WO1996038224A1 - Dispositif de reaction catalytique, procede de reaction catalytique et lamine utilise pour la reaction catalytique - Google Patents

Dispositif de reaction catalytique, procede de reaction catalytique et lamine utilise pour la reaction catalytique Download PDF

Info

Publication number
WO1996038224A1
WO1996038224A1 PCT/JP1996/001449 JP9601449W WO9638224A1 WO 1996038224 A1 WO1996038224 A1 WO 1996038224A1 JP 9601449 W JP9601449 W JP 9601449W WO 9638224 A1 WO9638224 A1 WO 9638224A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
catalytic reaction
laminate
metal plate
substantially uniformly
Prior art date
Application number
PCT/JP1996/001449
Other languages
English (en)
French (fr)
Inventor
Yasuzo Kawamura
Yoshitaka Uchihori
Original Assignee
Kabushiki Kaisha Seta Giken
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Seta Giken, Omron Corporation filed Critical Kabushiki Kaisha Seta Giken
Priority to EP96919995A priority Critical patent/EP0830893A4/en
Priority to AU58443/96A priority patent/AU5844396A/en
Publication of WO1996038224A1 publication Critical patent/WO1996038224A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J16/00Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J16/005Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00081Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32206Flat sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/3221Corrugated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32213Plurality of essentially parallel sheets
    • B01J2219/3222Plurality of essentially parallel sheets with sheets having corrugations which intersect at an angle different from 90 degrees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32237Sheets comprising apertures or perforations
    • B01J2219/32244Essentially circular apertures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32408Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32466Composition or microstructure of the elements comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32466Composition or microstructure of the elements comprising catalytically active material
    • B01J2219/32475Composition or microstructure of the elements comprising catalytically active material involving heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/326Mathematical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a catalytic reaction device, a catalytic reaction method, and a catalytic reaction laminate for causing a catalytic reaction by bringing a raw material fluid into contact with a catalytic metal at a predetermined temperature.
  • a typical example of such a catalytic reactor is a reformer.
  • This reformer converts raw fuels such as natural gas, light oils such as methanol and naphtha, LNG, LPG, and coal gas into hydrogen-rich gas by adding steam and bringing them into contact with catalytic metals at a predetermined temperature.
  • a reforming reaction is performed. Since this reforming reaction is an endothermic reaction, energy is supplied to the reformer. Since the catalyst metal itself does not have energy, the raw fuel is heated to an appropriate temperature by a gas pan, a preheater, a superheater (super heater) or the like, and transferred to the reformer.
  • the reformer itself needs to be configured as a heat exchanger that heats the pipe containing the catalyst metal by using a heat medium to maintain the catalytic reaction in the reformer.
  • the catalytic reactor which is a combination of a reheater or a superheater and a reforming device configured as a heat exchanger, has difficulty in controlling the temperature, has a complicated and large device configuration, requires a long start-up time, and has a heavy load. It has the drawback of poor follow-up to fluctuations.
  • a device using electromagnetic induction heating is proposed in Japanese Patent Application Laid-Open No. 61-275103.
  • Bad A conductive material and catalyst particles are mixed in a reforming tube made of a heat insulating material of a conductive material, and a high-frequency current is applied to a conductive coil provided on the outer periphery of the reforming tube, so that a surface of the conductive material is An eddy current is generated and heated to maintain the catalyst particles mixed with the neat substance at a predetermined temperature.
  • the above-described catalytic reaction apparatus using electromagnetic induction heating has the following disadvantages. Since this catalyst reaction device heats the randomly arranged catalyst particles themselves or those that come into contact with the catalyst particles by electromagnetic induction, the flow of the fluid along the catalyst particles is necessarily inhomogeneous. As a result, a drift occurs in the reforming tube, which causes a path that is most likely to flow along the catalyst particles, and uniform heating becomes impossible.
  • the conductive material particles are included in the catalyst metal or when the catalyst particles and the conductive particles are mixed, the objects to be heated by the electromagnetic induction are electrically randomly arranged. This means that the state heated by electromagnetic induction is not uniform and efficient.
  • the applicant stores a regularly formed filler in a fluid passage, and stores the regularly formed filler.
  • a heating device that heats materials by electromagnetic induction. This device is only a fluid heating device and does not suggest an optimal combination for applying the catalyst to the filler.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to reduce the size of the device and reduce the startup time by uniformly generating a catalytic reaction using electromagnetic induction heating or the like. It is an object of the present invention to propose an epoch-making catalyst reaction device, a catalyst reaction method, and a catalyst reaction laminate capable of realizing excellent shortening and excellent followability to load fluctuation. Disclosure of the invention
  • a coil provided around the fluid passage and through which a high-frequency current is supplied; a high-frequency current generator connected to the coil;
  • a laminated body provided in the fluid passage which is formed by joining metal plates of a conductive material so as to be electrically conductive with each other;
  • the fluid flowing while diffusing in the storage container causes a catalytic reaction at the same time as the heating by the heat generation of the storage device.
  • the fluid flowing in the laminate is substantially uniformly diffused.
  • the metal plate that is pneumatically bonded is heated substantially uniformly by electromagnetic induction heating, and the fluid in contact with the metal plate is uniformly heated.
  • the predetermined catalytic reaction can proceed efficiently without unevenness.
  • a catalytic reaction maintained at a predetermined temperature with a small temperature difference from the fluid can be uniformly generated.
  • a large number of regular small flow paths formed between the metal plates of the first embodiment include a first small flow path and a second small flow path that intersect each other, and the first and second small flow paths that intersect each other. It is preferable to be formed so as to include a third small flow path capable of moving between small flow paths.
  • the fluid flowing through the heating element in which the metal plates are regularly laminated can be uniformly diffused while being guided through the first to third small flow paths.
  • the fluid passing through the heating element is diffused substantially uniformly, the fluid is forcibly brought into uniform contact with the surface of the metal plate, and the catalytic reaction proceeds uniformly.
  • the metal plate of the first embodiment is provided with irregularities such as satin finish or embossed surface.
  • the thickness of the metal plate forming the laminate of the first embodiment is not less than 30 micron and not more than 1 mm, and the frequency of the high-frequency current supplied to the coil is 15 to 150. Those in the range of KHz are preferred. Thus, if the thickness of the metal plate is not less than 30 ⁇ m and not more than 1 mm, it is easy to apply force, and it is easy to secure a small flow path by processing a waveform or the like to increase a heat transfer area. become. When the frequency used is in the range of 15 KHz to 150 KHz, copper loss of the coil and loss of the switching element can be prevented. In particular, for low-loss frequency bands, use 20 to 7 OKHz.
  • the heat transfer area per cubic centimeter of the laminate of the first embodiment is not less than 2.5 square centimeters.
  • the heat transfer area per cubic centimeter of the heating element is 2.
  • the metal plates are laminated so that the height is 5 cm 2 or more, more preferably 5 cm 2, the heat exchange efficiency is increased.
  • the amount of fluid to be heated per square centimeter of the heat transfer area of the laminate of the first embodiment is 0.4 cubic centimeter or less.
  • the catalytic reaction method comprises: disposing, in a fluid passage, a laminate in which metal plates made of a conductive material are electrically conductively joined to each other and laminated; Causing a substantially uniform diffusion of the fluid by passing through a number of regular small channels formed in the body; and a high-frequency current flowing through a coil provided around the fluid passage. Heating the metal plate forming the small flow passage substantially uniformly, and heating the fluid passing therethrough while diffusing substantially uniformly in the laminate;
  • the fluid is brought into contact with the catalyst metal formed on the metal plate itself or attached to the surface of the metal plate substantially uniformly, and the uniform touch is performed simultaneously with the uniform heating. Causing a medium reaction.
  • the catalyst reaction device includes a fluid passage
  • a coil provided around the fluid passage, through which a high-frequency current is supplied; a high-frequency current generator connected to the coil;
  • An assembly that is disposed in the fluid passage and that is configured to electrically connect conductive materials to each other so as to form a plurality of passages that flow in the axial direction of the fluid passage;
  • a dispersing member disposed on at least a fluid inlet side of the assembly, for distributing the fluid to the plurality of flow paths;
  • a catalytic reaction is caused to occur in the fluid flowing through the flow path of the assembly at the same time as the heating by the heat generated by the assembly.
  • the catalytic reaction method is as follows.
  • An assembly is formed in the fluid passage so as to form a plurality of axial flow paths by electrically connecting conductive materials to each other, and a fluid reaching the assembly is disposed on the surface of the fluid passage. Dispersing in the flow path to form a substantially uniform flow in the flow path;
  • a uniform flow is formed in the flow path of the assembly, and uniform electromagnetic induction heating and catalytic reaction are performed along the flow.
  • the surface area of this assembly can be made moderate, the specific surface area per unit volume of the fluid can be reduced, and the catalytic reaction can be promoted when a certain temperature difference is required between the fluid and the catalytic metal.
  • the fluid flowing while diffusing in the laminated body causes a catalytic reaction at the same time as the heat absorption of the heat transfer tube.
  • the catalytic reaction method is as follows.
  • a heat transfer tube arranged along the small flow passage and fixed so as to cover the metal plate substantially uniformly, heat transfer substantially uniformly between the heat exchanger and a fluid passing therethrough while being substantially uniformly diffused in the stacked body.
  • the fluid is brought into contact with the catalyst metal formed on the surface of the metal plate by forming the metal plate itself constituting the laminate, or by uniformly contacting the fluid with the catalyst metal. And a step of causing a uniform catalytic reaction at the same time.
  • the catalytic reaction device and the catalytic reaction method of the second embodiment not only the case where magnetic induction is used, but also the uniform heat absorption and the uniform catalytic reaction can be simultaneously performed by using a heat transfer tube.
  • a calendar body in which metal plates of a conductive material are electrically connected to each other and are stacked;
  • the metal plate itself is formed or a catalyst metal is provided substantially uniformly on the surface of the metal plate.
  • FIG. 1 is a perspective view of an apparatus main body of the M-medium reaction device according to the first embodiment
  • FIG. 2 is a structural diagram of a heating element
  • FIG. 3 shows a temperature distribution of the heating element.
  • FIG. 4 is a top view of a catalytic reaction device by electromagnetic induction
  • FIG. 5 is a cross-sectional view showing a device configuration diagram of the device main body
  • FIG. 6 is a plate thickness and thickness diagram.
  • FIG. 7 is a graph showing the relationship between the thermal efficiency and the thermal efficiency
  • FIG. 7 is a graph showing the relationship between the frequency of the low-frequency current and the thermal efficiency
  • FIG. 8 is a graph showing the relationship between the peak height of the heating element and the thermal efficiency.
  • FIG. 9 is a graph showing the relationship between the peak height of the heating element and the heat transfer area
  • Fig. 10 is a graph showing the relationship between the peak height of the heating element and the water film thickness.
  • FIG. 11 is a view showing the main body of the catalytic reaction apparatus according to the second embodiment
  • FIG. 12 is a view showing the third embodiment.
  • FIG. 13 is a structural diagram of a heat absorber
  • FIG. 14 is a system diagram of a fuel cell to which the catalytic reactor of the present invention is applied.
  • FIG. 15 is a system diagram of another fuel Oshiike pond to which the catalytic reaction concealment of the present invention is applied.
  • FIG. 1 to FIG. 10 relate to a first embodiment of the present invention, in which FIG. 1 is a perspective view of a main part of a catalytic reactor by electromagnetic induction heating, and FIG. 2 is a laminate.
  • FIG. 1 is a perspective view of a main part of a catalytic reactor by electromagnetic induction heating
  • FIG. 2 is a laminate.
  • an apparatus main body 1 of a catalytic reaction apparatus includes a pipe 11 of a non-conductive material for forming a fluid passage, an employment body 12 disposed in the pipe 11, It comprises a coil 13 wound around 11 and catalyst particles 14 attached substantially uniformly to the surface of a metal plate constituting the stack 12.
  • FIG. 2 shows the structure of the catalytic reaction laminate 12 incorporated in the apparatus main body 1.
  • the first metal plate 31 and the flat second metal plate 32 which are bent in a zigzag mountain shape, are alternately stacked to form a cylindrical laminate 12 as a whole.
  • a martensitic stainless steel such as SUS447J1 is used as the material of the first metal plate 31 and the second metal plate 32.
  • the peaks (or valleys) 33 of the first metal plate 31 are disposed so as to be inclined at an angle with respect to the central axis 34, and the second metal plate 32 is hollowed out to be adjacent to the first metal plate 31.
  • the peaks (or valleys) 3 3 are arranged so as to intersect each other at an angle. Then, at the intersection of the peaks (or valleys) 33 of the overlapping first metal plates 31, the first metal plate 31 and the second metal plate 32 are welded by spot welding, and are electrically connected. It is joined as possible.
  • a first small flow path 35 inclined by an angle a is formed between the first metal plate 31 and the second metal plate 32 on the front side, and the second metal plate 32 and the back side are formed.
  • a second small flow path 36 is formed between the first metal plate 31 and the second small flow path 36 inclined at the same angle, and the first small flow path 35 and the second small flow path 36 are formed at an angle 2.
  • holes 37 as small flow paths for generating turbulent flow of fluid are provided on the surfaces of the first metal plate 31 and the second gold plate 32. I have.
  • the surfaces of the first gold deer board 31 and the second metal plate 32 are not smooth, and are provided with extremely small irregularities 38 by satin finishing or embossing. The unevenness 38 is negligibly small compared to the height of the mountain (or valley) 33.
  • the catalyst particles 14 of a predetermined total IS are uniformly applied on the plane of the first gold plate 31 and the second gold plate 32.
  • the method of applying the catalyst particles 14 includes coating, appending, steaming, and pressing. Either way, the catalyst particles 14 are put apart or put so that the catalyst particles 14 have a substantially equal S per unit surface area of the metal plates 31 and 32.
  • the most uniform method of winding the catalyst particles is to form the gold bending plates 31 and 32 themselves with a catalyst metal, which is easy to obtain and inexpensive. This method can be used when metal is also used.
  • the temperature distribution is an eyeball shape extending in the longitudinal direction of the first metal plate 31 and the second metal plate 32, and heat is generated more in the center than in the side.
  • it is advantageous for heating fluid flowing through Churo.
  • a first small flow ⁇ 35 and a second small flow path 36 that intersect are formed in the seed body 12, and diffusion between the periphery and the center is performed. Due to the presence of the hole 37 that forms the third small passage, diffusion in the thickness direction between the first small passage 35 and the second small passage 36 is also performed. Therefore, these small flow paths 35, 36, and 37 generate a macroscopic dispersion, dissipation, and volatilization of the fluid throughout the body 12. In addition, microscopic irregularities on the surface 38 cause microscopic diffusion, emission, and volatilization.
  • the flow becomes substantially uniform, and a uniform opportunity of contact between the first metal plate 31 and the second metal plate 32 and the fluid is obtained.
  • the result is both uniform heat transfer and uniform catalytic reaction.
  • the catalyst particles 14 may be attached only to the portion where the reaction occurs when the temperature of the fluid in the laminate 12 becomes predetermined and the laminates 12 without catalyst particles and the catalyst particles 14 may be attached.
  • the eyebrows 12 may be arranged in multiple stages in series with the circumferential direction changed.
  • the coil 13 in FIG. 1 is formed by twisting a stranded wire, and is wound around the outer circumference of the pipe 11 or is wound and embedded in the thickness of the pipe 11. .
  • the pipe 11 holds the coil 13, partitions the fluid passage, and stores the laminated body 12 in the passage, so it is a non-magnetic material that has corrosion resistance, heat resistance, pressure resistance and Is formed.
  • inorganic materials such as ceramics, FRP (fiber reinforced plastic), resin materials such as fluororesins, non-magnetic metals such as stainless steel, etc. are used, but ceramics are most preferred. Good.
  • the catalytic reaction device includes a device body 1, a two-degree-of-freedom PID temperature control unit 2, a phase shift control unit 3, a gate driver 4, and a sensorless high-frequency high-frequency inverter unit 5.
  • a temperature sensor 17 is provided at the fluid outlet of the apparatus body 1, and the temperature sensor 17 is connected to the temperature controller 2.
  • the high-frequency inverter unit 5 includes a rectifying unit 22 for the AC power supply 21, a non-smoothing filter 23, and a high-frequency inverter unit 24.
  • the output power and frequency of the high-frequency inverter 24 are controlled by the phase shift controller 3 and the gate driver 14, and the commercial AC power supply 21 is efficiently converted to high-frequency current to be used effectively by electricians. Is done.
  • Temperature control unit 2 is a fuzzy 110-degree auto-tuning 2 degrees of freedom PID temperature It is composed of a controller and outputs an output voltage control signal to the phase shift controller 3. As described above, since the temperature sensor 17 for output control is provided at the outlet of the pipe 11, the output can be controlled in consideration of the loss of the impeller 5 and the coil 13.
  • the high-frequency inverter 24 uses four switching elements Q1 to Q4.
  • a high-frequency inverter 24 includes a series connection of Q1 and Q4 and a series connection of Q3 and Q4 in parallel. They are closely related.
  • a heating system composed of a non-metallic pipe 11 on which a coil 13 is wound and a conductive metal laminate 12 can be represented by a transformer circuit model having a large leakage inductance, and is represented by a simple R-L circuit. Can be displayed. If a compensation capacitor C1 is connected in series to this RL circuit, a time-variable circuit system in which the helical circuit constant hardly changes can be obtained.
  • the switching elements Q 1 to Q 4 are represented by a circuit in which switches S 1 to S 4 and diodes D 1 to D 4 are connected in parallel, and a SIT (Static Induction Transistor) BS IT MO S FET (Metal-Oxide Semiconductor FET), IGBT, MCT and the like.
  • SIT Static Induction Transistor
  • BS IT MO S FET Metal-Oxide Semiconductor FET
  • switches SI and S4 When the switches SI and S4 are closed, current flows from the point a to the circuit 1) through the load L1, 1 to the point 1) .
  • the switches S2 and S3 When the switches S2 and S3 are closed, the load L starts at the point b. A current flows through the circuit reaching point a via R1 and R1. That is, when viewed from the loads 1 and R1, the current flows forward or backward.
  • Each of the switches S1 to S4 is driven by a voltage pulse with a duty cycle of less than 50%.
  • the voltage drive pulses of switches S1 and S2 are used as reference phase pulses, and the voltage drive pulses of switches S3 and S4 are used as control phase pulses.
  • the output voltage can be controlled by PWM (Pu 1 se Width Modulation) by continuously changing the phase difference ⁇ of the voltage drive pulse with the control phase from 0 to 180 '.
  • PWM Pul 1 se Width Modulation
  • the output power can be continuously changed from 0 to the maximum output determined by the load circuit constant and the operating frequency of the inverter.
  • phase-shift PWM method has been described as the power control method, in general, other power control methods include an active PWM rectifier circuit, DC power supply control (PAM method) using a frequency transistor chipper, and variable frequency control. (PFM method), pulse density modulation control (pulse cycle control) (PDM method), etc.
  • PFM method pulse density modulation control
  • PDM method pulse cycle control
  • FIG. 5 shows a specific example of the concealed main unit 1 of the first embodiment that can be directly incorporated into the vibrator.
  • the main body 1 is mainly composed of flanges 101, 102, short tubes 103, 104, pipes 11, coils 13, and calendar 1 2 and tubes 105 and 106.
  • Reference numeral 2 denotes a temperature control unit
  • reference numeral 5 denotes an inverter unit
  • reference numeral 17 denotes a temperature sensor.
  • the material of the flanges 101, 102 and the short tubes 103, 104 must have corrosion resistance to the various fluids handled by the chemical plant, and the coils 13 Austenitic stainless steel, such as non-magnetic SUS316, is used so as not to be affected by the magnetic flux. Although this austenitic stainless steel is generally considered to be non-magnetic, it is not completely non-magnetic but is slightly affected by magnetic flux.
  • Flange 101 and short tube 103 are formed into a flange with a short tube by welding, etc.
  • the short pipe 104 is also formed on the flange with the short pipe by welding or the like.
  • the same SUS316 socket 111 is fixed to the short pipe 103 located on the outlet side of the fluid 10 mm by welding, etc., and the fitting 112 for attaching the temperature sensor 17 can be screwed in. It is like that. Then, when the holding fittings 113 are screwed into the fitting 112, the temperature sensor 17 can be fixed in a state where the tip of the temperature sensor 17 is positioned near the center of the short tube 103.
  • the position of the socket 111 is preferably provided close to the flange 101 so that parts of the temperature sensor such as the fitting 112 do not interfere with the flange 101.
  • the flanges 101 and 102 and the short pipes 103 and 104 are not limited to those attached by welding or the like, but may be integrally formed as a short pipe flange.
  • the sensor attached to the short pipe 103 is not limited to the temperature sensor, but may be another sensor such as a pressure sensor.
  • a laminated body 12 is housed in the center of the pipe 11 in the axial direction, and a coil 13 is wound around the outer periphery of the pipe 11 where the laminated body 12 is located.
  • the pive 11 may be a pive with two or more splices due to production restrictions.
  • the ends of the pipe 11 and the short pipes 103 and 104 are not directly connected but are connected via pipes 105 and 106.
  • High-strength heat-resistant alloys such as Fe—Ni—C0 alloy, are selected as the material for the tubes 105 and 106.
  • the coefficient of thermal expansion of ceramics is small, and the coefficient of thermal expansion of austenitic stainless steel is large. Therefore, when ceramic is used for the pipe 11 and austenitic stainless steel is used for the short pipes 103 and 104, and the pipe 11 and the short pipe 103.104 are directly joined, a large thermal stress is generated.
  • the thermal expansion coefficient of the pipe 105.106 that is interposed between the pipe 11 and the short pipe 103.104 should be the middle of the thermal expansion coefficient of ceramic and austenitic stainless steel. Select.
  • short pipe 10 Bonding between 3, 104 and tube 1D5, 106 and between tube 105, 106 and tube 11 are performed using silver or nickel brazing.
  • the tube 106 is straight, but the tube 105 is corrugated and can expand and contract in the axial direction.
  • the fluid is heated by the device 1, not only the device main body 1 but also the pipeline extends in the axial direction due to thermal expansion. Therefore, if the main unit 1 is assembled to the pipeline by flange connection, unexpected thermal stress may be generated in the weakest t, part of the main unit 1, and thermal expansion inside the main unit 1 may occur.
  • a corrugated tube 106 for escape was installed. With this corrugated tube 106, it is also possible to absorb errors in the production of the pipeline and the device 1 in the axial and axial directions. Further, since the corrugated tube 106 is also bendable, it is possible to absorb a deviation in parallelism between the flanges 101 and 102.
  • the laminated body 12 has a diameter D such that an annular gap Rs is formed between the outer peripheral surface and the inner peripheral surface of the pipe 11.
  • the laminate 12 is inserted into the pipe 11 so that its axis coincides with the axis of the calendar 12, and is held by the holding member 12 1.
  • the diameter D of the laminate 12 is determined by the amount of thermal expansion of the pipe 11 in the radial direction and the amount of thermal expansion of the laminate 12 in the radial direction when the fluid 107 is heated by the apparatus body 1. Is determined so as to have an annular gap Rs between the laminated body 12 and the pipe 11 that is equal to or larger than the thermal expansion difference between them.
  • the holding member 1 2 1 is welded to the short pipe 1 D 4 on the inflow side A by welding or the like, and a metal bar 1 2 2 extending in the radial direction is laminated on the tip of the metal bar 1 2 2.
  • It is composed of a nonmagnetic holding rod 123 fixed so as to coincide with the axis of the body 12.
  • a holding rod 123 made of ceramics or the like, which is excellent in heat resistance and corrosion resistance, extends from the inflow side A to the outflow side B.
  • Position 1 2 at the position relative to coil 11 and hold I have.
  • Reference numeral 124 denotes a ring-shaped stopper, which is made of ceramic or the like having excellent non-magnetic properties, heat resistance, and corrosion resistance.
  • This ring-shaped stopper 124 is fitted into the pipe 11 from the outflow side B of the fluid 107, and the thermal expansion of the laminated body 12 in the axial direction is formed between the ring-shaped stopper 12 and the laminated body 12. It is fixed with a gap Vs equal to or slightly less than the amount. Further, the ring-shaped stobber 124 is located on the laminate 12 across the annular gap Rs from the outflow side B in the radial direction, and is connected to the laminate 12 by thermal expansion of the laminate 12. At the same time, the annular gap Rs is closed from the discharge side B. If the ring stopper 12 24 is provided with a fitting portion 124 a into which the end of the laminated body 12 fits, as in the enlarged portion, the positioning of the stack 12 in the pipe 11 can be achieved. Easier to do.
  • the fluid 107 flowing from the pipelines 13 1 and 13 2 into the inflow side A of the apparatus main body 1 flows into the calendar 12 and is heated and flows to the inflow side B, while the fluid 1 Part of 107 flows into the annular gap Rs directly from the inflow side A or from the seed layer body 12, passes through the annular gap Rs, and flows to the inflow side B.
  • the stacked body 12 is engaged with the ring-shaped stopper 124 by the thermal expansion in the axial direction, thereby closing the outflow side B of the annular gap Rs, and the fluid 107 is directly moved to the outflow side B.
  • the laminated body 12 thermally expands and engages with the ring-shaped stoppers 124 to close the annular gap Rs from the outflow side B. Since the fluid 107 flowing out into the annular gap Rs can flow into the laminated body 12, the fluid 107 can be uniformly heated by the laminated body 12.
  • the distances L3 and L4 between the flanges 101 and 102 and the laminated body 12 are determined by the inner diameter of the pipe 11 If D is up to 10 cm, DX is 0.8 times or more, and if the inner diameter D of pipe 11 is 10 cm or more, if it is 8 cm or more, flanges 101 and 102 generate heat. No longer. Further, it is preferable that the distance 1 from the stack 12 to the tubes 105 and 106 and L 2 be 5 cm or more.
  • Figure 6 shows the relationship between plate thickness and thermal efficiency.
  • the thickness of the metal plate was changed around 50 micron ⁇ by making a heating experiment in the range of 20 to 40 KHz using an eyebrow with a diameter of 10 cm or 5 cm.
  • the overall thermal efficiency was measured.
  • the material of the metal plate was SUS447J1. According to the figure, when the temperature exceeds 30 micron, the rate of increase in thermal efficiency decreases rapidly, and at 30 micron and above, the thermal efficiency is almost constant at 90% or more.
  • Figure 7 shows the relationship between frequency and thermal efficiency.
  • the overall thermal efficiency was measured using a laminate with a diameter of 10 cm, a plate thickness of 50 microns, and a mountain-shaped height of 3 mm while changing the frequency.
  • the material of the metal plate was SUS447J1. According to the figure, the thermal efficiency gradually decreases in the low frequency region, and rapidly decreases in the high frequency region. It can be seen that the range of 20 to 70 KHz is good for maintaining the thermal efficiency as high as about 90%. However, a practically usable range of a thermal efficiency of 70% or more is a range of 15 to 15 O KHz.
  • Figure 8 shows the relationship between the mountain and thermal efficiency.
  • the overall thermal efficiency was measured in a frequency range of 20 to 30 KH 2 using a laminate having a diameter of 10 cm and a metal plate having a thickness of 50 mixed with various peaks.
  • Figure 9 shows the relationship between the mountain height and the heat transfer area in this case.
  • Line A in the figure has the second metal plate, while line B in the diagram has the second metal plate omitted. From FIG. 8, it can be seen that a practically usable material having a thermal efficiency of 70% or more is 11 mm in height, and the heat transfer area per cubic centimeter from line A in FIG. 9 is 2.5. It is more than square centimeter.
  • the peak height is 5 mm
  • the heat transfer area per cubic centimeter is preferably 5 square centimeters or more.
  • FIG. 10 shows the relationship between the mountain height and the water film thickness.
  • the average water film thickness of a laminate having a diameter of 10 cm, a plate thickness of 50 microns, and waves having various peaks was examined.
  • Line A in the figure has the second metal plate, while line B in the diagram has the second metal plate omitted.
  • the water film thickness corresponding to a thermal efficiency of 70% or more shall be 4 mm or less (corresponding to 0.4 cubic centimeters of fluid to be heated per square centimeter of heat transfer area of the laminate).
  • the water film thickness is 1 mm (product It is preferable that the heat transfer area of the layer body is equal to or less than 0.1 cubic centimeter of the amount of fluid to be heated per square centimeter).
  • FIG. 11 (a) is a vertical sectional view
  • FIG. 11 (b) is a horizontal sectional view
  • the assembly 79 is formed by joining a large number of small-diameter pipe members 80 extending in the axial direction of the pipe 11 regularly and densely and joining them by welding or metal bonding.
  • the space inside the material 8D and between the small-diameter pipe members 80 is used as a fluid flow path.
  • the assembly 79 is inserted with the outer periphery of each small diameter pipe member 80 in contact with the inner peripheral surface of the pipe 11.
  • a dispersing member 81 for diffusing the flow of the fluid from both ends of the pipe 11 is provided, and the rest has the same configuration as the apparatus main body 1 shown in FIG.
  • the cross-section of the assembly 79 assembles the small-diameter pipe members 80 in a regular manner, and these members are not electrically independent, and have a structure that is particularly easy to conduct in the radial direction, the vortex due to electromagnetic induction The generation of electric current occurs over substantially the entire cross section of the assembly 12, and heat generation unevenness in the cross section of the assembly is reduced.
  • the fluid After the fluid is evenly dispersed by the dispersion material 81, the fluid flows in the axial direction along a small flow path divided by each small-diameter pipe member 80 of the assembly 12. Only flows. Then, compared to the laminate 12 shown in FIG.
  • a small-diameter pipe material 80 whose surface temperature is increased while the pressure loss of the fluid is small while the specific surface area per unit volume is small. Opportunities for the fluid to come into contact with the walls of the separated small flow path are obtained, and the catalytic reaction is promoted.
  • a large number of plate members are assembled in place of each small-diameter pipe member 80 so that the cross section has a lattice shape, and the axial direction through which the fluid passes A plurality of small flow paths may be formed.
  • an assembly 79 is composed of a large number of small-diameter pipe members 80 as shown in FIG. 11 without using a seed body 12 as shown in FIG. 2 in which metal plates are densely stacked. Then, even if the frequency is 150 kHz or more (150-200 kHz) and the heat transfer area per cubic centimeter of the fluid is 2.5 square centimeters or less, it can be used as a catalytic reactor. Practically available. That is, when the shape of the assembly changes, the frequency that can be input changes, and if a thin-walled vibe is used, heating can be performed even at 15 OKHz or more. Also, depending on the type of the catalyst metal and the reaction fluid, it may be better to have a large temperature difference ⁇ t. In this case, the heat transfer area is set to 2.5 square centimeters or less.
  • FIG. 12 is a view showing a part of the catalytic reactor
  • FIG. 13 is a structural view of a heat absorber.
  • the device main body 40 of the catalytic reaction device shown in FIG. 12 has a heat absorber 41 housed in a pipe 48.
  • the heat absorber 41 is provided with heat transfer tubes 44 welded or fixed with metal ⁇ to the peaks (or valleys) 43 of the metal plate 42 bent in a zigzag mountain shape. It has been established.
  • As the metal plate 42 a material having high heat transfer coefficient and excellent corrosion resistance to fluid is selected.
  • the catalyst particles 45 are applied, adhered, evaporated, pressed, or the like so as to have a substantially uniform distribution on the surface of 42. Further, a hole 46 is formed in the surface of the metal plate 42, and minute unevenness 47 such as satin finish or embossing is applied.
  • the heat transfer tubes 44 are for flowing the cooling liquid, and are arranged in a bent state along the peaks (or valleys) 43.
  • a predetermined coolant supplied to the heat transfer tube 44, the entire metal plate 42 becomes a substantially uniform heat absorber.
  • To reduce the thermal gradient of the coolant in the heat transfer tubes 44 connect the lower bend of the heat transfer tubes 44 to the inlet pipe, and connect the upper bend of the heat transfer tubes 44 to the outlet. It can also be connected to the door.
  • Such a metal plate 41 with the heat transfer tubes 44 may be formed in a pile or a metal plate as in the case of the first metal plate 31 where heat transfer tubes are provided instead of the second metal plate 32 in FIG.
  • the small channels in the valleys are stacked so as to intersect with each other to form a stacked body 41. Then, it is stored in the pipe 48 as shown in FIG.
  • the small flow path along the peak (or valley) 43 of the metal plate 42 in FIG. 13 intersects between the adjacent metal plates 42.
  • the fluid is diffused in the thickness direction and the width direction of the laminated body because there is a hole 46 communicating the adjacent metal plates 42.
  • the fluid that comes into contact with the metal plate 42 under substantially the same conditions causes substantially the same catalytic reaction in the catalyst particles, and the heat generated at that time is absorbed by the heat transfer tube 44 under substantially the same conditions.
  • a substantially uniform catalytic reaction can be generated simply by passing the fluid through the catalytic reactor 40.
  • a fuel cell system to which the catalytic reaction device or the catalytic reaction method of the first to third embodiments is applied will be described with reference to FIG.
  • the system converts natural gas into hydrogen-rich gas and supplies hydrogen to the phosphoric acid-based fuel cell body. for that reason, Natural gas is passed through a desulfurizer-reformer-transformer in order to cause a predetermined catalytic reaction to reform it into hydrogen rich.
  • a desulfurizer is used before the reformer.
  • it is reacted with hydrogen at a temperature of 300 to 350 'under a C0-M0-based or Ni-M0-based catalyst, Sulfur compounds are converted to hydrogen sulfide (H 2 S) and adsorbed on zinc oxide.
  • the hydrogen rich gas from the reformer contains carbon monoxide, which is a catalyst poison for the phosphoric acid-based fuel cell body, the carbon monoxide and water vapor are reacted in the converter to form carbon dioxide and hydrogen. Change.
  • a hot shift of 35 D to 370 ° C. was performed using an iron-chromium catalyst, and the remaining carbon monoxide was removed using a copper-zinc catalyst. 0 0 to 23 (This is to perform the cold shift of the TC. The hot shift and the cold shift are exothermic reactions.
  • the processes of the desulfurizer-reformer-transformer-fuel cell body described above involve a catalytic reaction under heating or endotherm. Therefore, a catalyst reaction device of a multitubular heat exchanger type is usually used. Have a process. In the case of a multi-tube heat exchanger, indirect heating using a heat medium results in a complicated and large-sized system, a long startup time, and poor follow-up to load fluctuations.
  • FIG. 1 This is a process in which a desulfurizer 51 and a steam generator 52 are connected in parallel, and a reformer 53, a first transformer 54, a second transformer 55, and a fuel cell body 56 are connected in series in this order. . Since the desulfurizer 51 heats natural gas as a raw material to 300 to 350 ° C. under a C0-Mo or Ni—M0 catalyst, the desulfurizer 51 is used. The catalytic reaction apparatus using electromagnetic induction heating shown in FIG. 1 is used for this. Since the steam generator 52 merely heats water, it is possible to use a metal plate shown in FIG.
  • each catalytic reactor has a small size, a short start-up time, and a high follow-up ability to load fluctuations.
  • the system as a whole can be remarkably reduced in size, the startup time can be shortened, and the tracking performance against load fluctuation can be pursued.
  • FIG. 15 shows a process when a methanol reformer 57 is used. If the methanol reforming with steam, is used usually copper-based catalyst is carried out at 2 0 0-3 0 0 1 e C OK g / cm 2 or less low pressure conditions. Therefore, as shown in FIG. 15, the use of the catalytic reaction device of the present invention simplifies the process, and is particularly effective when the device is moved like a vehicle power supply. In the description of the above-described embodiment, the case of the catalytic reaction relating to the endothermic reaction or the exothermic reaction has been described. Equipment and catalytic reaction methods can be used.
  • a preheater or a superheater is used to raise the exhaust gas to a predetermined temperature.
  • the above-described exothermic type catalytic reactor can be used.
  • the above-mentioned endothermic catalytic reaction device can be used as a cooler. That is, exothermic or endothermic does not mean only an exothermic reaction or an endothermic reaction, but the form of exotherm includes mere preheating and overheating, and the form of endothermic includes mere cooling.
  • the catalytic reaction apparatus, catalytic reaction method, and laminate for catalytic reaction of the present invention are applicable not only to fuel reforming but also to various reactions performed at high temperatures in chemical blunting. It can be used in a wide range of fields, such as air pollution or environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • General Induction Heating (AREA)
  • Catalysts (AREA)

Description

明 細 書 触媒反応装置及び触媒反応方法並びに触媒反応用積履体 技 iff分野
本発明は、 所定温度下で原料流体を触媒金属と触れさせて触媒反応を 起こさせる触媒反応装置及び触媒反応方法並びに触媒反応用積層体に関 する。 背景技術
このような触媒反応装置の典型的なものは改質装置である。 この改質 装置は、 天然ガス、 メタノール、 ナフサの如き軽質油、 L N G、 L P G 、 石炭ガス等の原燃料を、 水蒸気を加えて所定温度下で触媒金属に触れ させて水素リ ツチな気体に変える改質反応を行うものである。 この改質 反応は吸熱反応であるため、 改質装置にエネルギーが補給される。 前記触媒金厲自体はエネルギーを有していないため、 原燃料をガスパ ーナ、 余熱器、 過熱器 (スーパーヒータ) 等で適切な温度まで加熱して 改質装置に移送する。 また、 改質装置自体も、 触媒金厲を収納するパイ プを熱媒体を用いて加熱する熱交換器に構成し、 改質装置内での触媒反 応を持続させる必要がある。
しかしながら、 余熱器又は過熱器等と、 熱交換器に構成された改質装 置との組み合わせによる触媒反応装置は、 温度制御が難しく、 機器構成 が複雑で大型化し、 起動時間が長くかかり、 負荷変動に対する追従性が 悪いという難点を有している。
このような難点を部分的に解決する触媒反応装置として、 特開昭 6 1 一 2 7 5 1 0 3に、 電磁誘導加熱を用いるものが提案されている。 不良 導体材料の断熱材からなる改質管内に、 導 ¾性物質と触媒粒子を混在さ せ、 前記改質管外周に設けられた導電コイルに高周波電流を通電して、 前記導電性物質の表面に渦電流を発生させて加熱し、 導楚性物質と混在 する触媒粒子を所定の温度に保持するものである。
そして、 導髦性物質と触媒粒子とを混在させる形態として、 導電性物 質の粒子と触媒粒子を混在させる形想と、 触媒粒子中にコィル状の導電 性物質を埋設する形態と、 導電性物質の粒子の周りを触媒物質で包含し た触媒粒子にする形態とが提案されている。 触媒反応を生じさせる触媒 粒子自体又はこの触媒粒子に接触するものが発熱するため、 装置の小型 化、 起動時間の短縮、 負荷変動に対する追従性が理論的には向上するは ずである。
しかしながら、 上述した電磁誘導加熱による触媒反応装置は以下のよ うな欠点を有している。 この触媒反応装蘆は、 ランダムに配設された触 媒粒子自体又はこの触媒粒子に接触するものを電磁誘導で加熱するため 、 触媒粒子に沿った流体の流れも必然的に不均一になる。 そのため、 触 媒粒子に沿って最も流れやすい道筋が生じるという偏流が改質管内に生 じ、 均一加熱が不可能になる。
さらに、 導電性物質の粒を触媒金属で包含させた場合や触媒粒子と導 鸳性粒子とを混在させた場合には、 電磁誘導で加熱される対象が電気的 にランダムに配設されていることになり、 電磁誘導で加熱される状態も 不均一で効率的にも良くない。
結局、 触媒粒子と導電性物質とを混在させて電磁誘導加熱する触媒反 応装置は、 加熱の不均一と流れの不均一を生じるため、 改質反応が理論 計算通りに進行せず、 部分的に未反応が生じる。 そのため、 実際の使用 に際しては、 触媒反応装置の複数を直列に配置しないと改質が不十分に なる。 その結果、 エネルギーロスが大き く、 装置の小型化、 起動時間の 短縮、 負荷変動に対する優れた追従性も実現できなくなる。
なお、 出願人は、 特開平 3— 9 8 2 8 6号公報に開示されるように、 流体通路内に規則的に形成された充塡材を収納し、 この規則的に形成さ れた充塡材を電磁誘導で加熱する加熱装置を提案している。 この装置は あくまで流体の加熱装置であって、 充填材に触媒を適用するにあたって の最適な組み合わせ形態を示唆するものではない。
同様に、 出願人は、 特公平 4一 4 1 8 9号公報に開示されるように 、 規則的な充塡材の表面に伝熱管を固着した熱交換器を提案している。 この機器もあくまで流体を冷却するための熱交換器であって、 充璲材に 触媒を適用するにあたっての最適な組み合わせ形態を示唆するものでは ない。
本発明は上述した問題点を解決するためになされたものであり、 その 目的とするところは、 電磁誘導加熱などを用い、 触媒反応を均一に生じ させることによって、 装置の小型化、 起動時間の短縮、 負荷変動に対す る優れた追従性を実現することができる画期的な触媒反応装置及び触媒 反応方法並びに触媒反応用積層体を提案することにある。 発明の開示
第 1実施例にかかる発明のうち、 触媒反応装置は、
流体通路と、
前記流体通路の周囲に設けられ、 高周波電流が通電されるコィルと、 前記コィルに接続された高周波電流発生器と、
前記流体通路内に配設され、 導電性材料の金属板を互いに電気的に導 通可能に接合して積層した積層体と、
前記積層体内を通過する流体に略均一な拡散を生じさせるように前記 金属板間に形成された多数の規則的な小流路と、 前記金厲板そのものを形成するか又は前記金厲板の表面に略均一に付 けられた触媒金属とを備えてなり、
前記積届体内を拡散しながら流れる流体に、 前記積暦体の発熱による 加熱と同時の触媒反応を起こさせるようにしたものである。
これによると、 積層体内を流れる流体は略均一に拡散される。 更に鬣 気的に接合された金属板が電磁誘導加熱で略均一に加熱され、 この金属 板に接する流体が均一に加熱される。 加えて、 流体が金属板の触媒金厲 に均一に接するので、 所定の触媒反応をムラなく効率的に進行させるこ とができる。 特に積層体の表面積を大きくすることで、 流体との温度差 を少なく した所定温度に保たれた触媒反応を均一に生じさせることがで きる。
また、 前記第 1実施例の前記金属板間に形成された多数の規則的な小 流路は、 互いに交差する第 1小流路および第 2小流路と、 この交差する 第 1、 第 2小流路間を行き来可能とする第 3小流路とを含んで形成され ているものが好ましい。
これにより、 金属板を規則的に積層した発熱体を流れる流体を、 第 1 〜第 3小流路で導きながら、 均一に拡散することができる。 また、 発熱 体を通過する流体は略均一に拡散させられるため、 流体は強制的に金属 板の表面に均一に接触させられ、 触媒反応が均一に進行する。
また、 前記第 1実施例の前記金厲板の表面に、 梨地又はエンボス等の 凹凸が施されているものが好ましい。
これにより、 流体に乱流を起こして、 金属に略均一に配置された触媒 の作用を有効ならしめることができる。
また、 前記第 1実施例の積層体を形成する前記金属板の厚みが 3 0 ミ ク oン以上 1 m m以下であり、 前記コィルに通電される高周波電流の周 波数が 1 5〜 1 5 0 K H zの範囲にあるものが好ましい。 これにより、 金厲板の厚みが 3 0 ミ ク《ン以上 1 m m以下であると、 鸳力が入り易く、 又伝熱面積を大きく とるための波形等の加工による小 流路の確保が容易になる。 また、 使用する周波数が 1 5 K H z〜l 5 0 K H zの範囲であると、 コイルの銅損や、 スィ ツチング素子の損失を防 止できる。 特に、 損失が少ない周波数帯としては、 2 0〜7 O K H zで める
また前記第 1実施例の前記積層体の 1立方センチメ一トル当たりの伝 熱面積が、 2 . 5平方センチメ ー トル以上であるものが好ましい。 これにより、 発熱体の 1立方センチメ一トル当たりの伝熱面積が 2 .
5平方センチメ一トル以上、 より好ましくは 5平方センチメ一トノ H¾上 になるように金属板を積層すると、 熱交換の効率が上がる。
また前記第 1実施例の前記積層体の伝熱面積 1平方センチメー トル当 たりで加熱すべき流体量が、 0 . 4立方センチメー トル以下であるもの が好ましい。
これにより、 発熱体の伝熱面積 1平方センチメー トル当たりの流体量 を 0 . 4立方センチメー ト ル以下、 より好ましくは 0 . 1立方センチメ 一トル以下にすると、 流体に対する伝熱の急速応答性が得られる。 また、 第 1実施例にかかる発明のうち、 触媒反応方法は、 流体通路内 に、 導電性材料の金属板を互いに電気的に導通可能に接合して積層した 積層体を配設し、 前記積層体内に形成された多数の規則的な小流路を通 過させることによって流体に略均一な拡散を生じさせる段階と、 前記流体通路の周囲に設けられたコィルに流される高周波電流によつ て、 前記小流路を形成する金属板を略均一に発熱させ、 積層体内を略均 一に拡散しながら通過する流体を略均一に加熱する段階と、
前記金属板そのものを形成するか又は前記金属板の表面に略均一に付 けられた触媒金属に前記流体を触れさせ、 均一な加熱と同時の均一な触 媒反応を生じさせる段階とを備えてなるものである。
これによると、 第 1実施例の触媒反応装置と同様に、 種層体の表面積 を大きくすることで、 流体との温度差が少ない所定温度に保たれた触媒 反応を均一に生じさせることができる。
つぎに、 第 2実施例にかかる発明のうち、 触媒反応装置は、 流体通路と、
前記流体通路の周囲に設けられ、 髙周波電流が通電されるコィルと、 前記コィルに接続された高周波電流発生器と、
前記流体通路内に配設され、 前記流体通路の軸方向に流れる複数の流 路を形成するように導電性材料を互いに電気的に導通可能に接合 I:て組 み立てられた組立体と、
前記組立体の少なく とも流体入り側に配設され、 多数の前記流路に流 体を分配する分散部材と、
前記組立体の導電性材料そのものを形成するか又は前記導電性材料の 表面に略均一に付けられた触媒金属とを備えてなり、
前記組立体の流路を流れる流体に、 前記組立体の発熱による加熱と同 時の触媒反応を起こさせるようにしたものである。
また第 2実施例にかかる発明のうち、 触媒反応方法は、
流体通路内に、 導電性材料を互いに電気的に導通可能に接合して軸方 向の複数の流路を形成する組立体を配設し、 前記組立体に至る流体を前 記流体通路の面内で分散させて、 前記流路に略均一な流れを形成する段 階と、
前記流体通路の周囲に設けられたコィルに流される高周波電流によつ て、 前記組立体を形成する導電性部材を略均一に発熱させ、 前記通路内 を通過する流体を略均一に加熱する段階と、
前記導電性部材そのものを形成するか又は前記導電性部材の表面に酪 均一に付けられた触媒金属に前記流体を触れさせ、 均一な加熱と同時の 均一な触媒反応を生じさせる段階とを備えてなるものである。
これらの第 2実施例の触媒反応装匮及び触媒反応方法によると、 組立 体の流路に均一な流れが形成され、 この流れに沿って均一な電磁誘導加 熱と触媒反応が行われる。 この組立体の表面積を適度の大きさにし、 流 体の単位容積に対する比表面積を小さく して、 流体と触媒金属との間に ある程度の温度差が必要な場合における触媒反応を促進させることがで
^
つぎに、 第 3実施例にかかる発明のうち、 触媒反応装置は、
^体通路と、
前記流体通路内に配設された積層体と、
前記積眉体内を通過する流体に略均一な拡散を生じさせるように前記 積層体を構成する金属板間に形成された多数の規則的な小流路と、 前記小流路に沿って配設され、 前記金属板を略均一に覆うように固着 された伝熱管とを備え、
前記積層体内を拡散しながら流れる流体に、 前記伝熱管の吸熱と同時 の触媒反応を起こさせるようにしたものである。
また第 2実施例にかかる発明のうち、 触媒反応方法は、
流体通路内に積層体を配設し、 前記積層体内に形成された多数の規則 的な小流路を通過させることによって流体に略均一な拡散を生じさる段 階と、
前記小流路に沿って配設され、 前記金属板を略均一に覆うように固着 された伝熱管によって、 積圑体内を略均一に拡散しながら通過する流体 との間に略均一な伝熱を生じさせる段階と、
前記積層体を構成する金属板そのものを形成するか又は前記金厲板の 表面に略均一に付けられた触媒金属に前記流体を触れさせ、 均一な伝熱 と同時の均一な触媒反応を生じさせる段階とを備えてなるものである。 これらの第 2実施例の触媒反応装匱及び触媒反応方法によると、 磁 誘導を用いる場合に限らず、 伝熱管を用いることで、 均一な吸熱と均一 な触媒反応を同時に行うことができる。
また触媒反応用積層体は、
導電性材料の金属板を互いに電気的に導通可能に接合して積層した積 暦体と、
前記積層体内を通過する流体に略均一な拡散を生じさせるように前記 金厲板間に形成された多数の規則的な小流路と、
前記金属板そのものを形成するか又は前記金厲板の表面に略均一に付 けられた触媒金属とを備えてなるものである。
この触媒反応用積層体によると、 積層体を構成する金属板の均一な電 磁誘導加熱と、 金厲板間を通過する流体の均一な拡散又は混合と、 金厲 板の触媒金厲における均一な反応とが同時に進行する。 図面の簡単な説明
第 1図は、 第 1実施例にかかる M媒反応装置の機器本体の斜視図であ り、 第 2図は、 発熱体の構造図であり、 第 3図は、 発熱体の温度分布を 示す上面図であり、 第 4図は、 電磁誘導による触媒反応装置の機器搆成 図であり、 第 5図は、 装置本体の機器構成図を示す断面図であり、 第 6 図は、 板厚と熱効率の関係を示すグラフ図であり、 第 7図は、 髙周波電 流の周波数と熱効率との関係を示すグラフ図であり、 第 8図は、 発熱体 の山高と熱効率との関係を示すグラフ図であり、 第 9図は、 発熱体の山 高と伝熱面積との関係を示すグラフ図であり、 第 1 0図は、 発熱体の山 高と水膜厚の関係を示すグラフ図であり、 第 1 1図は、 第 2実施例にか かる触媒反応装置の機器本体を示す図であり、 第 1 2図は、 第 3実施例 にかかる触媒反応装置の要郎を示す図であり、 第 1 3図は、 吸熱体の構 造図であり、 第 1 4図は、 本発明の触媒反応装置を適用した燃料電池の システム図であり、 第 1 5図は、 本発明の触媒反応装匿を適用した他の 燃料鴛池のシステム図である。
発明を実施するための最良の形態
以下、 本発明の実施例について図面を参照しつつ説明する。 第 1図乃 至第 1 0図は本発明の第 1実施例に閧するものであり、 そのうち第 1図 は電磁誘導加熱による触媒反応装置の要部斜視図であり、 第 2図は積層 体の構造図である。
第 1図において、 触媒反応装置の装置本体 1は、 流体通路を形成する ための非導電性材料のパイブ 1 1と、 このパイプ 1 1内に配設された積 雇体 1 2と、 前記パイブ 1 1の周囲に卷かれたコイル 1 3と、 積賵体 1 2を構成する金厲板の表面に略均一に着けられた触媒粒子 1 4とからな つている。
第 2図は装置本体 1に組み込まれる触媒反応用積層体 1 2の構造を示 している。 ジグザグの山型に折り曲げられた第 1金属板 3 1と平たい第 2金属板 3 2とを交互に積暦し、 全体として円筒状の積層体 1 2に形成 したものである。 この第 1金属板 3 1や第 2金属板 3 2の材質としては 、 S U S 4 4 7 J 1の如きマルテンサイ ト系ステンレスが用いられる。 そして、 第 1金属板 3 1の山 (又は谷) 3 3は中心軸 3 4に対して角度 だけ傾くように配設され、 第 2金属板 3 2を抉んで隣り合う第 1金属 板 3 1の山 (又は谷) 3 3は角度一 だけ傾けて互いに交差するように 面設されている。 そして、 瞵り合う第 1金属板 3 1における山 (又は谷 ) 3 3の交差点において、 第 1金属板 3 1と第 2金厲板 3 2とがスポッ ト溶接で溶着され、 電気的に導通可能に接合されている。
結局、 手前側の第 1金属板 3 1と第 2金属板 3 2との間には、 角度 a だけ傾いた第 1小流路 3 5が形成され、 第 2金属板 3 2と奥側の第 1金 属板 3 1との間には、 角度一なだけ傾いた第 2小流路 3 6が形成され、 この第 1小流路 3 5と第 2小流路 3 6は角度 2 で交差している。 ま CT/JP96/01449 た、 第 1金厲板 3 1や第 2金展板 3 2の表面には、 流体の乱流を生じさ せるための笫 3小流路としての孔 3 7が設けられている。 さらに、 第 1 金鹿板 3 1や第 2金厲板 3 2の表面は平滑ではなく、 梨地加工又はェン ボス加工によって激小な凹凸 3 8が施されている。 この凹凸 3 8は山 ( 又は谷) 3 3の高さに比校して無視できる程度に小さい。
そして、 笫 1金展板 3 1と第 2金屈板 3 2の衷面に均一に、 所定全 IS の触媒粒子 1 4が着けられている。 この触媒粒子 1 4の着け方には、 塗 布、 付著、 蒸著、 圧 ¾等がある。 いずれの着け方にしろ、 触媒粒子 1 4 が金厲板 3 1 , 3 2の単位面稷当たり略等しい Sになるように分敗して 又は全体的に着けられる。 最も均一な触媒粒子の付卷方法は、 金屈板 3 1, 3 2自体を触媒金属で構成するものであり、 手に入りやすく安価で あり、 旦っ電磁锈導で ¾力が入り い触媒金属も使用する場合は採用可 能な方法である。
コイル 1 3に髙周彼電流を流して、 穫層体 1 2に髙周波磁界を作用さ せると、 第 1金展板 3 1と第 2金属板 3 2の全体に渦電流が生じ、 積阍 体 1 2が略均一に発熱する。 このときの温度分布は、 第 3図に示される ように、 笫 1金属板 3 1と第 2金属板 3 2の長手方向に延びた目玉型と なり、 阆辺部より中心部の方が発熱し、 中央郎を流れようとする流体の 加熱に有利になっている。
また、 笫 2図のように、 種麕体 1 2内には交差する第 1小流跆 3 5と 第 2小流路 3 6が形成され、 周辺と中央との拡散が行われ、 加えて第 3 小通路を形成する孔 3 7の存在によって、 第 1小流路 3 5と第 2小流路 3 6間の厚み方向の拡散も行われる。 したがって、 これらの小流路 3 5 , 3 6 , 3 7によって稷騸体 1 2の全体にわたる流体のマク《的な分散 、 放散、 揮散が生じる。 加えて、 表面の微小な凹凸 3 8によってミク c 的な拡散、 放散、 揮散も生じる。 その艙果、 種暦体 1 2を通過する流体 は略均一な流れになって、 第 1金厲板 3 1及び第 2金展板 3 2と流体と の均一な接触機会が得られる。 その結果均一な熱伝達と均一な触媒反応 の両方が確保される。 なお、 積層体 1 2での流体の温度が所定になって 反応が生じる部分にだけ、 触媒粒子 1 4を着けるものでもよく、 触媒粒 子の無い積層体 1 2と触媒粒子 1 4を着けた積眉体 1 2を周方向の向き を変えて直列多段に配設するものであってもよい。
なお、 第 1図のコイル 1 3はリ ツッ線を撚り合わせたものであり、 パ イブ 1 1の外周に卷回されるか、 又はパイプ 1 1の肉厚内に卷回して埋 設される。 パイプ 1 1はコイ ル 1 3を保持し、 流体通路を区画し、 その 通路内に積層体 1 2を収納するものであるため、 耐蝕性、 耐熱性、 耐圧 性があって非磁性体の材質で形成される。 具体的には、 セラ ミ ック等の 無機質材料、 F R P (繊維強化ブラスチック) 、 フッ素樹脂等の樹脂材 料、 ステンレス等の非磁性金厲等が用いられるが、 セラ ミ ックが最も好 ましい。
つぎに、 第 1実施例にかかる電磁誘導加熱の全体の機器構成を第 4図 により説明する。 触媒反応装置は、 装置本体 1と、 2自由度 P I D温度 制御部 2と、 位相シフ ト制御郎 3と、 ゲート ドライパー 4と、 センサレ ス高カ率高周波ィンバータ部 5とからなっている。 装置本体 1の流体出 口には温度センサ 1 7が設けられ、 温度センサ 1 7は温度制御郎 2に接 続されている。
高周波イ ンバータ部 5は、 交流電源 2 1に対する整流部 2 2と、 非平 滑フィルタ 2 3と、 高周波ィ ンパータ部 2 4とからなっている。 高周波 ィンバータ部 2 4の出力電力と周波数は、 位相シフ ト制御部 3とゲート ドライバ一 4によって制御され、 商用の交流電源 2 1を効率的に高周波 電流に変換して電気工ネルギ一が有効利用される。
温度制御部 2は、 ファジ一十ォートチューユング 2自由度 P I D温度 制御器で構成され、 出力電圧制御信号を位相シフト制御郎 3に出力する 。 このように、 出力制御のための温度センサ 17がパイプ 1 1の出口に 設けられているため、 ィンパータ 5やコイ ル 13の損失を考慮した出力 の制御が可能である。
高周波ィンバータ部 24は、 4個のスィツチング素子 Q 1〜Q4を用 いたものであり、 Q 1と Q4とを直列に接続したものと、 Q 3と Q4と を直列に接統したものを並列に接統してなつている。 また、 コイ ル 13 が卷かれた非金属パイプ 11と導電性金属の積層体 12からなる加熱体 系は、 漏れィ ンダクタンスの大きいトランス回路モデルで表すことがで き、 単純な R— L回路で表示することができる。 この R— L回路に補償 コンデンサ C 1を直列に接続すると、 霪気回路定数が殆ど変化しない不 時変回路系とすることができる。 そのため、 共振コンデンサ C 1で R— L負荷系の L分を補償した同調が取りやすく、 作動周波数と共振コンデ ンサ C 1の最適設計回路が行える。 このスィ ツチング素子 Q 1〜Q 4は スィ ッチ S 1〜S 4とダイオード D 1〜D 4とを並列に接続した回路で 表され、 S I T (S t a t i c I n d u c t i o n T r a n s i s t o r) B-S I T MO S FET (Me t a l -O x i d e S e m i c o n d u c t o r FET) 、 I GBT、 MCT等の半導体パヮ 一デバイスを用いて形成される。
スィ ッチ S I, S 4が閉じると、 a点から負荷 L 1, 1を経て1)点 に至る回路に電流が流れ、 スィ ッチ S 2, S 3が閉じると、 b点から負 荷 L 1, R 1を経て a点に至る回路に電流が流れる。 すなわち、 負荷 1, R 1から見ると、 正又は逆に電流が流れたことになる。 各スィ ッチ S 1〜S 4はそれぞれ 50%弱のデューディサイクルの電圧パルスで駆 動する。 スィ ッチ S 1, S 2の電圧駆動パルスを基準相パルスとし、 ス イッチ S 3, S 4の電圧駆動パルスを制御相パルスとする。 基準相 制 御相との電圧駆動パルスの位相差 øを 0~ 1 80 ' まで連統的に変化さ せることにより出力電圧を PWM (P u 1 s e W i d t h M o d u 1 a t i o n) によって制御することができ、 理論的には出力電力を 0 から負荷回路定数とイ ンパータ劻作周波数で决まる最大出力まで連統的 に変化させることができる。
なお、 電力制御の方式として位相シフ ト PWM方式を説明したが、一 般にその外の電力制御方法として、 アクティブ PWM整流回路ゃ髙周波 トランジスタチヨ ツバによる直流電源制御 (PAM方式) 、 可変周波数 制御 (P FM方式) 、 パルス密度変調制御 (パルスサイクル制御) (P DM方式) 等がある。 要するに、 半導体パワーデバイスを交互に切り換 えるィンパータであって、 温度調整のためにある程度の電力制御が可能 であって、 高力率のィ ンパータであれば、 第 2図の積層体と組み合わせ ることができる。
バイブライ ンに直接組み込み可能な第 1実施例の装匿本体 1の具体例 が第 5図に示される。 同図において、 装置本体 1は、 主な部分として、 フラ ンジ 1 0 1, 1 0 2と、 短管 1 03, 1 04と、 パイブ 1 1と、 コ ィル 1 3と、 積暦体 1 2と、 管 1 0 5, 1 06とからなっている。 なお 、 符号 2は温度制御部であり、 符号 5はィンバータ部であり、 符号 1 7 は温度センサである。
フランジ 1 0 1, 1 0 2及び短管 1 03, 1 04の素材は、 化学ブラ ントで扱われる種々の流体に対して耐蝕性を有することが必要であると ともに、 またコイル 1 3が形成する磁束の影饗を受けにくいように、 非 磁性の SUS 3 1 6の如きオーステナイ ト系ステンレスが用いられる。 このオーステナイ ト系ステンレスは一般には非磁性であるとされるもの の、 完全な非磁性ではなく磁束の影響を多少受ける。 フランジ 1 0 1と 短管 1 0 3は溶接等で短管付きフランジに形成され、 フラ ンジ 1 0 2と 短管 1 04も溶接等で短管付きフランジに形成される。 特に流体 10 Ί の出口側に位置する短管 1 03には、 同じ S U S 31 6製のソケッ ト 1 1 1が溶接等で固定され、 温度センサ 1 7を取り付けるためのフィティ ング 1 12がねじ込めるようになつている。 そして、 押さえ金具 1 1 3 をフィティ ング 1 12に対してねじ込むと、 温度センサ 17の先端が短 管 103の中心付近に位匱する状態で固定することができる。 このソケ ッ ト 1 11の位置は、 フィティング 1 12等の温度センサの部品がフラ ンジ 101に干渉しない程度に、 フランジ 1 01に近づけて設けること が好ましい。 なお、 フランジ 101, 102及び短管 103, 104と は溶接等で取り付けるものに限らず、 短管付きフランジとして一体成形 されたものであってもよい。 また、 短管 103に取り付けられるセンサ は温度センサに限らず圧力センサ等の他のセンサであってもよい。
パイプ 11内の軸方向中央に、 積層体 12が収納され、 パイプ 11の 外周であって積層体 12が位匮する郎分に、 コイル 13が卷かれている 。 なお、 パイブ 11は製作上の制限から、 2本継ぎ以上のパイブであつ てもよい。
そして、 パイプ 1 1の両端と短管 103. 104とは直接接合するの ではなく、 管 105, 106を介して接合している。 管 1 05, 106 の素材には、 F e— N i— C 0合金のように、 高力耐熱合金が選定され る。 また、 一般にセラミ ックの熱膨張係数は小さく、 オーステナィ ト系 ステンレスの熱膨張係数は大きい。 したがって、 パイプ 11にセラ ミ ツ クを使用し、 短管 1 03, 104にオーステナイ ト系ステンレスを使用 し、 パイブ 1 1と短管 103. 1 04とを直接接合すると大きな熱応力 が発生する。 そのため、 パイプ 1 1と短管 103. 1 04の間に介在さ せる管 1 05. 1 06の熱膨張係数は、 セラ ミ ックとオーステナイ ト系 ステンレスの熱膨張係数の中閱になるものを選定する。 また、 短管 10 3 , 1 0 4と管 1 D 5 , 1 0 6との間の接合及び管 1 0 5 , 1 0 6とパ イブ 1 1との間の接合は、 銀ろうやニッケルろうを用いた融着により行 ラ o
管 1 0 6はス トレー トであるが、 管 1 0 5はコルゲート状に波うつて おり、 軸方向に伸縮可能になっている。 装置 1で流体を加熱すると、 熱 膨張によって装置本体 1のみならずパイブライ ンも軸方向に延びる。 そ のため、 パイブライ ンにフランジ接合で装置本体 1を組み込んだ場合、 装置本体 1の最も弱 t、部分に予想外の熱応力を生じさせる恐れがあるた め、 装置本体 1内に熱膨張の逃げのためのコルゲート状の管 1 0 6を設 けた。 このコルゲート状の管 1 0 6によって、 パイプラインや装置禾体 1の軸方向や軸心方向の製作上の誤差の吸収も可能である。 また、 この コルゲート状の管 1 0 6は屈曲可能でもあるため、 フランジ 1 0 1 , 1 0 2間の平行度のずれの吸収も可能である。
積層体 1 2は、 その外周面とパイプ 1 1の内周面との間に環状隙間 R sを形成するような直径 Dとされいる。 パイブ 1 1内にその軸心と積暦 体 1 2の軸心を一致させるように積層体 1 2を挿入し、 保持部材 1 2 1 で保持している。 そして、 積層体 1 2の直径 Dは、 装置本体 1で流体 1 0 7を加熱した際、 パイブ 1 1がその径方向に熱膨張する量と積層体 1 2がその径方向に熱膨張する量との熱膨張差以上の環状隙間 R sを、 積 層体 1 2とパイブ 1 1間に有するように決定されている。 また、 保持部 材 1 2 1は、 流入側 Aの短管 1 D 4に溶接等で溶着され径内方向に延び る金属製バー 1 2 2と、 この金属製バー 1 2 2の先端に積層体 1 2の軸 心と一致するように固定され非磁性体の保持棒 1 2 3とで構成されてい る。 そして、 非磁性、 耐熱性及び耐蝕性に優れたセラ ミ ッ ク等で製作さ れた保持棒 1 2 3は、 流入側 Aから流出側 Bに向かって延びており、 そ の先端で積層体 1 2をコ イ ル 1 1に対する位置に位置決めして保持して いる。 1 2 4はリング状ストッパであって、 非磁性、 耐熱性及び耐蝕性 の優れたセラミ ック等で製作されている。 このリ ング状ス ト ツパ 1 2 4 は流体 1 0 7の流出側 Bからパイプ 1 1内に嵌合され、 積層体 1 2との 間に当該積層体 1 2の軸方向の熱膨張の量と同一、 又は多少少ない隙間 V sを有して固定されている。 また、 リング状ストッバ 1 2 4は、 流出 側 Bから環状隙間 R sを径方向に横切って積層体 1 2上に位置しており 、 積層体 1 2の熱膨張でこの積層体 1 2と係合して、 環状隙間 R sを流 出側 Bから閉塞する。 なお、 拡大部分のように、 リング状ス トッパ 1 2 4に積層体 1 2の端が嵌まる嵌入部 1 2 4 aを設けておくと、 積暦体 1 2のパイブ 1 1内の位置決めがし易くなる。
そして、 装置本体 1の流入側 Aから流出側 Bに流体 1 0 7を流すと共 に、 コイル 1 3による電磁誘導でパイプ 1 1、 積層体 1 2を介して流体 1 0 7を加熱すると、 パイプ 1 1及び積層体 1 2とにその径方向の熱膨 張に差が生じるが、 パイプ 1 1と積層体 1 2間にはその熱膨張差以上の 環状隙間 R sが形成されているので、 この環状隙間 R sを狭めつつ熱膨 張差を吸収して、 積層体 1 2がパイブ 1 1に当接して押すことによる応 力の作用を防止され、 また、 積層体 1 2はその軸方向にも熱膨張するが 、 この熱膨張はリング状ストッパ 1 2 4との間に形成された隙間 V sを 熱膨張することにより吸収される。
このとき、 パイプライン 1 3 1 , 1 3 2から装置本体 1の流入側 Aに 流入した流体 1 0 7は、 積暦体 1 2内に流入して加熱されて流入側 Bに 流れると共に、 流体 1 0 7の一部は、 流入側 Aから直接的に、 又は種層 体 1 2から環状隙間 R sに流入して環状隙間 R sを通過して流入側 Bに 流れようとする。 しかし、 積層体 1 2が軸方向の熱膨張によりリング状 ス トッパ 1 2 4に係合することで環状隙間 R sの流出側 Bを閉塞して流 体 1 0 7が直接に流出側 Bに流れることを阻止するので、 環状隙間 R s 内には流入側 Aからの流体 1 D 7の流れにより流出側 Bに押すような圧 力が発生し、 環状隙間 R s内に流れ込んだ流体 1 0 7をこの圧力により 稩層体 1 2内に流れ込ませることができる。
これにより、 コイル 1 3による電磁誘導で積層体 1 2を加熱しても、 積層体 1 2の熱膨張に起因するパイプ 1 1の破損が防止できると共に、 積暦体 1 2の熱膨張を吸収するための環状隙間 R sを形成したとしても 、 積層体 1 2が熱膨張してリ ング状ス トツバ 1 2 4に係合することによ り環状隙簡 R sを流出側 Bから閉塞して、 この環状隙間 R sに流れ出す 流体 1 0 7を積層体 1 2内に流れ込ませることができるので、 流体 1 0 7を積層体 1 2で均一に加熱することが可能となる。
また、 フランジ 1 0 1 . 1 0 2に S U S 3 1 6を用いた場合、 フラン ジ 1 0 1 , 1 0 2と積層体 1 2迄の距離 L 3, L 4は、 パイプ 1 1の内 径 Dが 1 0センチメ一トルまでは D X 0 . 8倍以上であり、 パイプ 1 1 の内径 Dが 1 0センチメ一トル以上では 8センチメ一トル以上にすると 、 フランジ 1 0 1 , 1 0 2が発熱しなくなる。 また、 積圑体 1 2から管 1 0 5 , 1 0 6迄の距雜し 1 , L 2は 5センチメートル以上雜すことが 好ましい。
つぎに第 1実施例の積層体 1 2に対する周波数の影饕、 積暦体 1 2を 構成する薄板部材の厚みの影響、 積園体 1 2の伝熱面積の影響、 積躧体 1 2の伝熱面積の集積度の影饗などを調べた結果を以下に説明する。 第 6図は板厚と熱効率の関係を示す。 なお、 直径 1 0 c m又は 5 c m の積眉体を用いて 2 0〜 4 0 K H zの範囲で加熱実験を行う隙して、 金 属板の厚みを 5 0 ミク σ ン前後で変更し、 全体の熱効率を測定した。 金 厲板の材質は S U S 4 4 7 J 1であった。 図によると、 3 0ミ クロンを 越えると、 熱効率の上昇率が急速に低下し、 3 0ミ クロン以上では 9 0 %以上の略一定の熱効率になっている。 また、 3 0 ミク oン以下での熱 効率の低下割合は金厲板の厚みが薄い程大であることが確認された。 第 7図は周波数と熱効率の関係を示す。 なお、 直径 1 0 c m、 板の厚 み 5 0ミクロンで山形の高さは 3 mmの積層体を用いて、 周波数を変更 して全体の熱効率を測定した。 金属板の材質は S U S 4 4 7 J 1であつ た。 図によると、 周波数が低い領域では、 徐々に熱効率が低下し、 周波 数が高い領域では、 急速に熱効率が低下している。 熱効率を 9 0%前後 と高く維持するためには、 2 0~ 7 O KH zの範囲がよいことが判る。 ただし、 熱効率 7 0%以上という実用的に利用可能な範囲としては、 1 5〜1 5 O KH zの範囲である。
第 8図は山髙と熱効率の関係を示す。 なお、 直径 1 0 c m、 金属板の 厚み 5 0ミク ンで種々の山髙の波にした積層体を用いて、 周波数 2 0 〜 3 0 KH 2の範囲で全体の熱効率を測定した。 また、 この場合の山高 と伝熱面積の関係を第 9図に示す。 同図の A線は第 2金属板を有したも のであるが、 同図の B線は第 2金厲板が省かれたものである。 第 8図か ら、' 熱効率 7 0%以上の実用的に利用可能なものは山髙 1 1 mmであり 、 第 9図の A線から 1立方センチメ一トル当たりの伝熱面積は 2. 5平 方センチメ一トル以上である。 熱効率を 9 0%前後とするためには、 山 高が 5mmであり、 1立方センチメ一トル当たりの伝熱面積は 5平方セ ンチメ ー ト ル以上が好ましい。
第 1 0図は山高と水膜厚との関係を示す。 直径 1 0 c m、 板の厚み 5 0ミクロンで種々の山高の波にした積層体の平均の水膜厚を調べたもの である。 同図の A線は第 2金属板を有したものであるが、 同図の B線は 第 2金属板が省かれたものである。 熱効率が 7 0%以上に対応する水膜 厚は 4mm (積層体の伝熱面積 1平方センチメ一トル当たりで加熱すぺ き流体量の 0. 4立方センチメ ー トルに相当) 以下にする。 しかし、 迅 速加熱と高い応答性を確保するためには、 経験的に水膜厚は 1 mm (積 層体の伝熱面積 1平方センチメ一トル当たりで加熱すべき流体量の 0 . 1立方センチメ一トルに相当) 以下にすることが好ましい。
つぎに、 第 1 1図により、 本発明の第 2実施例を説明する。 上述した 第 1実施例においては、 第 2図に示すような積層体 1 2の構造として、 流体の単位容積に対する比表面積を大きくすることで、 積層体と流体と の温度差を少なぐしつつ、 流体の触媒反応を促進するようにしたものを 使用した。 しかし、 流体の触媒反応においては、 流体の単位容積に対す る比表面積を上述の実施形態のように大き くすることなく、 積層体の表 面における温度を大きく して、 流体の触媒反応を促進することが好まし い場合がある。
この場合においては、 第 1 1図に示すような組立体 7 9を用いると効 果的である。 第 1 1図 (a ) は縦方向の断面図であり、 第 1 1図 (b ) は横方向の断面図である。 すなわち、 組立体 7 9は、 パイプ 1 1の軸方 向に延びる小径パイブ部材 8 0の多数を規則的に、 且つ密に束ねて溶接 又は金属ろ一付けで接合したものであり、 小径パイプ郎材 8 D内及び小 径パイプ部材 8 0間の空間を流体の流路としたものである。 この場合に 、 組立体 7 9は、 パイブ 1 1内周面に対して各小径パイプ部材 8 0の外 周を接触させながら挿入されている。 さらに、 パイプ 1 1の両端側から 流体の流れを拡散する分散部材 8 1が設けられており、 その他は第 1図 に示す装置本体 1と同一の構成を有するものである。
このように、 組立体 7 9の断面が小径パイプ部材 8 0を規則正しく組 み立てて、 これらの部材が電気的に独立することなく、 特に半径方向に 導通しやすい構造にすると、 電磁誘導による渦電流の発生が組立体 1 2 の断面の略全域にわたって生じ、 組立体の断面における発熱ムラが少な くなる。 また、 流体は、 分散郎材 8 1で均等に分散された後に、 組立体 1 2の各小径パイプ部材 8 0で区切られた小さな流路に沿って軸方向に のみ流れる。 そして、 第 2図に示される積圑体 1 2に比して、 単位容積 に対する比表面積を小さく しつつ、 流体の圧力損失が少ない割に、 表面 温度が高くされた小径パイブ郎材 8 0で区切られた小さい流路の壁に、 流体が接触する機会が得られ、 その触媒反応が促進される。 なお、 第 1 1図と同様な効果を得るために、 各小径パイプ部材 8 0に代えて、 多数 の板部材を組み立てることで、 断面が格子形状となるようにして、 流体 が通過する軸方向の小さな複数の流路を形成するようにしたものにして もよい。
このように、 金属板を密に積層した第 2図のような種閽体 1 2を用い ることなく、 第 1 1図に示すように多数の小径パイプ部材 8 0で組立体 7 9を構成すると、 周波数を 1 5 0 K H z以上 ( 1 5 0〜2 0 0 K H z ) で、 流体の 1立方センチメートル当たりの伝熱面積も 2 . 5平方セン チメ一トル以下であっても触媒反応装置として実用的に利用できる。 即 ち、 組立体の形状が変わると入力可能な周波数も変わり、 肉厚の薄いバ イブを使うと 1 5 O K H z以上でも加熱可能である。 また、 触媒金属と 反応流体の種類によっては温度差 Δ tが大きい方がよい場合もあり、 こ の場合には伝熱面積は 2 . 5平方センチメ一トル以下にする。
以上の第 1実施例及び第 2実施例は発熱反応に用いられる触媒反応装 置及び触媒反応方法に関するものであつたが、 以下に吸熱反応に用いら れる第 3実施例を説明する。 第 1 2図はこの触媒反応装置の荽部を示す 図であり、 第 1 3図は吸熱体の構造図である。
第 1 2図の触媒反応装置の装置本体 4 0は、 パイブ 4 8の中に吸熱体 4 1を収納してなる。 第 1 3図のように、 吸熱体 4 1はジグザグの山型 に折り曲げられた金属板 4 2の山 (又は谷) 4 3に溶接や金属 α—で固 着された伝熱管 4 4が配設されてなっている。 この金属板 4 2は熱伝達 率が高く流体に対する耐腐食性に優れた材質が選定される。 この金属板 4 2の表面に略均一分布となるように、 触媒粒子 4 5が塗布、 付着、 蒸 着、 圧着等で着けられている。 さらに、 金厲板 4 2の表面には孔 4 6が 開けられると共に、 梨地加工やエンボス加工のような微小な凹凸 4 7力 < 施されている。
伝熱管 4 4は冷却液を流すためのものであり、 山 (又は谷) 4 3に沿 つて屈曲状態で配設されている。 この伝熱管 4 4に所定の冷却液を流す と、 金属板 4 2の全体が略均一な吸熱体となる。 伝熱管 4 4内の冷却液 の熱勾配を少なくするために、 伝熱管 4 4の下側屈曲部分を入側へッ ド パイブに連結し、 伝熱管 4 4の上側屈曲部分を出側へッ ドパイブに連結 することもできる。
このような伝熱管 4 4付きの金属板 4 1は、 第 2図の第 2金属板 3 2 の代わりに伝熱管が配設されたとした場合の第 1金属板 3 1のように、 山又は谷間の小流路が交差するように積層されて積層体 4 1に構成され る。 そして、 第 1 2図のようにパイプ 4 8内に収納される。 同図の触媒 反応装置 4 0の下から流体を流すと、 第 1 3図の金属板 4 2の山 (又は 谷) 4 3に沿った小流路が隣り合う金属板 4 2間で交差しており、 また 隣り合う金厲板 4 2を連通させる孔 4 6があるため、 流体は積層体の厚 み方向及び幅方向に拡散を受ける。 すなわち、 金属板 4 2に略同じ条件 で接触する流体は触媒粒子で略同じ触媒反応を起こし、 その際の発熱は 伝熱管 4 4で略同じ条件で吸収される。 その結果、 触媒反応装置 4 0に 流体を通過させるだけで、 略均一な触媒反応を生起させることができる ο
つぎに、 第 1実施例乃至第 3実施例の触媒反応装置又は触媒反応方法 が適用される燃料電池システムを第 1 4図により説明する。 天然ガスを 原料とした燃料電池では、 天然ガスを水素リ ツチのガスに変換し、 リ ン 酸系燃料電池本体に水素を供袷するシステムになっている。 そのため、 天然ガスを脱硫器—改質器—変成器の順に通して所定の触媒反応を起こ させ、 水素リ ツチに改質させる。
改質器は炭化水素の水蒸気改質を利用したものの場合、 N i系又は R u系の触媒を使い、 6 5 0〜8 0 0 ' C、 1〜 1 0 K g Z c m 2 の条件 下で行われる。 この反応は吸熱反応である。
この N i系又は R u系触媒の寿命は脱硫の程度で大幅に変化するため 、 改質器の前に脱硫器が用いられる。 水添脱硫法による脫硫器の場合、 C 0— M 0系又は N i— M 0系の触媒のもとで、 3 0 0〜3 5 0 ' じの 温度で水素と反応させて、 有機硫黄化合物を硫化水素 (H 2 S ) に変え 、 酸化亜鉛に吸着させる。
また、 改質器からの水素リ ツチのガスはリ ン酸系燃料電池本体の触媒 毒となる一酸化炭素を含むため、 変成器で一酸化炭素と水蒸気を反応さ せて二酸化炭素と水素に変える。 この変成器は、 鉄一クローム系触媒を 用いて 3 5 D ~ 3 7 0 ' Cのホッ ト シフ トを行わせ、 残留する一酸化炭 素に対して、 銅一亜鉛系触媒を用いて 2 0 0〜2 3 (T Cのコールドシ フ トを行わせるものである。 このホッ トシフ トとコールドシフ トは発熱 反応である。
上述した脱硫器—改質器—変成器—燃料電池本体のプ nセスは、 加熱 下又は吸熱下の触媒反応を含むため、 通常は多管式熱交換器型の触媒反 応装置を用いてプロセスを組んでいる。 多管式熱交換器の場合、 熱媒体 を用いた間接加熱であるため、 システムが複雑で大型化し、 起動時間が 長くかかり、 負荷変動に対する追従性も悪くなる。
そこで、 前述した本発明の触媒反応装置を用いると、 第 1 4図のよう に単純なプロセスになる。 脱硫器 5 1と水蒸気発生器 5 2を並列に接続 し、 順に改質器 5 3、 第 1変成器 5 4、 第 2変成器 5 5、 燃料電池本体 5 6を直列に接続したプロセスである。 脱硫器 5 1は原料となる天然ガスを C 0 - M o系又は N i — M 0系の 触媒下で 3 0 0〜 3 5 0 ° Cまで加熱するものであるため、 この脱硫器 5 1に第 1図の電磁誘導加熱による触媒反応装置が用いられる。 水蒸気 発生器 5 2は単に水を過熱するだけであるため、 第 1図の金属板に触媒 粒子が着いていないものを用いることができる。 改質器 5 3は N i系又 は R u系の触媒下で 6 5 0〜 8 0 0 e Cまで天然ガスを過熱し、 吸熱反 応か起こるため、 この改質器 5 3に第 1図の電磁誘導加熱による触媒反 応装置が用いられる。 第 1変成器 5 4及び第 2変成器 5 5は触媒下の発 熱反応であるため、 第 1 2図の伝熱管付き触媒反応装置が用いられる。 また、 必要に応じて、 ライ ンの Α点に第 1図の金属板に触媒粒子が着い ていない単なる余熱器を付加し、 ライ ンの B点に第 1 2図の金属板に触 媒粒子が着いていない単なる熱交換器を付加することもできる。
個々の触媒反応装置は、 上述したように小型化、 起動時間の短縮化、 負荷変動に対する高い追従性を有している。 そのため、 システム全体と して顕著な小型化、 起動時間の短縮化、 負荷変動に対する髙ぃ追従性が 追求できる。
第 1 5図はメタノール改質器 5 7を用いる場合のプロセスを示す。 メ タノールを水蒸気と共に改質する場合、 通常銅系触媒が使用され、 2 0 0〜 3 0 0 e Cで 1 O K g / c m 2 以下の低圧条件下で行われる。 その ため、 第 1 5図のように、 本発明の触媒反応装置を用いると、 プロセス が単純化され、 車両電源等のように移動する場合に特に有効である。 なお、 上述した実施例の説明では、 吸熱反応又は発熱反応にかかる触 媒反応の場合を説明したが、 吸熱反応又は発熱反応に属しない大気汚染 及び環境保全の分野においても、 本発明の触媒反応装置及び触媒反応方 法が使用できる。 例えば、 排ガス中の二酸化炭素、 窒素化物、 硫黄酸化 物の除去の場合にも、 触媒金属に接触せしめてこれら除去対象物の軽減 効果を図ることがある。 この場合、 排ガスを所定温度まで上げるために 、 予熱器又は過熱器 (スーパーヒータ) が用いられる。 この予熱器又は 過熱器として、 上述した発熱型の触媒反応装置を用いることができる。 また、 逆に冷却器として、 上述した吸熱型の触媒反応装置を用いること ができる。 すなわち、 発熱又は吸熱というと発熱反応又は吸熱反応だけ を意味するものではなく、 発熱の態様には単なる予熱ゃ過熱を含み、 吸 熱の態様には単なる冷却を含む。 産業上の利用可能性
本発明の触媒反応装置又は触媒反応方法並びに触媒反応用積層体は、 燃料の改質に限らず、 化学ブラントにおいて高温下でなされる種々の反 応に適用でき、 更に吸熱反応又は発熱反応に属しない大気汚染又は環境 保全の分野等の広範囲の分野で利用できる。

Claims

請 求 の 範 囲
1 . 流体通路と、
前記流体通路の周囲に設けられ、 高周波電流が通電されるコィルと、 前記流体通路内に配設され、 導電性材料の金属板を互いに電気的に導 通可能に接合して積層した積層体と、
前記積層体内を通過する流体に略均一な拡散を生じさせるように前記 金属板間に形成された多数の規則的な小流路と、
前記金属板そのものを形成するか又は前記金属板の表面に略均一に付 けられた触媒金属とを備えてなり、
前記積層体内を拡散しながら流れる流体に、 前記積層体の発熱による 加熱と同時の触媒反応を起こさせるようにした触媒反応装置。
2 . 請求項 1の前記金属板間に形成された多数の規則的な小流路は、 互 いに交差する第 1小流路および第 2小流路と、 この交差する第 1、 第 2 小流路間を行き来可能とする第 3小流路とを含んで形成されている触媒 反応装匱。
3 . 請求項 1又は 2の前記金属板の表面に、 梨地又はエンボス等の凹凸 が施されている触媒反応装置。
4 . 請求項 1の積暦体を形成する前記金属板の厚みが 3 0 ミクロン以上 1 m m以下であり、 前記コイルに通電される高周波電流の周波数が 1 5
〜1 5 0 K H zの範囲にある触媒反応装置。
5 . 請求項 1又は 4の前記積層体の 1立方センチメ一トル当たりの伝熱 面積が、 2 . 5平方センチメ ー トル以上である触媒反応装置。
6 . 請求項 1又は 4又は 5の前記積層体の伝熱面積 1平方センチメート ル当たりで加熱すべき流体量が、 0 . 4立方センチメー トル以下である 触媒 応装匿。
7 . 流体通路内に、 導電性材料の金厲板を互いに電気的に導通可能に接 合して積層した積層体を配設し、 前記積層体内に形成された多数の規則 的な小流路を通過させることによつて流体に略均一な拡散を生じさせる 段階と、
前記流体通路の周囲に設けられたコィルに流される高周波電流によつ て、 前記小流路を形成する金属板を略均一に発熱させ、 積層体内を略均 一に拡散しながら通過する流体を略均一に加熱する段階と、
前記金厲板そのものを形成するか又は前記金属板の表面に略均一に付 けられた触媒金属に前記流体を触れさせ、 均一な加熱と同時の均一な触 媒反応を生じさせる段階とを備えてなる触媒反応方法。
8. 流体通路と、
前記流体通路の周囲に設けられ、 高周波電流が通電されるコィルと、 前記流体通路内に配設され、 前記流体通路の軸方向に流れる複数の流 路^形成するように導電性材料を互いに電気的に導通可能に接合して組 み立てられた組立体と、
前記組立体の少なく とも流体入り側に配設され、 多数の前記流路に流 体を分配する分散部材と、
前記組立体の導電性材料そのものを形成するか又は前記導電性材料の 表面に略均一に付けられた触媒金属とを備えてなり、
前記組立体の流路を流れる流体に、 前記組立体の発熱による加熱と同 時の触媒反応を起こさせるようにした触媒反応装匱。
9. 流体通路内に、 導電性材料を互いに電気的に導通可能に接合して軸 方向の複数の流路を形成する組立体を配設し、 前記組立体に至る流体を 前記流体通路の面内で分散させて、 前記流路に略均一な流れを形成する 段階と、
前記流体通路の周囲に設けられたコィルに流される高周波電流によつ て、 前記組立体を形成する導電性部材を略均一に発熱させ、 前記通路内 を通過する流体を略均一に加熱する段階と、
前記導電性部材そのものを形成するか又は前記導電性部材の表面に略 均一に付けられた触媒金属に前記流体を触れさせ、 均一な加熱と同時の 均一な触媒反応を生じさせる段階とを備えてなる触媒反応方法。
1 0 . 流体通路と、
前記流体通路内に配設された積層体と、
前記積層体内を通過する流体に略均一な拡散を生じさせるように前記 積層体を構成する金属板間に形成された多数の規則的な小流路と、 前記小流路に沿って配設され、 前記金属板を略均一に覆うように固着 された伝熱管とを備え、
前記積層体内を拡散しながら流れる流体に、 前記伝熱管の吸熱と同時 の触媒反応を起こさせるようにした触媒反応装置。
1 1 . 流体通路内に積層体を配設し、 前記積層体内に形成された多数の 規則的な小流路を通過させることによって流体に略均一な拡散を生じさ る段階と、
前記小流路に沿って配設され、 前記金属板を略均一に覆うように固着 された伝熱管によって、 積層体内を略均一に拡散しながら通過する流体 との間に略均一な伝熱を生じさせる段階と、
前記積層体を構成する金属板そのものを形成するか又は前記金属板の 表面に略均一に付けられた触媒金属に前記流体を触れさせ、 均一な伝熱 と同時の均一な触媒反応を生じさせる段階とを備えてなる触媒反応方法。
1 2 . 導電性材料の金厲板を互いに電気的に導通可能に接合して積層し た積層体と、
前記積層体内を通過する流体に略均一な拡散を生じさせるように前記 金属板間に形成された多数の規則的な小流路と、
前記金厲板そのものを形成するか又は前記金属板の表面に略均一に付 けられた触媒金属とを備えてなる触媒反応用積暦体。
PCT/JP1996/001449 1995-05-31 1996-05-29 Dispositif de reaction catalytique, procede de reaction catalytique et lamine utilise pour la reaction catalytique WO1996038224A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96919995A EP0830893A4 (en) 1995-05-31 1996-05-29 DEVICE AND METHOD FOR A CATALYTIC REACTION AND LAMINATE USED THEREFOR
AU58443/96A AU5844396A (en) 1995-05-31 1996-05-29 Catalytic reaction device, catalytic reaction method, and la minate used for catalytic reaction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7/158280 1995-05-31
JP15828095 1995-05-31
JP7349381A JPH0947664A (ja) 1995-05-31 1995-12-19 触媒反応装置
JP7/349381 1995-12-19

Publications (1)

Publication Number Publication Date
WO1996038224A1 true WO1996038224A1 (fr) 1996-12-05

Family

ID=26485453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001449 WO1996038224A1 (fr) 1995-05-31 1996-05-29 Dispositif de reaction catalytique, procede de reaction catalytique et lamine utilise pour la reaction catalytique

Country Status (6)

Country Link
EP (1) EP0830893A4 (ja)
JP (1) JPH0947664A (ja)
KR (1) KR19990022004A (ja)
CN (1) CN1185120A (ja)
AU (1) AU5844396A (ja)
WO (1) WO1996038224A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022235164A1 (en) * 2021-05-07 2022-11-10 Kuijpers Kunststoftechniek B.V. Apparatus for neutralizing acid solution

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921320C2 (de) * 1998-05-12 2002-10-17 Usui Kokusai Sangyo Kk Magnetheizgerät
DE19835864A1 (de) * 1998-08-07 2000-02-10 Michael Spaeth Vorrichtung zur Erwärmung fließfähiger Stoffe und Verfahren zu deren Herstellung
JP2001054723A (ja) * 1999-06-07 2001-02-27 Nkk Corp ハロゲン化炭化水素ガスの分解方法および分解装置
JP4073601B2 (ja) * 2000-03-21 2008-04-09 株式会社瀬田技研 電磁誘導加熱用発熱体
DE10040209A1 (de) * 2000-08-17 2002-02-28 Linde Ag Reaktor zur Durchführung einer stark wärmegetönten katalytischen Reaktion
JP2004026593A (ja) * 2002-06-26 2004-01-29 H2 Japan Kk 水素発生・貯蔵装置
KR100599712B1 (ko) * 2004-06-24 2006-07-12 삼성에스디아이 주식회사 연료 전지 시스템 및 개질기
JP4613585B2 (ja) * 2004-11-05 2011-01-19 パナソニック株式会社 誘導加熱装置
JP2007017097A (ja) * 2005-07-08 2007-01-25 Tokyo Electron Ltd 蒸気発生方法、その装置及び蒸気処理装置並びに蒸気発生用記録媒体
JP5388109B2 (ja) * 2009-04-10 2014-01-15 三井造船株式会社 誘導加熱装置、その制御方法、及びプログラム
US10450915B2 (en) 2013-09-18 2019-10-22 Advanced Technology Emission Solutions Inc. Emission control system with induction heating and methods for use therewith
US10590818B2 (en) 2016-11-24 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with frequency controlled induction heating and methods for use therewith
US10590819B2 (en) 2013-09-18 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with resonant frequency measurement and methods for use therewith
US9657622B2 (en) * 2013-09-18 2017-05-23 Advanced Technology Emission Solutions Inc. Catalytic converter system with control and methods for use therewith
US10557392B2 (en) 2013-09-18 2020-02-11 Advanced Technology Emission Solutions Inc. Emission control system with temperature measurement and methods for use therewith
DE102015216513A1 (de) * 2015-08-28 2017-03-02 Volkswagen Aktiengesellschaft Kühlsystem für eine Brennstoffzelle und Brennstoffzellensystem
CN106640292B (zh) * 2015-09-29 2020-07-14 排放方案先进技术股份有限公司 采用导向感应加热的气态排放物处理装置和方法
US20210254774A1 (en) 2018-06-26 2021-08-19 Thyssenkrupp Industrial Solutions Ag Method for providing synthesis gas by means of an additional electric heater
DE102018210409A1 (de) 2018-06-26 2020-01-02 Thyssenkrupp Ag Verfahren zur Bereitstellung von Synthesegas mit Hilfe einer zusätzlichen induktiven Heizung
CN114302764B (zh) * 2019-09-11 2023-12-26 日本碍子株式会社 蜂窝结构体及尾气净化装置
KR102193939B1 (ko) * 2019-10-31 2020-12-22 서울대학교산학협력단 에너지 및 비용 절감 촉매 반응기
EP4205843A1 (en) * 2021-12-30 2023-07-05 Nederlandse Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek TNO Inductive heating reactors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431617A (ja) * 1990-05-25 1992-02-03 Usui Internatl Ind Co Ltd 排気ガス浄化装置
JPH0444189B2 (ja) * 1984-02-24 1992-07-20 Seta Kosan Kako Kk
JPH06154623A (ja) * 1992-11-20 1994-06-03 Denki Kogyo Co Ltd 螺旋状巻回体の高周波誘導加熱装置
JPH0889794A (ja) * 1994-09-19 1996-04-09 Hitachi Ltd 充填物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275103A (ja) * 1985-05-29 1986-12-05 Toshiba Corp 改質装置
JP2889607B2 (ja) * 1989-09-09 1999-05-10 株式会社瀬田技研 電磁誘導加熱装置および電磁誘導加熱方法
JP2528621Y2 (ja) * 1990-09-08 1997-03-12 株式会社瀬田技研 水素吸蔵合金の加熱冷却システム
JPH04271846A (ja) * 1991-02-28 1992-09-28 Showa Aircraft Ind Co Ltd 排気ガス浄化装置用の触媒の担体およびその製造方法
JP3372588B2 (ja) * 1993-05-24 2003-02-04 株式会社島津製作所 自動車用発熱式触媒コンバータ
US5569455A (en) * 1992-06-10 1996-10-29 Shimadzu Corporation Exhaust gas catalytic purifier construction
JP3553627B2 (ja) * 1993-06-30 2004-08-11 株式会社瀬田技研 電磁誘導熱変換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444189B2 (ja) * 1984-02-24 1992-07-20 Seta Kosan Kako Kk
JPH0431617A (ja) * 1990-05-25 1992-02-03 Usui Internatl Ind Co Ltd 排気ガス浄化装置
JPH06154623A (ja) * 1992-11-20 1994-06-03 Denki Kogyo Co Ltd 螺旋状巻回体の高周波誘導加熱装置
JPH0889794A (ja) * 1994-09-19 1996-04-09 Hitachi Ltd 充填物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0830893A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022235164A1 (en) * 2021-05-07 2022-11-10 Kuijpers Kunststoftechniek B.V. Apparatus for neutralizing acid solution
NL2028174B1 (en) * 2021-05-07 2022-11-24 Kuijpers Kunststoftechniek B V Apparatus for neutralizing acid solution

Also Published As

Publication number Publication date
JPH0947664A (ja) 1997-02-18
CN1185120A (zh) 1998-06-17
AU5844396A (en) 1996-12-18
KR19990022004A (ko) 1999-03-25
EP0830893A1 (en) 1998-03-25
EP0830893A4 (en) 1998-10-21

Similar Documents

Publication Publication Date Title
WO1996038224A1 (fr) Dispositif de reaction catalytique, procede de reaction catalytique et lamine utilise pour la reaction catalytique
JPH08264272A (ja) 電磁誘導加熱装置
EP1320712B1 (en) Multi-purpose microchannel micro-component
KR102156350B1 (ko) 증기 개질기, 모듈 및 사용 방법
US20130186607A1 (en) Multi-Stream Microchannel Device
JP2009513327A (ja) マイクロ構造化された反応器を備える反応器システム、ならびにこのような反応器で化学反応を実施する方法
JP2018087134A (ja) 液体改質可能燃料を改質する方法、及び液体改質可能燃料をスチーム改質する方法
WO2005080259A1 (en) Integrated fuel processor for distributed hydrogen production
US20090253005A1 (en) Reformer for a fuel cell
JP2005501711A (ja) 流体処理デバイス用モジュラーマイクロリアクタアーキテクチャおよび方法
KR20040058180A (ko) 낮은 전원 범위에서 기상 탄화수소로부터 수소를 생성하기위한 고효율, 소형 개질 장치
JP5147804B2 (ja) 蒸発器及び燃料改質器
EP2522624A1 (en) Fuel treatment device
WO1998029685A1 (fr) Generateur de vapeur surchauffee
EP1860064A1 (en) Fuel modification apparatus
JP2000103601A (ja) メタノール改質方法及びその装置
AU2021344433A1 (en) Method and apparatus for inductively heating micro- and meso-channel process systems
JP3919876B2 (ja) 蒸気発生加熱装置
AU2022348508A1 (en) Process intensive reactors with reduced thermal stress
KR102281104B1 (ko) 금속촉매와 세라믹 펠렛촉매의 하이브리드식 수소 생성기 및 이를 이용한 수소 생성 방법
JP2005327738A (ja) 電磁誘導加熱装置
JPH08339883A (ja) 電磁誘導加熱装置の熱回収装置及び熱回収方法
US20240042412A1 (en) Electrically driven chemical reactor using a modular catalytic heating system
JP4617557B2 (ja) 触媒反応器
JPH08326997A (ja) パイプライン用電磁誘導加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96194144.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR CA CN CZ EE FI GE HU IS KG KR LK LR LT LV MD MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970708479

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996919995

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996919995

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1998 973006

Country of ref document: US

Date of ref document: 19980327

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019970708479

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970708479

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996919995

Country of ref document: EP