにおいて、 信号の記録は、 記録マーク長が 0. 6 / mとなる単一 周波数を記録したとき、 C/Nが飽和する記録パワーを記録パワーとし、 その 2 Tマークの信号を、 7 T相当の単一周波数でオーバーライ トした場合に、 消去率 がー 20 d Bを越えるパワーマージンの中央値のパヮ一を設定し、 バイアスパヮ 一とした。
ディスクのサイクル特性の判断としては、 2 Tから 8丁までの再生信号のゼロ クロス点のジッタ値: asuniノ Tw (%) が、 13%未満を満たすサイクル数によ り判断した。
図 1 5を用いて、 本実施の形態で用いた記録波形を説明する。 但し、 図 1 5に は 7 Tマークを記録する場合の代表的な記録波形パターンを示す。 記録波形 1 8 — 1〜3までは図 4の記録パルス列 B、 記録波形 1 8— 4〜7までは図 4の記録 パルス列 Cの記録パルス列をもちいている。
記録波形 1 8— 1は、 始端パルス幅 1 . 0 T、 終端パルス幅 1 . 0 Τ、 始端 - 終端パルス間では第 2パワーで 0 · 5 Τ、 第 1パワーで 0 . 5 Τ交互にレーザ光 を照射する記録パルスパルス列で、 かつ冷却パルスを付加しない場合である。 記録波形 1 8— 2は、 前記記録波形 1 8—1に記録マーク長に関わらず、 記録 パルス列の終端パルスの直後に、 冷却パワーでの照射時間が 0 . 5 Τである冷却 パルスを付加した場合である。
記録波形 1 8— 3は、 前記記録波形 1 8— 1に記録マーク長に関わらず、 冷却 パワーでの照射時間が 0 . 5 Τで、 記録パルス列の終端パルスの立ち下がりから 冷却パワーでのレーザ光照射開始までの時間が 0 . 5 Τと一定であるところの、 冷却パルスを付加した場合である。
記録波形 1 8— 4は、 記録波形 1 8—1で記録するマーク長および前後のマー ク間隔により、 記録パルス列の始端パルスと終端パルスとの位置が変化し、 かつ 冷却パルスを付力 []しない場合である。
記録波形 1 8— 5は、 記録波形 1 8— 4に記録マーク長に関わらず、 記録パル ス列の終端パルスの直後に、 冷却パワーでの照射時間が 0 . 5 Τである冷却パル スを付加した場合である。
記録波形 1 8— 6は、 記録波形 1 8— 4に記録マーク長に関わらず、 冷却パヮ 一での照射時間が 0 . 5 Τで、 記録パルス列の終端パルスの立ち上がりから冷却 パワーでのレーザ光照射開始までの時間が 1 . 5 Tと一定であるところの、 冷却 パルスを付加した場合である。
記録波形 1 8— 7は、 記録波形 1 8— 4に記録マーク長に関わらず、 冷却パヮ —での照射時間が 0 . 5丁で、 冷却パワーでの照射開始が、 サブパルス (始端パ ルスと終端パルスとの間のパルス) の最終端パルスの立ち上がりから 2 . 5丁と 一定に遅らせたところの、 冷却パルスを付加した場合である。 すなわち、 冷却パ ルス照射開始時間がク口ックに基づいている場合である。
ぞれぞれの記録波形と、 1 0 0サイクル後のジッタ値と、 ジッタ値が 1 3 %未 満を満たすサイクル数とを (表 3 0 ) に示す。
【表 3 0】
Figure imgf000072_0001
(表 3 0 ) から、 本願発明のように、 冷却パルスを付加した記録波形 1 8— 2 では、 冷却パルスを付加していない記録波形 1 8— 1に比べて、 熱的ダメージが 改善されたため、 ジッタ < 1 3 %を満たすサイクル数も良好なものとなっている。 また、 記録波形 1 8— 3の様に、 記録パルス列後に 0 . 5 Tバイアスパワーで のレーザ光照射を行うことで、 マーク前端部 ·後端部での対称性がより制御され るため、 記録波形 1 8— 2に比べてジッタが小さくなつている。
そして、 記録するマーク長および前後のマーク間隔により、 記録パルス列の始 端パルスと終端パルスとの位置が変化する場合にも、 本願発明のように、 冷却パ ルスを付加した記録波形 1 8— 5では、 冷却パルスを付加しない記録波形 1 8一 4に比べて、 熱的ダメージが改善されたため、 ジッタ < 1 3 %を満たすサイクル 数も良好なものとなっている。
さらに、 記録するマーク長および前後のマーク間隔により、 記録パルス列の始 端パルスと終端パルスとの位置が変化する場合、 しない場合よりも、 よりマーク 形状の制御が可能であるため、 ジッタが小さくなっている。
その上、 本顔発明の記録波形 1 8— 6、 1 8— 7のように、 記録パルス列の終 端パルスと冷却パワーでのレーザ光照射との間に、 バイアスパワーでの照射を行 うことにより、 1 0 0サイクルでのジッタ値も、 ジッタ < 1 3 %を満たすサイク ル数もさらに改善され、 記録パルス列直後に冷却パワーでのレーザ光照射を行う 記録波形 1 8— 5よりも良好な値が得られている。
以上のように、 冷却パワーでのレーザ光照射を行う、 記録パルス列の終端部と 冷却パワーでのレーザ光照射との間に、 バイアスパワーでのレ一ザ光照射を入れ ることにより、 1 0 0サイクルでのジッタおよび多サイクルを行った場合にも良 好な記録が可能となる。
また、 本実施の形態では冷却パワーを再生光パワーとした場合について示した 力 冷却パワーが 0からバイアスパワーより小さいパワーの場合にも同様な結果 が得られた。
また、 本実施の形態では記録パルス列の第 2のパワーがバイアスパワーの場合 について示したが、 第 2のパワーが 0以上記録パワー以下の場合にも同様な結果 が得られた。 産業上の利用可能性 本発明の記録方法により、 記録マーク間の熱干渉によるマーク長変動が抑制さ れ、 記録マーク前端部と後端部との対称性がよくなるため、 所望の記録マーク形 状が形成され、 光ディスクの高密度化やディスクの回転方式が角速度一定の場合 にも再生信号品質の向上が実現できる。 また、 多サイクルした場合の熱的ダメー ジによる信号劣化を軽減し、 良好なサイクル特性も実現できる。

Claims

請 求 の 範 囲
1 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記録 媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデジ タル信号を、 光ビームを用いてオーバーライ 卜する記録方法であって、 前記レー ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1のパ ヮ一と、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの間 で変調した複数のパルスからなる記録パルス列と、 前記記録パルス列後に、 レー ザ光パワーが前記記録パワー未満であるバイアスパワーよりもさらに低いパワー の冷却パワーでレーザ光照射する冷却パルスとを有する記録波形で、 レーザ光照 射することにより記録マークを形成する場合に、 前記記録パルス列の終端パルス の立下がり始点から前記冷却パヮ一に至るまでの間に段階的又は連続的にパヮ一 が変化する期間を有することを特徴とする光学的情報の記録方法。
2 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記録 媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデジ タル信号を、 光ビームを用いてオーバーライ 卜する記録方法であって、 前記レー ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1のパ ヮ一と、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの間 で変調した複数のパルスからなる記録パルス列と、 前記記録パルス列後に、 レー ザ光パヮ一が前記記録パヮ一未満であるバイァスパワーよりもさらに低いパヮ一 の冷却パワーでレーザ光照射する冷却パルスとを有する記録波形で、 レーザ光照 射することにより記録マークを形成する場合に、 前記記録パルス列と冷却パルス との間に前記バイアスパワーでのレ一ザ光照射を行うことを特徴とする光学的情 報の記録方法。
3 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記録 媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデジ タル信号を、 光ビームを用いてオーバーライ 卜する記録方法であって、 前記レー ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1のパ ヮ一と、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの間 で変調した複数のパルスからなる記録パルス列と、 前記記録パルス列後に、 レー ザ光パワーが前記記録パヮ一未満であるバイアスパワーよりもさらに低いパワー の冷却パワーでレーザ光照射する冷却パルスとを有する記録波形で、 レーザ光照 射することにより記録マークを形成する場合に、 前記記録マークの長さに応じて、 前記記録パルス列の終了時点に対する前記冷却パワーでのレーザ光照射開始時間、 または前記冷却パワーでのレーザ光照射時間の少なくとも何れか一方を変化させ ることを特徴とする光学的情報の記録方法。
4 . 前記冷却パワーでの前記レーザ光照射時問が、 長い記録マークを記録す る場合よりも短い記録マークを記録する場合の方を長くすることを特徴とする請 求項 3記載の光学的情報の記録方法。
5 . 前記冷却パワーでの前記レーザ光照射開始時間が、 長い記録マークを記 録する場合よりも短い記録マークを記録する場合の方を早くすることを特徴とす る請求項 3記載の光学的情報の記録方法。
6 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記録 媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデジ タル信号を、 光ビームを用いてオーバーライ 卜する記録方法であって、 前記レ一 ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1のパ ヮ一と、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの間 で変調した複数のパルスからなる記録パルス列と、 前記記録パルス列後に、 レー ザ光パワーが前記記録パワー未満であるバイアスパワーよりもさらに低いパワー の冷却パワーでレーザ光照射する冷却パルスとを有する記録波形で、 レーザ光照 射することにより記録マークを形成する場合に、 記録マークの長さが所定の長さ 以下の場合にのみ、 前記記録パルス列の終了時点に対する前記冷却パワーでのレ 一ザ光照射開始時間または前記冷却パワーでのレーザ光照射時間の少なくとも何 れか一方を変化させることを特徴とする光学的情報の記録方法。
7 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記録 媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデジ タル信号を、 光ビームを用いてオーバ一ライ トする記録方法であって、 前記レー ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1のパ ヮ一と、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの間 で変調した複数のパルスからなる記録パルス列と、 前記記録パルス列後に、 レー ザ光パワーが前記記録パワー未満であるバイアスパワーよりもさらに低いパヮ一 の冷却パワーでレーザ光照射する冷却パルスとを有する記録波形で、 レーザ光照 射することにより記録マークを形成する場合に、 前記記録パルス列と前記冷却パ ヮ一でのレーザ光照射との間に、 前記バイアスパワーでのレーザ光照射期間を設 け、 前記記録パルス列の終了時点に対する前記冷却パワーでのレーザ光照射開始 時間及び前記冷却パワーでのレーザ光照射時間をそれぞれ所定時間にし、 前記記 録マークの長さが所定の長さ以下の場合にのみ、 前記冷却パワーでのレーザ光照 射を行うことを特徴とする光学的情報の記録方法。
8 . 前記記録マークの長さが最短の場合にのみ、 前記冷却パワーでのレーザ 光照射を行うことを特徴とする請求項 7記載の光学的情報の記録方法。
9 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記録 媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデジ タル信号を、 光ビームを用いてオーバーライ トする記録方法であって、 前記レ一 ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1のパ ヮ一と、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの間 で変調した複数のパルスからなる記録パルス列と、 前記記録パルス列後に、 レ一 ザ光パワーが前記記録パワー未満であるバイアスパワーよりもさらに低いパヮ一 の冷却パワーでレーザ光照射する冷却パルスとを有する記録波形で、 レーザ光照 射することにより記録マークを形成する場合に、 前記光記録媒体を角速度一定で 回転駆動し、 前記光記録媒体の少なくとも所定の半径より内側の領域では、 前記 記録マークの長さが所定の長さよりも短い場合に前記冷却パワーレベルでの、 前 記記録パルス列終了時点に対するレーザ光照射開始時間を早くする力 またはレ —ザ光照射時間を長くするかの少なくとも何れかを選択することを特徴とする光 学的情報の記録方法。
1 0 . 光学的に識別可能な状態問で可逆的に変化する記録薄膜を有する光記 録媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデ ジタル信号を、 光ビームを用いてオーバーライ トする記録方法であって、 前記レ 一ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1の パワーと、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの 間で変調した複数のパルスからなる記録パルス列と、 前記記録パルス列後に、 レ —ザ光パワーが前記記録パヮ一未満であるバイアスパワーよりもさらに低いパヮ 一の冷却パワーでレーザ光照射する冷却パルスとを有する記録波形で、 レーザ光 照射することにより記録マークを形成する場合に、 前記光記録媒体を角速度一定 で回転駆動し、 前記記録マークの長さが所定の長さ以下の場合にのみ、 前記記録 パヮ一でのレーザ光照射終了時点に対する前記冷却パヮ一でのレーザ光照射開始 時間及び前記冷却パワーでのレーザ光照射時間をそれぞれ所定の時間にし、 前記 光記録媒体の少なくとも所定の半径より内側の領域では、 前記記録マークの長さ が所定の長さ以下の場合にのみ、 前記冷却パワーでのレーザ光照射を行うことを 特徴とする光学的情報の記録方法。
1 1 . 前記記録マークの長さが最短の場合にのみ、 前記冷却パワーでのレー ザ光照射を行うことを特徴とする請求項 1 0記載の光学的情報の記録方法。
1 2 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記 録媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデ ジタフレ信号を、 光ビームを用いてオーバーライトする記録方法であって、 前記レ 一ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1の パワーと、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの 間で変調した複数のパルスからなる記録パルス列を有する記録波形で、 レーザ光 照射することにより記録マークを形成し、 前記記録パルス列直後に、 レーザ光パ ヮ一が前記第 1のパワー未満であって少なくとも 2つ以上の異なったパワーを有 するレーザ光で構成されたパルス列からなる冷却パルスを付加し、 前記冷却パル スのパルス列のうち少なくとも 1つはバイアスパヮ一より小さいパワーであるこ とを特徴とする光学的情報の記録方法。
1 3 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記 録媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデ ジタル信号を、 光ビームを用いてオーバ一ライ卜する記録方法であって、 前記レ 一ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1の パワーと、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの 間で変調した複数のパルスからなる記録パルス列を有する記録波形で、 レーザ光 照射することにより記録マークを形成し、 前記記録パルス列直後からレーザ光を 連続的に前記第 2のパワーまたはバイアスパワーの何れか以下のパワーまで変化 させる期間を有した構成の冷却パルスを付加することを特徴とする光学的情報の 記録方法。
1 4 . 前記冷却パルスが、 レーザ光の予め設定した第 3のパワーと第 4のパ ヮ一より構成され、 前記第 3のパワーが前記第 4のパワーより大きく、 前記第 2 のパワーまたは前記バイアスパワーの何れかより小さいパワーであり、 前記記録 パルス列直後に前記第 3のパワーでのレーザ光照射を行い、 前記第 3のパワーで のレーザ光照射直後に前記第 4のパワーでのレーザ光照射を行うことを特徴とす る請求項 1 2記載の光学的情報の記録方法。
1 5 . 前記冷却パルスが、 レーザ光の予め設定した第 5のパワーと第 6のパ ヮ一より構成され、 前記第 5のパワーが前記バイアスパワーより大きく、 前記第 6のパワーが前記バイァスパワーより小さいパワーであり、 前記記録パルス列直 後に前記第 5のパワーでのレーザ光照射を行い、 前記第 5のパワーでのレーザ光 照射直後に前記第 6のパワーでのレーザ光照射を行うことを特微とする請求項 1 2記載の光学的情報の記録方法。
1 6 . 前記冷却パルスが、 レーザ光の予め設定した第 7のパワー、 第 8のパ ヮー、 及び第 9のパワーより構成され、 前記第 7のパワーと前記第 9のパワーが 何れも前記第 8のパワーより小さく、 前記第 7のパワーと第 9のパワーが前記第 2のパワーまたは前記バイアスパワーの何れかより小さいパワーであって、 前記 記録パルス列直後に前記第 7のパワーでのレーザ光照射を行い、 前記第 7のパヮ 一でのレーザ光照射直後に前記第 8のパワーでのレーザ光照射を行い、 前記第 8 のパワーでのレーザ光照射直後に前記第 9のパワーでのレーザ光照射を行うこと を特徴とする請求項 1 2記載の光学的情報の記録方法。
1 7 . 前記冷却パルスが、 レーザ光を前記記録パルス列直後から連続的に前 記第 2のパワーまたは前記バイァスパヮ一の何れかより小さいパワーまで変化さ せる期間と、 前記第 2のパワーまたは前記バイアスパワーの何れかより小さいパ ヮ一から、 レーザ光のパワーを連続的に前記第 2のパワーまたは前記バイアスパ ヮ一の何れかまで変化させる期間とを有していることを特徴とする請求項 1 3記 載の光学的情報の記録方法。
1 8 . 前記記録パルス列と前記冷却パルスとの間に、 前記第 2のパワーまた は前記バイ了スパヮ一の何れかでのレーザ光照射を行うことを特徴とする請求項 1 2〜1 7の何れかに記載の光学的情報の記録方法。
1 9 . 記録マーク長に応じて、 冷却パルス開始時間または前記冷却パルスの パルス形状の少なくとも何れか一方を変化させることを特徴とする請求項 1 2〜 1 7の何れかに記載の光学的情報の記録方法。
2 0 . 前記光記録媒体を角速度一定で回転させた場合に、 前記光記録媒体の 半径方向の位置に応じて、 冷却パルス開始時間または前記冷却パルスのパルス形 状の少なくとも何れか一方を変化させることを特徴とする請求項 1 2〜1 7の何 れかに記載の光学的情報の記録方法。
2 1 . 前記記録マークは、 予め設定した前記第 1のパワーと前記第 2のパヮ 一との間で変調した複数のパルス列から構成された記録パルス列でレーザ光照射 することにより形成し、 前記記録パルス列は、 前記記録パルス列の始端部分では 一定の第 1のパワーを照射し、 前記記録パルス列の始端部以外の部分は前記第 1 のパワーと前記第 2のパワーのレーザ光を、 データクロックの 1周期以下の周期 で交互に切り換えて照射するものであることを特徴とする請求項 1〜 2 0の何れ かに記載の光学的情報の記録方法。
2 2 . 前記記録マークは、 レーザ光を予め決められた前記第 1のパワーと前 記第 2のパワーとの間で変調した複数のパルス列から構成された記録パルス列で レーザ光照射することにより形成し、 前記記録パルス列は、 前記第 1のパワーと 前記第 2のパワーのレーザ光を、 データクロックの 1周期以下の周期で交互に切 り換えて照射するものであることを特徴とする請求項 1〜 2 0の何れかに記載の 光学的情報の記録方法。
2 3 . 記録マークは、 レーザ光を予め設定した第 1のパワーと第 2のパワー と^で変調した複数のパルス列から構成された記録パルス列でレーザ光照射す ることにより形成し、 前記レーザ光の前記第 1のパワーが前記第 2のパワーより 大きい場合、 前記記録パルス列の始端部分と終端部分は一定の前記第 1のパワー を照射し、 前記記録パルス列の始端 ·終端パルス間は前記第 1のパワーと前記第 2のパワーのレーザ光を、 デ一タク口ックの 1周期以下の周期で交互に切り換え て照射する記録パルス列であって、 前記記録パルス列直後に、 レーザ光パワーが 前記記録パワー未満であるバイアスパワーよりもさらに低いパワーである冷却パ ヮ一でレーザ光照射を行うことを特徴とする光学的情報の記録方法。
2 4 . 記録マーク長、 および記録マーク間隔によって、 前記記録パルス列の 始端部分と終端部分の位置を変化させる記録パルス列であることを特徴とする請 求項 2 3記載の光学的情報の記録方法。
2 5 . 前記記録マークは、 予め設定した前記第 1のパワーと前記第 2のパヮ 一との間で変調した複数のパルス列から構成された記録パルス列でレーザ光照射 することにより形成し、 前記記録パルス列は、 前記記録パルス列の始端都分と終 端部分は一定の前記第 1のパワーを照射し、 前記記録パルス列の始端 ·終端パル ス間は前記第 1のパワーと前記第 2のパワーのレーザ光を、 データクロックの 1 周期以下の周期で交互に切り換えて照射するものであることを特徴とする請求項 1〜 2 0の何れかに記載の光学的情報の記録方法。
2 6 . 前記記録マークは、 予め設定した前記第 1のパワーと前記第 2のパヮ 一との間で変調した複数のパルス列から構成された記録パルス列でレーザ光照射 することにより形成し、 前記記録パルス列は、 前記記録パルス列の始端部分と終 端部分は一定の前記第 1のパワーを照射し、 前記記録パルス列の始端 ·終端パル ス間は前記第 1のパワーと前記第 2のパヮ一のレーザ光を、 データクロックの 1 周期以下の周期で交互に切り換えて照射し、 記録マーク長、 および記録マーク間 隔によって、 前記記録パルス列の始端部分と終端部分の位置を変化させるもので あることを特徴とする請求項 1〜 2 0の何れかに記載の光学的情報の記録方法。
2 7 . 前記記録パルス列から前記冷却パワーでのレーザ光照射の間に前記バ ィァスパワーでのレーザ光照射をおこない、 前記記録パルス列の終端パルスのレ 一ザ光照射開始から、 前記冷却パワーでのレーザ光照射開始までの時間が一定で あることを特徴とする請求項 2 6記載の光学的情報の記録方法。
2 8 . 前記冷却パワーでのレーザ光照射の開始のタイミングが、 クロックに 基づくことを特徴とする請求項 2 6記載の光学的情報の記録方法。
2 9 . ディスク上でデータの H i期間をマーク、 L o期間をマーク間隔に対 応させて記録するディスク記録装置であって、 データの H i期間の始端位置に一 定幅の始端パルスを発生する始端パルス発生回路と、 データの H i期間が長い場 合は、 マークの中間位 Sにバーストゲート信号を発生し、 データの H i期間が短 い場合は、 バ一ストゲート信号を発生しないバーストゲート発生回路と、 データ の H i期間の終端位置に一定幅の終端パルスを発生する終端パルス発生回路と、 データの H i期間が nクロックの時、 前記始端パルスと終端パルスを含む n Tマ ーク信号を発生し、 データの L 0期間が mクロックの時、 スペース両端の前記終 端パルスと始端パルスとを含む m Tスペース信号を発生するマ一クノスペース長 検出回路 (ただし、 n , mはデータ列に存在する自然数) と、 前記 n Tマーク信 号と前記 m Tスペース信号とから、 後記始端用セレクタおよび後記終端用セレク タを制御するためのセレクト信号を発生するエンコーダと、 後記終端用プログラ マブルディレイラインからの遅延終端パルスから一定幅の冷却パルスを発生する 冷却パルス発生回路と、 前記セレクタ信号により、 複数の始端設定値から一つを 選 して出力する始端用セレクタと、 前記始端用セレクタの始端設定値出力を前 記始端パルスがきた時だけ更新し、 こないときは前の値を保持する始端用サンブ ル Zホールド回路と、 前記始端用サンブル Zホールド回路の出力の始端設定値で 遅延量を変化させて、 前記始端パルスを遅延させた遅延始端パルスを出力する始 端用プログラマブルディレイラインと、 前記セレクタ信号により複数の終端設定 値から一つを選択して出力する終端用セレクタと、 前記終端用セレクタの終端設 定値出力を前記終端パルスがきたときだけ更新し、 こないときは前の値を保持す る終端用サンブル ホールド回路と、 前記終端用サンプル ホールド回路の出力 の終端設定値で遅延量を変化させて、 前記終端パルスを遅延させて、 前記終端パ ルスを遅延させた遅延終端パルスを出力する終端用プログラマブルディレイライ ンと、 前記冷却パルスの遅延量を変化させ遅延冷却パルスを出力する冷却パルス 用ディレイラインと、 前記バーストパルスとク口ックの論理稜をとりバーストパ ルスを出力する AN Dゲートと、 前記遅延始端パルスと前記バーストパルスと前 記遅延終端パルスとの論理和をとり記録信号を出力する O Rゲートと、 前記冷却 パルス用ディレイラインからの冷却パルス信号を反転させるインバ一タと、 後記 レーザダイォードのバイアスバイアス電流を供給するバイアス電流源と、 前記バ ィァス電流源と並列に後記レーザダイォ一ドの記録電流を供給する記録電流源と、 前記バイアス電流源と並列に後記レーザダイオードに再生光電流を供給する再生 光電流源と、 前記記録電流源の電流を前記記録信号で O n ZO f f するスィッチ と、 前記バイアス電流源の電流を冷却パルス信号で O n ZO f fするスィッチと、 前記バイアス電流源と、 前記記録電流源と、 前記再生光電流源とで並列駆動され たディスク信号を記録するレーザダイォードとを備えたことを特徴とする光学的 情報の記録装置。
3'0 . ディスク上でデータの H i期間をマーク、 L o期間をマーク間隔に対 応させて記録するディスク記録装置であって、 データの H i期間の始端位置に一 定幅の始端パルスを発生する始端パルス発生回路と、 データの H i期間が長い場 合は、 マークの中間位置にバ一ストゲート信号を発生し、 データの H i期間が短 い場合は、 バーストゲート信号を発生しないバーストゲート発生回路と、 データ の H i期間の終 i¾置に一定幅の終端パルスを発生する終端パルス発生回路と、 データの H i期間が nクロックの時、 前記始端パルスと終端パルスとを含む n T マーク信号を発生し、 データの L 0期間が mクロックの時、 スペース両端の前記 終端パルスと始端パルスとを含む mTスペース信号を発生するマークノスペース 長検出回路 (ただし、 n , mはデータ列に存在する自然数) と、 前記 n Tマーク 信号と前記 m Tスペース信号とから後記始端用セレクタ、 および終端用セレクタ を制御するためのセレクト信号を発生するエンコーダと、 前記終端パルス発生回 路から出力された終端パルスから一定幅の冷却パルスを発生する冷却パルス発生 回路と、 前記セレクタ信号により複数の始端設定値から一つを選択して出力する 始端用セレクタと、 前記始端用セレクタの始端設定値出力を前記始端パルスがき た時だけ更新し、 こないときは前の値を保持する始端用サンプル Zホールド回路 と、 前記始端用サンブル/ホールド回路の出力の始端設定値で遅延量を変化させ て、 前記始端パルスを遅延させた遅延始端パルスを出力する始端用プログラマブ ルディレイラインと、 前記セレクタ信号により複数の終端設定値から一つを選択 して出力する終端用セレクタと、 前記終端用セレクタの終端設定値出力を前記終 端パルスがきたときだけ更新し、 こないときは前の値を保持する終端用サンプル ノホールド回路と、 前記終端用サンブルノホールド回路の出力の終端設定値で遅 延量を変化させて、 前記終端パルスを遅延させて、 前記終端パルスを遅延させた 遅延終端パルスを出力する終端用プログラマブルディレイラインと、 前記冷却パ ルス回路から出力される冷却パルスの遅延量を変化させて、 遅延冷却パルスを出 力する冷却パルス用ディレイラインと、 前記バーストゲート発生回路からのバ一 ストパルスとクロックとの論理積をとりバーストパルスを出力する ANDゲート と、 前記遅延始端パルスと前記バーストパルスと前記遅延終端パルスとの論理和 をとり記録信号を出力する O Rゲートと、 前記冷却パルス用ディレイラインから の遅延冷却パルス信号を反転させるィンバータと、 後記レーザダイォ一ドのバイ ァス電流を供給するバイアス電流源と、 前記バイアス電流源と並列に後記レーザ ダイォードの記録電流を供給する記録電流源と、 前記バイアス電流源と並列に後 記レーザダイォードに再生光電流を供給する再生光電流源と、 前記記録電流源の 電流を前記記録信号で O n /O ί f するスィッチと、 前記バイアス電流源の電流 を冷却パルス信号で O n /O f f するスィッチと、 前記バイアス電流源と、 前記 記録電流源と、 前記再生光電流源とで並列駆動されたディスク信号を記録するレ —ザダイオードとを備えたことを特徴とする光学的情報の記録装置。
3 1 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記 録媒体上に、 複数パワーのレーザ光を切り換えてパルス間隔を変調したデジタル 信号を光ビームを用いてオーバーライトする記録方法であって、 前記レーザ光を 前記記録薄膜を記録する記録パワー、 前記記録パワーよりも低いパワーのバイァ スパワー、 及び前記バイアスパワーよりも低いパワーの冷却パワーの少なくとも 3パヮ一の間で変調したパルスからなる記録波形で、 レーザ光照射することによ り記録マークを形成し、 前記記録マーク間は前記バイァスパヮ一で照射する記録 方法であって、 前記記録パワーでのレーザ光照射と前記冷却パワーでのレーザ光 照射との間に、 前記バイアスパワーでのレーザ光照射期間を設けたことを特徴と する光学的情報の記録方法。
3 2 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記 録媒体上に、 複数パワーのレーザ光を切り換えてパルス間隔を変調したデジタル 信号を光ビームを用いてオーバーライトする記録方法であって、 前記レーザ光を 前記記録薄膜を記録する記録パワー、 前記記録パワーよりも低いパワーのバイァ スパワー、 及び前記バイアスパワーより も低いパワーの冷却パワーの少なくとも 3パワーの間で変調したパルスからなる記録波形で、 レーザ光照射することによ り記録マークを形成し、 前記記録マーク間は前記バイァスパヮ一で照射する記録 方法であって、 前記記録パワーでのレーザ光照射と前記冷却パワーでのレーザ光 照射との間に、 前記バイアスパワーでのレーザ光照射期間を設け、 前記光記録媒 体の半径方向の位置に応じて、 前記記録パヮ一終了時点からの前記冷却パヮ一で のレーザ光照射開始時間を変化させることを特徴とする光学的情報の記録方法。
3 3 . 前記冷却パワーでの照射開始時間が、 前記光記録媒体の少なくとも所 定の半径より内側の領域では、 前記所定の半径より外側の領域よりも早いことを 特激とする請求項 3 2記載の光学的情報の記録方法。
3 4 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記 録媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデ ジタル信号を、 光ビームを用いてオーバ一ライトする記録方法であって、 前記レ —ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1の パワーと、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの 間で変調した複数のパルスからなる記録パルス列と、 前記記録パルス列直後に、 レーザ光パワーが前記記録パワー未満であるバイアスパワーよりもさらに低いパ ヮ一の冷却パヮ一でレーザ光照射する冷却パルスとを有する記録波形で、 レーザ 光照射することにより記録マークを形成する場合に、 前記冷却パワーから前記バ ィァスパワーに至るまでの間に段階的又は連続的にパワーが変化する期間を有す ることを特徴とする光学的情報の記録方法。
3 5 . 光学的に識別可能な状態間で可逆的に変化する記録薄膜を有する光記 録媒体上に、 複数パワーのレーザ光を切り換えて照射し、 パルス幅変調されたデ ジタル信号を、 光ビームを用いてオーバーライ卜する記録方法であって、 前記レ 一ザ光を前記記録薄膜を記録する記録パワー以上のパワーに予め設定した第 1の パワーと、 前記第 1のパワーよりも低いパワーに予め設定した第 2のパワーとの 間で変調した複数のパルスからなる記録パルス列と、 前記記録パルス列直後に、 レーザ光パワーが前記記録パワー未満であるバイアスパワーよりもさらに低いパ ヮ一の冷却パワーでレーザ光照射する冷却パルスとを有する記録波形で、 レーザ 光照射することにより記録マークを形成する場合に、 前記冷却パルスが、 前記バ ィァスパワーと前記冷却パワーを交互に繰り返し形成される複数のパルス列から なることを特徴とする光学的情報の記録方法。
PCT/JP1996/002897 1995-10-09 1996-10-04 Procede et dispositif d'enregistrement d'informations optiques WO1997014143A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP96932820A EP0797193B1 (en) 1995-10-09 1996-10-04 Method and device for recording optical information
MX9704098A MX9704098A (es) 1995-10-09 1996-10-04 Metodo de grabacion y unidad de grabacion de informacion optica.
JP51490497A JP4145958B2 (ja) 1995-10-09 1996-10-04 光学的情報の記録方法
DE69612833T DE69612833T2 (de) 1995-10-09 1996-10-04 Verfahren und vorrichtung zur aufnahme von optischer information
HK98104407A HK1005275A1 (en) 1995-10-09 1998-05-21 Method and device for recording optical information

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP26124695 1995-10-09
JP7/261246 1995-10-09
JP7/261262 1995-10-09
JP26126295 1995-10-09
JP8/195880 1996-07-25
JP19588096 1996-07-25

Publications (1)

Publication Number Publication Date
WO1997014143A1 true WO1997014143A1 (fr) 1997-04-17

Family

ID=27327159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002897 WO1997014143A1 (fr) 1995-10-09 1996-10-04 Procede et dispositif d'enregistrement d'informations optiques

Country Status (11)

Country Link
US (1) US5745467A (ja)
EP (5) EP0797193B1 (ja)
JP (2) JP4145958B2 (ja)
KR (1) KR100456957B1 (ja)
CN (3) CN1146869C (ja)
DE (5) DE69612833T2 (ja)
HK (1) HK1005275A1 (ja)
MX (1) MX9704098A (ja)
MY (1) MY113691A (ja)
TW (1) TW359812B (ja)
WO (1) WO1997014143A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6101159A (en) * 1998-09-14 2000-08-08 Matsushita Electric Industrial Co. Optical data recording method, and data recording medium
WO2002029791A1 (fr) * 2000-10-05 2002-04-11 Matsushita Electric Industrial Co., Ltd. Support d"enregistrement optique, procede d"enregistrement sur support d"enregistrement optique et appareil d"enregistrement sur support d"enregistrement optique
WO2003079336A1 (fr) * 2002-03-15 2003-09-25 Ricoh Company, Ltd. Dispositif d'enregistrement et procede d'enregistrement
US6654325B1 (en) 1999-08-09 2003-11-25 Hitachi, Ltd. Trial writing method and optical disk system using the same
US8144559B2 (en) 2006-06-12 2012-03-27 Hitachi, Ltd. Multiple pulse recording method with 3-valued power levels

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030440A2 (en) * 1996-02-16 1997-08-21 Philips Electronics N.V. Method and device for recording at different writing speeds on an optical information carrier
JPH10105970A (ja) * 1996-09-27 1998-04-24 Toshiba Corp 光学的情報記録方法および装置
EP0957475B1 (en) * 1996-12-20 2009-03-04 Panasonic Corporation Optical recording method and optical recorder
US6243339B1 (en) * 1997-08-12 2001-06-05 U.S. Philips Corporation Method and device for writing optical record carriers
US7158461B1 (en) * 1997-12-30 2007-01-02 Samsung Electronics Co., Ltd. Adaptive writing method for high-density optical recording apparatus and circuit thereof
US7391698B2 (en) 1998-07-23 2008-06-24 Samsung Electronics Co., Ltd. Adaptive writing method for high-density optical recording apparatus and circuit thereof
KR100354732B1 (ko) * 1998-04-03 2002-11-18 삼성전자 주식회사 고밀도광기록기기를위한적응적인기록방법및그장치
MY125795A (en) * 1998-07-23 2006-08-30 Samsung Electronics Co Ltd Adaptive writing method for high-density optical recording apparatus and circuit thereof
TW468177B (en) * 1998-08-04 2001-12-11 Hitachi Ltd Data storage method, data storage medium and data storage recording device
US6925040B1 (en) 1998-08-04 2005-08-02 Hitachi, Ltd. Information recording method, information recording medium and information recording apparatus
DE60045613D1 (de) 1999-03-19 2011-03-24 Panasonic Corp Verfahren zur optischen aufzeichnung von informationen, und vorrichtung zur optischen aufzeichnung von informationen durch dieses verfahren
TW561463B (en) * 1999-03-30 2003-11-11 Koninkl Philips Electronics Nv Method and device for recording marks in an information layer of an optical record carrier
JP3762847B2 (ja) * 1999-04-13 2006-04-05 株式会社日立製作所 情報の記録方法及び情報の記録装置
EP1056077B1 (en) 1999-05-19 2006-05-10 Mitsubishi Kagaku Media Co., Ltd. Phase change optical recording by divided recording pulses
EP1199715A4 (en) * 1999-05-31 2005-04-13 Matsushita Electric Ind Co Ltd OPTICAL INFORMATION RECORDING PROCEDURE, OPTICAL INFORMATION RECORDING DEVICE AND OPTICAL INFORMATION RECORDING MEDIUM
PL347216A1 (en) * 1999-07-15 2002-03-25 Koninkl Philips Electronics Nv Methods and devices for recording marks in an information layer of an optical record carrier, and record carriers for use therein.
US7272094B2 (en) * 1999-07-15 2007-09-18 Koninklike Philips Electronics N.V. Methods and devices for recording marks in an information layer of an optical record carrier, and record carriers for use therein
JP2001067669A (ja) * 1999-08-31 2001-03-16 Sony Corp 記録装置、記録方法
KR100339478B1 (ko) * 1999-09-18 2002-05-31 구자홍 광 기록매체의 최적 기록장치 및 기록방법
TW518580B (en) * 2000-05-11 2003-01-21 Koninkl Philips Electronics Nv Methods and devices for recording marks on a recording surface of an optical record carrier
CN1319052C (zh) * 2000-07-28 2007-05-30 松下电器产业株式会社 光盘装置及其记录功率的确定方法
JP3793437B2 (ja) * 2000-10-10 2006-07-05 Tdk株式会社 光記録方法および光記録媒体
US20020051415A1 (en) * 2000-10-26 2002-05-02 Matsushita Electric Industrial Co., Ltd. Recording waveform generator and disk recording device
JP3969958B2 (ja) * 2001-02-14 2007-09-05 株式会社リコー 光情報記録方法
JP4405115B2 (ja) * 2001-09-03 2010-01-27 パイオニア株式会社 情報記録装置および情報記録方法
TWI330363B (en) * 2001-09-29 2010-09-11 Samsung Electronics Co Ltd Apparatus for forming first state and second state on optical recording medium
CN1248201C (zh) * 2001-10-02 2006-03-29 松下电器产业株式会社 光学信息记录方法以及再生装置
JP2003208713A (ja) * 2002-01-16 2003-07-25 Tdk Corp 光記録媒体への情報記録方法、光記録媒体及び情報記録/再生装置
MXPA04009524A (es) 2002-04-03 2005-01-25 Matsushita Electric Ind Co Ltd Unidad de disco optico, medio de almacenamiento optico, aparato para inspeccion del medio de almacenamiento optico y metodo de inspeccion del medio de almacenamiento optico.
JP2004005872A (ja) * 2002-04-09 2004-01-08 Matsushita Electric Ind Co Ltd 光ディスク原盤作製方法および光ディスクとその製造方法
CN1221962C (zh) * 2002-04-26 2005-10-05 Tdk股份有限公司 光记录介质和在其中对数据进行光记录的方法
KR100677104B1 (ko) * 2002-05-20 2007-02-01 삼성전자주식회사 소거 패턴의 파워 정보가 저장된 광 기록 매체
US7369470B2 (en) * 2002-05-20 2008-05-06 Samsung Electronics Co., Ltd. Method of recording erase pattern information on an optical recording medium, erasing information on the optical recording medium based on the erase pattern information, and optical recording medium therefor
US8018817B2 (en) * 2002-05-20 2011-09-13 Samsung Electronics Co., Ltd. Method of recording erase pattern information on an optical recording medium, erasing information on the optical recording medium based on the erase pattern information, and optical recording medium therefor
US20050213468A1 (en) * 2002-07-26 2005-09-29 Koninklijke Philips Electronics N.V. Method and device for optical recording and optical record carrier
JP4282285B2 (ja) * 2002-08-12 2009-06-17 Tdk株式会社 光記録媒体及び光記録方法
US7474603B2 (en) * 2002-09-04 2009-01-06 Ricoh Company, Ltd. Optical information recording method, apparatus, and medium, laser control circuit, wobble signal detection method, and servo signal detection method
JP2004103100A (ja) * 2002-09-09 2004-04-02 Tdk Corp 光記録媒体への情報記録方法、情報記録装置及び光記録媒体
JP2004171642A (ja) * 2002-11-19 2004-06-17 Tdk Corp 光記録媒体、光記録方法及び光記録装置
DE60315239T2 (de) 2002-11-21 2008-04-17 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren und Vorrichtung, um einen Aufzeichnungspuls mittles Daten aus dem Benutzerfeld einer optischen Scheibe zu justieren.
US20050213467A1 (en) * 2002-12-17 2005-09-29 Yoshihiro Noda Optical recording medium, and recording/reading method and recording/reading apparatus for optical recording medium
AU2003288773A1 (en) * 2003-01-23 2004-08-13 Samsung Electronics Co., Ltd. Optical recording medium, method and apparatus for recording data thereon
KR20040067778A (ko) * 2003-01-23 2004-07-30 삼성전자주식회사 광 기록 매체, 이에 데이터를 기록하는 방법 및 그 장치
CN101840708B (zh) 2003-02-19 2012-01-11 日本胜利株式会社 光记录方法、光记录媒体、光记录媒体记录装置、光记录装置、光盘、光盘记录再现装置
KR100532955B1 (ko) * 2003-06-16 2005-12-01 주식회사 하이닉스반도체 반도체 장치의 딜레이 공유 회로
JP2005038559A (ja) * 2003-07-18 2005-02-10 Sony Corp 情報記録装置及び方法
WO2005041175A1 (ja) * 2003-10-27 2005-05-06 Pioneer Corporation 情報記録装置及び情報記録方法
BRPI0506766A (pt) * 2004-01-09 2007-05-22 Matsushita Electric Ind Co Ltd método e dispositivo para gravação óptica em meio de disco óptico
CN100356455C (zh) * 2004-09-08 2007-12-19 上海乐金广电电子有限公司 相变型光盘信息记录的方法
EP1807829A1 (en) * 2004-10-19 2007-07-18 Koninklijke Philips Electronics N.V. Method of writing data on a master substrate for optical recording
WO2006067726A2 (en) * 2004-12-22 2006-06-29 Koninklijke Philips Electronics N.V. Pulsed laser mode for writing labels
WO2007105139A1 (en) * 2006-03-13 2007-09-20 Koninklijke Philips Electronics N. V. Real time power control for optical recording drives
CN101427308B (zh) * 2006-04-28 2011-02-16 夏普株式会社 记录参数设定装置、记录参数设定程序、记录有该程序的计算机可读取的记录介质、信息记录介质、记录重放装置和记录参数设定方法
JP2007317343A (ja) * 2006-04-28 2007-12-06 Sharp Corp 記録パラメータ設定装置、そのプログラムおよび該プログラムを記録したコンピュータ読取り可能な記録媒体、情報記録媒体、ならびに記録パラメータ設定方法
TW200834558A (en) * 2006-12-15 2008-08-16 Taiyo Yuden Kk Optical information recording device, optical information recording method, and optical information recording medium
US8848808B2 (en) * 2007-03-01 2014-09-30 Lightfleet Corporation Time domain symbols
KR102544036B1 (ko) 2021-09-01 2023-06-21 대한전열공업(주) 브레이징 접합을 통한 중계기용 냉각장치의 제조방법
KR102448582B1 (ko) 2021-10-14 2022-09-29 대한전열공업(주) 중계기용 유로형성 링의 조립장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253828A (ja) * 1988-03-31 1989-10-11 Matsushita Electric Ind Co Ltd 光学的情報記録消去方法
JPH05120685A (ja) * 1991-10-25 1993-05-18 Olympus Optical Co Ltd 光学式情報記録方法及びその装置
JPH06162507A (ja) * 1992-11-24 1994-06-10 Toshiba Corp 情報記録方法および情報記録装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113938A (ja) * 1986-10-31 1988-05-18 Matsushita Electric Ind Co Ltd 情報の光学的記録方法
US5257256A (en) * 1987-04-24 1993-10-26 Hitachi, Ltd. Recording waveform for mark-length modulation optical recording
JP2707774B2 (ja) * 1989-12-13 1998-02-04 松下電器産業株式会社 光学情報の記録方法および記録装置
JP2972899B2 (ja) * 1991-01-24 1999-11-08 株式会社リコー 光磁気記録方法
EP0594425A3 (en) * 1992-10-21 1996-10-09 Nippon Kogaku Kk Pulse train condition/heat shut off condition determination method and apparatus for optical recording, and optical recording method and apparatus
JPH06301978A (ja) * 1992-10-28 1994-10-28 Nikon Corp 光記録のプリパルス条件及び熱遮断条件決定方法、 同決定装置、光記録方法及び光記録装置
JP2679596B2 (ja) * 1993-11-09 1997-11-19 松下電器産業株式会社 ディスク記録方法およびディスク記録装置
JP2684952B2 (ja) * 1993-04-07 1997-12-03 松下電器産業株式会社 ディスク記録方法およびディスク記録装置
US5490126A (en) * 1993-04-07 1996-02-06 Matsushita Electric Industrial Co., Ltd. Apparatus for recording and reproducing data on a disk
JP3231533B2 (ja) * 1994-01-31 2001-11-26 株式会社日立製作所 光学的情報記録方法
JPH0969246A (ja) * 1995-08-30 1997-03-11 Canon Inc 光学的情報記録再生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253828A (ja) * 1988-03-31 1989-10-11 Matsushita Electric Ind Co Ltd 光学的情報記録消去方法
JPH05120685A (ja) * 1991-10-25 1993-05-18 Olympus Optical Co Ltd 光学式情報記録方法及びその装置
JPH06162507A (ja) * 1992-11-24 1994-06-10 Toshiba Corp 情報記録方法および情報記録装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0797193A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212142B1 (en) 1998-09-14 2001-04-03 Matsushita Electric Industrial Co., Ltd. Data recording medium and recording/reproducing apparatus for providing optimum position of mark start and end parts
US6349081B1 (en) 1998-09-14 2002-02-19 Matsushita Electric Industrial Co., Ltd. Recording medium, recording apparatus and recording method
US6175541B1 (en) 1998-09-14 2001-01-16 Matsushita Electric Industrial Co., Ltd. Data recording medium and recording/reproducing apparatus for providing optimum position of mark start and end parts
US6178148B1 (en) 1998-09-14 2001-01-23 Matsushita Electric Industrial Co., Ltd. Data recording medium and recording/reproducing apparatus for providing optimum position of mark start and end parts
US6181654B1 (en) 1998-09-14 2001-01-30 Matsushita Electric Industrial Co., Ltd. Data recording medium and data recording/reproducing apparatus for providing optimum position of mark start and end parts
US6188656B1 (en) 1998-09-14 2001-02-13 Matsushita Electric Industrial Co., Ltd. Optical data recording method, and data recording medium
US6157609A (en) * 1998-09-14 2000-12-05 Matsushita Electric Industrial Co., Ltd. Recording medium, recording apparatus and recording method
US6233211B1 (en) 1998-09-14 2001-05-15 Matsushita Electric Industrial Co., Ltd. Data recording medium, recording/reproducing apparatus, manufacturing apparatus, and method for providing optimum position of mark start and end parts
US6101159A (en) * 1998-09-14 2000-08-08 Matsushita Electric Industrial Co. Optical data recording method, and data recording medium
US6359846B1 (en) 1998-09-14 2002-03-19 Matsushita Electric Industrial Co., Ltd. Recording medium recording apparatus and recording method
US6654325B1 (en) 1999-08-09 2003-11-25 Hitachi, Ltd. Trial writing method and optical disk system using the same
WO2002029791A1 (fr) * 2000-10-05 2002-04-11 Matsushita Electric Industrial Co., Ltd. Support d"enregistrement optique, procede d"enregistrement sur support d"enregistrement optique et appareil d"enregistrement sur support d"enregistrement optique
US7193948B2 (en) 2000-10-05 2007-03-20 Matsushita Electric Industrial Co., Ltd. Optical recording medium, method for recording on optical record medium, and apparatus for recording on optical record medium
WO2003079336A1 (fr) * 2002-03-15 2003-09-25 Ricoh Company, Ltd. Dispositif d'enregistrement et procede d'enregistrement
US8144559B2 (en) 2006-06-12 2012-03-27 Hitachi, Ltd. Multiple pulse recording method with 3-valued power levels

Also Published As

Publication number Publication date
JP4145958B2 (ja) 2008-09-03
EP1018727B1 (en) 2002-01-09
CN1146869C (zh) 2004-04-21
CN1250211A (zh) 2000-04-12
DE69614005D1 (de) 2001-08-23
DE69618681T2 (de) 2002-08-14
EP0797193A4 (en) 1999-06-23
EP0797193B1 (en) 2001-05-16
KR980700643A (ko) 1998-03-30
EP1020850A2 (en) 2000-07-19
CN1173941A (zh) 1998-02-18
HK1005275A1 (en) 1998-12-31
DE69618034D1 (de) 2002-01-24
DE69614005T2 (de) 2001-10-31
MX9704098A (es) 1997-09-30
DE69612833D1 (de) 2001-06-21
EP0991058A1 (en) 2000-04-05
US5745467A (en) 1998-04-28
DE69618680T2 (de) 2002-08-14
EP0797193A1 (en) 1997-09-24
EP0991059B1 (en) 2001-12-12
EP1018727A2 (en) 2000-07-12
DE69618034T2 (de) 2002-05-16
TW359812B (en) 1999-06-01
EP1018727A3 (en) 2000-08-16
EP0991059A1 (en) 2000-04-05
DE69618681D1 (de) 2002-02-28
CN1137473C (zh) 2004-02-04
MY113691A (en) 2002-04-30
EP0991058B1 (en) 2001-07-18
KR100456957B1 (ko) 2005-01-17
CN1250210A (zh) 2000-04-12
CN1128442C (zh) 2003-11-19
EP1020850B1 (en) 2002-01-09
EP1020850A3 (en) 2000-08-16
DE69618680D1 (de) 2002-02-28
DE69612833T2 (de) 2001-08-30
JP2000155946A (ja) 2000-06-06

Similar Documents

Publication Publication Date Title
WO1997014143A1 (fr) Procede et dispositif d&#39;enregistrement d&#39;informations optiques
JP2009238366A (ja) 光学的情報記録方法、光学的情報記録媒体、再生方法、および再生装置
US7068591B2 (en) Information recording method and optical recording medium therefor
JPH09282661A (ja) 光記録方法、装置及び光記録媒体
JP4063978B2 (ja) 情報記録方法
CN101276605A (zh) 光记录方法、光记录媒体、光记录媒体记录装置、光记录装置、光盘、光盘记录再现装置
US7260044B2 (en) Recording method for a phase-change optical recording medium
JP2827545B2 (ja) 光学情報の記録方法
JP3277733B2 (ja) 光ディスクへの光学的情報の記録方法および記録装置
US7362682B2 (en) Method for recording data in an optical recording disc and an apparatus for recording data in an optical recording disc
JP3218235B2 (ja) 記録装置
US20050063272A1 (en) Method for recording data in an optical recording disc and an apparatus for recording data in an optical recording disc
US7680010B2 (en) Method for recording information on optical recording medium
JPH08180414A (ja) 光学的情報記録方法
JP2001229539A (ja) 光記録方法および光記録媒体
JP2001307325A (ja) 情報の記録方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191828.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR MX SG VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/004098

Country of ref document: MX

Ref document number: 1199700489

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 1019970703863

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996932820

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996932820

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970703863

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996932820

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970703863

Country of ref document: KR