WO1997013770A1 - 8-azabicyclo[3.2.1]oct-2-ene derivatives, their preparation and use - Google Patents

8-azabicyclo[3.2.1]oct-2-ene derivatives, their preparation and use Download PDF

Info

Publication number
WO1997013770A1
WO1997013770A1 PCT/EP1996/004449 EP9604449W WO9713770A1 WO 1997013770 A1 WO1997013770 A1 WO 1997013770A1 EP 9604449 W EP9604449 W EP 9604449W WO 9713770 A1 WO9713770 A1 WO 9713770A1
Authority
WO
WIPO (PCT)
Prior art keywords
azabicyclo
disorder
oct
uptake
ene
Prior art date
Application number
PCT/EP1996/004449
Other languages
English (en)
French (fr)
Inventor
Peter Moldt
Jørgen SCHEEL-KRÜGER
Gunnar M. Olsen
Elsebet Østergaard NIELSEN
Original Assignee
Neurosearch A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EE9800062A priority Critical patent/EE03446B1/xx
Priority to EP96934662A priority patent/EP0859777B1/en
Application filed by Neurosearch A/S filed Critical Neurosearch A/S
Priority to JP51472697A priority patent/JP3462505B2/ja
Priority to BR9610960A priority patent/BR9610960A/pt
Priority to IL12358396A priority patent/IL123583A/xx
Priority to DK96934662T priority patent/DK0859777T3/da
Priority to KR1019980702103A priority patent/KR100274829B1/ko
Priority to DE69637097T priority patent/DE69637097T2/de
Priority to US09/043,294 priority patent/US6100275A/en
Priority to NZ320216A priority patent/NZ320216A/xx
Priority to CA002233541A priority patent/CA2233541C/en
Priority to AU72917/96A priority patent/AU709327B2/en
Priority to PL96326195A priority patent/PL185357B1/pl
Priority to SK287-98A priority patent/SK283425B6/sk
Priority to UA98031543A priority patent/UA63894C2/uk
Publication of WO1997013770A1 publication Critical patent/WO1997013770A1/en
Priority to NO19980919A priority patent/NO980919L/no
Priority to IS4681A priority patent/IS4681A/is

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/468-Azabicyclo [3.2.1] octane; Derivatives thereof, e.g. atropine, cocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • C07D451/04Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof with hetero atoms directly attached in position 3 of the 8-azabicyclo [3.2.1] octane or in position 7 of the 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring system
    • C07D451/06Oxygen atoms

Definitions

  • the present invention relates to novel 8-azabicyclo[3.2.1 ]oct-2-ene derivatives which are monoamine neurotransmitter, i.e dopamine, serotonin and noradrenaline, re-uptake inhibitors.
  • the present invention relates to novel 8-azabicyclo- [3.2.1 ]oct-2-ene derivatives which are potent serotonin re-uptake inhibitors and therefore useful in the treatment of disorders or diseases such as depression and related disorders, obsessive compulsive disorders, panic disorders, memory deficits, attention deficit hyperactivity disorder, obesity, anxiety and eating disorders.
  • Monoamine neurotransmitters i.e. serotonin, dopamine, and noradrenaline
  • the removal (or inactivation) of monoamine neurotransmitters occurs mainly by a reuptake mechanism into presynaptic terminals. By inhibiting the re-uptake an enhancement of the physiological activity of monoamine neurotransmitters occur.
  • Noradrenalin and serotonin re-uptake inhibitors are currently used as pharmaceuticals in anti-depressant therapy (Desipramine, Nortriptyline, and Protriptyline are inhihibitors of noradrenaline-reuptake and Imipramine and Amitriptyline are mixed serotonine-reuptake and noradrenaline-reuptake inhibitors).
  • Paradoxical serotonin re-uptake inhibitors inhibit the serotonin transporter within minutes whereas their full anti-depressant effect is seen only after three to four weeks of treatment, indicating that re-uptake inhibition perse is not responsible for the antidepressant response, but rather that further adaptive changes underlie and/or contribute to their therapeutic effect.
  • the delayed onset of anti-depressant effect is considered to be a serious drawback to currently used monoamine re-uptake inhibitors.
  • the compounds provided herewith are potent serotonin (5-hydroxy-tryptamine, 5-HT) re ⁇ uptake inhibititors.
  • the compounds of the invention also have noradrenaline and dopamine re-uptake inhibiting activity but the serotonin re-uptake inhibiting activity of the compounds of the invention is stronger than the dopamine re-uptake inhibiting activity of the compounds.
  • a strong dopamine re-uptake inhibiting activity is currently considered with the risk of undesirable central stimulating effects.
  • an activating effect on the mesolimbic dopamine system is currently believed to underlay the commen mechanism of current antidepressant treatment by a mechanism which enhances the endogenous reward system.
  • Compounds with a strong serotonin re-uptake inhibiting activity combined with a well balanced dopamine re-uptake inhibiting activity may therefore provide agents with a rapid onset of anti-depressant effect.
  • the serotonergic neural system of the brain have been shown to influence a variety of physiologic functions, and the compounds of the present invention are believed to have the ability to treat in mammals, including humans, a variety of disorders associated with these neural systems such as eating disorders, depression, obcessive compulsive disorders, panic disorders, alcoholism, pain, memory deficits and anxiety. Therefore, the present invention also provides methods of treating several disorders linked to decreased neurotransmission of serotonin in mammals.
  • depression and related disorders such as pseudodementia or Ganser's syndrome, migraine pain, bulimia, obesity, pre-menstrual syndrome or late luteal phase syndrome, alcoholism, tobacco abuse, panic disorder, anxiety, post-traumatic syndrome, memory loss, dementia of ageing, social phobia, attention deficit hyperactivity disorder, chronic fatigue syndrome, premature ejaculation, erectile difficulty, anorexia nervosa, disorders of sleep, autism, mutism or trichotillomania.
  • pseudodementia or Ganser's syndrome migraine pain, bulimia, obesity, pre-menstrual syndrome or late luteal phase syndrome
  • alcoholism such as pseudodementia or Ganser's syndrome, migraine pain, bulimia, obesity, pre-menstrual syndrome or late luteal phase syndrome, alcoholism, tobacco abuse, panic disorder, anxiety, post-traumatic syndrome, memory loss, dementia of ageing, social phobia, attention deficit hyperactivity disorder, chronic fatigue syndrome, premature ejaculation, erectile
  • Another object of the invention is to provide novel pharmaceutical compositions containing the novel 8-azabicyclo[3.2.1]oct-2-ene derivatives which are useful for the treatment of disorders or diseases responsive to the monoamine neurotransmitter re ⁇ uptake inhibiting activity and in particular the strong serotonin re-uptake inhibiting activity of the compounds of the invention.
  • diseases or disorders includes depression and related diseases.
  • Still another object of the invention is to provide a method of treating diseases or disorders responsive to the inhibition of monoamine neurotransmitter re-uptake and in particular serotonin re-uptake, such as depression and related diseases, by administering a therapeutically effective amount of one or more of the novel 8-azabicyclo[3.2.1]oct-2- ene derivatives to a living animal body, including a human.
  • the invention then, inter alia, comprises the following, alone or in combination:
  • R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl or 2-hydroxyethyl; and R is phenyl which may be substituted one or more times with substituents selected from the group consisting of halogen, CF 3 , CN, alkoxy, cycloalkoxy, alkyl, cycloalkyl, alkenyl, alkynyl, amino, nitro, heteroaryl and aryl;
  • benzyl which may be substituted one or more times with substituents selected from the group consisting of halogen, CF 3 , CN, alkoxy, cycloalkoxy, alkyl, cycloalkyl, alkenyl, alkynyl, amino, nitro, heteroaryl and aryl; heteroaryl which may be substituted one or more times with substituents selected from the group consisting of halogen, CF 3 , CN, alkoxy, cycloalkoxy, alkyl, cycloalkyl, alkenyl, alkynyl, amino, nitro, heteroaryl and aryl; or naphthyl which may be substituted one or more times with substituents selected from the group consisting of halogen, CF 3( CN, alkoxy, cycloalkoxy, alkyl, cycloalkyl, alkenyl, alkynyl, amino, nitro, heteroaryl and aryl and
  • composition comprising a therapeutically effective amount of a compound as above together with at least one pharmaceutically acceptable carrier or diluent;
  • a compound as above for the manufacture of a medicament for the treatment of a disorder or disease of a living animal body, including a human, which disorder or disease is responsive to the inhibition of monoamine neurotransmitter re-uptake in the central nervous system;
  • a method of treating a disorder or disease of a living animal body, including a human, which disorder or disease is responsive to the inhibition of monoamine neurotransmitter re-uptake comprising the step of administering to such a living animal body, including a human, in need thereof a therapeutically effective amount of a compound as above;
  • a method of treating a disorder or disease of a living animal body, including a human, which disorder or disease is responsive to the inhibition of serotonin re-uptake comprising the step of administering to such a living animal body, including a human, in need thereof a therapeutically effective amount of a compound as above;
  • depression and related disorders such as pseudodementia or Ganser's syndrome, obsessive compulsive disorders, panic disorders, memory deficits, attention deficit hyperactivity disorder, obesity, anxiety or eating disorders are treated; and
  • R and R 4 is as set forth above and thereafter optionally forming a pharmaceutically acceptable addition salt thereof.
  • pharmaceutically acceptable addition salts include inorganic and organic acid addition salts such as the hydrochloride, hydrobromide, phosphate, nitrate, perchlorate, sulphate, citrate, lactate, tartrate, maleate, fumarate, mandelate, benzoate, ascorbate, cinnamate, benzenesulfonate, methanesulfonate, stearate, succinate, glutamate, glycollate, toluene-p-sulphonate, formate, malonate, naphthalene-2- sulphonate, salicylate and the acetate.
  • Such salts are formed by procedures well known in the art.
  • acids such as oxalic acid, while not in themselves pharmaceutically acceptable, may be useful in the preparation of salts useful as intermediates in obtaining compounds of the invention and their pharmaceutically acceptable acid addition salts.
  • Halogen is fluorine, chlorine, bromine or iodine.
  • Alkyl means a straight chain or branched chain of one to six carbon atoms, including but not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, and hexyl; methyl, ethyl, propyl and isopropyl are preferred groups.
  • Cycloalkyl means cyclic alkyl of three to seven carbon atoms, including but not limited to cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl;
  • Alkenyl means a group of from two to six carbon atoms, including at least one double bond, for example, but not limited to ethenyl, 1 ,2- or 2,3-propenyl, 1 ,2-, 2,3-, or 3,4- butenyl.
  • Alkynyl means a group of from two to six carbon atoms, including at least one triple bond, for example, but not limited to ethynyl, 2,3-propynyl, 2,3- or 3,4-butynyl.
  • Cycloalkylalkyl means cycloalkyl as above and alkyl as above, meaning for example, cyclopropylmethyl.
  • Alkoxy is O-alkyl, wherein alkyl is as defined above.
  • Cycloalkoxy is O-cycloalkyI, wherein cycloalkyl is as defined above.
  • Amino is NH 2 or NH-alkyl or N-(alkyl) 2 , wherein alkyl is as defined above.
  • Heteroaryl is suitably a 5- or 6-membered heterocyclic monocyclic group.
  • a heteroaryl group includes, for example, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol- 4-yl, isothiazol-5-yl, 1 ,2,4-oxadiazol-3-yl, 1 ,2,4-oxadiazol-5-yl, 1 ,2,4-thiadiazol-3-yl, 1 ,2,4- thiadiazol-5-yl, 1 ,2,5-oxadiazol-3-yl, 1 ,2,5-oxadiazol-4-yl, 1 ,2,5-thiadiazol-3-
  • Aryl is an aromatic hydrocarbon, such as phenyl or naphthyl.
  • I.p. means intraperetoneally, which is a well known route of administration.
  • P.o. means peroral, which is a well known route of administration.
  • the compounds of this invention may exist in unsolvated as well as in solvated forms with pharmaceutically acceptable solvents such as water, ethanol and the like.
  • the solvated forms are considered equivalent to the unsolvated forms for the purposes of this invention.
  • Racemic forms can be resolved into the optical antipodes by known methods, for example, by separation of diastereomeric salts thereof with an optically active acid, and liberating the optically active amine compound by treatment with a base. Another method for resolving racemates into the optical antipodes is based upon chromatography on an optically active matrix. Racemic compounds of the present invention can thus be resolved into their optical antipodes, e.g., by fractional crystallization of d- or I- (tartrates, mandelates, or camphorsulphonate) salts for example.
  • the compounds of the present invention may also be resolved by the formation of diastereomeric amides by reaction of the compounds of the present invention with an optically active activated carboxylic acid such as that derived from (+) or (-) phenylalanine, (+) or (-) phenylglycine, (+) or (-) camphanic acid or by the formation of diastereomeric carbamates by reaction of the compounds of the present invention with an optically active chloroformate or the like.
  • an optically active activated carboxylic acid such as that derived from (+) or (-) phenylalanine, (+) or (-) phenylglycine, (+) or (-) camphanic acid
  • the compounds of the invention may be prepared in numerous ways.
  • the compounds of the invention and their pharmaceutically acceptable derivatives may thus be prepared by any method known in the art for the preparation of compounds of analogous structure, and as shown in the representative examples which follow.
  • the substituents R and R 4 in the reaction-scheme is as defined above and X is Li, MgBr or any other type of functionality suitable for generating a carbanion as its counterpart.
  • the processes in the reaction scheme above is carried out in conventional manner.
  • the dehydration of the alcohol is affected using acids such as hydrochloric or sulfuric acid or other conventional dehydrating agents such as for example P 2 O 5> or SOCI 2 .
  • a compound of the invention can be converted to another compound of the invention using conventional methods.
  • the compounds of the invention have been tested for their ability to inhibit reuptake of dopamine(DA) noradrenaline(NA) and serotonin( ⁇ -HT) in synaptosomes.
  • Specific neurotransmitter transporters uptake sites on nerve terminals presumably function to terminate neuronal signaling by removing the neurotransmitters dopamine, noradrenaline and serotonin, respectively, from the synaptic cleft.
  • the activity of the transporter integral proteins can be measured in vitro by synaptosomal uptake of 3 H- dopamine, 3 H-noradrenaline and 3 H-serotonine, respectively.
  • Tissue preparations Preparations are performed at 0-4°C unless otherwise indicated.
  • Corpi striati from male Wistar rats (150-200 g) are homogenized for 5-10 sec in 100 volumes of ice-cold 0.32M sucrose containing 1 mM pargyline using an Ultra-Turrax homogenizer. Monoamine oxidase activity will be inhibited in the presence of pargyline.
  • the homogenate is centrifuged at 1000 x g for 10 min. The resulting supernatant is then centrifuged at 27,000 x g for 50 min and the supernatant is discarded.
  • the pellet (P ) is resuspended in oxygenated (equilibrated with an atmosphere of 96% O 2 : 4% CO for at least 30 min) Krebs-Ringer incubation buffer (8000 ml per g of original tissue) at pH 7.2 containing 122 mM NaCl, 0.16 mM EDTA, 4.8 mM KCl, 12.7 mM Na 2 HP0 4 , 3.0 mM NaH 2 PO , 1.2 mM MgSO > 1 mM CaCI 2 , 10 mM glucose and 1 mM ascorbic acid.
  • IC 50 the concentration ( ⁇ M) of the test substance which inhibits the specific binding of 3 H-DA by 50%.
  • Tissue preparation Preparations are performed at 0-4°C unless otherwise indicated. Hippocampi from male Wistar rats (150-200 g) are homogenized for 5-10 sec in 100 volumes of ice-cold 0.32M sucrose containing 1 mM pargyline using an Ultra-Turrax homogenizer. Monoamine oxidase activity will be inhibited in the presence of pargyline. The homogenate is centrifuged at 1000 x g for 10 min. The resulting supernatant is then centrifuged at 27,000 x g for 50 min and the supernatant is discarded.
  • the pellet (P 2 ) is resuspended in oxygenated (equilibrated with an atmosphere of 96% 0 2 : 4% CO 2 for at least 30 min) Krebs-Ringer incubation buffer (2000 ml per g of original tissue) at pH 7.2 containing 122 mM NaCl, 0.16 mM EDTA, 4.8 mM KCl, 12.7 mM Na 2 HP0 4l 3.0 mM NaH 2 P0 4 , 1.2 mM MgS0 , 0.97 mM CaCI 2 , 10 mM glucose and 1 mM ascorbic acid.
  • IC 50 the concentration ( ⁇ M) of the test substance which inhibits the specific binding of 3 H-NA by 50%.
  • Tissue preparation Preparations are performed at 0-4°C unless otherwise indicated. Cerebral cortices from male Wistar rats (150-200 g) are homogenized for 5-10 sec in 100 volumes of ice-cold 0.32M sucrose containing 1 mM pargyline using an Ultra-Turrax homogenizer. Monoamine oxidase activity will be inhibited in the presence of pargyline. The homogenate is centrifuged at 1000 x g for 10 min. The resulting supernatant is then centrifuged at 27,000 x g for 50 min and the supernatant is discarded.
  • the pellet (P 2 ) is resuspended in oxygenated (equilibrated with an atmosphere of 96% O 2 : 4% CO 2 for at least 30 min) Krebs-Ringer incubation buffer (1000 ml per g of original tissue) at pH 7.2 containing 122 mM NaCl, 0.16 mM EDTA, 4.8 mM KCl, 12.7 mM Na 2 HP0 4 , 3.0 mM NaH P0 4 , 1.2 mM MgS0 , 1 mM CaCI 2 , 10 mM glucose and 1 mM ascorbic acid.
  • Krebs-Ringer incubation buffer 1000 ml per g of original tissue at pH 7.2 containing 122 mM NaCl, 0.16 mM EDTA, 4.8 mM KCl, 12.7 mM Na 2 HP0 4 , 3.0 mM NaH P0 4 , 1.2 mM MgS0 , 1 mM CaCI 2 , 10 m
  • IC 5 0 the concentration ( ⁇ M) of the test substance which inhibits the specific binding of 3 H-5-HT by 50%).
  • the compounds of the invention have also been tested in the following test for antidepressant activity.
  • mice suspended in their tail A decrease in the immobility time by mice suspended in their tail is seen after systemic administration of central stimulants and by antidepressants (Ste , L, Chermat, R., Thierry, B. & Simon, P. (1985)
  • the tail suspension test A new method for screening antidepressants in mice. Psychopharmacology 85:367-370.).
  • mice Female NMRI mice (20-25 g) habituated to the room (12 hours light/dark) for at least 16 hours and housed 25 per cage are used. The mice are suspended by the tail with adhesive tape to a rod 30 cm above the lab. bench 30 min after an oral administation of vehicle or drug. For the next 6 min the accumulated duration of immobility defined as no movements by the body or extremities (however head movements are not defined as movements) are noted. Six mice per dose are used.
  • Saline or vehicle treated mice have immobility time scores between 160-180 sec in average.
  • An EDso-value is calculated by graphical interpolation from at least 3 doses as the dose reducing the immobility to 100 sec.
  • ED 50 is 0.96 mg/kg for the compound ( ⁇ )-3-(3,4-Dichlorophenyl)-8-methyl-8- azabicyclo[3.2.1 ]oct-2-ene.
  • a compound of the invention may be administered as the raw chemical, it is preferable to present the active ingredient as a pharmaceutical formulation.
  • the invention thus further provides pharmaceutical formulations comprising a compound of the invention or a pharmaceutically acceptable salt or derivative thereof together with one or more pharmaceutically acceptable carriers therefor and, optionally, other therapeutic and/or prophylactic ingredients.
  • the carrier(s) must be "acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • compositions include those suitable for oral, rectal, nasal, topical (including buccal and sub-lingual), vaginal or parenteral (including intramuscular, sub ⁇ cutaneous and intravenous) administration or in a form suitable for administration by inhalation or insufflation.
  • compositions and unit dosages thereof may be placed into the form of pharmaceutical compositions and unit dosages thereof, and in such form may be employed as solids, such as tablets or filled capsules, or liquids such as solutions, suspensions, emulsions, elixirs, or capsules filled with the same, all for oral use, in the form of suppositories for rectal administration; or in the form of sterile injectable solutions for parenteral (including subcutaneous) use.
  • Such pharmaceutical compositions and unit dosage forms thereof may comprise conventional ingredients in conventional proportions, with or without additional active compounds or principles, and such unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed.
  • Formulations containing ten (10) milligrams of active ingredient or, more broadly, 0.1 to one hundred (100) milligrams, per tablet, are accordingly suitable representative unit dosage forms.
  • the compounds of the present invention can be administrated in a wide variety of oral and parenteral dosage forms. It will be obvious to those skilled in the art that the following dosage forms may comprise, as the active component, either a compound of the invention or a pharmaceutically acceptable salt of a compound of the invention.
  • pharmaceutically acceptable carriers can be either solid or Iiquid.
  • Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules.
  • a solid carrier can be one or more substances which may also act as diluents, flavouring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.
  • the carrier is a finely divided solid which is in a mixture with the finely divided active component.
  • the active component is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired.
  • the powders and tablets preferably contain from five or ten to about seventy percent of the active compound.
  • Suitable carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like.
  • the term "preparation" is intended to include the formulation of the active compound with encapsulating material as carrier providing a capsule in which the active component, with or without carriers, is surrounded by a carrier, which is thus in association with it. Similarly, cachets and lozenges are included.
  • Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid forms suitable for oral administration.
  • a low melting wax such as admixture of fatty acid glycerides or cocoa butter
  • the active component is dispersed homogeneously therein, as by stirring.
  • the molten homogenous mixture is then poured into convenient sized molds, allowed to cool, and thereby to solidify.
  • Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
  • Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water-propylene glycol solutions.
  • parenteral injection Iiquid preparations can be formulated as solutions in aqueous polyethylene glycol solution.
  • the compounds according to the present invention may thus be formulated for parenteral administration (e.g. by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative.
  • the compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilising and/or dispersing agents.
  • the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilisation from solution, for constitution with a suitable vehicle, e.g. sterile, pyrogen-free water, before use.
  • Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavours, stabilizing and thickening agents, as desired.
  • Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, or other well known suspending agents.
  • viscous material such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, or other well known suspending agents.
  • Iiquid form preparations which are intended to be converted, shortly before use, to Iiquid form preparations for oral administration.
  • Iiquid forms include solutions, suspensions, and emulsions.
  • These preparations may contain, in addition to the active component, colorants, flavours, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
  • the compounds according to the invention may be formulated as ointments, creams or lotions, or as a transdermal patch.
  • Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents.
  • Lotions may be formulated with an aqueous or oily base and will in general also contain one or more emulsifying agents, stabilising agents, dispersing agents, suspending agents, thickening agents, or colouring agents.
  • Formulations suitable for topical administration in the mouth include lozenges comprising active agent in a flavoured base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycerin or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable Iiquid carrier.
  • Solutions or suspensions are applied directly to the nasal cavity by conventional means, for example with a dropper, pipette or spray.
  • the formulations may be provided in single or multidose form. In the latter case of a dropper or pipette, this may be achieved by the patient administering an appropriate, predetermined volume of the solution or suspension. In the case of a spray, this may be achieved for example by means of a metering atomising spray pump.
  • Administration to the respiratory tract may also be achieved by means of an aerosol formulation in which the active ingredient is provided in a pressurised pack with a suitable propellant such as a chlorofluorocarbon (CFC) for example dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoroethane, carbon dioxide, or other suitable gas.
  • a suitable propellant such as a chlorofluorocarbon (CFC) for example dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoroethane, carbon dioxide, or other suitable gas.
  • CFC chlorofluorocarbon
  • the aerosol may conveniently also contain a surfactant such as lecithin.
  • the dose of drug may be controlled by provision of a metered valve.
  • the active ingredients may be provided in the form of a dry powder, for example a powder mix of the compound in a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidone (PVP).
  • a powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidone (PVP).
  • PVP polyvinylpyrrolidone
  • the powder carrier will form a gel in the nasal cavity.
  • the powder composition may be presented in unit dose form for example in capsules or cartridges of, e.g., gelatin, or blister packs from which the powder may be administered by means of an inhaler.
  • the compound will generally have a small particle size for example of the order of 5 microns or less. Such a particle size may be obtained by means known in the art, for example by micronization.
  • formulations adapted to give sustained release of the active ingredient may be employed.
  • the pharmaceutical preparations are preferably in unit dosage forms.
  • the preparation is subdivided into unit doses containing appropriate quantities of the active component.
  • the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules.
  • the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
  • Tablets or capsules for oral administration and liquids for intravenous administration are preferred compositions.
  • the compounds of the invention are extremely useful in the treatment of depression and related disorders due to their serotonin and dopamine uptake-inhibiting activity together with their low degree of undesired side-effects. These properties make the compounds of this invention extremely useful in the treatment of depression and related disorders, obsessive compulsive disorders, panic disorders, memory deficits, attention deficit hyperactivity disorders, obesity, anxiety and eating disorders as well as other disorders sensitive to the serotonin and dopamine uptake-inhibiting activity of the compounds of the present invention.
  • the compounds of this invention may accordingly be administered to a living animal body, including a human, in need of treatment, alleviation, or elimination of an indication associated with or responsive to dopamine and serotonine uptake-inhibiting activity. This includes especially parkinsonism, depression, obesity, narcolepsy, and drug abuse.
  • Suitable dosage range are 0.1-500 milligrams daily, and especially 10-70 milligrams daily, administered once or twice a day, dependent as usual upon the exact mode of administration, form in which administered, the indication toward which the administration is directed, the subject involved and the body weight of the subject involved, and further the preference and experience of the physician or veterinarian in charge.
  • the title compound was prepared from 4-bromochlorobenzene (15.4 g, 81 mmol), n- butyllithium in hexanes (31 mL 2.5 M; 78 mmol) and 8-methyl-8-azabicyclo[3.2.1 ]- octan-3-one (5 g, 36 mmol). Yield 5.7 g (63%) as a white solid, m.p. 186.3-187°C.
  • the title compound was prepared from 4-bromotoluene (13.9 g, 81.4 mmol), n- butyllithium in hexanes (31.2 mL, 2.5 M; 78 mmol) and 8-methyl-8-azabicyclo[3.2.1]- octan-3-one (5 g, 35.9 mmol) in anhydrous tetrahydrofuran (40 mL). Yield 3.5 g (42%) as a white solid, m.p. 247-249°C.
  • the title compound was prepared from 4-bromoanisole (15.1 g, 80.5 mmol), n-butyllithium in hexanes (31.2 mL, 2.5 M; 77.9 mmol) and 8-methyl-8-azabicyclo- [3.2.1 ]octan-3-one (5 g, 36 mmol) in anhydrous tetrahydrofuran (40 mL). Yield 2.1 g (24%), m.p. 161.8-162.3°C.
  • the title compound was prepared from 4-bromobenzotrifluoride, n-butyllithium in hexanes (31.2 mL, 2.5M; 77.9 mmol) and 8-methyl-8-azabicyclo[3.2.1 ]octan-3-one (5 g, 36 mmol). Yield 6.2 g (60%) as a yellow solid, m.p. 189.2-190.5°C.
  • the title compound was prepared from 4-bromofluorobenzene (26.3 g, 0.15 mol), n- butyllithium in hexanes (60 mL, 2.5 M; 0.15 mol) and 8-methyl-8-azabicyclo- [3.2.1 ]octan-3-one (10 g, 71.7 mmol). Yield 9.9 g (59%), m.p. 168.5-170 C C.
  • the title compound was prepared from 3-(4-chlorophenyl)-8-methyl-8- azabicyclo[3.2.1]octan-3-ol (4 g, 16 mmol), glacial acetic acid (15 mL) and concentrated hydrochloric acid (15 mL). Yield of free base (3.6 g, 97%). Some of the free base (1.44 g, 6 mmol) was dissolved in ethanol (96%) and added malonic acid (0.62 g, 6 mmol) in ethanol (96%). The resulting solution was concentrated to an oil, the oil was trituated in diethyl ether, the title compound precipitated as powder and was isolated by filtration. Yield (1.4 g, 71%) as white crystals m.p. 100.8-102.1 °C.
  • the title compound was prepared from 8-methyl-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (8 g, 37 mmol), glacial acetic acid (25 mL) and concentrated hydrochloric acid (8 mL).
  • the title compound was prepared from 8-methyl-3-(4-methylphenyl)-8- azabicyclo[3.2.1 ]octan-3-ol (3.4 g, 14.7 mmol), glacial acetic acid (11 mL) and concentrated hydrochloric acid (11 mL).
  • the free base of the title compound was dissolved in diethyl ether and added fumaric acid (1.3 g, 11.2 mmol) in methanol.
  • the resulting solution was concentrated to dryness, the residue was trituated in diethyl ether, the title compound precipitated as powder and was isolated by filtration. Yield 2.46 g (51%) m.p. 156.8-157.4°C.
  • the title compound was prepared from 3-(4-methoxyphenyl)-8-methyl-8- azabicyclo[3.2.1 ]octan-3-ol (2g, 8 mmol), glacial acetic acid (6.4 mL) and concentrated hydrochloric acid (6.4 mL).
  • the free base of the title compound was dissolved in ethanol (96%) and added fumaric acid (0.8 g, 6.9 mmol), no precipitate appeared, the solution was concentrated to dryness, the residue was crystallised from absolute ethanol. Yield 1.1 g (40%) as white crystals m.p.167.3-168.7°C.
  • the title compound was prepared from 8-methyl-3-(4-trifluoromethylphenyl)-8- azabicyclo[3.2.1 ]octan-3-ol (5 g, 17.5 mmol), glacial acetic acid (16 mL) and concentrated hydrochloric acid (16 mL).
  • the free base of the title compound was dissolved in ethanol (96%) and added malonic acid (1.17 g, 11.2 mmol) in ethanol (96%), the solution was concentrated to dryness, and the residue was trituated in diethyl ether, the title compound precipitated as powder and was isolated by filtration. Yield 3.9 g (60%), m.p. 106.7- 107.8°C.
  • the title compound was prepared from 3-(4-fluorophenyl)-8-methyl-8- azabicyclo[3.2.1]octan-3-ol (4.7 g, 20 mmol), glacial acetic acid (20 mL) and concentrated hydrochloric acid (20 mL). The free base of the title compound was dissolved in isopropanol and malonic acid (1.7 g, 16.3 mmol) was added, after a while the title compound precipitated as powder and was isolated by filtration. Yield 4.6 g (72%), m.p. 122.2-123°C.
  • the title compound was prepared from ( ⁇ )-3-(4-fluorophenyl)-8-methyl-8- azabicyclo[3.2.1 ]oct-2-ene (1.6 g, 7.37 mmol) and 1 -chloroethyl chloroformate (1.2 mL, 1.6g, 11 mmol).
  • the free base of the title compound was dissolved in isopropanol and added malonic acid (0.43g, 4.1 mmol), the title compound precipitated from this solution and was isolated by filtration. Yield 1.14 g (50%) m.p. 132.2-132.6°C.
  • the oil crystallised upon standing at room temperature.
  • the solid was dissolved in ethanol (96%) and 4M sodium hydroxide (5 mL) was added and the reaction mixture was heated at reflux overnight. Then more 4M sodium hydroxide (10 mL) was added and once again was the reaction mixture was heated at reflux overnight. Then more 4M sodium hydroxide (10 mL) was added and the reaction mixture was heated at reflux for 4 hours.
  • the reaction mixture was concentrated until no more ethanol was left, water was added during concentration to maintain the volume of the solution approximately constant.
PCT/EP1996/004449 1995-10-13 1996-10-11 8-azabicyclo[3.2.1]oct-2-ene derivatives, their preparation and use WO1997013770A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
PL96326195A PL185357B1 (pl) 1995-10-13 1996-10-11 Pochodne 8-azabicyklo [3.2.1] okt-2-enowe, ich wytwarzanie i zastosowanie
DE69637097T DE69637097T2 (de) 1995-10-13 1996-10-11 8-Azabicyclo(3.2.1)Oct-2-en-Derivate, deren Herstellung und Anwendung
JP51472697A JP3462505B2 (ja) 1995-10-13 1996-10-11 8−アザビシクロ[3.2.1]オクト−2−エン誘導体、それらの製造及び使用
BR9610960A BR9610960A (pt) 1995-10-13 1996-10-11 Derivados de 8-azabiciclo [3.2.1] oct -2- eno sua preparação e uso
IL12358396A IL123583A (en) 1995-10-13 1996-10-11 3-substituted -8-azabicyclo [3,2,1] oct-2-ene derivatives, their preparation and pharmaceutical compositions containing them
DK96934662T DK0859777T3 (da) 1995-10-13 1996-10-11 8-azabicyclo[3.2.1]oct-2-en-derivater, deres fremstilling og anvendelse
KR1019980702103A KR100274829B1 (ko) 1995-10-13 1996-10-11 8-아자바이사이클로[3,2,1]-옥트-2-엔 유도체의 제조방법 및 용도
EE9800062A EE03446B1 (et) 1995-10-13 1996-10-11 8-asabitsüklo[3.2.1]okt-2-eeni derivaadid, nende valmistamine ja kasutamine
US09/043,294 US6100275A (en) 1995-10-13 1996-10-11 8-azabicyclo[3.2.1.]oct-2-ene derivatives, their preparation and use
CA002233541A CA2233541C (en) 1995-10-13 1996-10-11 8-azabicyclo[3.2.1]oct-2-ene derivatives, their preparation and use
NZ320216A NZ320216A (en) 1995-10-13 1996-10-11 8-azabicyclo[3.2.1]oct-2-ene derivatives, their preparation and use
AU72917/96A AU709327B2 (en) 1995-10-13 1996-10-11 8-azabicyclo{3.2.1}oct-2-ene derivatives, their preparation and use
EP96934662A EP0859777B1 (en) 1995-10-13 1996-10-11 8-azabicyclo(3.2.1)oct-2-ene derivatives, their preparation and use
SK287-98A SK283425B6 (sk) 1995-10-13 1996-10-11 Deriváty 8-azabicyklo[3,2,1]okt-2-énu, spôsob ich prípravy a použitia
UA98031543A UA63894C2 (en) 1995-10-13 1996-11-10 8-azabicyclo[3.2.1]oct-2-en derivatives, a method for the preparation thereof and a method for treatment (variants)
NO19980919A NO980919L (no) 1995-10-13 1998-03-03 8-azabicyklo(3.2.1)okt-2-ene derivater, og deres anvendelse til fremstilling av et legemiddel
IS4681A IS4681A (is) 1995-10-13 1998-03-04 8-azabísýkló(3.2.1)okt-2-en afleiður, framleiðslaþeirra og notkun

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK1156/95 1995-10-13
DK115695 1995-10-13

Publications (1)

Publication Number Publication Date
WO1997013770A1 true WO1997013770A1 (en) 1997-04-17

Family

ID=8101642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/004449 WO1997013770A1 (en) 1995-10-13 1996-10-11 8-azabicyclo[3.2.1]oct-2-ene derivatives, their preparation and use

Country Status (24)

Country Link
US (1) US6100275A (pl)
EP (1) EP0859777B1 (pl)
JP (1) JP3462505B2 (pl)
KR (1) KR100274829B1 (pl)
CN (1) CN1083840C (pl)
AT (1) ATE362931T1 (pl)
AU (1) AU709327B2 (pl)
BR (1) BR9610960A (pl)
CA (1) CA2233541C (pl)
CZ (1) CZ285093B6 (pl)
DE (1) DE69637097T2 (pl)
DK (1) DK0859777T3 (pl)
EE (1) EE03446B1 (pl)
HU (1) HUP9802433A3 (pl)
IL (1) IL123583A (pl)
IS (1) IS4681A (pl)
NO (1) NO980919L (pl)
NZ (1) NZ320216A (pl)
PL (1) PL185357B1 (pl)
RU (1) RU2157372C2 (pl)
SK (1) SK283425B6 (pl)
TR (1) TR199800628T2 (pl)
UA (1) UA63894C2 (pl)
WO (1) WO1997013770A1 (pl)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998025923A1 (en) * 1996-11-26 1998-06-18 Zeneca Limited 8-azabicyclo[3.2.1]octane derivatives, their preparation and their use as insecticides
WO1998046600A1 (en) * 1997-03-26 1998-10-22 Zeneca Limited Bicyclic amine derivatives
WO1998054181A1 (en) * 1997-05-30 1998-12-03 Neurosearch A/S 8-azabicyclo(3,2,1)oct-2-ene and octane derivatives as cholinergic ligands at nicotinic ach receptors
US5849754A (en) * 1996-11-20 1998-12-15 Zeneca Limited Bicyclic amine derivatives
US5859024A (en) * 1996-05-13 1999-01-12 Zeneca Limited Insecticidal, acaricidal or nematicidal 3-cyano-8-azabicyclo 3.2.1!octane derivatives
US5912254A (en) * 1996-11-15 1999-06-15 Zeneca Limited Bicycle amine derivatives
WO1999029690A1 (en) * 1997-12-11 1999-06-17 Zeneca Limited Process for the preparation of 8-azabicyclo(3.2.1)octane derivatives
US5922732A (en) * 1995-05-24 1999-07-13 Zeneca Limited Bicyclic amines
WO1999038866A1 (en) * 1998-01-28 1999-08-05 Neurosearch A/S 8-azabicyclo[3.2.1]oct-2-ene derivatives in labelled form and use of 8-azabicyclo[3.2.1]oct-2-ene derivatives in labelled and unlabelled form
WO1999062502A2 (en) * 1998-05-29 1999-12-09 Queen's University At Kingston Methods for the normalization of sexual response and amelioration of long term genital tissue degradation
EP0969005A1 (en) * 1998-06-19 2000-01-05 Eli Lilly And Company Azabicyclic inhibitors of serotonin reuptake
WO2000032600A1 (en) * 1998-11-27 2000-06-08 Neurosearch A/S 8-azabicyclo[3.2.1]oct-2-ene and -octane derivatives
WO2000044746A1 (en) * 1999-01-28 2000-08-03 Neurosearch A/S Novel azabicyclo derivatives and their use
WO2000051972A1 (en) * 1999-03-01 2000-09-08 Pfizer Limited 1,2,3,4-tetrahydro-1-naphthalenamine compounds useful in therapy
US6177442B1 (en) 1996-11-26 2001-01-23 Zeneca Limited Bicyclic amine derivatives
WO2001046186A1 (en) * 1999-12-20 2001-06-28 Eli Lilly And Company Benzofuran derivatives
US6316624B1 (en) 1997-12-09 2001-11-13 Syngenta Ltd. Process for the preparation of substituted 8-azabicyclo[3,2,1]octanes
WO2002030405A2 (en) * 2000-10-13 2002-04-18 Neurosearch A/S Treatment of affective disorders by the combined action of a nicotinic receptor agonist and a monoaminergic substance
WO2002080957A1 (en) 2001-04-09 2002-10-17 Neurosearch A/S Adenosine a2a receptor antagonists combined with neurotrophic activity compounds in the treatment of parkinson's disease
US6579878B1 (en) 2000-07-07 2003-06-17 Targacept, Inc. Pharmaceutical compositions and methods for use
US6624167B1 (en) 2000-08-04 2003-09-23 Targacept, Inc. Pharmaceutical compositions and methods for use
US6632824B2 (en) 2001-05-25 2003-10-14 Wyeth Aryl-8-azabicyclo[3.2.1]octanes for the treatment of depression
WO2003094830A2 (en) * 2002-05-07 2003-11-20 Neurosearch A/S Novel azacyclic ethynyl derivatives
US6852721B2 (en) 2000-05-25 2005-02-08 Targacept, Inc. Pharmaceutical compositions and methods for use
WO2006108789A1 (en) * 2005-04-08 2006-10-19 Neurosearch A/S Novel enantiomers and their use as monoamine neurotransmitter re-uptake inhibitors
WO2007025978A1 (en) * 2005-09-01 2007-03-08 Neurosearch A/S Novel azabicyclo[3.2.1]oct-2-ene derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
US7368460B2 (en) 2000-05-26 2008-05-06 Pfizer, Inc. Tropane derivatives useful in therapy
WO2009109518A1 (en) * 2008-03-05 2009-09-11 Neurosearch A/S Novel 4-benzhydryl-tetrahydro-pyridine derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
US7718705B1 (en) 1999-09-03 2010-05-18 Eli Lilly And Company Methods of using rapid-onset selective serotonin reuptake inhibitors for treating sexual dysfunction

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812499B1 (ko) * 2006-10-16 2008-03-11 이도훈 항경련제
TWI415850B (zh) * 2007-07-20 2013-11-21 Theravance Inc 製備mu類鴉片受體拮抗劑之中間物的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133073A (en) * 1959-12-10 1964-05-12 Sterling Drug Inc 3-aryl-1, 5-iminocycloalkanes and preparation thereof
DE2143587A1 (de) * 1970-08-31 1972-03-09 A.H. Robins Co., Inc., Richmond, Va. (V.St.A.) 3 alpha- und 3beta-Phenyl (und monosubstituierte Phenyl) -nortropane und Verfahren zu deren Herstellung
US4132710A (en) * 1976-12-20 1979-01-02 Ayerst, Mckenna And Harrison, Ltd. [2]Benzopyrano[3,4-c]pyridines and process therefor
US4180669A (en) * 1976-12-13 1979-12-25 Abbott Laboratories 2-(N-phenethyl-4-piperidino)-5-pentyl resorcinol
GB2247886A (en) * 1990-09-12 1992-03-18 Wyeth John & Brother Ltd Azabicyclic derivatives
EP0518805A1 (en) * 1991-06-13 1992-12-16 H. Lundbeck A/S Piperidine derivatives
WO1995028401A1 (en) * 1994-04-19 1995-10-26 Neurosearch A/S Tropane-2-aldoxine derivatives as neurotransmitter reuptake inhibitors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB247886A (en) * 1925-11-02 1926-02-25 Thomas Stewart Hamilton Improvements in attachments for leaf springs
KR850000380B1 (ko) * 1979-02-22 1985-03-23 더웰컴 화운데이숀 리미티드 이미다졸 유도체의 제조방법
US5418240A (en) * 1990-08-21 1995-05-23 Novo Nordisk A/S Heterocyclic compounds and their preparation and use
DK198590D0 (da) * 1990-08-21 1990-08-21 Novo Nordisk As Heterocykliske forbindelser, deres fremstilling og anvendelse
NZ241481A (en) * 1991-02-04 1994-06-27 Hoechst Roussel Pharma Derivatives of 8-aza-bicyclo[3.2.1]octane and pharmaceutical compositions thereof
DE4200145A1 (de) * 1992-01-07 1993-07-08 Kali Chemie Pharma Gmbh 7,10-epoxy-oxacyclododecan-derivate, verfahren und zwischenprodukte zu ihrer herstellung und diese verbindungen enthaltende arzneimittel
AU672052B2 (en) * 1992-12-23 1996-09-19 Neurosearch A/S Antidepressant and antiparkinsonian compounds
DK154192D0 (da) * 1992-12-23 1992-12-23 Neurosearch As Heterocycliske forbindelser
JP2906085B2 (ja) * 1993-05-18 1999-06-14 ウエイク フォリスト ユニヴァーシティ 生物学的活性トロパン誘導体による治療方法
US5731317A (en) * 1995-03-10 1998-03-24 Merck & Co., Inc. Bridged piperidines promote release of growth hormone

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133073A (en) * 1959-12-10 1964-05-12 Sterling Drug Inc 3-aryl-1, 5-iminocycloalkanes and preparation thereof
DE2143587A1 (de) * 1970-08-31 1972-03-09 A.H. Robins Co., Inc., Richmond, Va. (V.St.A.) 3 alpha- und 3beta-Phenyl (und monosubstituierte Phenyl) -nortropane und Verfahren zu deren Herstellung
US4180669A (en) * 1976-12-13 1979-12-25 Abbott Laboratories 2-(N-phenethyl-4-piperidino)-5-pentyl resorcinol
US4132710A (en) * 1976-12-20 1979-01-02 Ayerst, Mckenna And Harrison, Ltd. [2]Benzopyrano[3,4-c]pyridines and process therefor
GB2247886A (en) * 1990-09-12 1992-03-18 Wyeth John & Brother Ltd Azabicyclic derivatives
EP0518805A1 (en) * 1991-06-13 1992-12-16 H. Lundbeck A/S Piperidine derivatives
WO1995028401A1 (en) * 1994-04-19 1995-10-26 Neurosearch A/S Tropane-2-aldoxine derivatives as neurotransmitter reuptake inhibitors

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FRETER: "3-Cycloalkenylindoles", J. ORG. CHEM., vol. 40, no. 17, 1975, pages 2525 - 2529, XP002023168 *
LYLE ET AL.: "Orientation in the hydroboration of...", J. ORG. CHEM., vol. 35, no. 3, 1970, pages 802 - 805, XP002023169 *
PERREGAARD ET AL.: "sigma Ligands with subnanomolar ...", J. MED. CHEM., vol. 38, no. 11, 1995, pages 1998 - 2008, XP002023166 *
REPKE ET AL.: "Abbreviated ibogaine...", J. ORG. CHEM., vol. 59, no. 8, 1994, pages 2164 - 2171, XP002023167 *

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922732A (en) * 1995-05-24 1999-07-13 Zeneca Limited Bicyclic amines
US6207676B1 (en) 1995-05-24 2001-03-27 Zeneca Limited Bicyclic amines
US6391883B1 (en) 1995-05-24 2002-05-21 Syngenta Limited Bicyclic amines
US6573275B1 (en) 1995-05-24 2003-06-03 Syngenta Limited Bicyclic amines
US5859024A (en) * 1996-05-13 1999-01-12 Zeneca Limited Insecticidal, acaricidal or nematicidal 3-cyano-8-azabicyclo 3.2.1!octane derivatives
US5912254A (en) * 1996-11-15 1999-06-15 Zeneca Limited Bicycle amine derivatives
US6066646A (en) * 1996-11-15 2000-05-23 Zeneca Limited Bicyclic amine derivatives
US5849754A (en) * 1996-11-20 1998-12-15 Zeneca Limited Bicyclic amine derivatives
US6093726A (en) * 1996-11-26 2000-07-25 Zeneca Limited Bicyclic amine derivatives
US6174894B1 (en) 1996-11-26 2001-01-16 Zeneca Limited Bicyclic amine derivatives
WO1998025923A1 (en) * 1996-11-26 1998-06-18 Zeneca Limited 8-azabicyclo[3.2.1]octane derivatives, their preparation and their use as insecticides
US6177442B1 (en) 1996-11-26 2001-01-23 Zeneca Limited Bicyclic amine derivatives
US6291474B1 (en) 1996-11-26 2001-09-18 Zeneca Limited Bicyclic amine derivatives
WO1998046600A1 (en) * 1997-03-26 1998-10-22 Zeneca Limited Bicyclic amine derivatives
US6964972B2 (en) 1997-05-30 2005-11-15 Neurosearch A/S 8-Azabicyclo(3,2,1)oct-2 ene and octane derivatives as cholinergic ligands at nicotinic ACh receptors
WO1998054181A1 (en) * 1997-05-30 1998-12-03 Neurosearch A/S 8-azabicyclo(3,2,1)oct-2-ene and octane derivatives as cholinergic ligands at nicotinic ach receptors
CZ298824B6 (cs) * 1997-05-30 2008-02-20 Neurosearch A/S Deriváty 8-azabicyklo[3.2.1]okt-2-enu, zpusob jejich prípravy a jejich použití
US6645977B1 (en) 1997-05-30 2003-11-11 Neurosearch A/S 8-azabicyclo(3,2,1)oct-2-ene and octane derivatives as cholinergic ligands at nicotinic ACh receptors
US6316624B1 (en) 1997-12-09 2001-11-13 Syngenta Ltd. Process for the preparation of substituted 8-azabicyclo[3,2,1]octanes
WO1999029690A1 (en) * 1997-12-11 1999-06-17 Zeneca Limited Process for the preparation of 8-azabicyclo(3.2.1)octane derivatives
US6323343B1 (en) 1997-12-11 2001-11-27 Syngenta Limited Process for the preparation of 8-azabicyclo(3.2.1)octane derivatives
WO1999038866A1 (en) * 1998-01-28 1999-08-05 Neurosearch A/S 8-azabicyclo[3.2.1]oct-2-ene derivatives in labelled form and use of 8-azabicyclo[3.2.1]oct-2-ene derivatives in labelled and unlabelled form
WO1999062502A2 (en) * 1998-05-29 1999-12-09 Queen's University At Kingston Methods for the normalization of sexual response and amelioration of long term genital tissue degradation
US6403605B1 (en) 1998-05-29 2002-06-11 Queen's University At Kingston Methods for the normalization of sexual response and amelioration of long term genital tissue degradation
WO1999062502A3 (en) * 1998-05-29 2000-06-15 Univ Kingston Methods for the normalization of sexual response and amelioration of long term genital tissue degradation
US6107307A (en) * 1998-06-19 2000-08-22 Eli Lilly And Company Inhibition of serotonin reuptake
EP0969005A1 (en) * 1998-06-19 2000-01-05 Eli Lilly And Company Azabicyclic inhibitors of serotonin reuptake
EP1382605A3 (en) * 1998-11-27 2004-09-15 Neurosearch A/S 8-azabicyclo(3.2.1)oct-2-ene derivatives and their use as nAChR ligands
US6680328B2 (en) 1998-11-27 2004-01-20 Neurosearch A/S 8-azabicyclo[3.2.1]oct-2-ene and -octane derivatives
EP1382605A2 (en) * 1998-11-27 2004-01-21 Neurosearch A/S 8-azabicyclo(3.2.1)oct-2-ene derivatives and their use as nAChR ligands
US7045522B2 (en) 1998-11-27 2006-05-16 Neurosearch A/S 8-Azabicyclo[3.2.1]oct-2-ene and -octane derivatives technical field
WO2000032600A1 (en) * 1998-11-27 2000-06-08 Neurosearch A/S 8-azabicyclo[3.2.1]oct-2-ene and -octane derivatives
WO2000044746A1 (en) * 1999-01-28 2000-08-03 Neurosearch A/S Novel azabicyclo derivatives and their use
US6617459B2 (en) 1999-01-28 2003-09-09 Neurosearch A/S Azabicyclo derivatives and their use
WO2000051972A1 (en) * 1999-03-01 2000-09-08 Pfizer Limited 1,2,3,4-tetrahydro-1-naphthalenamine compounds useful in therapy
US7718705B1 (en) 1999-09-03 2010-05-18 Eli Lilly And Company Methods of using rapid-onset selective serotonin reuptake inhibitors for treating sexual dysfunction
US6835733B2 (en) 1999-12-20 2004-12-28 Eli Lilly And Company Tropane linked benzofuran derivatives
WO2001046186A1 (en) * 1999-12-20 2001-06-28 Eli Lilly And Company Benzofuran derivatives
USRE41439E1 (en) 2000-05-25 2010-07-13 Targacept, Inc. Pharmaceutical compositions and methods for use
US6852721B2 (en) 2000-05-25 2005-02-08 Targacept, Inc. Pharmaceutical compositions and methods for use
US7576097B2 (en) 2000-05-26 2009-08-18 Pfizer, Inc. Tropane derivatives useful in therapy
US7368460B2 (en) 2000-05-26 2008-05-06 Pfizer, Inc. Tropane derivatives useful in therapy
US6579878B1 (en) 2000-07-07 2003-06-17 Targacept, Inc. Pharmaceutical compositions and methods for use
US6624167B1 (en) 2000-08-04 2003-09-23 Targacept, Inc. Pharmaceutical compositions and methods for use
US7022706B2 (en) 2000-08-04 2006-04-04 Targacept, Inc. Pharmaceutical compositions and methods for use
WO2002030405A3 (en) * 2000-10-13 2002-09-06 Neurosearch As Treatment of affective disorders by the combined action of a nicotinic receptor agonist and a monoaminergic substance
US7307087B2 (en) 2000-10-13 2007-12-11 Neurosearch A/S Treatment of affective disorders by the combined action of a nicotinic receptor agonist and a monoaminergic substance
WO2002030405A2 (en) * 2000-10-13 2002-04-18 Neurosearch A/S Treatment of affective disorders by the combined action of a nicotinic receptor agonist and a monoaminergic substance
WO2002080957A1 (en) 2001-04-09 2002-10-17 Neurosearch A/S Adenosine a2a receptor antagonists combined with neurotrophic activity compounds in the treatment of parkinson's disease
US6632824B2 (en) 2001-05-25 2003-10-14 Wyeth Aryl-8-azabicyclo[3.2.1]octanes for the treatment of depression
CN100522976C (zh) * 2002-05-07 2009-08-05 神经研究公司 氮杂环乙炔基衍生物
US7378526B2 (en) 2002-05-07 2008-05-27 Neurosearch A/S Azacyclic ethynyl derivatives
WO2003094830A2 (en) * 2002-05-07 2003-11-20 Neurosearch A/S Novel azacyclic ethynyl derivatives
US7667040B2 (en) 2002-05-07 2010-02-23 Neurosearch A/S Azacyclic ethynyl derivatives
WO2003094830A3 (en) * 2002-05-07 2004-03-18 Neurosearch As Novel azacyclic ethynyl derivatives
WO2006108789A1 (en) * 2005-04-08 2006-10-19 Neurosearch A/S Novel enantiomers and their use as monoamine neurotransmitter re-uptake inhibitors
EP2272847A1 (en) 2005-04-08 2011-01-12 NeuroSearch A/S Enantiomers and their use as monoamine neurotransmitter re-uptake inhibitors
WO2007025978A1 (en) * 2005-09-01 2007-03-08 Neurosearch A/S Novel azabicyclo[3.2.1]oct-2-ene derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
WO2009109518A1 (en) * 2008-03-05 2009-09-11 Neurosearch A/S Novel 4-benzhydryl-tetrahydro-pyridine derivatives and their use as monoamine neurotransmitter re-uptake inhibitors

Also Published As

Publication number Publication date
EE03446B1 (et) 2001-06-15
NZ320216A (en) 1999-05-28
CZ285093B6 (cs) 1999-05-12
UA63894C2 (en) 2004-02-16
CN1083840C (zh) 2002-05-01
TR199800628T2 (xx) 1998-07-21
EP0859777B1 (en) 2007-05-23
AU7291796A (en) 1997-04-30
IL123583A0 (en) 1998-10-30
SK28798A3 (en) 1998-09-09
NO980919L (no) 1998-06-08
HUP9802433A2 (hu) 1999-04-28
KR19990063651A (ko) 1999-07-26
SK283425B6 (sk) 2003-07-01
BR9610960A (pt) 1999-03-02
RU2157372C2 (ru) 2000-10-10
PL185357B1 (pl) 2003-04-30
ATE362931T1 (de) 2007-06-15
AU709327B2 (en) 1999-08-26
CA2233541C (en) 2002-04-30
EP0859777A1 (en) 1998-08-26
DE69637097T2 (de) 2007-09-20
IS4681A (is) 1998-03-04
CN1199400A (zh) 1998-11-18
DK0859777T3 (da) 2007-09-03
DE69637097D1 (de) 2007-07-05
JPH10512589A (ja) 1998-12-02
US6100275A (en) 2000-08-08
PL326195A1 (en) 1998-08-31
NO980919D0 (no) 1998-03-03
IL123583A (en) 2003-07-31
HUP9802433A3 (en) 2000-03-28
CA2233541A1 (en) 1997-04-17
KR100274829B1 (ko) 2000-12-15
JP3462505B2 (ja) 2003-11-05
CZ75898A3 (cs) 1998-11-11
EE9800062A (et) 1998-08-17

Similar Documents

Publication Publication Date Title
US6100275A (en) 8-azabicyclo[3.2.1.]oct-2-ene derivatives, their preparation and use
AU720358B2 (en) Tropane-derivatives, their preparation and use
EP0858461B1 (en) Fused tropane-derivatives as neurotransmitter reuptake inhibitors
EP0756596B1 (en) Tropane-2-aldoxime derivatives as neurotransmitter reuptake inhibitors
US7781456B2 (en) Enantiomers of 3-heteroaryl-8H-8-azabicyclo(3.2.1)oct-2-ene and their use as monoamine neurotransmitter re-uptake inhibitors
JP2009526816A (ja) 新規クロメン−2−オン誘導体及びモノアミン神経伝達物質再取り込み阻害薬としてのその使用
US7989470B2 (en) 3,8-substituted 8-aza-bicyclo[3.2.1]octane derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
AU2004212166B2 (en) 8-aza-bicyclo (3.2.1) octane derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
EP2367818B1 (en) 8-azabicyclo[3.2.1]oct-2-ene derivatives and their use as mono-amine neurotransmitter re-uptake inhibitors
EP1937261B1 (en) Novel azabicyclo[3.2.1]oct-2-ene derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
US7524958B2 (en) Certain 9-aza-bicyclo[3.3.1] nonane derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
EP1851207A2 (en) Alkyl substituted homopiperazine derivatives and their use as monoamine neurotransmitter re-uptake inhibitors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96197566.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 28798

Country of ref document: SK

WWE Wipo information: entry into national phase

Ref document number: PV1998-758

Country of ref document: CZ

Ref document number: 320216

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1019980702103

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996934662

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2233541

Country of ref document: CA

Ref document number: 2233541

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998/00628

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 1997 514726

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/A/1998/002895

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09043294

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996934662

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1998-758

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: PV1998-758

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019980702103

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980702103

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996934662

Country of ref document: EP