WO1996030556A1 - Procede et equipement de cementation, et produits de cette operation - Google Patents

Procede et equipement de cementation, et produits de cette operation Download PDF

Info

Publication number
WO1996030556A1
WO1996030556A1 PCT/JP1996/000807 JP9600807W WO9630556A1 WO 1996030556 A1 WO1996030556 A1 WO 1996030556A1 JP 9600807 W JP9600807 W JP 9600807W WO 9630556 A1 WO9630556 A1 WO 9630556A1
Authority
WO
WIPO (PCT)
Prior art keywords
carburizing
gas
vacuum
heating chamber
depth
Prior art date
Application number
PCT/JP1996/000807
Other languages
English (en)
French (fr)
Inventor
Ken Kubota
Original Assignee
Jh Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13477982&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1996030556(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jh Corporation filed Critical Jh Corporation
Priority to CA002215897A priority Critical patent/CA2215897C/en
Priority to DE69613822T priority patent/DE69613822T3/de
Priority to EP96907675A priority patent/EP0818555B2/en
Priority to AT96907675T priority patent/ATE203063T1/de
Priority to KR1019970706781A priority patent/KR100277156B1/ko
Publication of WO1996030556A1 publication Critical patent/WO1996030556A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Definitions

  • the present invention relates to a vacuum carburizing method, an apparatus used for carrying out the method, and a steel product carburized by the method. Background technology
  • gas carburizing which is most widely used as a method for surface modification of steel
  • gas carburizing involves the formation of an abnormal surface layer and an inadequate furnace structure for high-temperature carburizing.
  • problems such as soot generation in high-concentration carburization and the large number and complexity of control items for carburizing conditions.
  • the vacuum carburizing method using a vacuum carburizing furnace was developed to overcome these problems. .
  • a gaseous chain-type saturated hydrocarbon was used as a carburizing gas. That is, the gaseous chain-type saturated hydrocarbon is a methane-based gas, and methane gas (CH 4 ), propane gas (C 3 H 8 ), butane gas (C 4 H 10 ), and the like are used.
  • the heating gas is supplied directly to the heating chamber of a vacuum carburizing furnace in which a workpiece made of steel is heated to about 900 to 100, and is thermally decomposed in the heating chamber. Carbon was made to penetrate the surface of the steel material and then carburize and diffuse from the surface.
  • the heating chamber containing the peak is kept in a vacuum state, and the carburizing gas is supplied into the heating chamber and agitated or pulsed. Due to the fluctuations in furnace pressure caused by this, a sufficient supply of carburizing gas to the surface of the workpiece was attempted.
  • hydrocarbon is generally used as a carburizing gas because of its strong carburizing property.
  • gas such as methane-based gas as described above is used. Chain saturated hydrocarbons were used.
  • methane-based gas causes carburizing of steel It is stable up to the temperature range, but the stability decreases as the molecular weight decreases, and although soot is generated, it is recognized that the carburizing power increases.
  • gaseous chain type such as acetylene-based gas
  • Unsaturated hydrocarbons are more unstable than methane-based gases and are more thermally decomposed than carburization reactions, so even when used as a carburizing gas, they simply produce soot. This was because it was recognized that it was not suitable as a carburizing gas at all (see Mamoru Kawakami, “Heat Treatment Technology for Metal Surface Hardening”, bookstore published on October 25, 1941, Showa 46).
  • the gas for carburizing in vacuum carburizing includes methane gas (C H4), propane gas (C 3 H 8 ), butane gas H, I) Only acetylene-based gas, which is a gaseous chain unsaturated hydrocarbon, was not considered.
  • [C] is activated carbon that contributes to carburization.
  • activated carbon decomposed in the furnace space other than the surface of the workpiece becomes soot as it is, which causes soot generation in vacuum carburization.
  • This variation in carburization depth is due to the fact that the carburizing gas used has a larger number of hydrogen atoms than the number of carbon atoms, and if it is decomposed to generate atomic carbon in the heating chamber, hydrogen as a decomposition product gas It is presumed that the number of molecules of the gas etc. increases, and the mean free path of the molecules of the carburizing gas becomes smaller.
  • the present invention has been made in view of the above-described problems, and suppresses the generation of soot to reduce the inner wall surface of the deep recess. It is an object of the present invention to provide a vacuum carburizing method and apparatus, and a carburized raw material product, which can uniformly carburize each part over the entire work including the workpiece and use less gas and heat. is there. Disclosure of the invention
  • the vacuum carburizing method according to the present invention is a method in which a work made of steel material is vacuum-heated in a heating chamber of a vacuum carburizing furnace, and a carburizing gas is supplied into the heating chamber to perform a carburizing treatment.
  • gaseous chain unsaturated hydrocarbons are used as the carburizing gas, and that the carburizing process is performed in a heating chamber under a vacuum of 1 kPa or less.
  • gaseous chain unsaturated hydrocarbon it is desirable to use an acetylene-based gas, particularly an acetylene gas.
  • the vacuum carburizing method according to the present invention can be applied not only to carburizing treatment but also to carbonitriding treatment in which nitrogen (N) is simultaneously infiltrated into the surface of steel at the same time as carbon (C).
  • nitrogen (N) is simultaneously infiltrated into the surface of steel at the same time as carbon (C).
  • ammonia gas (NH 3 ) may be added as a gaseous nitrogen source in addition to acetylene gas as a carburizing gas.
  • a vacuum carburizing apparatus includes a vacuum carburizing furnace having a heating chamber for heating a workpiece made of steel, a carburizing gas source for supplying an acetylene-based gas into the heating chamber, and a vacuum for evacuating the heating chamber.
  • An exhaust source is provided, and vacuum carburizing is performed in a vacuum state of 1 kPa or less.
  • the carburized steel product according to the present invention is provided with a closed end hole having an inner diameter of D, and a region of the inner wall surface of the closed end hole having substantially the same carburizing depth is defined from the opening end of the closed end hole. It is formed over the range of the depth L, wherein the value of the depth L is in the range of 12 to 50 in L / D.
  • a chemically unstable and active gas is preferable as a carburizing gas than a stable main gas.
  • the furnace pressure is set to 1 kPa or less, which is extremely lower than the conventional vacuum carburizing method, and the Decomposition reaction takes place, but a vacuum carburizing method is realized that generates almost no soot in the furnace space.
  • the gas pressure is increased to some extent (1) in order to quickly move the compound gas that has been decomposed on the surface of the workpiece and supply of carbon has been completed, and to uniformly distribute the new supply gas. 5 to 70 kPa) and agitate the inside of the furnace with a fan or the like, or use a pulse method to reduce the amount of compound gas by reducing the pressure, and supply a new high-pressure gas by pulse injection to work the workpiece. The supply of carbon on the surface is secured. This, of course, also contributes to soot generation by providing much more carburizing gas than is needed for carburizing.
  • a gaseous chain unsaturated hydrocarbon is used as a carburizing gas
  • the gaseous chain unsaturated hydrocarbon ethylene gas (C 2 H 4) or acetylene gas (C 2 H 2) is different from the methane-based gas which is conventionally used, fewer hydrogen atoms than the number of carbon atoms.
  • the number of molecules of hydrogen gas, etc., which is the product gas of decomposition, does not increase, so that when carburizing gas comes into contact with the workpiece Interference of hydrogen gas molecules and the like can be reduced.
  • the pressure during carburizing may be low, and the mean free path of carburizing gas molecules As the mean free path grows, the carburizing gas molecules easily penetrate into the inner wall surface of the deep concave part of the workpiece, and the carburizing gas molecules are chemically active. Since it is an unsaturated hydrocarbon that can be easily decomposed even without it, it can easily react and decompose on the work surface in a short time and supply the atomic carbon to the work surface. Can be done.
  • the uniformity of the carburizing becomes more remarkable as the furnace pressure is lowered.
  • a workpiece provided with a closed end hole having an inner diameter of D is subjected to carburizing treatment, and a region of the inner wall surface of the closed end hole having substantially the same carburizing depth is deepened from the open end of the closed end hole.
  • the value of the above-mentioned depth L reached 36 in LZD ratio, assuming that it was formed over the range of L . If the pressure inside the furnace is further reduced, the value of the depth L from the opening end of the region where the total carburization depth is almost equal can be reduced to about 50 in LZD ratio.
  • Such values cannot be achieved by vacuum carburization or plasma carburization, as well as conventional gas carburization.
  • the suction means for maintaining the pressure in the heating chamber at a low pressure after being supplied into the heating chamber since the carburizing process is performed in the heating chamber at an extremely low pressure of 1 kPa or less as compared with the conventional vacuum carburizing, the suction means for maintaining the pressure in the heating chamber at a low pressure after being supplied into the heating chamber.
  • the time until the gas is sucked, that is, the residence time of the carburizing gas in the heating chamber is shortened. If the residence time is short, the carburizing gas that has not been decomposed and carburized can be removed from the heating chamber before it is decomposed in the heating chamber to generate soot, and soot generation in the heating chamber Can be prevented.
  • the required amount of the carburizing gas can be contact-decomposed and carburized on the work surface in a short time.
  • soot generation because carburizing gas that is not decomposed and easily generates soot can be immediately discharged to the outside of the heating chamber together with decomposed gas (hydrogen gas, etc.)
  • decomposed gas hydrogen gas, etc.
  • the decomposition product gas can be discharged outside the heating chamber in a short time, it can further contribute to extending the mean free path of the carburizing gas molecules, thereby contributing to uniform carburization of each part of the workpiece.
  • the use of carburizing gas is improved.
  • the amount can be kept to a minimum.
  • a gaseous chain-type unsaturated hydrocarbon which is chemically active, easily reacting and decomposing is used as a carburizing gas, so that it is different from a conventional methane-based gas. Even if the carburizing gas is not supplied in excess of the required amount, it can be easily reacted, decomposed and carburized on the work surface.
  • the amount of carburizing gas supplied is the total amount of carbon required for carburizing the work surface.
  • the number of carbon atoms can be less than twice the number of carbon atoms.
  • vacuum carburizing is performed at a low pressure of 1 kPa or less, and since the heating chamber itself exhibits an adiabatic effect to the outside of the heating chamber, heat radiation is small, and the inside of the heating chamber is not heated. The amount of heat for maintaining the temperature can be reduced.
  • the heating chamber since the heating chamber has a low pressure of 1 kPa or less, and the heating chamber itself exhibits an insulating effect to the outside of the heating chamber, the heating chamber itself is water-cooled or heat-insulated. This reduces the need for a special heat insulation structure by using only a structure that maintains the outer wall of the vacuum vessel including the heating chamber at a low pressure, and reduces the number of man-hours and manufacturing costs of the vacuum carburizing furnace. It can also contribute to reduction.
  • the number of constituent hydrogen atoms is smaller than that of ethylene gas, and the activity is lower. , Easy to carburize and use And the processing cost can be reduced.
  • FIG. 1 is a sectional view showing an embodiment of a vacuum carburizing apparatus according to the present invention
  • FIG. 2 is a view showing an operation pattern of a vacuum carburizing furnace according to the present invention
  • FIG. 3 is a vacuum carburizing method according to the present invention.
  • FIG. 4 is a cross-sectional view of a sample carburized by the method shown in FIG. 4, and FIG. 4 is a graph showing a relationship between a carburizing depth with respect to a furnace pressure and a soot generation state when the vacuum carburizing method according to the present invention is performed.
  • FIG. 1 is a sectional view showing an embodiment of a vacuum carburizing apparatus according to the present invention
  • FIG. 2 is a view showing an operation pattern of a vacuum carburizing furnace according to the present invention
  • FIG. 3 is a vacuum carburizing method according to the present invention.
  • FIG. 4 is a cross-sectional view of a sample carburized by the method shown in FIG. 4, and FIG. 4 is a
  • FIG. 2 is a cross-sectional view showing a total carburized layer in a sample on which the vacuum carburizing method according to the present invention is performed, and a graph showing the uniformity of carburized depth.
  • FIG. 1 is a view showing an embodiment of a vacuum carburizing apparatus according to the present invention.
  • a vacuum carburizing furnace 1 includes a heating chamber 2 covered with a vacuum vessel 4 and a cooling chamber 3 adjacent to the heating chamber 2. I have.
  • the heating chamber 2 is composed of a heating element 2a and a heat insulating material 2b that are chemically and strongly stable in a high-temperature environment in vacuum and in the air.
  • a heating element 2a for example, a recrystallization-processed silicon carbide heating element or an element having an alumina spray coating layer formed on the surface thereof can be used.
  • a heat insulating material 2b a high-purity ceramic fiber can be used.
  • the cooling chamber 3 has an outer wall formed by a part of the vacuum vessel 4 and includes an oil tank 3a.
  • the heating chamber 2 and the cooling chamber 3 are both connected to an evacuation source V, and the heating chamber 2 is connected to a carburizing gas source C capable of dissolving acetylene gas in acetylene and supplying acetylene gas.
  • the cooling chamber 3 is connected to an inert gas source G such as nitrogen gas that can pressurize the inside of the cooling chamber 3 to an atmospheric pressure or higher.
  • a loading door 5 is provided at the upstream end of the heating chamber 2, an intermediate door 6 is provided at the downstream end, and a cooling door 3 is provided at the downstream end.
  • a carry-out door 7 is provided at the downstream end, and an internal transfer device 8 for transferring the work M from upstream to downstream from the heating chamber 2 to the cooling chamber 3 is provided.
  • the cooling room 3 is provided with an elevator 9 for moving the work M into and out of the oil tank 3a.
  • the heating chamber 2 is provided with a heating section whose front and rear ends are closed by an internal carry-in door 5a and an internal intermediate door 6a.
  • the loading doors 5 and 5a are opened, the first work Ml is loaded into the heating chamber 2, and the loading doors 5 and 5a are immediately closed.
  • the heating chamber 2 is evacuated to 0.05 kPa with the vacuum exhaust source V, the first peak Ml is vacuum-heated to a predetermined temperature (900 ° C). Cetylene gas is supplied into the heating chamber 2 (at this time, the inside of the heating chamber 2 becomes 0.1 kPa), and carburizing treatment is performed. Then, the supply of the acetylene gas is stopped, the inside of the heating chamber 2 is again evacuated to a vacuum of 0.05 kPa, and diffusion treatment is performed. During this time, the cooling chamber 3 is evacuated.
  • the intermediate doors 6, 6a are opened, the first work Ml is transferred to the elevator 9 of the cooling chamber 3 by the internal transfer device 8, and the intermediate doors 6, 6a are immediately closed.
  • the first work M1 is quenched by lowering the elevator 9 while pressurizing the cooling chamber 3 to the atmospheric pressure or more by the supply of the inert gas from the inert gas source G.
  • air is introduced into the high-temperature heating chamber 2 to make it into an atmospheric state, and the loading doors 5 and 5a are opened, and the second work M2 is loaded into the heating chamber 2 and immediately the loading doors 5 and 5 are opened. Close a.
  • the reason why the cooling chamber 3 is pressurized to a pressure higher than the atmospheric pressure is to prevent the air from entering the cooling chamber 3 when introducing the air into the heating chamber 2.
  • Step 5 The lifting table 9 is raised, the discharge door 7 is opened, the first work Ml is carried out of the furnace 1, the discharge door 7 is immediately closed, and the cooling chamber 3 is vacuum-cooled. Meanwhile, the second work M 2 is handled in the same manner as the second step.
  • the outer diameter is 20 mm
  • the length is 30 mm
  • the inner diameter is 6 mm
  • the depth is 28 nun.
  • a work sample 10 having a closed end hole 11 with an inner diameter of 4 mm and a depth of 28 mm with a closed end hole 12 of 4 mm in width 400 mm, length 600 mm and height 5 O 300 jigs are placed side by side on a jig of 6 mm, and the jigs are stacked in 6 stages and placed in the heating chamber 2.
  • a carburization temperature of 900 ° C
  • carburization time is 40 minutes
  • diffusion time is 70 minutes
  • quenching quenching is performed.
  • the effective carburization depth t 2 at the bottom of the small-diameter closed end hole 12 was about 0.49 mni, while the diameter was about 0.51 mm.
  • this demonstrates that according to the vacuum carburizing method of the present embodiment, carburizing treatment can be performed uniformly on each part with a variation of about 0.02 mm.
  • the carburizing time was about doubled, and the carburizing time was 10 times or more in the heating chamber.
  • the effective carburizing depth at the outer peripheral surface of the work sample 10 is 0.51 mm and the effective carburizing depth at the bottom of the 4 nun ⁇ hole 12 is 0.3 It was 0 mm, and uneven carburization occurred.
  • the carburizing treatment is repeated 5 to 20 times, a large amount of soot accumulates in the heating chamber 2 even if the burnout is performed, and cleaning is required.
  • the lower the pressure in the heating chamber the more the effect of the method of the present invention can be increased, and the heat insulation effect of the heating chamber itself can be more effectively exhibited, so that water cooling, heat retention, etc. become unnecessary.
  • Figure 4 shows a sample (SCM 4 15) of 20 mm outer diameter and 3 Omm length with a closed end hole of inner diameter 6 and depth 27 mm at a temperature of 930 ° C.
  • Holding time, carburizing time, and diffusion time are 30 minutes, 30 minutes, and 45 minutes, respectively, and the carburizing depth with respect to the furnace pressure when carburizing treatment is performed using acetylene gas.
  • 6 is a graph showing the relationship of the soot and the state of soot generation.
  • a broken line A is a graph showing a change in the carburized depth at the bottom of the closed end hole
  • a broken line B is a graph showing the change in the carburized depth on the surface of the work sample.
  • Fig. 5 shows an inner diameter of 3.4 mm. An outer diameter of 20 mm with a closed end hole of 17.5 mm depth. A sample (SCM4 15) with a length of 82 IDID was carburized according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Furnace Details (AREA)

Description

明 細 害 真空浸炭方法および装置ならびに浸炭処理製品 技 術 分 野
本発明は、 真空浸炭方法およびこの方法の実施に用いられる装置ならびにこの 方法により浸炭処理された鋼材製品に関するものである。 背 景 技 術
鉄鋼の表面改質方法として最も広く利用されている浸炭処理においては、 ガス 雰囲気を使用したガス浸炭が一般的であるが、 ガス浸炭は、 表面異常層の発生、 高温浸炭への炉構造の不備、 高濃度浸炭での煤発生、 浸炭条件の管理項目の多さ と繁雑さ等の問題点があり、 これら問題点を克服するために開発されたのが真空 浸炭炉を用いる真空浸炭方法である。
従来の真空浸炭方法では、 浸炭用ガスとして、 ガス状の鎖式飽和炭化水素が使 用されていた。 すなわち、 ガス状の鎖式飽和炭化水素は、 メタン系ガスであり、 メタンガス (C H 4 ) 、 プロパンガス (C 3 H 8 ) 、 ブタンガス (C 4 H 1 0) 等 が使用されており、 これら浸炭用ガスを、 9 0 0〜 1 0 0 0 程度に鋼材よりな るワークを加熱して配した真空浸炭炉の加熱室内に直接供給して、 加熱室内で熱 分解させ、 その際に発生する活性炭素を鋼材の表面に侵入させ、 その表面から浸 炭 ·拡散させるようにしていた。
この場合、 ワークの全面に十分に浸炭用ガスが行き渡る必要があるため、 ヮー クを収容した加熱室を真空状態にしておき、 上記浸炭用ガスを加熱室内に供給す るとともに、 攪拌もしくはパルス投入による炉圧変動により、 ワークの表面への 浸炭用ガスの充分な供給を図っていた。
ところで、 従来の真空浸炭方法においては、 一般的に浸炭性が強いとして、 炭 化水素を浸炭用ガスとして使用する認識があり、 この炭化水素の中でも、 上述の ようなメタン系ガスのようなガス状の鎖式飽和炭化水素が使用されていた。 その理由は、 当業者間では、 メタン系ガスは、 鋼材を浸炭させる 1 1 0 0 °C程 度までの温度範囲では安定であるが、 分子量が增すと安定性が減少し、 煤の発生 があるものの、 浸炭力が強くなると認識され、 一方、 アセチレン系ガスのような ガス状の鎖式不飽和炭化水素は、 メ タン系ガスより も不安定であり、 浸炭反応よ りも熱分解が盛んに行なわれるから、 浸炭用ガスに使用しても単に煤を発生させ るだけであって、 浸炭用ガスには全く適さないと認識されていたからである (河 上 護著 「金属表面硬化熱処理技術」 镇書店昭和 4 6年 1 0月 2 5日発行第 1 3 9頁参照) 。
そのため、 実際には、 真空浸炭での浸炭用ガスとしては、 ガス状の鎖式飽和炭 化水素であるメタン系ガスの、 メタンガス (C H4 ) 、 プロパンガス (C3 H8 ) 、 ブタンガス H ,„) 等しか使用されず、 ガス状の鎖式不飽和炭化水素であ るァセチレン系ガスは見向きもされなかった。
しかしながら、 従来の真空浸炭方法によれば、 ガス浸炭での品質上での問題点 は解決されたものの、 依然として下記のような問題点を抱えている。
すなわち、
1. 煤の発生が多く、 メ ンテナンス作業が繁雑で汚い。
2. 炉の加熱室内へのワークの挿入量を減らしてガス量を増さないと均一浸炭 が困難である。
3. ワークの小径の深い孔ゃ狭い隙間への浸炭が不充分である。
4. 設備費が高く、 特殊用途への使用に限定される。
5. ガス浸炭に比べて生産性が低く、 処理コス トが高い等である。
下式は従来用いられている浸炭用ガスの熱分解のメカニズムを示すものである。
C 3 H8 → CC] + C 2 H6 +H2
C2 H → 〔C〕 + C H4 +H2
C H, → 〔 C〕 + 2 H 上式において 〔C〕 は浸炭に寄与する活性炭素である。 ただし、 ワークの表面 以外の炉内空間で分解した活性炭素はそのまま煤になり、 これが真空浸炭におけ る煤の発生の原因となっている。
この煤の発生量をより少なくする方策としては、 a . 炉内での浸炭用ガスの量をできるだけ稀薄にするために、 供給ガスを不活 性ガスで希釈して (ガス圧は従来通り) 使用する。
b . 異常層が発生しない程度に浸炭用ガスに酸素源 (例えばアルコール) を混 入して、 活性炭素の一部を C 0として浸炭に利用するとともに、 残余の C Oガス を炉外に排出する。
c 煤対策以外の効果もある力 、 ワーク表面付近にプラズマを発生させて、 稀 薄浸炭ガスをイオン化してワーク表面に引き付けて有効に浸炭に利用し、 他の炉 空間での分解発生煤を少なくする (プラズマ浸炭) 等がある。
これらの対策によれば、 いずれも煤の発生量を低減することができるが、 その ために、 設備費や処理コス卜が上昇したり、 本来の真空浸炭のメ リ ッ 卜が損なわ れたりする問題がある。
また、 従来のメタン系ガスを浸炭用ガスとして使用する真空浸炭では、 積載ヮ 一クの間隔が不充分であつたり、 ワークに小径の深い孔ゃ狭い隙間がある場合に は、 ワーク全体に亘つて均一に浸炭しょうとしても、 孔の深い内部や狭い隙間ハ 勿論、 隣接ワークが近すぎる場合においては充分な浸炭深さが得られず、 浸炭深 さのバラツキが避けられなかった。 例えば、 炉内の加熱室にガス循環装置、 ガス 撹拌装置、 ガス高速噴射装置等を設置して浸炭処理を行なっても、 ワークに内径 4 mmで深さ 2 8 mmの孔があけられている場合、 ワーク外周面での有効浸炭深さが 0 . 5 l i程度であるのに対し、 孔の底部の有効浸炭深さは 0 . 3 0 mm程度とな つていた。
このような浸炭深さのバラツキは、 使用する浸炭用ガスが、 炭素原子数に比べ て水素原子の数が多く、 加熱室内で原子状炭素を発生させるように分解すると、 分解生成ガスとしての水素ガス等の分子数が多くなって、 浸炭用ガスの分子の平 均自由行程 (mean free path) をより小さくするためと推定される。
そして、 小径の孔の内壁面も所定の浸炭深さを確保できるように浸炭処理を行 なうためには、 孔の中に炭素を供給したり、 必要以上に浸炭用ガスを供給し、 か つそのガスを流動攪拌させたり して浸炭処理を行なうこととなって、 煤の発生量 が増大する結果を招いていた。
本発明は、 上述のような問題に鑑み、 煤の発生を抑えて、 深い凹部の内壁面を 含めてワーク全体に亘つて各部を均一に浸炭することできるとともに、 使用する ガス量や熱量も少なくて済む真空浸炭方法および装置ならびに浸炭処理された鐧 材製品を提供することを目的とするものである。 発 明 の 開 示
本発明による真空浸炭方法は、 鋼材よりなるワークを、 真空浸炭炉の加熱室内 で真空加熱するとともに、 この加熱室内に浸炭用ガスを供給して浸炭処理を行な う方法であつて、
浸炭用ガスとしてガス状の鎖式不飽和炭化水素を使用するとともに、 加熱室内 を 1 kPa 以下の真空状態として浸炭処理を行なうことを特徴とするものである。 上記ガス状の鎖式不飽和炭化水素としては、 アセチレン系ガス、 特にァセチレ ンガスを使用することが望ましい。
さらに本発明による真空浸炭方法は、 浸炭処理のみでなく、 鋼材の表面に炭素 ( C ) と同時に窒素 (N ) を浸入させる浸炭窒化処理にも適用することができる。 その場合は、 浸炭用ガスとしてのアセチレンガスに加えて、 ガス状の窒素源とし て例えばアンモニアガス (N H 3 ) を添加すればよい。
また、 本発明による真空浸炭装置は、 鋼材よりなるワークを加熱する加熱室を 備えた真空浸炭炉と、 上記加熱室内にァセチレン系ガスを供給する浸炭用ガス源 と、 加熱室内を真空排気する真空排気源とを備え、 l kPa 以下の真空状態で真空 浸炭を行なうことを特徴とするものである。
さらに、 本発明による浸炭処理された鋼材製品は、 内径を Dとする閉端孔を備 え、 この閉端孔の内壁面における浸炭深さのほぼ等しい領域が、 該閉端孔の開口 端から深さ Lの範囲に亘つて形成されているものであって、 上記深さ Lの値が、 L / Dで 1 2乃至 5 0の範囲内にあることを特徴とするものである。
煤のない真空浸炭 (減圧ガス浸炭) を実現するためには、 浸炭に直接寄与する 炭素以外は炉中で分解させないようにすることが望ましいから、 炉内に供給する 炭素源には、 できるだけワークの表面だけで分解または反応し、 他の炉材ゃ炉空 間では分解または反応しないものが望ましい。
この条件からみて、 従来の真空浸炭方法において浸炭用ガスとして使用されて いた安定なメ夕ン系ガスよりも化学的には不安定で活性なガスのほうが浸炭用ガ スとして望ましい。
そこで、 本発明による真空浸炭方法では、 鋼材を浸炭処理する 1 1 0 o °c程度 までの温度範囲ではメタンガス、 プロパンガス等の鎖式飽和炭化水素ガスよりも 化学的に活性で、 反応および分解し易い鎖式不飽和炭化水素ガスを浸炭用ガスと して使用する。
ただし、 これらの不安定なガスは、 炉中の滞在時間が限界を超えると、 従来か ら使用されている飽和炭化水素ガスよりも容易に熱分解して煤を発生するので、 炉内の滞在時間を厳密に制限し、 ワーク表面で反応分解するには充分であるが熱 分解するには不充分な時間の範囲で炉外に排出する必要がある。
そのため、 本発明による真空浸炭方法では、 浸炭用ガスの炉内滞在時間を短く するために、 炉内圧力を従来の真空浸炭方法よりも極端に低い 1 k P a以下とし て、 ワークの表面での分解反応は起きるが、 炉内空間では殆ど煤を発生しない真 空浸炭方法を実現している。
また、 従来の真空浸炭方法では、 ワークの表面で分解して炭素の供給を終了し た複生ガスを速やかに移動させて新しい供給ガスを均一に分布させるために、 ガ ス圧力をある程度高く (1 5〜 7 0 kPa ) して、 炉内をファン等で擾拌するか、 またはガス投入をパルス方式として複生ガスを減圧によって少なく し、 パルス投 入で新しい高い圧力のガスを供給して、 ワーク表面の供給炭素量を確保している。 当然ながら、 このことがまた、 浸炭に必要な量よりもはるかに多量の浸炭用ガス を供給することとなつて、 煤の発生をより助長することになつている。
これに対して、 本発明による真空浸炭方法では、 ガス状の鎖式不飽和炭化水素 を浸炭用ガスとして使用するものであり、 このガス状の鎖式不飽和炭化水素であ るエチレンガス (C 2 H 4 ) やアセチレンガス (C 2 H 2 ) は、 従来使用されて いたメタン系ガスと相違し、 炭素原子数に比べて水素原子の数が少ない。
そのため、 加熱室内で浸炭用ガスが原子状炭素を発生させるように分解しても、 分解生成ガスである水素ガス等の分子数が多くならないため、 浸炭ガス分子とし てワークに接触しょうとする際の水素ガス分子等の妨害を少なくすることができ る。 その結果、 浸炭処理時の圧力が低いこともあり、 浸炭ガス分子の平均自由行 程 (mean free path) が伸び、 ワークの深い凹部の内壁周面にも、 浸炭ガス分子 が侵入し易くなり、 さらに浸炭ガス分子が化学的に活性で、 高温にしなくても、 また時間をかけなくても分解し易い不飽和炭化水素であるため、 ワーク表面で短 時間で容易に反応、 分解して原子状炭素をワーク表面に供袷できることと相俟っ て、 ワークの各部を均一に浸炭することができることとなる。
そして、 この浸炭の均一性は炉内圧力を低くするほど顕著になる。 ちなみに、 内径を Dとする閉端孔を備えたワークに対して浸炭処理を行なって、 上記閉端孔 の内壁面における全浸炭深さのほぼ等しい領域が、 この閉端孔の開口端から深さ Lの範囲に亘つて形成されたとするとき、 炉内圧力を 0 . 0 2 kPa として浸炭処 理を行なつた場合には、 上記深さ Lの値が L Z D比で 3 6にまで達した。 さらに 炉内圧力を低くすれば、 全浸炭深さのほぼ等しい領域の開口端からの深さ Lの値 を L Z D比で 5 0程度にまですることができる。 このような値は、 従来のガス浸 炭では勿論、 真空浸炭あるいはプラズマ浸炭でも達成不可能である。
また、 本発明では、 加熱室内を従来の真空浸炭に比べて極端に低圧の l kPa 以 下で浸炭処理を行なつているため、 加熱室内に供給されてから低圧に維持するた めの吸引手段で吸引されるまでの時間、 すなわち、 浸炭用ガスの加熱室内での滞 留時間が短くなる。 滞留時間が短くなれば、 分解浸炭に至らなかった浸炭用ガス を、 加熱室内で分解して煤を発生させる以前に、 加熱室内から除去することが可 能になり、 加熱室内での煤の発生を防止することができる。
そのため、 不安定で分解し易いガス状の不飽和炭化水素を浸炭用ガスとして使 用しても、 短い時間で必要量の浸炭用ガスをワーク表面に対して接触分解させて 浸炭することができて、 浸炭に支障を生じず、 かつ、 未分解の、 煤を発生し易い 浸炭用ガスを分解後の生成ガス (水素ガス等) とともに直ちに加熱室外に排出で きることから、 煤の発生を防止してヮ一クの浸炭処理を行なうことが可能になつ た。 また、 分解生成ガスも短時間で加熱室外に排出できることから、 一層、 浸炭 用ガス分子の平均自由行程を伸ばすことにも寄与できて、 ワークの各部の均一浸 炭に貢献できることになる。
さらに、 排気ポンプから外部に排出される浸炭用ガスの量を測定して、 加熱室 内に投入する浸炭用ガスの量を適切に制御することによって、 浸炭用ガスの使用 量を最少量に抑えることができる。
そしてまた、 本発明による真空浸炭方法では、 化学的に活性で、 反応、 分解し 易いガス状の鎖式不飽和炭化水素を浸炭用ガスとして使用しているため、 従来の メタン系ガスのように、 必要量以上に浸炭用ガスを供給しなくても、 ワーク表面 で容易に反応、 分解して浸炭することができ、 浸炭用ガスの供給量は、 ワーク表 面の浸炭に必要な全炭素量の 2倍程度以内の炭素原子数のもので済む。 ちなみに、 従来の真空浸炭では、 浸炭に必要な全炭素量の数十倍程度を炉内に供給していた。 さらに、'本発明による真空浸炭方法では、 l kPa 以下の低圧で真空浸炭を行なつ ており、 加熱室自体が加熱室外に対して断熱効果を発揮することから、 放熱が少 なく、 加熱室内の温度を維持するための熱量を少なくすることができる。
したがって、 本発明による真空浸炭方法では、 浸炭用ガスとして、 従来では煤 の発生を招くだけとして見向きもされなかったガス状の鎖式不飽和炭化水素を敢 えて使用したにも拘らず、 従来の真空浸炭方法に比べて、 煤の発生を抑えて、 深 い凹部の内壁面をも含めてワークの各部を均一に浸炭でき、 さらに使用するガス 量や熱量も節減することができるという、 著しい効果を得ることができる。
さらに、 本発明による真空浸炭方法では、 加熱室内を l kPa 以下の低圧にして おり、 加熱室自体が加熱室外に対して断熱効果を発揮することから、 加熱室自体 を、 水冷したり、 断熱保護したりする必要が低減されるため、 加熱室を含む真空 容器の外壁を、 低圧に維持する構造のみにして、 特別の断熱構造としなくても済 み、 真空浸炭炉の製造工数、 製造コストを低減することにも寄与できる。
なお、 ワークを低圧で浸炭する方法としては、 イオン浸炭やプラズマ浸炭が知 られているが、 これらの浸炭方法でも、 ワークに深い凹部がある場合には、 ィォ ン化したガスが凹部の底までまで到達できない等の理由により、 浸炭ムラが発生 することが避けられず、 また従来の真空浸炭方法より煤の発生が少ないものの、 本発明の真空浸炭方法のように煤の発生を抑えることができず、 さらに、 設備コ ストも高いという欠点がある。
そして、 本発明で使用するガス状の鎖式不飽和炭化水素としてのエチレンガス やアセチレンガスの中でアセチレンガスを使用する場合には、 エチレンガスに比 ベて構成する水素原子が少なく、 活性で、 浸炭処理を行ない易く、 かつ、 使用量 を低減し、 処理コス 卜を低減することができる。
さらに浸炭用ガスとしてのァセチレンガスに加えて、 ガス状の窒素源として例 えばアンモニアガス (N H 3 ) を添加して浸炭窒化処理を行なうことにより、 よ り低い温度からの焼入れ処理が可能になり、 歪みを小さくすることができる。 図面の簡単な説明
第 1図は、 本発明による真空浸炭装置の一実施の形態を示す断面図、 第 2図は、 本発明による真空浸炭炉の運転パターンを示す図、 第 3図は、 本発明による真空 浸炭方法により浸炭処理したサンプルの断面図、 第 4図は、 本発明による真空浸 炭方法を実施した場合の炉内圧力に対する浸炭深さの関係および煤発生状況を示 すグラフ、 第 5図は、 本発明による真空浸炭方法を実施したサンプルにおける全 浸炭層を示す断面図と浸炭深さの均一性を表すグラフである。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面に基づいて説明する。
第 1図は本発明による真空浸炭装置の一実施の形態を示す図で、 真空浸炭炉 1 は真空容器 4で覆われた加熱室 2とこの加熱室 2に隣接する冷却室 3とを備えて いる。
加熱室 2は、 高温環境の真空中および大気中において化学的 ·強度的に安定な 発熱体 2 aおよび断熱材 2 bから構成されている。 発熱体 2 a としては、 例えば 再結晶処理した炭化ゲイ素系発熱体、 あるいは、 その表面にアルミナ溶射被覆層 を形成したものを使用することができる。 断熱材 2 bとしては、 高純度セラミ ッ クファイバを使用することができる。 冷却室 3は、 その外壁が真空容器 4の一部 で構成され、 油槽 3 aを備えている。
そして、 加熱室 2と冷却室 3には、 ともに真空排気源 Vが接続され、 また加熱 室 2には、 アセチレンガスをアセ トンに溶解させて、 アセチレンガスを供給可能 な浸炭ガス源 Cが接続され、 冷却室 3には、 この冷却室 3内を大気圧以上に加圧 可能な窒素ガス等の不活性ガス源 Gが接続されている。
また、 加熱室 2の上流端には搬入扉 5が、 下流端には中間扉 6が、 冷却室 3の 下流端には搬出扉 7が設けられ、 加熱室 2から冷却室 3に亘って上流から下流へ ワーク Mを搬送する内部搬送装置 8が設けられている。 冷却室 3内にはワーク M を油槽 3 aに出し入れするための昇降台 9が設置されている。 さらに加熱室 2に は内部搬入扉 5 aと内部中間扉 6 aで前後端を閉じた加熱部が設けられている。 次にこのような構成を有する真空浸炭装置を使用した真空浸炭方法について、 第 2図を参照して説明する。 なお、 予め加熱室 2を大気圧状態で所定の温度に加 熱しておく。
第 1工程
搬入扉 5 , 5 aを開放して、 第 1ワーク M lを加熱室 2内に搬入し、 直ちに搬 入扉 5, 5 aを閉鎖する。
第 2工程
加熱室 2を真空排気源 Vによって 0 . 0 5 kPa まで真空排気しながら、 第 1 ヮ ーク M lを所定温度 (9 0 0 °C) まで真空加熱し、 その後、 浸炭ガス源 Cからァ セチレンガスを加熱室 2内に供給して (このとき、 加熱室 2内は 0 . l kPa とな る) 、 浸炭処理を行なう。 そして、 アセチレンガスの供給を停止して、 加熱室 2 内を再び 0 . 0 5 kPa までの真空として拡散処理を行ない、 さらに、 焼入れ温度 の 8 5 0 °Cまで降温均熱加熱を行なう。 なお、 その間に、 冷却室 3を真空排気し ておく。
第 3工程
中間扉 6, 6 aを開放し、 内部搬送装置 8によって、 第 1 ワーク M lを冷却室 3の昇降台 9上に移送し、 直ちに中間扉 6 , 6 aを閉鎖する。
第 4工程
不活性ガス源 Gからの不活性ガスの供給により冷却室 3を大気圧以上に加圧し つつ、 昇降台 9を降下させて第 1ワーク M 1を焼入れ処理する。 その間に高温の 加熱室 2内へ空気を導入して大気状態とし、 さらに搬入扉 5 , 5 aを開放して、 第 2 ワーク M 2を加熱室 2内に搬入し、 直ちに搬入扉 5, 5 aを閉鎖する。 なお、 冷却室 3を大気圧以上に加圧する理由は、 加熱室 2内に空気を導入する際、 その 空気が冷却室 3内へ入り込まないようにするためである。
第 5工程 昇降台 9を上昇させ、 搬出扉 7を開放して第 1 ワーク M lを炉 1外へ搬出し、 直ちに搬出扉 7を閉鎖して冷却室 3を真空冷却する。 その間に、 第 2ワーク M 2 を第 2工程と同様に取り扱う。
以下、 定常状態では、 第 3〜第 5工程が反復され、 順次ワークの浸炭処理が行 なわれる。
このように浸炭処理が施されるワークの一例として、 第 3図に断面図で示すよ うな、 外径寸法を 2 0随、 長さを 3 0 mmとして、 内径 6 mm、 深さ 2 8 nunの閉端孔 1 1 と、 内径 4 mm、 深さ 2 8 mmの閉端孔 1 2とを備えたワークサンプル 1 0を、 幅 4 0 0 mm、 長さ 6 0 0 mm、 高さ 5 O mmの治具に 3 0 0個並置し、 その治具を 6 段重ねて加熱室 2内に配置し、 浸炭温度 9 0 0 °Cで、 浸炭時間 4 0分、 拡散時間 7 0分、 焼入れ温度 8 5 0 °Cとして処理した場合、 各ワークの有効浸炭深さ t。 は 0 . 5 1 mm前後であつたのに対し、 小径の閉端孔 1 2の底部の有効浸炭深さ t 2 は 0 . 4 9 mni前後であった。 すなわち、 これは本実施の形態の真空浸炭方法に よれば、 0 . 0 2 mm前後のバラツキで、 各部を均一に浸炭処理を行なうことがで きることを実証している。
そして、 この試験を数百回反復しても、 加熱室 2内には煤の堆積が認められな かった。 また、 上記ワークサンプル 1 0に対し、 長さをほぼ 2倍にしたサンプル に、 内径 4 ππη、 深さ 5 Ο ππηの閉端孔を設け、 同様に浸炭処理しても、 外周面での 有効浸炭深さと孔底部の有効浸炭深さとの差を 0 . 0 3 πιπι前後の範囲内に抑える ことができ、 本実施の形態の真空浸炭方法によれば、 各部を均一に浸炭処理を行 なうことができることを示している。
ちなみに、 従来のメ夕ン系ガスを浸炭用ガスとして、 ワークサンプル 1 0を従 来の真空浸炭方法で浸炭処理した場合には、 浸炭時間を 2倍程度として、 加熱室 内に 1 0倍以上の浸炭用ガスを供給しても、 ワークサンプル 1 0の外周面での有 効浸炭深さが 0 . 5 1 mmで、 4 nun øの孔 1 2の底部の有効浸炭深さが 0 . 3 0 mm となって、 浸炭ムラが発生していた。 そしてさらに、 従来の真空浸炭方法では、 浸炭処理を 5〜2 0回反復すれば、 バーンァゥ トしても加熱室 2内に煤が多量に 蓄積し、 清掃が必要となっていた。 当然ながら、 一般に実施されているガス浸炭 では、 孔 1 2の底部への浸炭は全く期待できない。 なお、 本発明の真空浸炭方法では、 加熱室内を lkPa 以下の真空状態で浸炭を 行なっていることにより、 アセチレンガスを浸炭用ガスとして使用しても、 ヮ一 クの浸炭ムラをなく し、 かつ煤の発生を抑えて浸炭処理を行なうことがができる が、 加熱室内を l kPa を超える圧力として浸炭処理を行なった場合は、 煤の発生 を抑え難くなり、 浸炭も不均一になって望ましくない。
そして、 加熱室内を低圧にすればする程、 本発明の方法の効果を増大させるこ とができ、 さらに、 加熱室自体の断熱効果も有効に発揮でき、 水冷、 保温等が不 要となって、 省エネルギー効果を高めることができる観点から、 望ましくは、 加 熱室内を 0. 3kPa 以下、 さらに望ましくは 0. lkPa 以下に減圧して、 浸炭処 理を行なうことが好ましい。
第 4図は、 内径 6 、 深さ 2 7 mmの閉端孔を備えた外径 2 0 mm, 長さ 3 Ommの サンプル (S CM 4 1 5) に対して、 温度 9 3 0 °Cにおいて、 保持時間、 浸炭時 間および拡散時間 (第 2図参照) をそれぞれ 3 0分、 3 0分、 4 5分として、 ァ セチレンガスを用いて浸炭処理を施した場合の炉内圧力に対する浸炭深さの関係 および煤発生状況を示すグラフである。 折線 Aは閉端孔の底部における浸炭深さ の変化を、 折線 Bはワークサンプルの表面における浸炭深さの変化をそれぞれ表 すグラフである。
第 4図から明らかなように、 サンプルの表面に関しては、 炉内圧力が 1. 0 kPa 以下のとき、 ほぼ一定の浸炭深さが得られる。 しかしながら、 閉端孔の内外 を均一に浸炭するためには、 炉内圧力を 0. 3kPa 以下にすることが望ましい。 また煤発生状況から見れば、 炉内圧力が 1. OkPa 以下であれば問題はない。 第 5図は、 内径 3. 4 mm. 深さ 1 7 5 mmの閉端孔を備えた外径 2 0 mm. 長さ 1 82IDIDの寸法を有するサンプル (S CM4 1 5 ) に本発明の浸炭方法を実施して 浸炭層を形成した状態を示す断面図と、 浸炭の均一性を表すグラフである。 この 場合、 炉内温度 9 3 0°C、 炉内圧力 0. 02kPa 、 浸炭時間と拡散時間の和を 4 3 0分とし、 サンプルの積載条件は前述と同様である。
第 5図から明らかなように、 閉端孔の内壁面における全浸炭深さがほぼ等しい (2. lmm) 領域が閉端孔の開口端から 1 22 mmの深さに達し、 深さ 1 5 6minの 位置で全浸炭深さがゼロになった。 すなわち、 内径を Dとする閉端孔の内壁面に おける全浸炭深さのほぼ等しい領域が、 この閉端孔の開口端から深さ Lの領域に 亘つて形成されているとするとき、 上記 Lの値が L Z D比で 3 6にまで達してい る。 このように、 炉内圧力が低くなるに伴って、 浸炭の均一性も増大している。 さらに炉内圧力を低くすれば、 全浸炭深さのほぼ等しい領域の深さ Lの値を、 L Z D比で 5 0程度にまですることができる。
2 一

Claims

請 求 の 範 囲
(1) 鋼材よりなるワークを、 真空浸炭炉の加熱室内で真空加熱するとともに、 該加熱室内に浸炭用ガスを供給して浸炭処理を行なう真空浸炭方法であって、 前記浸炭用ガスとしてガス状の鎖式不飽和炭化水素を使用するとともに、 前 記加熱室内を lkPa 以下の真空状態として浸炭処理を行なうことを特徴とする 真空浸炭方法。
(2) 前記ガス状の鎖式不飽和炭化水素がァセチレン系ガスよりなることを特 徴とする請求の範囲第 1項記載の真空浸炭方法。
(3) 前記ァセチレン系ガスがアセチレンガスよりなることを特徴とする請求 の範囲第 2項記載の真空浸炭方法。
(4) 前記浸炭用ガスにガス状の窒素源を添加して浸炭処理を行なうことをこ とを特徴とする請求の範囲第 1項記載の真空浸炭方法。
(5) 鋼材よりなるワークを加熱する加熱室を備えた真空浸炭炉と、 前記加熱 室内にァセチレン系ガスを供給する浸炭用ガス源と、 前記加熱室内を真空排気 する真空排気源とを備え、 lkPa 以下の真空状態で真空浸炭を行なうことを特 徴とする真空浸炭装置。
(6) 内径を Dとする閉端孔を備え、 該閉端孔の内壁面における浸炭深さのほ ぼ等しい領域が、 該閉端孔の開口端から深さ Lの範囲に亘つて形成されている 浸炭処理された鋼材製品であつて、
前記深さ Lの値が、 LZDで 12乃至 50の範囲内にあることを特徴とする 浸炭処理された鋼材製品。
(7) 前記閉端孔の内壁面における浸炭深さが、 LZD比で 12乃至 36の領 域に亘つてほぼ等しいことを特徴とする請求の範囲第 6項記載の浸炭処理され た鋼材製品。
PCT/JP1996/000807 1995-03-29 1996-03-28 Procede et equipement de cementation, et produits de cette operation WO1996030556A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002215897A CA2215897C (en) 1995-03-29 1996-03-28 Vacuum carburizing method and device, and carburized products
DE69613822T DE69613822T3 (de) 1995-03-29 1996-03-28 Verfahren zur vakuumaufkohlung, verwendung einer vorrichtung zur vakuumaufkohlung und aufgekohlte stahlerzeugnisse
EP96907675A EP0818555B2 (en) 1995-03-29 1996-03-28 Method for vacuum carburization
AT96907675T ATE203063T1 (de) 1995-03-29 1996-03-28 Verfahren und zur vakuumaufkohlung, verwendung einer vorrichtung zur vakuumaufkohlung und aufgekohlte stahlerzeugnisse
KR1019970706781A KR100277156B1 (ko) 1995-03-29 1996-03-28 진공침탄법과침탄장치,및침탄처리제품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/72043 1995-03-29
JP7204395 1995-03-29

Publications (1)

Publication Number Publication Date
WO1996030556A1 true WO1996030556A1 (fr) 1996-10-03

Family

ID=13477982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000807 WO1996030556A1 (fr) 1995-03-29 1996-03-28 Procede et equipement de cementation, et produits de cette operation

Country Status (8)

Country Link
US (1) US5702540A (ja)
EP (1) EP0818555B2 (ja)
KR (1) KR100277156B1 (ja)
CN (1) CN1145714C (ja)
AT (1) ATE203063T1 (ja)
CA (1) CA2215897C (ja)
DE (1) DE69613822T3 (ja)
WO (1) WO1996030556A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882811A1 (de) * 1997-06-03 1998-12-09 Ipsen International GmbH Verfahren zur Aufkohlung metallischer Werkstücke in einem Vakuum-Ofen

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187111B1 (en) 1998-03-05 2001-02-13 Nachi-Fujikoshi Corp. Vacuum carburizing method
DE19815233A1 (de) * 1998-04-04 1999-10-07 Ald Vacuum Techn Gmbh Verfahren zur Vakuumaufkohlung unter Behandlungsgas
JP2001330038A (ja) * 2000-03-17 2001-11-30 Nsk Ltd 転がり支持装置
JP2002188702A (ja) * 2000-12-25 2002-07-05 Nissan Motor Co Ltd 無段変速機用転動体およびその製造方法
FR2821362B1 (fr) 2001-02-23 2003-06-13 Etudes Const Mecaniques Procede de cementation basse pression
DE10109565B4 (de) 2001-02-28 2005-10-20 Vacuheat Gmbh Verfahren und Vorrichtung zur partiellen thermochemischen Vakuumbehandlung von metallischen Werkstücken
US7276204B2 (en) * 2001-06-05 2007-10-02 Dowa Thermotech Co., Ltd. Carburization treatment method and carburization treatment apparatus
JP5428031B2 (ja) * 2001-06-05 2014-02-26 Dowaサーモテック株式会社 浸炭処理方法及びその装置
US6991687B2 (en) 2001-07-27 2006-01-31 Surface Combustion, Inc. Vacuum carburizing with napthene hydrocarbons
US7033446B2 (en) * 2001-07-27 2006-04-25 Surface Combustion, Inc. Vacuum carburizing with unsaturated aromatic hydrocarbons
DE10139620A1 (de) * 2001-08-11 2003-02-27 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen und ein Verfahren zur Härtung desselben
FR2832735B1 (fr) * 2001-11-24 2006-06-23 Bosch Gmbh Robert Dispositif et procede de cementation en depression
DE10209382B4 (de) * 2002-03-02 2011-04-07 Robert Bosch Gmbh Verfahren zur Aufkohlung von Bauteilen
DE10221605A1 (de) * 2002-05-15 2003-12-04 Linde Ag Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke
DE10235131A1 (de) * 2002-08-01 2004-02-19 Ipsen International Gmbh Verfahren und Vorrichtung zum Schwärzen von Bauteilen
PL204202B1 (pl) * 2002-10-21 2009-12-31 Politechnika & Lstrok Odzka Mieszanina węglowodorowa do nawęglania stali w podciśnieniu
PL204747B1 (pl) * 2002-10-31 2010-02-26 Politechnika & Lstrok Odzka Sposób nawęglania wyrobów stalowych w podciśnieniu
DE10254846B4 (de) * 2002-11-25 2011-06-16 Robert Bosch Gmbh Verfahren zum Einsatzhärten von Bauteilen aus Warmarbeitsstählen mittels Unterdruckaufkohlung
DE10322563B3 (de) * 2003-05-20 2004-11-11 Ipsen International Gmbh Vakuumaufkohlungsverfahren
US20050016831A1 (en) * 2003-07-24 2005-01-27 Paganessi Joseph E. Generation of acetylene for on-site use in carburization and other processes
US7208052B2 (en) * 2003-12-23 2007-04-24 Rolls-Royce Corporation Method for carburizing steel components
CN1910303B (zh) * 2004-01-20 2010-05-12 帕卡热处理工业株式会社 金属构件表面的活化方法
CN1302146C (zh) * 2004-02-17 2007-02-28 上海宝华威热处理设备有限公司 应用于低压渗碳热处理炉的动态控制装置及其热处理方法
US20050193743A1 (en) * 2004-03-05 2005-09-08 John Foss High-pressure cryogenic gas for treatment processes
JP5246745B2 (ja) * 2005-02-26 2013-07-24 ゼネラル・エレクトリック・カンパニイ 拡散アルミナイド被覆ニッケル基超合金の基材安定化法
US20070068601A1 (en) * 2005-09-26 2007-03-29 Jones William R Process for treating steel alloys
US7514035B2 (en) * 2005-09-26 2009-04-07 Jones William R Versatile high velocity integral vacuum furnace
US8123872B2 (en) 2006-02-22 2012-02-28 General Electric Company Carburization process for stabilizing nickel-based superalloys
JP4458079B2 (ja) * 2006-09-27 2010-04-28 株式会社Ihi 真空浸炭処理装置
JP4458107B2 (ja) 2007-03-09 2010-04-28 株式会社Ihi 真空浸炭処理方法及び真空浸炭処理装置
CN100510156C (zh) * 2007-04-10 2009-07-08 中国矿业大学 医用钛合金髋关节球头表面渗碳工艺
JP2009084607A (ja) * 2007-09-28 2009-04-23 Aisin Aw Co Ltd 減圧熱処理用治具及び減圧熱処理方法
DK2462253T3 (da) * 2009-08-07 2021-05-31 Swagelok Co Opkulning ved lav temperatur under lavt vakuum
DE102009041927B4 (de) * 2009-09-17 2015-08-06 Hanomag Härtecenter GmbH Verfahren zur Niederdruckaufkohlung metallischer Werkstücke
US8425691B2 (en) 2010-07-21 2013-04-23 Kenneth H. Moyer Stainless steel carburization process
US9617611B2 (en) * 2011-03-28 2017-04-11 Ipsen, Inc. Quenching process and apparatus for practicing said process
CN102230151B (zh) * 2011-07-20 2015-10-21 新大洲本田摩托有限公司 一种金属工件热处理工艺
CN102392261B (zh) * 2011-10-24 2014-02-26 上海涌真机械有限公司 运用双真空退火装置提高软磁材料磁性能的热处理工艺
CN102352478B (zh) * 2011-10-31 2013-02-20 北京机电研究所 一种真空低压渗碳设备可自动伸缩渗碳气喷嘴装置
DK2804965T3 (da) 2012-01-20 2020-12-14 Swagelok Co Samtidigt flow af aktiveringsgas ved lavtemperatur-karburering
CN102808188B (zh) * 2012-09-11 2014-10-15 上海汽车变速器有限公司 用于变速器内齿圈的气体渗碳淬火工艺
CN106756752A (zh) * 2016-11-15 2017-05-31 上海先越冶金技术股份有限公司 一种低压真空渗碳工艺
PL422596A1 (pl) * 2017-08-21 2019-02-25 Seco/Warwick Spółka Akcyjna Sposób nawęglania podciśnieniowego (LPC) elementów wykonanych ze stopów żelaza i innych metali
JP7086481B2 (ja) * 2018-12-14 2022-06-20 ジヤトコ株式会社 連続浸炭炉
CN110042339B (zh) * 2019-06-05 2021-07-06 哈尔滨工程大学 一种降温增速的真空渗碳方法
CN116497262B (zh) * 2023-06-20 2023-10-31 成都先进金属材料产业技术研究院股份有限公司 一种提高低碳高合金马氏体轴承钢表面硬度的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096410A (ja) * 1973-12-21 1975-07-31
JPH03215657A (ja) * 1989-07-13 1991-09-20 Solo Fours Ind Sa 浸炭の方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3796615A (en) 1971-06-23 1974-03-12 Hayes Inc C I Method of vacuum carburizing
DE2451536A1 (de) * 1974-10-30 1976-05-06 Bosch Gmbh Robert Verfahren zum aufkohlen von werkstuecken aus stahl
US4108693A (en) * 1974-12-19 1978-08-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the heat-treatment of steel and for the control of said treatment
SU668978A1 (ru) * 1977-06-02 1979-06-28 Предприятие П/Я А-7697 Способ цементации стальных деталей
FR2663953B1 (fr) * 1990-07-02 1993-07-09 Aubert & Duval Acieries Procede et installation de cementation de pieces en alliage metallique a basse pression.
GB2261227B (en) 1991-11-08 1995-01-11 Univ Hull Surface treatment of metals
DE59704123D1 (de) 1997-06-03 2001-08-30 Ipsen Int Gmbh Verfahren zur Aufkohlung metallischer Werkstücke in einem Vakuum-Ofen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096410A (ja) * 1973-12-21 1975-07-31
JPH03215657A (ja) * 1989-07-13 1991-09-20 Solo Fours Ind Sa 浸炭の方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882811A1 (de) * 1997-06-03 1998-12-09 Ipsen International GmbH Verfahren zur Aufkohlung metallischer Werkstücke in einem Vakuum-Ofen

Also Published As

Publication number Publication date
EP0818555A1 (en) 1998-01-14
EP0818555B1 (en) 2001-07-11
DE69613822T2 (de) 2002-04-04
CA2215897C (en) 2001-01-16
CN1184510A (zh) 1998-06-10
CN1145714C (zh) 2004-04-14
DE69613822D1 (de) 2001-08-16
KR100277156B1 (ko) 2001-01-15
EP0818555B2 (en) 2007-08-15
CA2215897A1 (en) 1996-10-03
DE69613822T3 (de) 2008-02-28
EP0818555A4 (en) 1998-09-23
ATE203063T1 (de) 2001-07-15
KR19980703376A (ko) 1998-10-15
US5702540A (en) 1997-12-30

Similar Documents

Publication Publication Date Title
WO1996030556A1 (fr) Procede et equipement de cementation, et produits de cette operation
JP2963869B2 (ja) 真空浸炭方法および装置ならびに浸炭処理製品
Ricard et al. Active species in microwave postdischarge for steel-surface nitriding
US6884295B2 (en) Method of forming oxynitride film or the like and system for carrying out the same
KR100858598B1 (ko) 금속부재 표면의 활성화 방법
KR20040008334A (ko) 반도체 기판상에 소정의 물질을 증착하는 반도체 제조 장비
JP3839615B2 (ja) 真空浸炭方法
JP3960697B2 (ja) 浸炭および浸炭窒化処理方法
KR20020008395A (ko) 화학 증착 시스템 및 방법
JP3428936B2 (ja) 金属表面のガス硬化処理方法
JP3445968B2 (ja) 鋼材部品の真空浸炭方法
JP5233258B2 (ja) 炭素濃度制御された鋼表面を有する鋼材の製造方法及び製造装置
EP0465226A1 (en) Gas-carburizing process and apparatus
JP2005272884A (ja) ガス窒化方法
JP4169864B2 (ja) 鋼の浸炭処理方法
JPH02122062A (ja) 真空浸炭方法
JP2008260994A (ja) 浸炭製品の製造方法
JPH0222451A (ja) 真空浸炭方法
JPWO2020066800A1 (ja) 半導体装置の製造方法、基板処理装置、及びプログラム
JP3448805B2 (ja) 真空浸炭方法
JPH03291368A (ja) 真空浸炭方法及び真空浸炭炉
KR20010036268A (ko) 원자층 증착법을 이용한 금속 산화막 형성방법
JPS63759Y2 (ja)
JP5837282B2 (ja) 表面改質方法
JP2001011630A (ja) 炭素薄膜の形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96194022.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2215897

Country of ref document: CA

Ref document number: 2215897

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970706781

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996907675

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996907675

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970706781

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970706781

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996907675

Country of ref document: EP