WO1997008348A1 - Procede et dispositif d'affinage sous vide d'acier en fusion - Google Patents

Procede et dispositif d'affinage sous vide d'acier en fusion Download PDF

Info

Publication number
WO1997008348A1
WO1997008348A1 PCT/JP1996/002413 JP9602413W WO9708348A1 WO 1997008348 A1 WO1997008348 A1 WO 1997008348A1 JP 9602413 W JP9602413 W JP 9602413W WO 9708348 A1 WO9708348 A1 WO 9708348A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
molten steel
refining
oxygen
gas
Prior art date
Application number
PCT/JP1996/002413
Other languages
English (en)
French (fr)
Inventor
Yosuke Hoshijima
Kazuo Oonuki
Kazuhisa Fukuda
Masao Iguchi
Hidekazu Kakizoe
Hiroki Gofuku
Hiroshi Nagahama
Hiroaki Yamamoto
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US08/817,484 priority Critical patent/US5919282A/en
Priority to CA002203410A priority patent/CA2203410C/en
Priority to KR1019970702758A priority patent/KR100221788B1/ko
Priority to AU68369/96A priority patent/AU699450B2/en
Priority to DE69617897T priority patent/DE69617897T2/de
Priority to BR9606611A priority patent/BR9606611A/pt
Priority to EP96928680A priority patent/EP0789083B1/en
Priority to JP51012397A priority patent/JP3708966B2/ja
Publication of WO1997008348A1 publication Critical patent/WO1997008348A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Definitions

  • the present invention relates to a method for vacuum-purifying molten steel using an RH vacuum degassing apparatus, a DH vacuum degassing apparatus, etc., and more particularly to a vacuum-purifying method and apparatus for molten steel capable of efficiently performing a vacuum-purifying reaction of molten steel using a refining flux. Is provided.
  • a method for producing ultra-low sulfur steel using an RH vacuum degassing apparatus is described in JP-A-5-171253, 5-2877359, 5-34591 0, 6-65625 and the like.
  • a flux for refining (desulfurizing agent) is blown together with an inert carrier gas through the top blowing lance onto the surface of molten steel that recirculates inside the tank of an RH vacuum degassing system equipped with a top blowing lance.
  • the applicant of the present invention disclosed in Japanese Patent Application Laid-Open No. 7-41826 by projecting or adding a flux for refining to a molten steel bath surface while heating molten steel in a vacuum processing apparatus with a burner.
  • an upper blowing lance that can simultaneously eject fuel gas, oxygen gas for fuel gas combustion, and a flux for purification (using an inert carrier gas such as argon gas).
  • a fuel gas supply hole is provided on the flared surface at the lower end of the rubber lance, and a flux inlet tube for purification is provided in the oxygen gas flow path at the center of the shaft, and the flux is discharged into the divergent space.
  • the upper blowing lance with the holes opened is suspended in a vacuum degassing tank so as to be able to move up and down, and the burner is heated by the fuel gas and oxygen gas and the flux for purification is projected, and the burner combustion heat
  • a technique has been disclosed in which the refining flux is heated before reaching the molten steel surface by a (flame) to promote the melting of the refining flux in the molten steel, thereby improving the desulfurization efficiency.
  • a plasma torch body having a plasma electrode is provided on the side wall of the RH degassing tank above the surface of molten steel, and a flux supply pipe is provided in the plasma torch body for purification.
  • a method is disclosed in which a flux is supplied into a plasma jet, and the flux is heated and / or melted by a brass jet in a jetting process until the flux reaches the surface of the molten steel, and is injected into the molten steel.
  • the flux for refining is used by using an inert gas as a carrier gas and a surface of the molten steel.
  • burner combustion heat treatment using oxygen gas and fuel gas and heat treatment using a plasma heater were performed.
  • [] means in molten steel, and () means in slag. Therefore, in order to reduce the S concentration in the molten steel shown on the left side of the above equation, 1) addition of lime as a desulfurizing material (increase in CaO), 2) oxygen concentration in the molten steel Needs to be reduced. In order to reduce the oxygen concentration in the molten steel, it is necessary to add aluminum for deoxidation to the molten steel and to prevent the oxygen in the atmosphere from coming into contact with the molten steel to increase the oxygen concentration in the molten steel.
  • the desulfurization reaction is said to be reduction purification.
  • the desulfurization powder is conveyed from a nozzle inserted under the surface of the molten steel with an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • oxygen gas as a powder transfer gas or as a gas blown onto the surface of molten steel leads to an increase in the oxygen concentration in the molten steel and leads to suppression of the desulfurization reaction. It has come.
  • the flux for purification is injected into the molten steel surface using an inert gas as a carrier gas according to the conventional common sense of the art
  • the injected inert gas or powdery purified gas is used.
  • the flux lowers the temperature of the molten steel due to the flux, delaying the metallurgical reaction of the refining flux, or, in the case of burner combustion heating, lowering the temperature of the burner flame formed at the lower end of the balance.
  • the temperature of the refining flux when it reached the molten steel surface decreased, and the reaction efficiency of the refining flux decreased.
  • a method using a plasma torch to heat or melt the refining flux before reaching the molten steel surface is as follows.
  • a separate lance for scouring such as promoting decarburization by oxygen blowing, is required.
  • an object of the present invention is to perform more effective flux purification in a vacuum purification method.
  • Another object of the present invention is to provide a flux purifier in a vacuum chamber, wherein the life span of the refractory from the beginning to the end of use of the vacuum chamber refractory (hereinafter referred to as refractory-furnace allowance) is used. It is an object of the present invention to provide a method capable of maintaining the flux unit intensity for purification at a low level.
  • the present invention is characterized in that a purification flux is used using oxygen gas as a carrier gas, and is provided at the top of a vacuum degassing tank.
  • a flux for purification (for example, a desulfurizing agent) is blown into the oxygen gas flow path of the upper gas blow lance as a carrier gas, and mixed with the oxygen gas supplied into the oxygen gas flow path.
  • fuel gas is supplied to a fuel gas passage penetrating into the upper blowing lance and opening near the jetting hole of the upper blowing lance, and the mixed gas and the fuel gas are supplied near the jetting hole of the upper blowing lance.
  • This is a refining method in which a flame is formed by mixing, and the refining flux is heated and melted by the flame, and then the molten flux is poured into molten steel.
  • the oxygen gas can be used as a carrier gas even in the desulfurization reaction, which is a reduction process, because the partial pressure of the oxygen gas in contact with the molten steel is reduced by reducing the pressure of the atmosphere in the vacuum chamber. Based on the new recognition that it is possible to reduce the oxygen concentration of the carrier gas.
  • the present invention uses oxygen gas as a carrier gas to completely burn the fuel gas, the amount of the molten steel contaminated gas reaching the surface of the molten steel is extremely small. Further, in the present invention, as described below, in order to heat and melt the refining flux in the flame generated by the above combustion, a predetermined upper blowing lance height is set. Due to the height, the flow velocity of the combustion gas near the molten steel surface is attenuated, and it is difficult for the combustion gas to reach the molten steel surface.
  • the molten steel in the vacuum chamber flows at a large velocity and in a turbulent state, so it is immediately diffused into the molten steel and does not adversely affect the molten flux material. is there.
  • the present invention provides a condition for heating and melting the refining flux in the burner flame before the refining flux reaches the molten steel surface, that is, the amount of heat supplied per powder, The particle size, powder melting point or lance height, etc. are determined, and the flux for scouring by the burner flame of the present invention is used. Heat melting was enabled.
  • the present invention adjusts the refining flux supply rate F and the molten steel ring flow rate Q during the vacuum refining process so as to satisfy the following equation, thereby providing a furnace for refractory in a vacuum tank. Through this process, it is possible to maintain the flux unit intensity for purification at a low level.
  • FIG. 1 is a partially sectional front view showing one embodiment of an RH vacuum degassing apparatus for implementing the present invention.
  • FIG. 2 is a sectional view of an end of the upper blowing lance shown in FIG.
  • FIG. 3 is a partial cross-sectional front view showing another embodiment of the RH vacuum degassing apparatus embodying the present invention.
  • FIG. 4 is a sectional view of the tip of the upper blowing lance shown in FIG.
  • FIG. 5 is a partially sectional front view of the RH vacuum degassing apparatus.
  • FIG. 6 is a cross-sectional view of the tip of the upper blowing lance shown in FIG.
  • FIG. 7 is a diagram showing the relationship between the inner diameter of the immersion pipe and the molten steel ring flow rate in the apparatus of FIG. 5, and the relationship between the furnace allowance time and the molten steel ring flow rate of the above apparatus.
  • FIG. 8 is a diagram showing the relationship between the flux supply rate and the desulfurization rate in the apparatus of FIG.
  • FIG. 9 shows the flux supply speed and the molten steel ring flow rate in the device in Fig. 5.
  • FIG. 3 is a view showing a relationship between a desulfurization ratio and a ratio of the ratio.
  • FIG. 10 is a diagram showing the relationship between the desulfurization rate and the ratio of the flux supply speed and the molten steel ring flow rate in the apparatus of FIG.
  • FIG. 11 is a diagram showing the relationship between the desulfurization rate and the ratio of the flux supply speed and the molten steel ring flow rate in the apparatus of FIG.
  • Fig. 12 (A) is a backscattered electron micrograph showing a cross section of the flux powder before melting.
  • FIG. 12 (B) is a reflection electron microscope photograph showing the element distribution of Ca constituting the flux powder of FIG. 12 (A).
  • Fig. 13 (A) is a backscattered electron micrograph showing the cross section of the flux powder after melting.
  • FIG. 13 (B) is a reflection electron micrograph showing the element distribution of Ca constituting the flux powder of FIG. 13 (A).
  • the present invention performs temperature compensation for molten steel by using oxygen gas, which has been considered to be unusable for flux refining in reduction refining, as a carrier gas for the refining flux, and performs flux compensation.
  • oxygen gas which has been considered to be unusable for flux refining in reduction refining
  • the idea of using oxygen gas as the carrier gas was made based on the following technical recognition.
  • the partial pressure of the oxygen gas in contact with the molten steel can be reduced.
  • the atmospheric pressure is 5 torr
  • the oxygen concentration in the molten steel should be reduced to 0.6% or less of the oxygen concentration under atmospheric pressure to prevent oxygen contamination of the molten steel.
  • the present invention provides a technical recognition ⁇ that the partial pressure of the oxygen gas contacting the molten steel can be reduced to such an extent that the oxygen contamination of the molten steel is not a problem by reducing the atmosphere in the tank.
  • the degree of vacuum in the vacuum degassing tank is set in the range of 3 to 200 torr based on the above technical recognition. If the vacuum is lower than 200 torr, the molten steel will not be sucked into the above degassing tank, impeding the recirculation of the molten steel, and the oxygen contamination of the molten steel will become remarkable. On the other hand, if the degree of vacuum becomes high vacuum of less than 3 torr, the position of the flame discharged from the outlet opening of the upper lance increases sharply and the time to contact the molten steel increases, resulting in a rapid increase in power-bon contamination. To increase. Therefore, the degree of vacuum in the tank is set in the above range.
  • the vacuum in the tank should be in the range of 70 to 150 torr. If a small amount of contamination is allowed depending on the type of steel to be treated, it may be appropriately selected according to the type of steel in the range of 3 to 70 torr or less than 150 to 200 torr.
  • the present invention is based on the acid including the carrier gas.
  • the fuel gas injected into the vicinity of the upper blowing lance outlet with raw gas was completely burned to minimize oxidation contamination of molten steel by combustion gas (carbon dioxide, steam, etc.).
  • the refining flux is heated and melted in the combustion gas to homogenize the flux component elements in the flux grains. Enables uniform diffusion of flux component elements
  • the distance LH between the lower opening of the upper lance and the molten steel, that is, the lance height (operating burner height) is determined. Higher melting time is required.
  • the following formula was calculated from the heat transfer calculation to the flux in the flame and the observation results of the flux melting state.
  • D Lance throat diameter (mm)
  • D 2 Lance outlet diameter (mm)
  • F Oxygen flow rate (Nm 3 / hr)
  • P Atmospheric pressure (torr)
  • the composition of the flux (desulfurizing material) used in the example of the present invention was 80% CaO—20% CaF 2 , and the estimated melting point from the phase diagram was about 2000 ° C. Any flux below the temperature can be used.
  • the melting test of the refining flux was performed under the conditions of the present invention, that is, using a flux of 100% or less of 40% CaF 2 —60% CaO as a desulfurizing material,
  • the gas was LNGlOONm 3 hr, and the burner height was 6 m.
  • the burner flame temperature rises, the flux temperature rises, and the molten steel melts.
  • the temperature also rises,
  • the reaction efficiency of the rack is improved, but the equipment is extremely simple because the upper blowing lance of the vacuum scouring equipment can be used without adding any other equipment. It also has the great advantage that it can be implemented at low cost.
  • FIGS. 3 and 4 show. The following refining tests were performed using the devices shown.
  • Fig. 3 shows a vacuum scouring device and a flux-gas delivery system that feeds refining flux, fuel gas, and oxygen gas for fuel gas combustion into the device.
  • the vacuum purifying device 7 is constructed by immersing the dip tube 8-1 of the vacuum tank 8 in the molten steel 20 in the ladle 19, and the upper blowing lance 1 is lifted and lowered to the top 8-2 of the vacuum tank 8. Is provided.
  • the upper blowing lance 1 has an oxygen gas flow path 4 at its axis and a plurality of fuel gas flow paths 3b inside the lance wall.
  • the gas supply hole 3a is open on the flared surface 2 at the lower end of the balance.
  • a flux introduction pipe 5 for purification is provided in the oxygen gas flow path 4, and a jet port 6 thereof opens to a space (opening) 11 formed by the divergent surface 2.
  • the oxygen gas flow path 4 is connected to an oxygen gas supply pipe 9, and oxygen is supplied via a valve 10.
  • the fuel gas passage 3 b is connected to the fuel gas supply pipe 11, and the fuel gas is supplied via the valve 12.
  • the purification flux introducing pipe 5 is connected to a carrier gas supply pipe 13, and the carrier gas is supplied via a valve 14.
  • a flux tank 17 for purification is valved on the carrier gas supply pipe 13 between the upper blowing lance 1 and the valve 14.
  • a carrier gas is supplied to the tank 17 from a carrier gas supply pipe 15 connected to the tank 17 via a valve 16 and connected to the tank 17 through the valve 18 so that the purification flux is transferred from the tank 17 to the tank 17.
  • the gas is supplied to the rear gas supply pipe 13.
  • a predetermined amount of the flux for purification is sent from the flux stack for purification 17 to the carrier-gas supply pipe 13 by the carrier gas, and thereafter, the flux for purification is moved to the upper side. It is sent together with the carrier gas to the refining flux inlet pipe 5 installed in the blow lance.
  • oxygen gas for fuel gas combustion is sent from the oxygen gas supply pipe 9 to the oxygen gas flow path 5 of the upper blowing lance, and fuel gas is sent from the fuel gas supply pipe 11 to the fuel gas flow path 3b.
  • oxygen gas, fuel gas and purification flux are simultaneously ejected to the outlet opening 1-1 of the upper blowing lance.
  • a burner flame is formed below the upper blowing lance 1 and above the molten steel surface, and the refining flux passes through the burner flame and is heated and melted, and the molten steel surface in the vacuum chamber is heated. Reaches in a molten state.
  • the carrier gas in the supply pipes 13 and 15 was used as the argon gas and the flux for purification was used as the desulfurizing material using the above-described apparatus and system, and this was blown out using the argon gas carrier.
  • a precision test was conducted when the carrier gas in the supply pipes 13 and 15 was used as oxygen gas and jetted with the oxygen gas carrier, and the desulfurization rate in the same flux unit was investigated. It is 108 tons and the steel grade is aluminum-killed steel.
  • the refining flux used had a composition of 80% lime and 20% fluorite, and the size of the powder used was 100 mesh or less.
  • the lower end of the upper blowing lance 1 with a tip shape of 18 mm throat diameter and 90 mni outlet diameter lapar structure is placed at a height of 6 m based on the stationary bath surface, and the fuel gas Using LNG, the LNG flow rate to the fuel gas flow path of the upper blowing lance 1 was set to 200 Nm 3 / hr, and the LNG flow rate was spouted from the fuel gas supply hole 3 a.
  • the oxygen gas flow rate to the oxygen gas flow path 4 was 460 Nm 3 / hr, which completely burns, was ejected from the lance axis.
  • the feed rate of the refining flux was SOkgZmin, the unit flux was 2 kg / t, and the flow rate of the molten steel was 40 t / min.
  • the carrier flux of the refining flux and the gas flow (the flux introduction pipe) (The amount of carrier gas ejected from 5) was Z Nn ⁇ Zhr.
  • the total flow rate of the oxygen gas ejected as the carrier gas and the oxygen gas ejected from the oxygen gas passage 4 of the above-mentioned lance 1 is:
  • the flow rate of the oxygen gas ejected from the oxygen gas flow path 4 was adjusted so that the fuel gas was completely burned at 460 Nm 3 Zhr.
  • the test was carried out with the slag in ladle 19 having a T. Fe of 3% or less.
  • Table 1 shows the results of a survey of the desulfurization rate.
  • the oxygen gas carrier has a higher desulfurization rate defined by the following formula than the argon gas carrier, and achieves efficient desulfurization. O found out
  • Desulfurization rate (S concentration in molten steel before treatment-S concentration in molten steel after treatment) ⁇ (S concentration in molten steel before treatment) X 100
  • the use of the refining flux introduction pipe 5 to transport oxygen gas as a carrier gas to the upper blowing lance can provide a refining effect not available in the conventional technology, but is caused by powder.
  • the flux introduction pipe 5 for purification shown in FIG. 2 is removed, and a carrier gas supply pipe 13 is connected and opened above the oxygen gas flow path 4 as shown in FIG. 1 and FIG.
  • a refining flux supply device and system for supplying the refining flux directly into the oxygen gas flow path 4 were configured. Therefore, the oxygen gas supply pipe 9 for supplying the oxygen gas for fuel gas combustion becomes unnecessary, and both the flux for purification and the oxygen gas for fuel gas combustion are supplied by the carrier gas supply pipe 13 to the oxygen gas flow path 4. To be supplied.
  • the purifying flux is uniformly dispersed and mixed in the oxygen gas in the oxygen gas flow path 4 and is mixed with the fuel at the upper blowing outlet outlet opening 111. Therefore, there is no discontinuity in pressure at the outlet of the upper blowing lance, and a stable flame can be formed, and the dispersed particles of the flux for cleaning are uniformly heated.
  • the burner lance is supplied as compared with the case where oxygen gas is supplied as carrier gas and the flux for purification is supplied by the upper blowing lance 1 with the built-in flux introducing pipe 5. If the refining flux is supplied as a carrier gas to the carrier gas supply pipe 13 as oxygen, the desulfurization rate will increase by 10%, and desulfurization scouring will be achieved more efficiently. did it.
  • the purifying flux is uniformly dispersed in the burner flame and the heat transfer is made uniform.
  • the purifying flux particles have become spherical,
  • the average temperature of the refining flux particles until reaching the surface of the molten steel increases, and the refining flux is melted.
  • the refining flux is reduced.
  • the speed of diffusion of S which is the element to be refined, into the flux increases, so the S concentration in the flux increases, and the reaction efficiency of the flux for purification improves.
  • the desulfurization rate improved even with the same basic unit.
  • the vacuum refining apparatus shown in FIGS. 1 to 4 of the embodiment of the present invention not only allows the refining flux to reach the surface of the molten steel after heating or after melting by heating, but also heats the molten steel and refractory by the burner combustion.
  • decarburization can be promoted by spraying oxygen gas alone, and the temperature of aluminum can be raised as appropriate.
  • the present inventor conducted a flux refining test using an RH vacuum degassing apparatus as described above, and found that the refractory in the vacuum tank was new and the usual refractory was used. If the degassing process is repeatedly performed and the refractory in the vacuum chamber melts, the molten steel composition, ladle slag composition, recirculating gas injection conditions, and flux The flux efficiency of the former is lower than that of the latter even if the composition, particle size, spraying conditions, etc. of the gas are the same.For example, the refining flash required to desulfurize to a predetermined target value of lOppm or less We have further found that the former is higher in the former than the latter.
  • Another aspect of the present invention is based on the elucidation of the cause of the above-mentioned phenomenon.
  • the refractory of the vacuum tank is further melted from the time when the refractory of the vacuum tank is new.
  • the same flux as when the loss has progressed The flux can be purified with the same purification unit as the time when the refractory of the vacuum tank is melted and the refining reaction can be performed with the same low flux unit intensity O
  • O To provide a vacuum refinement method for molten steel with a further improved refinement method.
  • the present inventor found that the inner diameter of the RH immersed person at the end of the RH vacuum tank refractory-furnace generation was larger than that of the RH immersion pipe at the end of the RH vacuum tank refractory-furnace early stage due to melting.
  • the difference that the flow rate of the molten steel ring is large is calculated based on the measured value of the inner diameter of the immersion pipe immediately after the experiment, focusing on the fact that there is a difference between the two in the RH vacuum tank refractory-the end of the furnace cost and the initial stage.
  • the relationship between the molten steel ring flow rate, the flux supply rate for refining, the flux refining efficiency, and the basic unit of flux for refining was investigated.
  • the supply rate F of the refining flux during the vacuum refining process and the flow rate of the molten steel ring By adjusting the flux supply speed F and / or the molten steel ring flow rate Q so that Q satisfies the following formula, a stable and high flux refining efficiency can be achieved throughout the furnace cost of refractories in a vacuum tank. Achieve low precision flux, for example We exempted us from being able to obtain extremely low sulfur molten steel with a basic unit of less than 10 ppm.
  • the furnace cost is defined as the time when the refractory in the RH vacuum chamber is renewed, and the time when the vacuum chamber is replaced in order to construct a new worn refractory. Was defined as furnace end.
  • the present inventors placed the upper blowing lance 31 of the rubber structure shown in FIG. 6 in a vacuum tank 8 of a 100-ton RH facility as shown in FIG.
  • the surface of the molten steel 20 in the vacuum chamber that flows through the immersion pipe 8 — 1 through which the flux powder for desulfurization is immersed in the molten steel 20 in the ladle 19 with argon gas as the carrier from the balance 31.
  • argon gas as the carrier from the balance 31.
  • a carrier gas supply pipe 33 is connected to a carrier gas flow path 32 of the upper blowing lance 31 via a bubble 34, and a flux tank 35 is connected to the supply pipe 33 via a valve 36. And a carrier gas supply pipe 37 is connected to the tank 35 via a valve 38.
  • the flux used has a composition of 60% lime-40% fluorite, and the size of the powder used is less than 100 mesh.
  • the lance shape shown in Fig. 6 had a throat diameter of 18 mm and an outlet diameter of 90 mm.
  • Calibration Li Ah gas flow rate is 300 Nm 3 / hr.
  • the lance height was set to 2.3 m from the molten steel surface in the vacuum chamber.
  • Ladle slag composition and flux usage are as follows: T.Fe + MnO is 5% or less slag, and flux unit consumption is about 2 kg / t.
  • the box feed rate was 70 kgZmin.
  • the composition of the molten steel was as shown in Table 2 and the molten steel temperature was around 1600 ° C.
  • the inventors of the present invention have conducted continuous examinations through one furnace cost of RH vacuum tank refractories, and found that the same desulfurization flux was used as described above when the refractory was new and at the end of the furnace when refractory erosion progressed. Despite the unit consumption and the same treatment conditions, the desulfurization rate was high at the end of the furnace as shown in Table 3 and low in the new furnace.
  • the inner diameter of the RH immersion pipe 8-1 at the end of the furnace increased due to erosion compared to the inner diameter of the RH immersion pipe 8-1 when the new furnace was built. ing.
  • the amount of reflux gas is set to be constant regardless of the erosion of the RH immersion tube, and the flow rate of the molten steel depends on the inner diameter of the immersion tube.
  • Figure 7 shows the 100-ton scale RH equipment used in the desulfurization test (reflux gas amount 500N1 / The relationship between the inner diameter of the submerged pipe and the flow rate of the molten steel ring in the initial, middle, and end stages of the furnace charge of the RH vacuum furnace refractory at min-constant) is shown. The flow rate of the molten steel ring gradually increases from the early to the end of the furnace cost I understand.
  • the present inventors stratified the results of the above desulfurization test under the same molten steel ring flow rate, and investigated the relationship between the flux supply rate and the desulfurization rate. The results are shown in FIG. When the flow rate of molten steel is large, the desulfurization rate is constant regardless of the flux supply rate, but when the flux rate of molten steel is small, the desulfurization rate decreases as the flux supply rate increases. And the desulfurization efficiency decreased.
  • the desulfurization rate can be maintained at a high level if the ratio of the flux supply rate to the molten steel ring flow rate is 1.5 or less. If it exceeds this value, the desulfurization rate decreases.
  • Table 4 shows the results when the flux supply rate was set constant without adjusting the flux supply rate throughout the furnace allowance.
  • Table 3 shows the desulfurization rate of the flux supply rate, the flux supply rate and the molten steel ring flow rate. The values are shown together with the ratio values.
  • the RH vacuum tank refractory is used. Through one furnace cost, the desulfurization rate can be stabilized at a high level, and the unit flux can be stabilized at a low level.
  • the molten steel flow rate indicates the mass flow rate (tonZmin) of the molten steel circulating between the RH vacuum tank and the ladle.
  • the molten steel ring flow rate can be adjusted by controlling the Ar gas flow rate for reflux and the degree of vacuum in the tank.
  • the lower limit of F / Q is 0.5. In other words, if the value of FZQ is less than 0.5, the powder supply speed is low and the refining time by the refining flux is prolonged. Also, it is not preferable because the molten steel ring flow rate becomes extremely large and promotes the wear of the refractory of the immersion pipe.
  • a flux of 80% CaO-20% CaF 2 is used as a hard-to-melt flux at a flow rate of 2 kg / t.
  • the oxygen-containing gas flow rate was set at 460 Nm 3 / hr in terms of pure oxygen, LNG was used as the fuel gas, and the flow rate was set at 200 Nm 3 hr, which was sufficient for complete combustion with oxygen. .
  • argon gas flow rate 180 Nm 3 / hr
  • oxygen-enriched air flow rate is 60 ⁇ 3 , !!!
  • the lance position is to form the entire length of the flame per flame above the surface of the molten steel below the lance.
  • the length is set to 6 m, which is desirable for heating the flux and ensures that the lance height is longer than the LH interval described above.
  • the results are shown in Fig. 11.
  • the argon carrier gas was reduced when the oxygen-containing carrier gas was used in spite of the flux composition (20% CaF 2 ) which was difficult to melt and had poor reactivity. equivalent desulfurization rate and when using the 40% CaF 2 rich fusible when using has a (see FIG. 9), and F / Q is kept stable and high desulfurization rate of 1.5 or less.
  • the desulfurization rate was higher when the carrier gas was oxygen-enriched air than argon and pure oxygen was used.
  • the high desulfurization rate despite the fact that the flux is difficult to melt, is due to the use of oxygen-enriched air carrier gas as described above before flux enters the molten steel. This is considered to be because the diffusion temperature at which the flux temperature increased and S in the molten steel immediately after the flux entered the molten steel penetrated into the flux was large, and the desulfurization reaction proceeded quickly.
  • the carrier gas of the purification flux from argon gas, which is an inert gas, to oxygen-enriched air and then to pure oxygen gas, it is possible to achieve a better balance of inert gas than when using an inert gas.
  • argon gas which is an inert gas
  • oxygen-enriched air oxygen-enriched air
  • pure oxygen gas oxygen-enriched air
  • the temperature of the burner flame formed above the molten steel surface below the lower end increases. This is because the temperature of the refining flux upon reaching the surface of the molten steel increases due to the increase in the flame temperature, and the diffusion rate of [S] into the flux further increases.
  • the present inventor conducted a similar test (using a desulfurizing material of 80% CaO—20% CaF 2 at 2 kgZt) using the vacuum purifying apparatus and system shown in FIGS. 1 and 2.
  • Fig. 10 shows the test results. Similar to the results in Fig. 11, although the flux composition is difficult to melt and has low reactivity, the oxygen-enriched air (When the oxygen enrichment rate is 60%), the desulfurization rate (see Fig. 9) is the same as that obtained when argon gas is used and the flux (40% CaF 2 ), which is rich in meltability, is used. And high and stable desulfurization rate with F ZQ of 1.5 or less.
  • oxygen-containing gas When using pure oxygen gas and, yet hula Tsu box composition poor in molten difficulty rather reactive, ensuring 40% CaF 2 equal to or higher than the desulfurization rate rich fusible, and F / Q is A stable desulfurization rate of 1.5 or less can be ensured.
  • an upper blowing lance that can simultaneously eject fuel gas and pure oxygen gas and form a burner flame below the lance and above the molten steel surface is used.
  • the desulfurization rate is the highest when the same flux composition is used, because the higher-temperature flame is used than when using oxygen-enriched air. This is because the flux powder is more evenly dispersed in the burner flame than the upper blowing lance that is formed and has a built-in flux introduction pipe, and uniform heating is possible.
  • the flux supply speed Z and the molten steel ring flow rate were maintained in the range of 0.5 to 1.5 using the upper blowing lance capable of simultaneously injecting the flux with the fuel gas, oxygen-containing gas, and carrier gas.
  • the fuel gas, oxygen-containing gas, and carrier gas simultaneously blow out a flux to form a burner flame above the surface of the molten steel and heat the flux through the flame to reach the surface of the molten steel, or
  • the flux is heated through the burner flame and reaches the molten steel surface using an upper blowing lance that can simultaneously eject gas and oxygen-containing gas to form a burner flame above the molten steel surface
  • the molten steel table is heated from the lance by the inert gas such as argon gas and nitrogen gas, and the carrier gas such as other gases without heating the flux.
  • the above-mentioned upper lance is desulfurized. It functions as a burner as appropriate during vacuum processing (vacuum degassing) except for time, and heats molten steel and refractory in a vacuum tank with a burner, and heats the refractory in a vacuum tank during standby during vacuum processing to produce a vacuum. It is possible to eliminate sticking of metal to vacuum tank refractories during processing.
  • the desulfurization treatment has mainly been described above as a flux refining method.
  • the present invention is not limited to this, and the present invention is directed to a flux for achieving an extremely low oxygen content, a very low phosphorous content, and the like having a molten steel refining action. Also used for blowing powder.
  • other vacuum degassing tanks such as DH type and straight-body type can be used for the vacuum purifying apparatus.
  • the equipment scale was 100 tons, and the molten steel with the composition shown in Table 5 was desulfurized.
  • Tables 6 and 7 show the conditions and results of the desulfurization treatment.
  • the flux used had a composition of 80% lime-20% fluorite, and the particle size was less than 100 mesh.
  • the upper lance 1 used a Laval structure with a throat diameter of 18 and an outlet diameter of 90 mm.
  • the flux powder supply rate was 30 kgZ min.
  • the T.Fe of the slag was less than 6%.
  • the molten steel temperature before the treatment was about 1590 ° C.
  • an argon gas was introduced using an RH vacuum degassing apparatus in which an upper blowing lance 1 having a built-in flux inlet pipe 5 for purification shown in FIGS. The same operation was performed when the flux carrier was used as the purification flux carrier.
  • Samples Nos. 1 to 5 of the present invention have higher purification fluxes than the Comparative Examples of Samples Nos. 6 and 7 due to the higher flux of purification due to the higher burner flame.
  • the reaction revealed that the unit consumption was reduced and the processing time was shortened.
  • Samples Nos. 4 and 5 also have smaller basic units and shorter processing times than Sample Nos. 1 to 3. This difference in effect between Samples Nos. 4 and 5 and Samples Nos. 1 to 3 is caused by further raising or melting the refining flux due to dispersion of the powder in a high-temperature flame. It is.
  • the flux used had a composition of 60% lime and 40% fluorite, and the particle size was less than 100 mesh.
  • the lens used had a throat diameter of 18 mm and an outlet diameter of 90 mm.
  • Pure oxygen gas flow rate was 460 nm 3 ZHR, was ejected LNG200Nm 3 Zhr from the fuel supply mosquito larva Mr.
  • T.Fe + MnO of slag was carried out under the condition of 5.0% or less.
  • the [S] concentration after the treatment became 10 ppm or less.
  • the inner diameter of the RH immersion pipe is measured, the molten steel ring flow rate is estimated and calculated, and the ratio of the flux supply speed (kgZmin) to the molten steel ring flow rate (t / min) is calculated.
  • the flux supply speed was adjusted to 1.5.
  • the flux supply speed was measured without measuring the inner diameter of the RH immersion tube.
  • the comparative example shows a case where the treatment was performed at a constant value (maximum value of the equipment capacity of the flux supply rate) over the RH vacuum tank and the furnace cost.
  • the unit flux of flux in the embodiment can be processed at a low level and stable in the furnace cost. Also, the effect of shortening the treatment time, particularly in the initial and middle stages of the furnace, is clearer in the example than in the comparative example. Industrial applicability
  • the reaction efficiency of the purification flux is improved as compared with the conventional burner heating / purification flux projection method, and the unit consumption of the purification flux is preferably used. Since the refractory can be reduced through one furnace cost, the industrial applicability is extremely large, such as shortening the processing time and reducing the refractory erosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

明 細 書 溶鋼の真空精鍊方法及びその装置 技術分野
本発明は、 RH真空脱ガス装置、 DH真空脱ガス装置等による溶鋼の 真空精鍊方法に関するもので、 特に精練用フラ ッ クスによる溶鋼の 真空精鍊反応を効率よく実施できる溶鋼の真空精鍊方法及び装置を 提供するものである。
近年の製品品質の厳格化に伴い、 不純物除去の要求レベルも ppm オーダ一となっている。 この要求を受けて製鋼工程では溶銑予備処 理ゃ二次精鍊機能の拡大が図られている。
例えば、 RH真空脱ガス装置を用いて極低硫鋼を製造する方法と し て、 特開平 5 — 1 71253, 5 - 2877359 , 5 - 34591 0, 6 — 65625 号 各公報等に記載されているような、 上吹ランスを備える RH真空脱ガ ス装置の槽内に環流する溶鋼表面に、 精鍊用フラ ッ クス (脱硫剤) を上吹ラ ンスを介して不活性キャ リア一ガスと共に吹きつけ溶鋼中 に侵入させることによつて溶鋼の脱硫を行う精鍊フラ ッ クス投射方 法がある。
一方、 本出願人は、 特開平 7 - 4 1 826 号公報で、 真空処理装置内 の溶鋼をバーナーで加熱しながら、 溶鋼浴面に精鍊用フラ ッ クスを 投射、 又は添加することにより、 溶鋼温度の低下を抑制して、 精鍊 用フラ ッ タスの溶融を促進し、 脱硫効率の向上を図る方法を提案し 。
そして、 同公報にて、 燃料ガス、 燃料ガス燃焼用酸素ガスおよび 精鍊用フラ ッ クス (アルゴンガス等の不活性キヤ リァーガスを使用 ) を同時に噴出できる上吹ラ ンス、 詳しく は、 酸素ガスを噴出する ラバ一ルランスの下端部の末広がり面に燃料ガス供給孔を設け、 さ らに軸心の酸素ガス流路中に精鍊用フラ ッ クス導入管を設けて、 末 広がり空間に精鍊用フラ ッ クス噴出孔を開口させた上吹ラ ンスを、 昇降可能に真空脱ガス槽内に垂下せしめて配置して、 前記燃料ガス と酸素ガスによるバーナー加熱と精鍊用フラ ックス投射を行い、 バ —ナー燃焼熱 (火炎) によって精鍊用フラ ッ クスを溶鋼表面に到達 するまでに予め加熱して、 精鍊用フラ ックスの溶鋼内での溶融を促 進し、 脱硫効率の向上を図る技術を開示した。
また、 特開平 5 — 195043号公報には RH脱ガス槽の溶鋼表面より上 方の槽側壁にプラズマ電極を有するプラズマ トーチ本体を設け、 こ のプラズマ トーチ本体にフラ ックス供給管を設けて精鍊用フラ ック スをプラズマジヱ ッ ト中に供給し、 このフラ ックスを溶鋼表面に到 達するまでの噴射過程でブラズマジエ ツ トにより加熱および また は溶融して溶鋼に投入する方法が開示されている。
上述のように公知技術では真空脱ガス装置における精練用フラ ッ クス (脱硫剤) による溶鋼の真空精鍊において、 精鍊用フラ ッ クス を不活性ガスをキヤ リア一ガスと して使用して溶鋼表面に投入して おり、 精鍊用フラ ックスを加熱する場合は酸素ガスと燃料ガスによ るバーナー燃焼加熱処理やブラズマジエ ツ トによる加熱処理を行つ ていた。
このように、 精鍊用フラ ックス例えば脱硫材を溶鋼に投入する際 に不活性ガスをキャ リア一ガスと して用いるのは次の理由による。 一般に溶鋼の脱硫反応は 次の式で表される。
〔 S〕 + ( Ca0) = ( CaS) + 〔0〕
ここで 〔 〕 は溶鋼中、 ( ) はスラグ中をそれぞれ意味する。 したがって、 上記式の左辺に表れた溶鋼中 S濃度を低減するには 、 1 ) 脱硫材である石灰の添加(CaOの増加) 、 2 ) 溶鋼中酸素濃度 の低下、 を図る必要がある。 溶鋼中酸素濃度を低減するには、 溶鋼 へ脱酸用のアルミなどを添加するとともに、 雰囲気中の酸素と溶鋼 とが接触して溶鋼中酸素濃度が増大することを防止する必要がある 。 これが、 脱硫反応が還元精鍊であると言われているゆえんである したがって、 従来の脱硫プロセスでは、 溶鋼表面下に挿入された ノズルから脱硫用粉体を窒素やアルゴンといつた不活性ガスで搬送 して溶鋼へ吹き込むこと、 あるいは溶鋼表面上部に配置されたラン スから脱硫用粉体を不活性キヤ リァ一ガスで溶鋼表面に吹き付ける ことが通常行われていた。 すなわち、 粉体搬送用ガスあるいは溶鋼 面に吹き付けるガスと して酸素ガスを利用することは、 溶鋼中酸素 濃度の上昇につながり、 脱硫反応を抑制することにつながるため、 原理上不合理と考えられてきたのである。 か、 る従来の技術常識に よつて精鍊用フ ラ ッ ク スをキャ リ ア一ガスと して不活性ガスを用い て溶鋼表面に投入すると、 投入された不活性ガスや粉末状の精鍊用 フ ラ ッ ク スによって溶鋼の温度低下が生じて精鍊用フ ラ ッ ク スの治 金反応が遅延したり、 またはバーナー燃焼加熱の場合、 ラ ンス下端 に形成されるバーナー火炎の温度が低下して溶鋼表面到達時の精鍊 用フ ラ ッ ク スの温度が低下し、 精鍊用フ ラ ッ ク スの反応効率が低下 していた。
また、 精鍊用フラ ッ クスを溶鋼表面に到達する前に加熱、 または 溶融するためにプラズマ トーチを用いる方法は、
1 ) 酸素吹鍊で脱炭促進すること等の精練用ランスが別に必要にな る。
2 ) ブラズマ用の特別な電源および制御設備が必要となる。
3 ) 一般に、 雰囲気圧力が低下すると、 プラズマ投入電力が低下し てく る。 この結果、 発熱量が少なく なり、 多量の粉体溶融には適さ ない。
などの欠点があつた。
また、 前記真空精鍊装置においてフラ ックス精鍊を行うに際し、 特に脱硫剤を投入する場合は前記装置の真空槽の耐火物が新品のと きと通常の脱ガス処理を繰返えし実施して真空槽の耐火物の溶損が 進行したときでは、 両者の脱硫処理前の溶鋼組成、 取鍋スラグ組成 、 環流ガス吹き込み条件、 精鍊用フラ ッ クスの組成、 粒度、 吹き付 け条件等が同一であっても、 前者の脱硫率が後者の脱硫率より も低 く、 l Oppm 以下の所定の目標値まで脱硫するのに必要な精鍊用フラ ッ クス原単位が前者の方が後者より も高く なる、 という問題があつ このような溶鋼の真空精鍊方法において、 より効率の高いフラ ッ クス精鍊処理が、 しかも精鍊期間を通じて均一にしたがって短時間 で処理できる方法が要望されていた。 発明の開示
したがって本発明の目的は真空精鍊方法においてより効果的なフ ラ ックス精鍊を行う ことにある。
本発明のさ らに目的とするところは汎用性のある単純な設備でフ ラ ッ クス精鍊による溶鋼の温度低下を補償する方法および装置を提 供することにある。
本発明の他の目的とするところは真空槽内におけるフラ ッ クス精 鍊において、 前記真空槽耐火物の使用初期から末期までの耐火物の 寿命期間 (以下耐火物ー炉代と云う) に通じて精鍊用フラ ッ クス原 単位を低位に維持できる方法を提供することにある。
すなわち本発明は精鍊用フラ ッ クスを酸素ガスをキャ リ ア一ガス と して使用することを特徴とするもので、 真空脱ガス槽の頂部に設 けた上吹ラ ンスの酸素ガス流路内に酸素ガスをキャ リ アーガスと し て精鍊用フラ ッ クス (例えば脱硫剤) を吹込み、 前記酸素ガス流路 内に供給した酸素ガスと混合し、 かつ前記上吹ラ ンス内に貫通する とともに前記上吹ラ ンスの噴出孔近傍に開口した燃料ガス通路に燃 料ガスを供給し、 前記混合ガスと燃料ガスを前記上吹ランスの噴出 孔近傍で混合して火炎を形成し、 この火炎によって前記精鍊フラ ッ クスを加熱溶融せしめたあと、 この溶融フラ ッ クスを溶鋼内に投入 する精鍊方法である。
このように、 還元精鍊である脱硫反応においても、 キャ リアーガ スと して酸素ガスが使用できるようにしたのは、 真空槽内の雰囲気 の圧力を低減すると、 溶鋼と接触する酸素ガスの分圧を低減するこ とが可能となり、 これによつてキャ リ アーガスの酸素濃度を低下で きるという新しい認識に基づく。
さ らに本発明はキャ リ アーガスとしての酸素ガスも利用 して燃料 ガスを完全燃焼せしめるので、 溶鋼表面に到達する溶鋼汚染ガスは 極めて微量になる。 また、 本発明では下記に示すように、 上記燃焼 によって生ずる火炎の中で精鍊用フラ ッ クスを加熱溶融せしめるた めに、 所定の上吹ラ ンス高さに設定するが、 か、 るラ ンス高さによ つて前記燃焼ガスは溶鋼面近傍での流速が減衰して溶鋼面に到達し にく 、なる。
例え汚染ガスが溶鋼表面に侵入しても、 真空槽内の溶鋼は大きな 流速でかつ乱流状態で流動しているので、 直ちに溶鋼内に拡散して 溶融フラ ッ クス材に悪影響を与えないのである。
また、 本発明は精鍊用フラ ッ クスが溶鋼面に到達する前に上記の バーナー火炎内で精鍊用フラ ッ クスを加熱溶融するための条件、 す なわち、 粉体当りの供給熱量、 粉体粒度、 粉体融点またはラ ンス高 さなどを究明し、 本発明のバーナー火炎による精練用フラ ッ クスの 加熱溶融を可能にした。
以上の技術によって、 精鍊用フラ ックスの投入による溶鋼温度の 大幅な降下を防止するとともに精鍊用フラ ッ クスの使用原単位を低 減することができた。
また、 本発明は真空精鍊処理中の精鍊フラ ッ クス供給速度 Fと溶 鋼環流量 Qが次式の関係を満足するように両者を調整することによ つて、 真空槽の耐火物の一炉代を通じて精鍊用フラ ッ クス原単位を 低位に維持することを可能にする。 一
0. 5 ≤ F / Q≤ 1. 5
勿論上記式の範囲に Fと Qを維持することによって真空槽内の溶 鋼の環流が十分行われて汚染ガスの溶鋼内侵入による弊害を除去す る効果を得ることができる。 図面の簡単な説明
第 1 図は本発明を実施する RH真空脱ガス装置の一実施例を示す一 部断面正面図である。
第 2図は第 1 図で示す上吹ラ ンスの端部の断面図である。
第 3図は本発明を実施する RH真空脱ガス装置の他の実施例を示す 一部断面正面図である。
第 4図は第 3図で示す上吹ランスの先端部の断面図である。
第 5図は RH真空脱ガス装置の一部断面正面図である。
第 6図は第 5図で示す上吹ランスの先端部の断面図である。
第 7図は第 5図の装置における浸漬管内径と溶鋼環流量の関係及 び上記装置の炉代時期と溶鋼環流量の関係を示す図である。
第 8図は第 5図の装置におけるフラ ックス供給速度と脱硫率との 関係を示す図である。
第 9図は第 5図の装置におけるフラ ックス供給速度と溶鋼環流量 の比に対する脱硫率の関係を示す図である。
第 10図は第 1 図の装置におけるフラ ックス供給速度と溶鋼環流量 の比に対する脱硫率の関係を示す図である。
第 11図は第 3図の装置におけるフラ ックス供給速度と溶鋼環流量 の比に対する脱硫率の関係を示す図である。
第 12 ( A ) 図は溶融前のフラ ッ クス粉体の断面を示す反射電子顕 微鏡写真である。
第 12 ( B ) 図は第 12 ( A ) 図のフラ ッ クス粉体を構成する Caの元 素分布を示す反射電子顕微鏡写真である。
第 13 ( A ) 図は溶融後のフラ ックス粉体の断面を示す反射電子顕 微鏡写真である。
第 13 ( B ) 図は第 13 ( A ) 図のフラ ッ クス粉体を構成する Caの元 素分布を示す反射電子顕微鏡写真である。 発明を実施するための最良の形態
本発明は特に還元精鍊におけるフラ ッ クス精鍊には使用不可能と 考えられてきた酸素ガスを精鍊用フラ ックスのキヤ リァ一ガスと し て用いることによつて溶鋼の温度補償を行う とともにフラ ッ クスの 精鍊反応を上昇せしめる精鍊方法にあるが、 このようなキャ リア一 ガスと して酸素ガスを用いる発想は以下の技術認識のもとでなされ たのである。
すなわち、 減圧下の雰囲気で酸素ガスを使用することにより、 溶 鋼に接触する酸素ガスの分圧を低減することができる。 例えば RH真 空脱ガス方法において、 雰囲気圧力が 5 t or rであれば、 雰囲気が全 て酸素ガスであっても、 大気圧下の酸素濃度が 0. 6 %まで低下して いること と同等である。 溶鋼と接触するガスの酸素濃度は低ければ 低いほど望ま しいが、 本発明者の調査によって、 RH真空脱ガス方法 による処理中であれば酸素濃度 1 %未満で溶鋼の酸素汚染が解消さ れるということを知見した。
前述の如く、 真空精鍊装置の真空脱ガス槽内の雰囲気が 5 t orr以 下の場合では、 大気圧下の酸素濃度の 0. 6 %以下に相当して、 溶鋼 の酸素汚染を防止することができるが、 本発明はこのように前記槽 内の雰囲気を低減することによって溶鋼に接触する酸素ガスの分圧 を溶鋼の酸素汚染が問題にならない程度迄低減できるという技術認 δ に つく。
か、 る認識は脱硫精鍊などの還元精鍊においては一般の技術常識 に反する新らしい認識であつて、 か、 る技術認識によって始めて本 発明は完成されえたのである。
本発明は上記技術認識より、 フラ ッ クス精鍊方法において、 真空 脱ガス槽内の真空度を 3〜200 t orr の範囲とする。 200 t orr より低 真空になると上記脱ガス槽内に溶鋼が吸い上がらず溶鋼環流を阻害 するばかりでなく、 溶鋼の酸素汚染が著る しく なる。 一方、 真空度 が 3 t orr未満の高真空になると、 上吹ラ ンスの出口開口部から吐出 される火炎の位置が急激に長く なり溶鋼に接触する時間が増えて力 —ボン汚染が急速に増加する。 従って、 槽内真空度を上記範囲とす る。 なお、 精鍊済溶鋼が酸素またはカーボン汚染を完全に防止する 必要のある鋼種であり、 かつ精鍊処理を効率良く短時間に行う場合 には槽内真空度を 70〜150 t orr の範囲とする。 処理鋼種によって少 しの汚染が許容される場合には、 適宜、 鋼種に従って 3 〜70 t orr未 満または 150 超〜 200 t orr の範囲で選択処理すればよい。
また、 上記汚染防止を確実にするため、 上吹ラ ンス出口と溶鋼表 面との間の距離 (ラ ンス高さ) や真空精鍊装置内の溶鋼環流速度を 適宜調節することも可能である。
さ らに本発明は上記認識の基で、 前記キヤ リァ一ガスも含めた酸 素ガスで上吹ランス出口近傍に噴出せしめた燃料ガスを完全燃焼せ しめ、 か、る燃焼ガス (二酸化炭素や水蒸気など) による溶鋼の酸 化汚染を極力防止するようにした。
そしてか、 る燃焼ガス内で精鍊用フラ ッ ク スを加熱溶融してフ ラ ックス成分元素をフラックス粒内で均一化せしめ、 か、 る状態で溶 鋼内に投入して、 溶鋼内でのフラ ックス成分元素の均一拡散を可能 し
こ 、で燃焼ガス (火炎) 内で精鍊用フラ ッ クスが加熱溶融される 条件について説明する。
( 1 ) 本発明では火炎内でフ ラ ッ ク スを溶融するために上吹ラ ン スの下端開口部と溶鋼との間隔 LH、 すなわちラ ンス高さ (操業バ一 ナ一高さ) を高く して溶融時間を確保する必要がある。 火炎中のフ ラ ックスへの伝熱計算及びフラ ッ クス溶融状況観察結果から以下の 式が算定された。
LH> 3500- 6.18 X D 2 + 224 x ( D 2 / D , ) + 1.13 x F - 11.58 x P
LH: ラ ンス高さ (mm)
D , : ラ ンススロー ト径 (mm) 、 D 2 : ラ ンス出口径 (mm) F : 酸素流量(Nm3/hr) 、 P : 雰囲気圧力 (torr)
この式に基づき、 酸素流量、 雰囲気圧力 (酸素またはカーボン汚染 も考慮) を調整して所望の LHを決める。
( 2 ) 火炎中のフラ ッ ク スへの伝熱計算及びフ ラ ッ ク ス溶融状況 観察結果からフ ラ ッ ク ス当たりの供給熱量が下記のように算定され た。
670kcal /kg—フ ラ ッ ク ス ( LNG Zkg—フ ラ ッ ク スの量 : 0.067N m3に相当)
この値以上の熱量を火炎中に供給する必要がある。 ( 3 ) フラ ッ クスの粉体粒度としてフラ ッ クスの粉体 1 筒の直径 を 0.25匪以下、 好ま しく は 0.14態以下に調整する。 この粒度は 100 メ ッ シュ以下に相当する。 この粒度も火炎中のフラ ッ クスへの伝熱 計算及びフラ ッ クス溶融状況観察の結果から算定された。
( 4 ) フラ ッ クス融点を調整する。 すなわち、 本発明の実施例で 用いたフラ ッ クス (脱硫材) の組成は 80%CaO — 20%CaF2の組成で あり、 状態図からの推定融点は約 2000°Cであるから、 この融点温度 以下のフラ ッ クスであれば適用することができる。
こ こで、 精鍊フラ ッ クスの溶融試験を本発明の条件、 すなわち脱 硫材と して 40%CaF2— 60%CaO の 100 メ ッ シュ以下の粒度のフラ ッ クスを使用し、 燃料用ガスと して LNGlOONm3 hrと し、 バーナー高 さを 6 mにして行った。
火炎中へ投与する前のフラ ッ クスの粉体の外観は第 12 (A) 図に 示すように非球状の外形で表面に凹凸が目立っており、 またこの粒 体内の Caの元素分布は第 12 ( B ) 図に示すように不均一の状態にあ つた。
か、 るフラ ッ クスを上記の条件を付与して火炎中に投入するとフ ラ ックス粉形の外観は第 13 ( A) 図に示すように光沢を帯びた球体 になり、 またこの球体内の Caの元素分布が第 13 ( B ) 図に示すよう に一様になった。 他の成分の Fや 0も同様の分布状態となり、 フラ ッ クス成分全体が均一化されるのが確認された。
この結果フラ ッ クスは球体の集合体となり、 この集合体が溶鋼に 侵入し、 直ちに拡散溶解して脱硫反応を極めて迅速にかつ効果的に 溶鋼に作用せしめた。
以上のように精鍊用フラ ッ クスを酸素をキャ リ アーガスと してバ ーナ一火炎の中に投入することによって、 バーナー火炎の温度が上 昇し、 フラ ッ クス温度が上昇し、 かつ溶鋼温度も上昇して精鍊用フ ラ ッ ク スの反応効率が向上するが、 又、 設備的にみても真空精練装 置の上吹ラ ンスを他の設備を付加することなく そのま 、利用できる ので、 設備が極めてシンプルでかつ低コス 卜で実施できるという大 きな利点も有する。
以下、 図面に基づき更に詳細に説明する。
先ず、 本発明のキャ リ ア一ガスと して酸素を使用する場合と従来 技術のキャ リ アーガスとしてアルゴンガスを使用する場合の効果の 差を確認するために、 第 3図および第 4図に示す装置を使用して以 下の精鍊試験を行つた。
第 3図は真空精練装置と この装置に精鍊用フ ラ ッ ク ス、 燃料ガス 及び燃料ガス燃焼用酸素ガスなどを送り込むフラ ックス一ガス送入 システムを図示している。
真空精鍊装置 7 は真空槽 8の浸漬管 8 — 1 を取鍋 19内の溶鋼 20に 浸漬して構成されており、 また真空槽 8の頂部 8 — 2に昇降自在に 上吹ラ ンス 1 が設けられている。
上吹ラ ンス 1 は第 4図に示すように、 その軸心に酸素ガス流路 4 が設けられ、 かつ、 ラ ンス壁内部に複数本の燃料ガス流路 3 bが設 けられ、 その燃料ガス供給孔 3 aがラ ンス下端部の末広がり面 2 に 開口している。 また前記酸素ガス流路 4内に精鍊用フラ ックス導入 管 5が配設され、 その噴出口 6が前記末広がり面 2で形成された空 間部 (開口部) 1 一 1 に開口している。
前記酸素ガス流路 4 は酸素ガス供給管 9 に連結され、 バルブ 10を 介して酸素が供給される。 燃料ガス通路 3 bは燃料ガス供給管 1 1に 連結され、 バルブ 12を介して燃料ガスが供給される。 また精鍊用フ ラ ッ クス導入管 5 はキヤ リア一ガス供給管 13に連結され、 バルブ 14 を介してキヤ リア一ガスが供給される。 上吹ラ ンス 1 とバルブ 14の 間のキャ リ アーガス供給管 13に精鍊用フラ ッ クスタンク 17をバルブ 18を介して連結し、 かつ上記タンク 17に連結したキヤ リア一ガス供 給管 15からバルブ 16を介してキヤ リァ一ガスを前記タンク 17に供給 して前記精鍊用フラックスを前記タンク 17からキヤ リァーガス供給 管 13へ供給するようになつている。
上記の装置およびシステムにおいて、 精鍊用フラ ッ クスタ ンク 17 から所定量の精鍊用フラ ックスがキャ リア一ガスによってキャ リア 一ガス供給管 13に送られ、 しかるのち、 前記精鍊用フラッ クスが、 上吹ラ ンス内に配設された精鍊用フ ラ ッ ク ス導入管 5へキャ リ アー ガスとともに送られる。
また上吹ラ ンスの酸素ガス流路 5 に酸素ガス供給管 9から燃料ガ ス燃焼用酸素ガスが送られ、 更に、 燃料ガス流路 3 bに燃料ガス供 給管 1 1から燃料ガスが送られて、 上吹ラ ンスの出口開口部 1 — 1 に 酸素ガス、 燃料ガス及び精鍊用フ ラ ッ ク スが同時に噴出される。 こ れにより、 上吹ラ ンス 1 の下方でかつ溶鋼表面上方にバーナー火炎 が形成されると共に、 精鍊用フラ ッ クスが上記バーナー火炎内を通 過して加熱溶融され、 真空槽内の溶鋼表面に溶融状態で到達する。
こ 、で上記装置とシステムを用い上記供給管 13, 15のキャ リ ア一 ガスをアルゴンガスとし、 精鍊用フラ ッ クスを脱硫材としてこれを アルゴンガスキャ リ ア一で噴出させた場合と、 供給管 13, 15のキヤ リア一ガスを酸素ガスと し酸素ガスキヤ リァ一で噴出させた場合の 精鍊試験を行い、 同一のフラ ッ ク ス原単位における脱硫率を調査し 対象と した溶鋼量は 108ト ン、 鋼種はアルミキル ド鋼と した。 使 用した精鍊用フ ラ ッ ク スは石灰 80 %—ホタル石 20 %の組成であり、 使用粉体の大きさは 100メ ッ シュ以下と した。
先端部形状がスロー ト径 18mm、 出口径 90mniのラパール構造の上吹 ラ ンス 1 の下端を、 静止浴面規準で 6 mの高さに配置し、 燃料ガス は LNG を用い、 上吹ランス 1 の燃料ガス流路への LNG 流量を 200Nm3 /hrと して燃料ガス供給孔 3 aから噴出させ、 酸素ガス流路 4への 酸素ガス流量を上記燃料ガスが完全燃焼する 460Nm3/hrと しラ ンス 軸心から噴出させた。
精鍊用フラ ックスの供給速度は SOkgZmin 、 フラ ックス原単位は 2 kg/ t、 溶鋼環流量は 40 t /min で実施し、 精鍊用フラ ッ クスの キャ リア一ガス流量 (精鍊用フラ ックス導入管 5の噴出キャ リアー ガス量) は Z Nn^Zhrとした。
精鍊用フラ ックスのキャ リ アーガスを、 酸素ガスと した場合には 、 キヤ リア一ガスとして噴出する酸素ガスと上記ラ ンス 1 の酸素ガ ス流路 4から噴出する酸素ガスとの総流量が、 上記燃料ガスが完全 燃焼する 460Nm3Zhrとなるように酸素ガス流路 4から噴出する酸素 ガス流量を調整した。 なお、 取鍋 19内のスラグの T. Feは 3 %以下 で試験を実施した。
第 1表は脱硫率の調査結果を示したもので、 アルゴンガスキヤ リ ァ一に比べて酸素ガスキヤ リア一の方が下記の式で定義する脱硫率 が高く、 脱流精鍊を効率よく達成することができることがわかった o
脱硫率 = (処理前溶鋼中 S濃度一処理後溶鋼中 S濃度) ÷ (処理 前溶鋼中 S濃度) X 100
第 1表 フ ラ ッ ク ス供給方式 キヤ リ ア一ガス 脱硫率 上吹ラ ンス内蔵フ ラ ッ ク ス導入管へ アルゴンガス 45% 供給
上吹ラ ンス内蔵フ ラ ッ ク ス導入管へ 酸素ガス 70% 供給
バーナーラ ンス酸素ガス供給管路へ 酸素ガス 80% 供給 このように、 精鍊用フラ ッ クスのキャ リ アーガスをアルゴンガス から酸素ガスに変更することにより、 同一フラ ックス原単位におい て脱硫率が 25 %も向上したのは、 燃焼には不要でバーナー火炎温度 を下げるアルゴンガスが排除されたので、 ランス下端の下方でかつ 溶鋼表面上方に形成されるバーナー火炎温度が上昇し、 溶鋼表面到 達時の精鍊用フラ ックスの温度が上昇し、 精鍊用フラ ッ クスの反応 効率が向上したものと思われる。
上記のように精鍊用フラ ッ クス導入管 5を用いて、 酸素ガスをキ ャ リア一ガスとして上吹ランスを搬送することは、 従来技術にない 精鍊効果は得られるが、 粉体によって生じる上吹ラ ンスの内壁の磨 耗対策を容易に講じうる利点はあるものの、 構造が複雑になるとと もに前記導入管の高温による溶損対策を講じる必要がある。
そこで、 本発明は第 2図の精鍊用フラ ッ クス導入管 5を除去し、 第 1 図及び第 2図に示すように酸素ガス流路 4上部にキャ リア一ガ ス供給管 13を連結開口せしめて精練用フラ ッ クスを直接酸素ガス流 路 4内に供給する精錁用フラ ッ クス供給装置及びシステムを構成し た。 したがって、 燃料ガス燃焼用酸素ガスを供給する酸素ガス供給 管 9 は不要となり、 キヤ リァ一ガス供給管 13によつて精鍊用フラ ッ クスと燃料ガス燃焼用酸素ガスの両方を酸素ガス流路 4 に供給する ようにした。
このような構成の真空精鍊装置によれば、 酸素ガス流路 4 におい て精鍊用フラ ックスが酸素ガスの中に均一に分散混合されながら上 吹ラ ンス出口開口部 1 一 1 で燃料と混合するので、 上吹ランス出口 での圧力の不連続はなく、 安定した火炎を形成することができ、 か っ精鍊用フラ ックスの分散した各粒子が均一に加熱されるのである o
上記構成の真空精鍊装置を使用して、 スロー ト径ー 18删、 出口径 — 90mmの上吹ラ ンス 1 を用い、 精鍊用フラ ッ クスのキャ リ ア一ガス の酸素ガスを含めてランス噴出酸素ガス量を 460Nm 3 Z hrと し、 その 他は前記と同一の条件で真空精鍊試験を行った。 その結果を第 1表 に W "記した。
第 1 の結果より明らかなように、 フラ ッ クス導入管 5を内蔵する 上吹ラ ンス 1 で酸素ガスをキャ リ アーガスと して精鍊用フラ ッ クス を供給する場合に比べて、 バーナーランスへのキヤ リァ一ガス供給 管 1 3に精鍊用フラ ッ クスを燃焼用酸素ガスをキャ リ ア一ガスと して 供給する方が脱硫率が 10 %も高く なり、 脱硫精練を更に効率良く達 成できた。
この理由については、 上述したように、 精鍊用フラ ッ クスがバー ナー火炎中に均一に分散し伝熱が均一化された結果であって、 事実 、 精鍊用フラ ッ クス粒子が球状化し、 粒子内部の成分、 例えばフ ッ 素濃度、 Ca濃度などが均一に分布していた。
すなわち、 本発明の上記実施例によれば、 溶鋼表面到達迄の精鍊 用フラ ックス粒子群の平均的な温度が上昇し、 精鍊用フラ ッ クスが 溶融し、 その結果、 精鍊用フラ ッ クスが溶鋼表面に到達後、 精鍊対 象元素である Sがフラ ッ クス内部へ拡散する速度が増大するため、 フラ ッ クス内の S濃度が増加し、 精鍊用フラ ッ クスの反応効率が向 上し、 同一の原単位でも脱硫率が向上したと考えられる。
なお、 本発明の実施例の第 1 図〜第 4図の真空精鍊装置は、 溶鋼 表面へ精鍊用フラ ックスを加熱後あるいは加熱溶融後に到達させる のみならず、 バーナー燃焼による溶鋼加熱および耐火物加熱、 さ ら には酸素ガス単独吹き付けによる脱炭促進やアルミ昇熱などを適宜 行う ことができる。
本発明者は、 前記のように RH真空脱ガス装置を用いるフラ ッ クス 精鍊法を試験実施したところ、 真空槽の耐火物が新品の時と通常の 脱ガス処理を繰り返し実施して真空槽の耐火物の溶損が進行した時 では、 両者のフラ ッ ク ス精鍊処理前の溶鋼組成、 取鍋スラグ組成、 環流ガス吹き込み条件、 精鍊用フラ ッ ク スの組成、 粒度、 吹き付け 条件等が同一であっても、 前者のフラ ックス精鍊反応効率が後者の それより も低く、 例えば l Oppm 以下の所定の目標値まで脱硫するの に必要な精練用フラ ックス原単位が前者の方が後者より も高く なる 、 という現象を更に見出した。
本発明の他の一つは、 上記現象の原因解明に基づきなされたもの で前記のフ ラ ッ クス精鍊を行うに際し、 更に真空槽の耐火物が新品 の時から、 真空槽の耐火物の溶損が進行した時と同等のフラ ックス 精鍊反応を確保して、 真空槽の耐火物の溶損が進行した時と同等の 低い精鍊用フラ ックス原単位で精鍊できるという、 前記のフラ ック ス精鍊方法を更に改善した溶鋼の真空精鍊方法を提供するものであ o
本発明者は、 上記現象について種々検討した結果、 RH真空槽耐火 物ー炉代末期の RH浸漬者は溶損により内径が、 RH真空槽耐火物ー炉 代初期の RH浸漬管より も拡大して、 溶鋼環流量が大き く なつている という相違が、 両者の RH真空槽耐火物ー炉代末期と初期にはある点 に着目 して、 実験直後の浸漬管内径の測定値に基づいて算出した溶 鋼環流量、 精鍊用フラ ッ ク ス供給速度、 フ ラ ッ ク ス精鍊効率、 精鍊 用フ ラ ッ クス原単位の関係を調査検討した。
その結果、 上吹ランスからキャ リ アーガスによつて精鍊用フラ ッ クスを溶鋼表面に吹き付ける溶鋼の真空精鍊方法において、 真空精 鍊処理中の精鍊用フ ラ ッ ク ス供給速度 Fと溶鋼環流量 Qが次式の関 係を満たすように、 フラ ッ ク ス供給速度 Fおよびまたは溶鋼環流量 Qを調整することにより、 真空槽耐火物の一炉代を通して、 安定的 に高いフラ ッ クス精鍊効率を達成し、 例えば低い精鍊用フ ラ ッ ク ス 原単位でもつて l Oppm 以下の極低硫溶鋼を得ることができることを 免出した。
0. 5 ≤フラ ッ クス供袷速度 F ( kgZ m i n) ÷溶鋼環流量 Q ( t/ m i n) ≤ 1. 5
なお、 こ 、で云うー炉代とは、 RH真空槽の耐火物を新しく した時 点をー炉代開始と定義し、 損耗した耐火物を新たに構築するために 、 真空槽を交換した時点をー炉代終了と定義した。
上記のー炉代におけるフラ ックス精鍊の現象 ま以下の実験によつ て確認された。
本発明者等は、 第 5図に示すような 100ト ン規模の RH設備の真空 槽 8内に、 第 6図に示すラバ一ル構造の上吹ラ ンス 31を垂下せしめ て配置し、 ラ ンス 31からアルゴンガスをキャ リ ア一にして脱硫用フ ラ ッ クス粉体を、 取鍋 19内の溶鋼 20に浸漬する浸漬管 8 — 1 を介し て環流する真空槽内の溶鋼 20の表面に吹き付け、 真空脱硫処理を行 う試験を実施した。
なお、 第 5図において、 上吹ラ ンス 31のキャ リ アーガス流路 32に キヤ リァーガス供給管 33がバブル 34を介して接続され、 またこの供 給管 33にバルブ 36を介してフラ ッ クスタンク 35が接続され、 更に、 このタンク 35にバルブ 38を介してキヤ リァーガス供給管 37が接続さ れている。
使用したフラ ックスは石灰 60 % —ホタル石 40 %の組成で、 使用粉 体の大きさは 1 00 メ ッ シュ以下である。 ラ ンス形状は第 6図に示す スロー ト径 18mm、 出口径 90mmの形状のものを使用した。 キャ リ アー ガス流量は 300Nm 3 / hrである。 ランス高さは真空槽内溶鋼面から 2. 3 mに設定した。
なお、 取鍋スラグ組成やフラ ッ クス使用量は、 T . Fe + MnO が 5 %以下のスラグと し、 フラ ッ クス原単位は 2 kg/ t程度と し、 フラ ッ クス供給速度は 70kgZmin と した。 また、 溶鋼組成は第 2表のも のを使用し、 溶鋼温度は 1600°C前後で処理した。
本発明者等は、 RH真空槽耐火物の一炉代を通して試験を継続調査 したところ、 耐火物が新品の時と耐火物溶損が進行した炉末期では 、 上記のように同一の脱硫フラ ックス原単位や同一の処理条件にし たにもかかわらず、 第 3表のように脱硫率は炉末期が高く、 新炉で は低力、つた。
一方、 フラ ッ クス供給速度を SSkgZmin , 40kgZmin に変更した 脱硫試験では、 上記フラ ッ クス供給速度 70kg/min の場合とは異な つて、 脱硫率は真空槽耐火物炉代末期も高く、 かつ炉代初期も高か つた o
第 2表
C Si Mn sol. Al
0.0030% 3.0% 0.20 0.300
炉代時期 平均脱硫率
初期 40%
中期 45%
末期 71%
(CaO-40 CaF2 2kg/ t使用) 衆知のように、 新炉築造時の RH浸漬管 8 — 1 の内径に対して、 炉 末期の RH浸漬管 8 — 1 の内径は溶損で拡大している。 また、 一般に RH処理においては環流ガス量を RH浸漬管の溶損とは無関係に一定に 設定しており、 溶鋼環流量は浸漬管の内径に依存する。 第 7図は上 記脱硫試験で使用した 100ト ン規模の RH設備 (環流ガス量 500N1/ m i n —定) における RH真空槽耐火物のー炉代の炉初期、 中期、 末期 の浸漬管内径と溶鋼環流量の関係を示し、 溶鋼環流量は炉代の初期 から末期にかけて徐々に増加することがわかる。
そこで本発明者等は、 溶鋼環流量が同一の条件で前記の脱硫試験 結果を層別して、 フラ ックス供給速度と脱硫率の関係を調査した。 その結果を第 8図に示した。 溶鋼環流量が大きい場合には、 フ ラ ッ クス供給速度の大きさに関係なく脱硫率が一定であるが、 溶鋼環流 量が小さい場合にはフラ ッ クス供給速度が大き く なると脱硫率が低 下し、 脱硫効率が低下した。
この現象はフラ ックス供給と溶鋼流動との間に最適な関係がある ことを推測させるため、 フラ ッ ク ス供給速度 F ( kgZ mi n)と溶鋼環 流量 Q ( t / mi n)との比に対する脱硫率の関係を整理し、 第 9図に 示した。 以後、 Fはフ ラ ッ ク ス供給速度、 Qは溶鋼環流量を表すも のとする。
フラ ッ クス供給速度と溶鋼環流量の比の値が 1. 5以下であると、 脱硫率は高位に維持できる。 この値より も大き く なる場合には、 脱 硫率が低下する。
これはフラ ッ クス供給に対して溶鋼流動が遅く、 フラ ッ タスの分 散を阻害し、 脱硫反応界面面積が低下したためと考えられる。
上記知見に基づき、 第 5図に示す RH設備を使用して、 · RH真空槽耐 火物の一炉代を通して、 真空処理開始前に、 RH浸漬管の内径を測定 し、 溶鋼環流量を推定計算し、 溶鋼環流量に応じて真空脱硫処理中 におけるフラ ックス供給速度と溶鋼環流量の比の値が 1. 5以下とな るようにフ ラ ッ ク ス供給速度を調整し、 真空脱硫処理することを RH 真空槽耐火物の一炉代を通して実施した。 その際の炉代時期、 溶鋼 環流量、 フ ラ ッ ク ス供給速度、 フ ラ ッ ク ス供給速度と溶鋼環流量の 比の値、 脱硫率を第 4表に示した。 また、 第 4表には炉代を通してフラ ックス供給速度を調整せずに 一定に設定した際の結果を示す第 3表の脱硫率をフラ ックス供給速 度、 フラ ックス供給速度と溶鋼環流量の比の値と共に併記した。 第 4表から明らかなように、 真空脱硫処理中のフラ ックス供給速 度と溶鋼環流量の比の値が 1.5以下となるように、 フラ ックス供給 速度を調整することで、 RH真空槽耐火物の一炉代を通して脱硫率を 高位安定でき、 フラ ッ ク ス原単位を低位安定できる。
第 4表
——本 法—— 従来法一 炉代 推定 フラックス 脱硫率 フラックス 脱硫率 時期 環流量 Q 供給速度 F 供給速度 F
tZ分 kg,分 F/Q % kg/分 F/Q % 初期 34 61 1.50 70 70 2.06 40 中期 43 64 1.49 70 70 1.63 45 末期 51 76 1.49 71 70 1.37 71
(なおフラックスは CaO — 40%CaF2粉を 2 kgノ t 使用している)
なお、 上記真空槽耐火物のー炉代の各真空脱硫処理中におけるフ ラ ッ クス供給速度と溶鋼環流量の比の値を 1.5以下に調整するに際 して、 フラ ッ ク ス供給速度を調整して行ったものであるが、 溶鋼環 流量の調整を併用して行ったり、 溶鋼璟流量の調整のみで行っても 同様の効果が得られる。
溶鋼環流量を調整する場合は、 一例と して下記式を用いることが できる。 なお、 溶鋼環流量とは RH真空槽と取鍋との間を循環してい る溶鋼の質量流量(tonZmin)を示したものである。
Q = 11.4X G 1 /4 X D 4/ 3 X { i n ( P , / Ρ 0)}
但し、 Q : 溶鋼環流量(tonZmin)、 G : 環流用 Arガス流量 (N1Z min)、 D : 浸漬管内径 (m) 、 P , : 760(torr) 、 P。 : 槽内真空 度 (torr)
したがつて溶鋼環流量は環流用 Arガス流量、 槽内真空度の制御で 調整することができる。
なお、 Fノ Qの下限値は 0.5 とする。 すなわち、 FZQの値が 0. 5 を下回ると、 粉体供給速度が小さ く精鍊用フラ ッ クスによる精鍊 時間が長く なるために耐火物の熱負荷が大き く なり耐火物損耗の一 因になること、 あるいは、 溶鋼環流量が極端に大きく なり浸漬管の 耐火物の損耗を助長すること、 のために好ま しく ない。
次に本発明者は上記の試験結果を参照して第 3図及び第 4図で示 す真空精鍊装置とシステムを用いて以下の試験を行った。
燃焼火炎中でフラ ッ クスへ伝熱が促進されるため、 溶融しにく い フラ ッ クス組成として 80%CaO — 20%CaF2のフラ ッ クスを 2 kg/ t の量で用い、 バーナーの酸素含有ガス流量は、 純酸素換算で流量 46 0Nm3/hrと し、 燃料ガスと して LNG を使用しその流量は酸素と完全 燃焼するのに必要十分な量の 200Nm3ノ hrに設定した。 また精鍊用フ ラ ッ クスのキヤ リァ一ガスと してアルゴンガス (流量 180Nm3/hr) 、 酸素富化空気 (酸素富化率 60%の組成で流量は ΙδΟΝϋΐ3,!!!·) 、 純 酸素ガス (キャ リア一ガスと しての流量は 180Nm3 hr) 、 溶鋼環流 量 35 ton /rain をそれぞれ用いた試験を実施した。 キャ リ ア一ガス と して酸素含有ガスあるいは純酸素ガスを用いた場合には、 ラ ンス から噴出する トータルの純酸素分のガス流量が上記 460Nm3/hrにな るように調整した。
上記ランスでは、 ランス下方にジヱ ッ トコア部に続いてバーナー 火炎部が形成されるため、 ラ ンス位置と しては、 ラ ンス下方で溶鋼 表面上方にパーナ一火炎の全長を形成するのがフラ ッ クスを加熱す る上で望ま しく、 前述の LHの間隔以上のラ ンス高さが確保されるよ うに、 6 mと した。 第 11図にその結果を示すが、 溶融しにく く反応性に劣るフラ ック ス組成 (20%CaF2) でありながら酸素含有キヤ リア一ガスを使用す ると、 アルゴンキャ リ アーガスを使用したときの溶融性に富む 40% CaF2を使用したときと同等の脱硫率 (第 9図参照) を持ち、 かつ F /Qが 1.5以下で安定して高い脱硫率を保っている。 また、 同図よ りキャ リア一ガスがアルゴンより酸素富化空気、 さ らには純酸素の 方が脱硫率は高くなつた。 このように溶融しにく いフラ ッ クスであ りながら高脱硫率となったのは、 前述のように酸素富化空気キヤ リ ァ一ガスを用いることによつて溶鋼に侵入する前にフラ ックス温度 が上昇し、 フラ ックスが溶鋼へ侵入した直後からの溶鋼中 Sがフラ ックス内部へ侵入する拡散速度が大き く、 速やかに脱硫反応が進行 したためと考えられる。 さらに精鍊用フ ラ ッ ク スのキャ リ アーガス を不活性ガスであるアルゴンガスから、 酸素富化空気、 さ らには純 酸素ガスに変更することにより、 不活性ガス使用時に比べて、 ラン ス下端の下方で溶鋼表面上方に形成されるバーナー火炎温度が上昇 する。 この火炎温度上昇により溶鋼表面到達時の精鍊用フラ ックス の温度が上昇するため、 〔 S〕 のフラ ックス内部への拡散速度がさ らに増大したためである。
更に本発明者は第 1 図及び第 2図で示す真空精鍊装置及びシステ ムを用いて同様の試験 (80%CaO — 20%CaF2の脱硫材を 2 kgZ t使 用) を行った。
第 10図にその試験結果を示すが、 第 11図の結果と同様に、 溶融し にく く反応性に劣るフ ラ ッ ク ス組成でありながら、 酸素含有ガスと して酸素富化空気 (酸素富化率 60%) を使用した場合、 アルゴンガ スを使用し、 かつ溶融性に富むフ ラ ッ ク ス (40%CaF2) を使用した 場合と同等の脱硫率 (第 9図参照) を確保し、 かつ F ZQが 1.5以 下で安定して高い脱硫率を確保できている。 また、 酸素含有ガスと して純酸素ガスを使用した場合、 溶融しにく く反応性に劣るフラ ッ クス組成でありながら、 溶融性に富む 40 % CaF 2と同等以上の脱硫率 を確保し、 かつ F / Qが 1. 5以下で安定して高い脱硫率を確保でき このように燃料ガスおよび純酸素ガスを同時に噴出してラ ンス下 方で溶鋼表面の上方にバーナー火炎を形成できる上吹ラ ンスを用い 、 脱硫用フラ ックスのキャ リ ア一ガスと して上記純酸素ガスを用い ると、 同一フラ ッ クス組成ならば最も脱硫率が高くなるのは、 酸素 富化空気を用いるよりも高温の火炎が形成され、 フラ ッ クス導入管 を内蔵する上吹ランスよりもバーナー火炎中にフラ ックス粉体が均 一に分散し、 均一な加熱ができるためである。
以上のように、 燃料ガス、 酸素含有ガスおよびキャ リアーガスで フラ ックスを同時に噴出可能な上吹ランスを用い、 フラ ックス供給 速度 Z溶鋼環流量を 0. 5 〜1. 5 の範囲に保持し、 燃料ガス、 酸素含 有ガス、 およびキャ リアーガスでフラ ックスを同時に噴出して溶鋼 表面の上方にバーナー火炎を形成するとともにフラ ックスをパーナ —火炎を通して加熱後、 溶鋼表面に到達させるか、 あるいは、 燃料 ガスおよび酸素含有ガスを同時に噴出して溶鋼表面の上方にバ一ナ 一火炎を形成できる上吹ランスを用いて、 フラ ッ クスをバーナー火 炎を通して加熱後、 溶鋼表面に到達させると、 上吹ランスからアル ゴンガス、 窒素ガス等の不活性ガス、 その他のガス等のキャ リ ア一 ガスによってフラ ックスを加熱することなく溶鋼表面に到達させる より も、 CaF 2分が少ないフラ ックスを使用して、 少くても同等の脱 硫率を確保できる。 さらに、 CaF 2分が少ないフラ ッ クスの使用によ つて耐火物溶損が軽減できるとともに、 溶鋼ならびに耐火物が加熱さ れ 0
また、 フラ ッ クス精練の場合と同様、 上記上吹ラ ンスを脱硫処理 時間を除く真空処理 (真空脱ガス) 中に適宜バーナーと して機能さ せ、 溶鋼、 真空槽耐火物をバーナー加熱するとともに、 真空処理間 の待機時に真空槽耐火物をバーナー加熱することで真空処理中の真 空槽耐火物への地金付着を解消できる。
なお、 フ ラ ッ ク ス供給速度 Fと溶鋼環流量 Qの関係を F / Q = 0. 5 〜1. 5 の範囲で保持しつ 、 、 ー炉代にわたり高いフラ ッ ク ス精鍊 反応を得る技術は精鍊用フラ ックスを不活性ガスをキヤ リァーガス と して溶鋼に吹込む場合にも適応できることは勿論である。
以上フラ ックス精鍊法と して主に脱硫処理について説明したが、 これに限らず、 本発明は溶鋼精鍊作用を有する副原料、 例えば極低 酸素化や極低燐化等を図るフ ラ ッ クス粉体の吹込みにも利用される また、 真空精鍊装置も RH型真空脱ガス槽以外に DH型、 直胴型など の他の真空脱ガス槽を用いることができる。 実施例
実施例 1
第 1 図、 第 2図及び第 3図、 第 4図で示す RH真空脱ガス装置及び フラックス一ガス送入システムを用い、 溶鋼中の 〔 S〕 濃度が Ι Ορρ m 以下を目標に真空精練処理を実施した。
装置規模は容量 100 t onであり、 第 5表の組成の溶鋼を脱硫処理し た。 脱硫処理条件および処理結果を第 6表および第 7表に示した。 使用したフ ラ ッ ク スは、 石灰 80 %—ホタル石 20 %の組成で、 粒度は 100 メ ッ シュ以下であった。 上吹ラ ンス 1 の形状はスロー ト径 18匪 、 出口径 90mmのラバール構造のものを使用 した。 フラ ッ クス粉体供 給速度は 30kgZ m i n で実施した。 スラグの T . Feは 6 %未満であつ た。 処理前の溶鋼温度は約 1590°Cであった。 また比較例と して第 3図、 第 4図に示す精鍊用フラ ックス導入管 5を内蔵する上吹ラ ンス 1 を槽頂部に昇降可能に配置した RH真空脱 ガス装置を用いて、 アルゴンガスを精鍊用フラ ッ クスキャ リ ア一に した場合も同様に実施した。
第 6表の試料 No. 1〜 5の本発明例において、 バーナー火炎中を 通過した粉体を回収したところ、 第 13 ( A ) 図に示すように外観が 光沢を帯びた球状を示し、 その断面の観察で、 第 13 ( B ) 図で示す ように Caの他、 F. 0 の元素分布が一様であり、 粉体が溶融状体にあ ることが確認された。
第 7表から試料 No. 1〜 5の本発明例はバーナー火炎の高温化に よる精鍊用フラ ッ クスの高温化で試料 No. 6および 7 の比較例より も精鍊用フラ ッ クスが効率よく反応して、 原単位が低減し、 処理時 間が短縮していることが明らかとなった。 また試料 No. 4, 5 の方 が試料 No. 1 〜 3 より も原単位が小さ く、 処理時間も短くなつてい ることがわかる。 この試料 No. 4, 5 と試料 No. 1 〜 3 との効果差 は、 粉体の高温火炎中の分散による精鍊用フラ ッ クスの更なる高温 化ないしは溶融化によつてもたらされているのである。
第 5表
C S i Mn So l . A l
0. 0030 % 3. 0 % 0. 20 % 0. 300
第 6表
面^s .
Figure imgf000028_0001
*' m m^m A:上吹ランス内)^^用フラックス導入管へ供給
B:パ'一ナーランスへの ¾¾ガ、ス供^へ ^袷
**) キヤリァ一ガス の数 素ガスキヤリァ一の: ^は の 内 表示
第 7表 3¾ フラ ッ 〔 S〕 *) 備 料 クス 脱硫処理中の
No. 原単位 前 後 温度補償量 考 k / t ppm Pm °C
1 2.1 27 8 7.0 11 本発明例
2 2.0 31 9 6.7 10 本発明例
3 2.1 24 8 7.0 9 本発明例
4 1.7 30 6 5.7 8 本発明例
5 1.6 37 7 5.3 10 本発明例
6 3.1 37 9 10.3 ベース 比較例
7 3.2 34 9 10.7 ベース 比較例 (注) *)…比較例の温度補償量をべ一スと した値 実施例 2
第 2図に示す上吹ラ ンス 1 を備える第 1 図の 100ト ン RH真空脱ガ ス設備において、 酸素含有ガスと して純酸素ガスを用いて、 第 2表 の組成の溶鋼を真空脱硫処理した。 真空脱硫処理条件を第 8表に示 す。
使用 したフラ ッ クスは石灰 60%—ホタル石 40%の組成で、 粒度は 100 メ ッ シュ以下である。 ラ ンス形状はスロー ト径 18mm、 出口径 90 mmの形状のものを使用 した。 純酸素ガス流量は 460Nm3Zhrであり、 LNG200Nm3 Zhrを燃料供給孑しから噴出させた。 なお、 スラグの T. Fe + MnO は 5.0 %以下の条件で実施した。 また、 処理後の 〔 S〕 濃 度が lOppm 以下になった。
第 8表
Figure imgf000029_0001
さ らに、 処理開始前にその都度、 RH浸漬管内径を測定し、 溶鋼環 流量を推定計算し、 フ ラ ッ ク ス供給速度 (kgZmin)と溶鋼環流量 ( t /min)との比が 1.5になるようにフ ラ ッ ク ス供給速度を調整した 。 また比較例と して、 RH浸漬管内径を測定せず、 フ ラ ッ ク ス供給速 度は RH真空槽ー炉代にわたつて一定値 (フラ ッ クス供給速度の設備 能力最大値) で処理した場合の例を比較例に示した。
実施例のフラ ックス原単位はー炉代で低位安定した処理が可能と なっている。 また処理時間も比較例と比べて、 特に炉初期や中期で の短縮効果が実施例では明らかである。 産業上の利用可能性
以上のように本発明によれば、 従来のバーナー加熱 · 精鍊用フラ ックス投射法より も精鍊用フラ ックスの反応効率を向上させて、 精 鍊用フラ ッ クス使用原単位を好ま しく は真空槽耐火物の一炉代を通 じて低減できるので処理時間の短縮ならびに耐火物溶損の軽減が図 れる等、 産業上の利用可能性は極めて大きい。

Claims

請 求 の 範 囲
1 . 溶鋼の真空精鍊方法であって、 以下の工程からなる : 真空精鍊装置の真空脱ガス槽の項部に昇降自在に設けた上吹ラ ン スの中央部に酸素ガス流路を設け、 該酸素ガス流路内に、 精鍊用フ ラ ッ クスを燃料ガス燃焼用酸素ガスをキャ リア一ガスと して供給す ること ;
前記上吹ランスの酸素ガス流路内で前記燃料ガス燃焼用酸素ガス と前記精鍊用フラ ッ クスを混合せしめること ;
前記上吹ランスの壁体内に設け、 かつ前記上吹ラ ンスの開口部に 開口せしめた燃料ガス流路に燃料ガスを供給すること ;
しかして、 前記上吹ランスの開口部と前記溶鋼との間に前記酸素 ガスと燃料ガスで火炎を形成するとともに、 該火炎内に前記精鍊用 フラ ッ クスを通過せしめて該精鍊用フラ ックスを加熱溶融すること 次いで前記加熱溶融した精鍊用フラッ クスを前記溶鋼表面に到達 せしめて、 該溶鋼を精鍊すること。
2 . 前記上吹ラ ンスの酸素ガス流路に開口 した酸素キャ リ ア一ガ ス供給管に、 前記精鍊用フラ ックスを精鍊用フラ ッ クスタンクから キヤ リァーガスを介して供給し、 次いで該精鍊用フラ ッ クスを酸素 キャ リア一ガスによつて前記酸素ガス流路に供給する請求の範囲 1 記載の方法。
3 . 溶鋼の真空精鍊方法であって、 以下の工程からなる : 真空精鍊装置の真空脱ガス槽の頂部に昇降自在に設けた上吹ラ ン スの中央部に酸素ガス流路を設け、 該酸素ガス流路内に設けた精鍊 用フラ ッ クス導入管に、 精鍊用フラ ッ クスを酸素キャ リ ア一ガスと ともに供給すること ; 前記酸素ガス流路に燃料ガス燃焼用酸素ガスを供給すること ; 前記上吹ランスの壁体内に設け、 かつ前記上吹ランスの開口部に 開口せしめた燃料ガス流路に燃料ガスを供給すること ;
しかして前記上吹ランス開口部近傍で前記精鍊用フラ ックスと前記 酸素ガスと前記燃料ガスを同時に混合せしめて火炎を形成するとと もに、 該火炎内に前記精鍊用フラッ クスを通過せしめて該精鍊用フ ラ ックスを加熱溶融すること ;
次いで、 前記加熱溶融した精鍊用フラ ッ クスを前記溶鋼表面に到 達せしめて、 該溶鋼を精鍊すること。
4 . 前記精練用フ ラ ッ ク ス導入管に開口した酸素キャ リア一ガス 供給管に、 前記精鍊用フラ ックスを精鍊用フラ ックスタンクからキ ャ リア一ガスを介して供給し、 次いで該精鍊用フラ ッ ク スを酸素キ ャ リア一ガスによつて前記精鍊用フ ラ ッ ク ス導入管に供給する請求 の範囲 3記載の方法。
5 . 前記真空脱ガス槽内の雰囲気を 3〜200 t or rの範囲に減圧す る請求の範囲 1 または 3記載の方法。
6 . 前記精鍊用フラ ッ ク スを加熱する際に、 該精鍊用フラ ッ ク ス の粉体 1 kg当り 670kca l 以上の熱量を前記火炎に供給する請求の範 囲 1 または 3記載の方法。
7 . 前記精鍊用フラ ッ クスの粉体の粒径を 0. 25mm以下の範囲とす る請求の範囲 1 または 3記載の方法。
8 . 前記上吹ランスの下端開口部と前記溶鋼表面との間隔 LH (mm) を下記式で定める値にする請求の範囲 1 または 3記載の方法。
LH > 3500 - 6. 18 X D 2 + 224 X ( D 2 / D . ) + 1. 13 x F - 1 1. 58 x P
但し、 D , …ラ ンススロー ト径(mm)、 D 2 …ラ ンス出口径 (mm) F…酸素流量(Nm 3 Z hr) 、 P…雰囲気圧力 (t orr)
9 . 前記精鍊用フラ ックスの融点が 2000°C以下である請求の範囲 1 または 3記載の方法。
10. 前記精鍊用フラ ックスの溶鋼への供給速度と前記真空精鍊装 置内の溶鋼の環流量を下記式の条件を満して精鍊を行う請求の範囲 1 または 3記載の方法。
0. 5 ≤精鍊用フラ ッ クス供給速度 (kgノ m i n) /溶鋼環流量(t on, m i n ≤ I . 5
1 1. 溶鋼の真空精鍊装置であって、 以下の構成によりなる : 真空脱ガス槽の頂部に上吹ランスを昇降自在に設け、 前記真空脱 ガス槽の下端部を取鍋内の溶鋼に浸漬して真空精鍊装置を構成する こと ;
前記上吹ランスの中央部に酸素ガス流路を設け、 該酸素ガス流路 に酸素キヤ リ ァ一ガス供給管を連結すること ;
前記酸素キヤ リァーガス供給管にバルブを介して精鍊用フラ ッ ク スタンクを連結し、 該精鍊用フラ ックスタンクから精鍊用フラ ック スを前記酸素キャ リ アーガス供給管に供給し、 更に該精鍊用フラ ッ クスを前記酸素ガス流路に供給すること ; および
前記上吹ランスの壁体内に燃料ガス流路を設けるとともに前記上 吹ラ ンスの開口部の末広がり面に燃料ガス噴出口を開口せしめるこ と。
12. 前記酸素ガス流路内に精鍊用フラ ッ クス導入管を配設し、 該 精鍊用フラ ッ クス導入管に前記酸素キヤ リァーガス供給管を連絡す ると共に該精鍊用フラ ックス導入管の噴出口を前記燃料ガス噴出口 の近傍に開口し、 更に前記酸素ガス流路に前記燃料用ガスを燃焼す る酸素ガスを供給する酸素ガス供給管を連結した請求の範囲 1 1記載 の装置。
PCT/JP1996/002413 1995-08-28 1996-08-28 Procede et dispositif d'affinage sous vide d'acier en fusion WO1997008348A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US08/817,484 US5919282A (en) 1995-08-28 1996-08-28 Process for vacuum refining molten steel and apparatus thereof
CA002203410A CA2203410C (en) 1995-08-28 1996-08-28 Process for vacuum refining molten steel and apparatus therefor
KR1019970702758A KR100221788B1 (ko) 1995-08-28 1996-08-28 용강의 진공 정련 공정 및 그 장치
AU68369/96A AU699450B2 (en) 1995-08-28 1996-08-28 Process for vacuum refining of molten steel and apparatus thereof
DE69617897T DE69617897T2 (de) 1995-08-28 1996-08-28 Verfahren und vorrichtung zum vakuumfeinen von stahl
BR9606611A BR9606611A (pt) 1995-08-28 1996-08-28 Processo para o refino a vácuo de aço em fusão e aparelho do mesmo
EP96928680A EP0789083B1 (en) 1995-08-28 1996-08-28 Process for vacuum refining of molten steel and apparatus therefor
JP51012397A JP3708966B2 (ja) 1995-08-28 1996-08-28 溶鋼の真空精錬方法及びその装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP21835795 1995-08-28
JP7/218357 1995-08-28
JP7/247199 1995-09-26
JP24719995 1995-09-26

Publications (1)

Publication Number Publication Date
WO1997008348A1 true WO1997008348A1 (fr) 1997-03-06

Family

ID=26522521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002413 WO1997008348A1 (fr) 1995-08-28 1996-08-28 Procede et dispositif d'affinage sous vide d'acier en fusion

Country Status (11)

Country Link
US (1) US5919282A (ja)
EP (1) EP0789083B1 (ja)
JP (1) JP3708966B2 (ja)
KR (1) KR100221788B1 (ja)
CN (1) CN1066774C (ja)
AU (1) AU699450B2 (ja)
BR (1) BR9606611A (ja)
CA (1) CA2203410C (ja)
DE (1) DE69617897T2 (ja)
ES (1) ES2164913T3 (ja)
WO (1) WO1997008348A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19755876A1 (de) * 1997-12-04 1999-06-17 Mannesmann Ag Verfahren und Blaslanze zum Einblasen von Gasen in metallurgische Gefäße
JP2012021226A (ja) * 2010-06-17 2012-02-02 Jfe Steel Corp 溶鋼の真空精錬方法
WO2013137292A1 (ja) * 2012-03-15 2013-09-19 Jfeスチール株式会社 溶鋼の真空精錬方法
JP2017025373A (ja) * 2015-07-22 2017-02-02 Jfeスチール株式会社 溶鋼の脱硫方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19811722C1 (de) * 1998-03-18 1999-09-09 Sms Vacmetal Ges Fuer Vacuumme Vorrichtung zum Vakuumfrischen von Metall-, insbesondere Stahlschmelzen
AU4528900A (en) * 1999-05-07 2000-11-21 Sidmar N.V. Method of decarburisation and dephosphorisation of a molten metal
KR101321853B1 (ko) 2011-08-05 2013-10-22 주식회사 포스코 용융물 처리장치 및 그 처리방법
CN105463210A (zh) * 2015-12-26 2016-04-06 杨伟燕 一种高杂质铜精矿的冶炼方法
US11293069B2 (en) 2017-12-22 2022-04-05 Jfe Steel Corporation Method for oxygen-blowing refining of molten iron and top-blowing lance
CN112226582A (zh) * 2020-08-26 2021-01-15 南京钢铁股份有限公司 一种rh精炼深度净化钢液的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920444B1 (ja) * 1967-10-13 1974-05-24
JPS574135Y2 (ja) * 1979-07-31 1982-01-26
JPH0674425A (ja) * 1992-07-10 1994-03-15 Sumitomo Metal Ind Ltd 多目的バーナ
JPH0741826A (ja) * 1993-07-15 1995-02-10 Nippon Steel Corp 溶鋼の真空精錬方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865703A (en) * 1973-04-19 1975-02-11 Diamond Shamrock Corp Electrowinning with an anode having a multicomponent coating
JPH05171253A (ja) * 1991-12-24 1993-07-09 Kawasaki Steel Corp 溶鋼の脱硫方法
JPH05287359A (ja) * 1992-04-14 1993-11-02 Kawasaki Steel Corp Rh真空脱ガス装置を用いる溶鋼の脱硫方法
JP3260417B2 (ja) * 1992-06-12 2002-02-25 川崎製鉄株式会社 Rh真空脱ガス装置を用いる溶鋼の脱硫方法
US5304231A (en) * 1991-12-24 1994-04-19 Kawasaki Steel Corporation Method of refining of high purity steel
JPH05195043A (ja) * 1992-01-24 1993-08-03 Kawasaki Steel Corp 溶融金属への精錬用フラックス噴射方法および装置
JPH0665625A (ja) * 1992-08-24 1994-03-08 Sumitomo Metal Ind Ltd 溶鋼の脱硫方法
JP2688310B2 (ja) * 1992-08-26 1997-12-10 新日本製鐵株式会社 真空脱ガス装置
WO1997005291A1 (fr) * 1995-08-01 1997-02-13 Nippon Steel Corporation Procede d'affinage sous vide d'acier en fusion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920444B1 (ja) * 1967-10-13 1974-05-24
JPS574135Y2 (ja) * 1979-07-31 1982-01-26
JPH0674425A (ja) * 1992-07-10 1994-03-15 Sumitomo Metal Ind Ltd 多目的バーナ
JPH0741826A (ja) * 1993-07-15 1995-02-10 Nippon Steel Corp 溶鋼の真空精錬方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0789083A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19755876A1 (de) * 1997-12-04 1999-06-17 Mannesmann Ag Verfahren und Blaslanze zum Einblasen von Gasen in metallurgische Gefäße
DE19755876C2 (de) * 1997-12-04 2000-02-24 Mannesmann Ag Blaslanze zum Behandeln von metallischen Schmelzen und Verfahren zum Einblasen von Gasen
JP2012021226A (ja) * 2010-06-17 2012-02-02 Jfe Steel Corp 溶鋼の真空精錬方法
WO2013137292A1 (ja) * 2012-03-15 2013-09-19 Jfeスチール株式会社 溶鋼の真空精錬方法
JP5382275B1 (ja) * 2012-03-15 2014-01-08 Jfeスチール株式会社 溶鋼の真空精錬方法
KR101529454B1 (ko) * 2012-03-15 2015-06-16 제이에프이 스틸 가부시키가이샤 용강의 진공 정련 방법
JP2017025373A (ja) * 2015-07-22 2017-02-02 Jfeスチール株式会社 溶鋼の脱硫方法

Also Published As

Publication number Publication date
KR100221788B1 (ko) 1999-09-15
CN1066774C (zh) 2001-06-06
DE69617897T2 (de) 2002-08-29
AU6836996A (en) 1997-03-19
JP3708966B2 (ja) 2005-10-19
CN1164873A (zh) 1997-11-12
EP0789083A1 (en) 1997-08-13
EP0789083B1 (en) 2001-12-12
DE69617897D1 (de) 2002-01-24
AU699450B2 (en) 1998-12-03
CA2203410A1 (en) 1997-03-06
ES2164913T3 (es) 2002-03-01
EP0789083A4 (en) 1999-02-17
US5919282A (en) 1999-07-06
CA2203410C (en) 2001-12-18
BR9606611A (pt) 1997-09-30
KR970707308A (ko) 1997-12-01

Similar Documents

Publication Publication Date Title
WO2013057927A1 (ja) 粉体吹込みランスおよびその粉体吹込みランスを用いた溶融鉄の精錬方法
JP5476815B2 (ja) 真空脱ガス装置における複合ランスを用いた加熱・精錬方法
JP5382275B1 (ja) 溶鋼の真空精錬方法
JP6343844B2 (ja) 真空脱ガス設備における溶鋼の精錬方法
WO1997005291A1 (fr) Procede d'affinage sous vide d'acier en fusion
WO1997008348A1 (fr) Procede et dispositif d'affinage sous vide d'acier en fusion
JPH0277518A (ja) 溶鋼の真空脱ガス・脱炭処理方法
JP2016065274A (ja) 低炭素高マンガン鋼の溶製方法
JP5786470B2 (ja) 溶鋼の真空精錬方法
JP6323688B2 (ja) 溶鋼の脱硫方法
TWI703219B (zh) 熔銑的脫磷方法
JP4360270B2 (ja) 溶鋼の精錬方法
JP6939733B2 (ja) 減圧下での溶鋼の精錬方法
JP5949627B2 (ja) 転炉における溶銑の精錬方法
JP6798342B2 (ja) 低窒素鋼の溶製方法及びガス吹き付け装置
JP4470673B2 (ja) 溶鋼の真空脱炭精錬方法
JP4466287B2 (ja) 減圧下における溶鋼の精錬方法及び精錬用上吹きランス
JP2006070292A (ja) 減圧下における溶鋼の精錬方法及び精錬用上吹きランス
JP2023081327A (ja) 精錬用ランス及び溶鉄の精錬方法
JPH08225823A (ja) 溶融金属の精錬方法
JP4938246B2 (ja) 減圧下における溶融金属の精錬方法及び精錬用上吹きランス
JP2006070285A (ja) 減圧下における溶融金属の精錬方法及び精錬用上吹きランス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190976.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08817484

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2203410

Country of ref document: CA

Ref document number: 2203410

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1996928680

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970702758

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996928680

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970702758

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970702758

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996928680

Country of ref document: EP