WO1996028270A1 - Douille de guidage et procede de formation d'un film de carbone dur sur la surface circonferentielle interne de ladite douille - Google Patents

Douille de guidage et procede de formation d'un film de carbone dur sur la surface circonferentielle interne de ladite douille Download PDF

Info

Publication number
WO1996028270A1
WO1996028270A1 PCT/JP1996/000580 JP9600580W WO9628270A1 WO 1996028270 A1 WO1996028270 A1 WO 1996028270A1 JP 9600580 W JP9600580 W JP 9600580W WO 9628270 A1 WO9628270 A1 WO 9628270A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide bush
peripheral surface
carbon film
hard carbon
inner peripheral
Prior art date
Application number
PCT/JP1996/000580
Other languages
English (en)
French (fr)
Inventor
Yukio Miya
Osamu Sugiyama
Ryota Koike
Takashi Toida
Sosaku Kimura
Kunihiko Kokubo
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to EP96905043A priority Critical patent/EP0813923A4/en
Priority to JP52745996A priority patent/JP3201773B2/ja
Publication of WO1996028270A1 publication Critical patent/WO1996028270A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/20Longitudinally-split sleeves, e.g. collet chucks
    • B23B31/201Characterized by features relating primarily to remote control of the gripping means
    • B23B31/202Details of the jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B13/00Arrangements for automatically conveying or chucking or guiding stock
    • B23B13/12Accessories, e.g. stops, grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B13/00Arrangements for automatically conveying or chucking or guiding stock
    • B23B13/12Accessories, e.g. stops, grippers
    • B23B13/123Grippers, pushers or guiding tubes
    • B23B13/125Feed collets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/88Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2231/00Details of chucks, toolholder shanks or tool shanks
    • B23B2231/20Collet chucks
    • B23B2231/2048Collets comprising inserts
    • B23B2231/2059Hard inserts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/17Socket type
    • Y10T279/17411Spring biased jaws
    • Y10T279/17418Unitary
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/17Socket type
    • Y10T279/17411Spring biased jaws
    • Y10T279/17418Unitary
    • Y10T279/17452Unitary with jaw pads or insert

Definitions

  • the present invention relates to a guide bush provided in an automatic lathe for holding a round bar-shaped workpiece slidably and axially in the vicinity of a cutting tool (blade), and a slide between the workpiece and the guide bush.
  • the present invention relates to a method for forming a hard carbon film on an inner peripheral surface in contact therewith.
  • a rotary bush and a fixed bush provided on an automatic lathe column of an automatic lathe and rotatably holding a round bar-shaped workpiece near a cutting tool.
  • the rotary type keeps the workpiece slidable in the axial direction while always rotating with the workpiece, and the fixed type allows the workpiece to rotate and slide in the axial direction without rotating To hold.
  • Each type of guide bush has an outer tapered surface, a slit for giving it elasticity, a screw portion for attaching to a column, and an inner peripheral surface for holding a workpiece. Since the surface is always in sliding contact with the workpiece, it tends to wear, especially in the case of the fixed type.
  • a hard metal or ceramic is fixed to the inner peripheral surface of a guide bush that is in sliding contact with the workpiece by rotating and sliding the workpiece by brazing, for example. It is proposed as seen in Kaihei 4-1414133.
  • cemented carbide ceramics is installed on the inner peripheral surface.
  • cemented carbide / ceramics also have a large coefficient of friction and low thermal conductivity, causing scratches on the workpiece.
  • the fixed type guide bush can hold the workpiece without any deviation of the axis of the workpiece, so that the processing can be performed with high roundness and high accuracy, and there is less noise and the structure of the automatic lathe is complicated. It also has advantages such as compactness.
  • the present invention solves such a problem, and significantly improves the wear resistance of the peripheral surface that comes into contact with the workpiece of the guide bush, thereby causing scratches and seizure on the workpiece. It is an object of the present invention to be able to increase the cutting amount and the processing speed by an automatic lathe without doing so. Another object of the present invention is to enable such a guide bush to be efficiently manufactured. Disclosure of the invention
  • the present invention provides a guide bush in which a hard carbon film is provided on an inner peripheral surface that is in sliding contact with a workpiece, and a hard carbon film formed on the inner peripheral surface of the guide bush in a short time, uniformly and firmly. And a method for forming a hard carbon film.
  • the hard carbon film is a hydrogenated amorphous carbon film, which has a property very similar to that of diamond, and is also called diamond-like carbon (DLC).
  • DLC diamond-like carbon
  • This hard carbon film (DLC) has high hardness (Vickers hardness of more than 30000 Hv), excellent wear resistance, low friction coefficient (18th of cemented carbide), corrosion resistance Is also excellent. Therefore, the guide bush according to the present invention, in which the hard carbon film is provided on the inner peripheral surface in sliding contact with the workpiece, has a higher wear resistance than the conventional cemented carbide ceramics provided on the inner peripheral surface.
  • the use of this as a fixed type guide bush of an automatic lathe allows the workpiece to be scratched even when performing heavy cutting at a large cutting rate and high cutting speed. There is no generation or seizure. High-precision machining can be performed over a long period of time.
  • the intermediate layer is formed of a two-layer film composed of a lower layer made of titanium or chromium or a compound thereof and an upper layer made of silicon or germanium or a compound thereof, the lower layer becomes the inner periphery of the guide bush. Since the adhesion to the surface (carbon tool copper of the base material) is maintained and the upper layer is strongly bonded to the hard carbon film, a strong hard carbon film with good adhesion can be provided.
  • a hard material such as a cemented carbide such as tungsten carbide (WC) or a ceramic sintered body such as silicon carbide (SiC) is provided on the inner peripheral surface.
  • a carbon film may be provided, and in this case, the adhesion can be further improved by providing a hard carbon film via an intermediate layer similar to the above.
  • a carburized layer may be formed on the base material near the outer peripheral surface of the guide bush, and a hard carbon film may be provided on the inner peripheral surface formed by the carburized layer. The provision of a hard carbon film further enhances the adhesion.
  • the method of forming a hard carbon film on the peripheral surface of the guide bush according to the present invention is performed by the following procedure.
  • a guide bush for an automatic lathe has an exhaust port and a gas inlet, is placed in a vacuum chamber ⁇ with an anode and a filament inside, and slides into contact with the workpiece of the guide bush.
  • a pad or a linear auxiliary electrode is inserted into the central opening forming the peripheral surface. Guide this auxiliary electrode first It may be placed in a vacuum tank together with the guide bush while being inserted into the center opening of the bush.
  • a gas containing carbon is introduced from the gas inlet, a DC voltage is applied to the guide bush, and a DC voltage is applied to the anode, and the filament is applied to the filament.
  • An AC voltage is applied to generate plasma, and a hard carbon film is formed on the inner peripheral surface of the guide bush.
  • a high-frequency voltage is applied to the guide bush or a DC voltage is applied without providing an anode and a filament in the vacuum chamber. May be generated.
  • the inner peripheral surface of the guide bush is quickly and openly opened.
  • the hard carbon film can be formed with a uniform thickness from the side to the back side.
  • the auxiliary electrode may be insulated and set to a floating potential. It is desirable to keep.
  • a ring-shaped dummy member having an inner diameter substantially the same as the diameter of the inner peripheral surface of the guide bush is arranged on the opening end surface where the guide bush is formed to form a hard carbon film.
  • the uniformity of the hard carbon film near the open end of the inner peripheral surface can be improved.
  • a plurality of protrusions that can be inserted into each of the slits of the guide bush are provided on a ring-shaped main body having an inner diameter substantially the same as the diameter of the inner peripheral surface of the guide bush on the opening end surface where the guide bush is formed.
  • a jig with projections is provided, and each projection is inserted into each slit of the guide bush to form a hard carbon film, so that the inner peripheral surface near the opening end and near the slit is hardened. The homogeneity of the carbon film can be improved.
  • a hard carbon film is formed by inserting a cylindrical jig with an inside diameter that is approximately the same as the diameter of the above-mentioned inner peripheral surface into the stepped portion that is larger in diameter than the inner peripheral surface of the guide bush that slides on the workpiece. By doing so, the uniformity of the hard carbon film in the vicinity of the step on the inner peripheral surface can be improved. If the hard carbon film is formed by inserting both the jig with projection and the insertion jig into the guide bush, a uniform hard carbon film can be formed over the entire inner peripheral surface.
  • the auxiliary electrode is supported by an insulator inserted in a step portion having a diameter larger than the inner peripheral surface of the guide bush, the auxiliary electrode is supported on the center axis of the guide bush at the center opening ⁇ of the guide bush. It is easy to apply, and an arbitrary voltage can be easily applied.
  • FIG. 1 is a longitudinal sectional view showing an example of a guide bush according to the present invention
  • FIG. 2 is a perspective view showing its appearance.
  • FIG. 3 is a longitudinal sectional view showing another example of the guide bush according to the present invention.
  • FIGS. 4 to 7 are enlarged cross-sectional views corresponding to the portions shown by circles A in FIGS. 1 and 3.
  • FIG. 4 to 7 are enlarged cross-sectional views corresponding to the portions shown by circles A in FIGS. 1 and 3.
  • FIG. 1
  • FIG. 8 is a diagram showing a configuration example of the intermediate layer by further enlarging a part of FIG.
  • FIG. 9 is a diagram showing a comparison between the results of a cutting test performed by an automatic lathe using a guide bush according to the present invention and a conventional guide bush, each of which is used in a fixed type guide bush device.
  • FIG. 10 is a schematic sectional view of a first apparatus for implementing a method for forming a hard carbon film on the inner peripheral surface of a guide bush according to the present invention.
  • FIG. 11 is a diagram showing the relationship between the distance from the opening end of the guide bush and the thickness of the hard carbon film when the auxiliary electrode 71 is disposed and when it is not disposed.
  • FIG. 12 shows a rigid car on the inner peripheral surface of the guide bush according to the present invention.
  • FIG. 4 is a schematic cross-sectional view of a second apparatus for performing the method of forming a bon film.
  • FIG. 13 is a schematic sectional view of a third apparatus for implementing the method for forming a hard carbon film on the inner peripheral surface of a guide bush according to the present invention.
  • FIG. 14 is a cross-sectional view similar to FIG. 10 when a covering member is added to the embodiment of FIG.
  • FIG. 15 is a schematic sectional view similar to FIG. 10 showing another embodiment of the method for forming a hard carbon film according to the present invention.
  • FIG. 16 is a perspective view of a dummy member used in the embodiment of FIG.
  • FIGS. 17 and 18 are schematic sectional views similar to FIGS. 12 and 13 showing another embodiment of the method for forming a hard carbon film according to the present invention.
  • FIG. 19 is a schematic cross-sectional view similar to FIG. 15 showing still another embodiment of the method for forming a hardened carbon film according to the present invention.
  • FIGS. 20 and 21 are schematic sectional views similar to FIGS. 17 and 18 showing another embodiment of the method for forming a hard carbon film according to the present invention.
  • FIG. 22 is a diagram showing the relationship between the DC positive voltage applied to the auxiliary electrode and the thickness of the hard carbon film formed.
  • FIG. 23 is a cross-sectional view showing a specific example of a supporting structure of the auxiliary electrode.
  • FIG. 24 is a perspective view of a protruding jig used in the method for forming a hard-boning film according to the present invention.
  • FIG. 25 is a longitudinal sectional view of the insertion jig.
  • FIG. 26 is a longitudinal sectional view showing a state in which a jig with a projection is mounted on the guide push.
  • FIG. 27 is a longitudinal sectional view showing a state in which an insertion jig is attached to a guide bush.
  • FIG. 28 is a longitudinal sectional view showing a state in which a jig with a projection and an insertion jig are mounted on a guide bush.
  • FIG. 29 shows a fixed type guide using the guide bush according to the present invention.
  • FIG. 3 is a cross-sectional view showing only the vicinity of the main spindle of the automatic lathe provided with the bush device.
  • FIG. 30 is a sectional view showing only the vicinity of the main spindle of an automatic lathe provided with a rotary type guide bush device using the guide bush according to the present invention.
  • FIG. 29 is a sectional view showing only the vicinity of the spindle of the numerically controlled automatic lathe.
  • This automatic lathe fixes a guide bush 11 and uses a fixed guide bush device 37 that is used while the workpiece 51 (indicated by phantom lines) is rotatably held by its inner peripheral surface lib. It is provided.
  • the headstock 17 is slidable on the bed (not shown) of the numerically controlled automatic lathe in the left-right direction in the figure.
  • the headstock 17 is provided with a spindle 19 rotatably supported by a bearing 21.
  • a collect chuck 13 is attached to the tip of the spindle 19.
  • the collect chuck 13 is arranged in the center hole of the chuck leave 41.
  • the outer peripheral taper surface 13 a of the tip of the collect chuck 13 and the inner peripheral taper surface 41 a of the Chucks leave 41 are in surface contact with each other.
  • a ridge 25 made of a band-like spring material in a coil shape is provided at the rear end of the collect chuck 13 of the intermediate sleeve 29 2. Then, by the function of the spring 25, the collect chuck 13 can be pushed out from the intermediate sleeve 29.
  • the tip of the collect chuck 13 is screwed to the tip of the spindle 19 The position is restricted by contacting the cap nuts 27 that make up. Therefore, the collect chuck 13 is prevented from jumping out of the intermediate sleeve 29 by the spring force of the spring 25.
  • a chuck opening / closing mechanism 31 is provided via the intermediate sleeve 29. Then, by opening and closing the chuck opening / closing claws 33, the collect chuck 13 opens and closes, and grips and releases the workpiece 51.
  • the collet chuck 13 is prevented from jumping out of the spindle 19 by a cap nut 27 screwed to the tip of the spindle 19.
  • the chuck sleeve 41 by moving the chuck sleeve 41 to the left, the outer peripheral taper surface 13 a of the portion where the slit of the collect chuck 13 is formed and the chuck sleeve 41 within the chuck sleeve 41 are formed.
  • the circumferential tapered surface 41a is strongly pushed and moves along the tapered surface with each other.
  • the diameter of the inner peripheral surface of the collect chuck 13 becomes small, and the workpiece 51 can be gripped.
  • a column 35 is provided in front of the headstock 17, and the guide bush device 37 is arranged so that the center axis of the guide bush device 37 coincides with the center axis of the spindle.
  • the guide bush device 3 7 is a fixed type guide bush device 3 7 that fixes the guide bush 11 and holds the workpiece 51 in a rotatable state on the inner peripheral surface 11 b of the guide bush 11. It is.
  • a bush sleeve 23 is fitted into the center hole of the holder 39 fixed to the column 35, and the bush sleeve 23 has an inner peripheral tapered surface 23a at the tip.
  • a guide bush 11 having an outer peripheral taper surface 11a and a slit 11c formed at the end thereof is fitted into the center hole of the bush sleeve 23 and is arranged.
  • the inner diameter of the guide bush 11 and the workpiece 51 are rotated by rotating the adjustment nut 43 screwed into the thread of the guide bush 11 at the rear end of the guide bush device 37.
  • the gap size with the external shape can be adjusted.
  • a cutting tool 45 is provided in front of the guide bush device 37.
  • the work piece 51 is gripped by the collet chuck 13 of the spindle 19 and supported by the guide bush device 37, and the work piece protrudes into the processing area through the guide bush device 37.
  • Object 5 1 0 Predetermined cutting is performed by the combined movement of the forward and backward movement of the cutting tool 45 and the movement of the headstock 17.
  • FIG. 30 portions corresponding to those in FIG. 29 are denoted by the same reference numerals.
  • the rotary type guide bush device there are a guide bush device in which the collect chuck 13 and the guide bush 11 rotate synchronously, and a guide bush device which rotates without synchronization. this! In the guide bush device 37 shown in (5), the collect chuck 13 and the guide bush 11 rotate in synchronization.
  • This rotary guide bush device 37 drives the guide bush device 37 by means of a rotary drive rod 47 protruding from the cap nut 27 of the main shaft 19.
  • a rotary drive rod 47 protruding from the cap nut 27 of the main shaft 19.
  • the guide bush device 37 is driven by a gear or a belt pulley.
  • a bush sleeve 23 is disposed so as to be rotatable via a bearing 21 in a center hole of a holder 39 fixed to a column 35. Further, the guide push 11 is disposed so as to fit into the center hole of the bush sleeve 23.
  • the bush sleeve 23 and the guide bush 11 have the same configuration as that described with reference to FIG.
  • the inner diameter of the guide bush 11 is reduced by rotating an adjustment nut 43 screwed on the screw portion of the guide bush 11 at the rear end of the guide bush device 37.
  • the gap between the inner diameter of the guide bush 11 and the outer shape of the workpiece 51 can be adjusted.
  • FIG. 1 is a longitudinal sectional view showing an example of a guide bush according to the present invention
  • FIG. 2 is a perspective view showing its appearance.
  • the guide bush 11 shown in these figures shows a free state in which the tip is open.
  • the guide bush 11 has an outer peripheral tapered surface 11a formed at one end in the longitudinal direction and a threaded portion 11f at the other end.
  • a penetrating opening having a different opening diameter is provided at the center of the guide bush 11.
  • An inner peripheral surface 11b for holding the workpiece 51 is formed on the inner periphery on the side where the outer taper surface 1la is provided. Then, a step portion 11 g having an inner diameter larger than the inner diameter of the inner peripheral surface l ib is formed in a region other than the inner peripheral surface l i b.
  • the guide bush 11 is divided into 1 1 c from the outer tapered surface 11 a to the panel portion 11 d so that the outer tapered surface 11 a is equally divided into three in the circumferential direction. They are provided at three locations at 20 ° intervals.
  • the guide bush 11 has a fitting portion 11 e between the spring portion 11 d and the screw portion 11 ⁇ . By fitting this fitting portion 11 e into the center hole of the bush sleeve 23 shown in FIGS. 29 and 30, the guide bush 11 is positioned on the center line of the spindle, and It can be placed parallel to the center line.
  • the guide bush 11 is made of carbon tool steel (SK steel), and after forming an outer shape and an inner shape, quenching and tempering are performed.
  • SK steel carbon tool steel
  • a cemented carbide material 12 is fixed to the inner peripheral surface 11 b of the guide bush 11 by brazing means. 2 Good.
  • this guide bush 11 has a radius of 5 ⁇ m to 10 / zm in the radial direction between the inner peripheral surface 11b and the workpiece 51 with the outer tapered surface 11a closed. Is provided. As a result, the workpiece 51 enters and exits and comes into sliding contact with the circumferential surface 11b, so that its wear becomes a problem.
  • the workpiece 51 when used in a fixed type guide bush device, the workpiece 51 is held by the fixed guide bush 11 and is rotated at a high speed to be machined. There is a problem that high-speed sliding is performed between the workpiece 51 and the seizure due to an excessive pressing force of the workpiece 51 against the inner peripheral surface 11b due to a cutting load.
  • the aforementioned hard carbon film (DLC) 15 is provided on the outer peripheral surface 11 b of the guide bush 11.
  • the film thickness of the hard film 15 is 5 ⁇ m from 1 ⁇ force.
  • a hard carbon film 15 is formed on the base material (carbon tool steel) of the guide bush 11 via an intermediate layer described later, and in the example of FIG. Then, a hard carbon film 15 is formed directly or via an intermediate layer described later.
  • This hard carbon film has properties very similar to diamond. In other words, it has the features of high mechanical strength, low friction coefficient, lubricity, good electrical insulation, high thermal conductivity, and excellent corrosivity. Have.
  • the guide bush 11 provided with the hard carbon film 15 on the circumferential surface 11 b has a remarkably improved abrasion resistance, and can be used for a long time or in heavy cutting. Wear of the inner peripheral surface 11b in contact with the surface can be suppressed. In addition, the generation of scratches on the workpiece 51 can be suppressed, and the occurrence of seizure between the guide bush 11 and the workpiece 51 can also be suppressed.
  • the guide bush 11 according to the present invention can remarkably improve the reliability for long-term use, and can be sufficiently used for a fixed type guide bush device.
  • various configuration examples of the portion of the guide bush 11 1 on which the inner surface 11 b of the guide bush 11 is provided with the hard carbon film 15 correspond to the portions surrounded by a circle A in FIGS. 1 and 3. 4 to 7, which are enlarged cross-sectional views, and FIG. 8 which shows a configuration example of the intermediate layer by enlarging a part of FIG. 6.
  • Fig. 4 is an enlarged view of the part A in Fig. 1, and the intermediate layer 16 to improve the adhesion on the base material (carbon tool copper) on the circumferential surface 11b of the guide bush 11
  • a hard carbon film is formed with a thickness of 1 ⁇ through Note that, depending on the material of the base material of the guide bush 11, it is also possible to directly form a hard carbon film on the surface without the intermediate layer 16.
  • FIGS. 5 and 6 correspond to enlarged views of the portion A in FIG. 3, and both have a thickness of 2 mm on the base material of the outer peripheral surface 11 b of the guide bush 11.
  • a hard member 12 of up to 5 mm is fixed by brazing or the like, and a hard carbon film 15 is formed on the inner peripheral surface thereof. By doing so, the durability of the guide bush 11 is further improved.
  • the hard carbon film 15 is formed on the inner peripheral surface of the hard member 12 via the intermediate layer 16 for further improving the adhesion.
  • a cemented carbide such as dust carbide (WC) or a ceramic such as silicon carbide (SiC) is used.
  • WC dust carbide
  • SiC silicon carbide
  • Cr, Ni, Co, etc. are usually added as a binder, but when the addition is small, the hard force film is not passed through the intermediate layer 16. 15 can also be formed directly on the hard member 12.
  • SiC silicon carbide
  • Silicon carbide powder (silicon (S i), carbon (C), and force-to-force ratio of 1 in atomic percent is placed in a ring-shaped mold, and pressure is applied from 0.5 to 3 tons. Press molding. Next, nitrogen or argon gas Perform baking treatment in the inert gas atmosphere of 4.
  • the silicon carbide is further densified, and its density and hardness are improved as the hard member 12, and the Vickers hardness becomes 200000 to 300000.
  • a metallization layer containing titanium (T i) as a main component is formed on the ring-shaped hard member 12. Then, the hard member 12 is disposed on the inner peripheral surface 11b of the guide bush 11 and subjected to a heat treatment, so that the metallized layer is melted and joined to the base material of the guide bush 11.
  • Fig. 7 shows that instead of providing the hard member 12 on the inner peripheral surface 11b of the guide bush 11, the carburized layer 11h is formed on the base material near the inner peripheral surface 11b.
  • a hard force film 15 is provided on the inner peripheral surface 11b for 1h.
  • Carburizing is a well-known method of hardening steel, in which the surface layer is hardened and the deep parts remain tough.
  • Carburize for example, in a mixed gas atmosphere of a carburizing gas containing carbon such as methane (CH 4 ) and ethylene (C 2 H 4 ) and a carrier gas of nitrogen (N 2 ) under the following conditions: Carburize.
  • a carburizing gas containing carbon such as methane (CH 4 ) and ethylene (C 2 H 4 ) and a carrier gas of nitrogen (N 2 ) under the following conditions: Carburize.
  • the intermediate layer 16 may be silicon (Si) or germanium (Ge) of Group IV of the periodic table, or a compound of silicon or germanium.
  • a compound containing carbon such as silicon carbide (SiC) or titanium carbide (TiC) may be used.
  • a compound of titanium (T i), toughness (W), molybdenum (M o), or tantalum (T a) and silicon (S i) can be applied as the intermediate layer 16.
  • this intermediate layer 16 is made of a lower layer 16a made of titanium (T i) or chromium (C r) and a silicon (Si) or germanium (Ge). , May be formed in a two-layer film with the upper layer 16b.
  • the titanium and chromium of the lower layer 16a of the intermediate layer 16 serve to maintain the adhesion to the base material of the guide bush 11, and the silicon-germanium of the upper layer 16b is a hard carbon film. 15 and plays a role of strongly bonding to the hard carbon film 15.
  • the intermediate layer 16 may be formed of a two-layer film including a lower layer of a titanium compound or a chromium compound and an upper layer of a silicon compound or a germanium compound. Alternatively, it may be formed of a two-layer film of a lower layer of titanium or chromium and an upper layer of a silicon compound or a germanium compound. Further, a two-layer film of a lower layer of a titanium compound or a chromium compound and an upper layer of silicon or germanium may be used.
  • a sputtering method As a method for forming the intermediate layer 16, a sputtering method, an ion brazing method, a chemical vapor deposition (CVD) method, or a thermal spraying method may be applied.
  • CVD chemical vapor deposition
  • the formation of the intermediate layer 16 can be omitted.
  • the silicon byte is a compound of silicon and carbon belonging to Group IV of the periodic table and is covalently bonded to the hard carbon film 15 formed on the surface, resulting in high adhesion. Because.
  • FIG. 9 shows a comparison of cutting test results with automatic lathes using the guide bush according to the present invention and the conventional guide bush.
  • the guide bush in the comparative test is a fixed type guide bush.
  • the conventional guide bush is the one with only a cemented carbide (carbide) on the peripheral surface and only the ceramic sintered body.
  • the guide bush of the present invention used was one in which a hard carbon film (DLC) having a thickness of 3 ⁇ was formed on the inner peripheral surface via an intermediate layer.
  • DLC hard carbon film
  • the cutting conditions were as follows.
  • the guide bush provided with the hard carbon film (DLC) according to the present invention from a light cutting to a limit cutting, 100 pieces of the workpiece are subjected to a continuous cutting test, ie, 200 pieces. Even when machining at a cutting distance of 0 m, there is no seizure at all, and In addition, no wear of the guide bush ⁇ peripheral surface or peeling of DLC occurred at all.
  • DLC hard carbon film
  • the guide bush 11 shown in FIG. 3 is formed by cutting using a carbon tool sales (SK) material to form an outer peripheral taper surface 11 a, a spring portion 11 d, a fitting portion 1 le, and a screw. A portion 11 f, an inner peripheral surface 11 b formed by the center opening 11 j and a step portion 11 g having a larger inner diameter than the inner surface 11 b are formed. Then, the cylindrical super hard material 12 is fixed to the inner peripheral surface 11 b of the guide bush 11 by being roasted.
  • SK carbon tool sales
  • polishing is performed, and the outer peripheral surface 11b, the outer peripheral tapered surface 11a, and the fitting portion 11e are polished to obtain the guide bush 11 before forming the hard carbon film.
  • a hard carbon film 15 is formed on the guide bush 11.
  • the first device for forming the hard carbon film 15 is configured as shown in FIG.
  • Reference numeral 61 denotes a vacuum chamber having a gas inlet 63 and an exhaust port 65, and an anode 79 and a filament 81 are disposed in the upper central portion thereof.
  • the guide bush 1 1 8 is vertically arranged with the lower part fixed to the insulating support 80.
  • a thin rod-shaped auxiliary electrode 71 connected to the ground potential via a vacuum chamber 61 is inserted into the center opening 111 j of the guide bush 11.
  • the auxiliary electrode 71 is positioned at the center (substantially on the axis) of the center opening 11 j of the guide bush 11.
  • the auxiliary electrode 71 is made of a metal material such as stainless steel. It is desirable that the auxiliary electrode 71 be disposed about 1 mm inward so that its tip does not protrude from the open end surface (the upper end surface in FIG. 10) of the guide bush 11. .
  • the Nze down base and from the gas inlet 6 3 and a carbon-containing gas is introduced into the vacuum chamber 6 1, the pressure in the vacuum chamber 6 in 1 5 X 1 0 - becomes 3 torr Control.
  • a negative DC voltage is applied to the guide bush 11 from the DC power supply 73
  • a positive DC voltage is applied to the anode 79 from the anode power supply 75
  • the filament An AC voltage is applied to 81 from a filament power supply 77.
  • the DC voltage applied from the DC power supply 73 to the guide bush 11 is minus 3 kV
  • the DC voltage applied from the anode power supply 75 to the anode 79 is about +50 V
  • the AC voltage applied from the filament power supply 77 to the filament 81 is an AC voltage of about 10 V so that a current of 3OA flows.
  • the auxiliary electrode 71 is provided so as to be inserted into the center opening 11 j ⁇ of the guide bush 11, so that only the outer peripheral portion of the guide bush 11 is provided. Not the inner circumference Plasma can also be formed in 9 parts.
  • the film thickness distribution of the hard carbon film formed on the inner peripheral surface 11b becomes uniform.
  • the film forming speed is increased, a hard carbon film having a uniform thickness from the opening end face side to the opening deep side can be formed in a short time.
  • the film thickness is small, and the film thickness is further reduced from the opening end to the back.
  • the film thickness is formed thick as shown by the broken line a plotted with a square mark in the figure, and is substantially uniform regardless of the distance from the opening end. Film thickness.
  • the diameter of the auxiliary electrode 71 may be smaller than the opening diameter of the guide bush 11, but is preferably about 5 mm from the inner peripheral surface 11 b on which the hard carbon film is formed, that is, It is desirable to provide a formation region. It is desirable that the ratio of the diameter of the auxiliary electrode 71 to the opening diameter of the guide bush 11 be 1 Z 10 or less, and when the auxiliary electrode 71 is made thinner, it can be made linear.
  • the auxiliary electrode 71 may be made of a metal material having a high melting point, such as tungsten (W) or tantalum (T a), which has been described as being formed of stainless steel.
  • the cross-sectional shape of the auxiliary electrode 71 is circular.
  • FIG. 12 portions corresponding to FIG. 10 are denoted by the same reference numerals, and description thereof will be omitted.
  • the vacuum chamber 61 of the second apparatus used in this embodiment has no anode and no filament inside.
  • the difference between the method for forming a hard carbon film using this apparatus and the method for forming a hard carbon film using the apparatus shown in FIG. 10 is that a grounded auxiliary electrode is inserted and placed in a vacuum chamber 61. A high-frequency voltage is applied from a high-frequency power supply 69 having an oscillation frequency of 13.56 MHz to the guide bus 11 through a matching circuit 67, and a gas containing carbon is used. The only difference is that methane (CH 4 ) gas is introduced into the vacuum chamber 61 14, and the degree of vacuum is adjusted to 0.1 Torr.
  • CH 4 methane
  • a hard film 15 having a substantially uniform thickness over the entire length can be formed in a short time on the peripheral surface 11b shown in FIG. 3 facing the auxiliary electrode 71.
  • the third device used in this embodiment also has no anode and no filament in the vacuum chamber 61.
  • the difference between the method for forming a hard carbon film using this apparatus and the method for forming a hard carbon film using the apparatus shown in FIG. 10 is that a grounded auxiliary electrode is inserted and placed in a vacuum chamber 61.
  • a point of applying only a minus 600 V DC voltage from the DC power supply 73 ′ to the guide bus 11, and using methane (CH 4 ) gas as a gas containing carbon in a vacuum chamber The only difference was that it was introduced at 6 1 ⁇ 4 and the vacuum was adjusted to 0.1 Torr. There are only two.
  • the hard carbon film 15 having a substantially uniform thickness over the entire length can be formed in a short time on the peripheral surface 11b shown in FIG. 3 facing the auxiliary electrode 71.
  • the hard carbon film is formed on both the outer peripheral surface and the inner peripheral surface of the guide bush 11, but the hard carbon film may be formed only on the inner peripheral surface.
  • a covering member 82 may be arranged on the outer periphery of the guide bush 11, but for simplicity, aluminum foil is used as the covering member 82. It may be wound around the outer periphery of 1.
  • Fig. 14 shows an example in which the first device shown in Fig. 10 is used, and shows an example in which the covering member 82 is arranged on the outer periphery of the guide bush 11; Even when the second or third device shown in Fig. 13 is used, similarly, a covering member 82 such as aluminum foil is arranged on the outer peripheral surface of the guide bush, and is uniformly formed only on the inner peripheral surface. A strong hard carbon film can be formed firmly.
  • the method of forming the hard carbon film is the same as the method of forming the hard carbon film 15 on the inner peripheral surface 11b of the guide bush 11 by various layers described with reference to FIGS. 4 to 8. It can be applied to
  • methane gas or benzene gas is used as the gas containing carbon.
  • Gases containing carbon such as, or vapors of liquids containing carbon, such as hexane, can also be used.
  • a method for forming a hard carbon film on an opening ⁇ of the guide bush is provided. Since the hard carbon film is formed by arranging auxiliary electrodes at the ground potential on the inner peripheral surface, an auxiliary electrode at the ground potential is provided between the inner peripheral surfaces where the electrodes at the same potential are opposed As a result, the same potentials do not oppose each other, and a holo discharge, which is an abnormal discharge, does not occur. Therefore, a hard carbon film having good adhesion can be formed on the inner peripheral surface 11 b of the guide bush 11.
  • FIG. 15 Another embodiment of the method for forming a hard carbon film on the inner peripheral surface of the guide bush according to the present invention will be described with reference to FIGS. 15 to 18.
  • FIG. 15 Another embodiment of the method for forming a hard carbon film on the inner peripheral surface of the guide bush according to the present invention will be described with reference to FIGS. 15 to 18.
  • FIG. 15 Another embodiment of the method for forming a hard carbon film on the inner peripheral surface of the guide bush according to the present invention will be described with reference to FIGS. 15 to 18.
  • FIGS. 15, 17, and 18 are the same as those shown in FIGS. 10, 12, and 13, respectively, with the first, second, and third devices.
  • An example is shown in which a hard carbon film is formed on a guide bush 11 using the same apparatus. Therefore, the same portions as those in each of the drawings are denoted by the same reference numerals, and description thereof will be omitted.
  • a ring-shaped dummy as shown in Fig. 16 having an inner diameter substantially the same as the inner peripheral surface 11b (see Fig. 1) of the guide bush 11 is used.
  • member 53 is used.
  • This dummy member 53 is also formed of stainless steel, similarly to the auxiliary electrode 71.
  • the outer diameter of the dummy member 53 is substantially the same as the size of the open end face of the guide bush 11.
  • a guide bush 11 for forming a hard force film is placed in a vacuum chamber 61 having a gas inlet port 63 and an exhaust port 65.
  • the dummy member 53 is placed on the open end face (the upper end face in the figure) of the guide bush 11 on the outer taper side.
  • a hard material is fixed to the outer peripheral surface 11b of the guide bush 11 or an intermediate layer is formed in advance.
  • the auxiliary electrode 71 of the ground potential is provided so as to be inserted into the center of the center opening 11 j of the guide bush 11. You. At this time, it is preferable that the tip of the auxiliary electrode 71 does not protrude from the upper end surface of the dummy member 53 and is located slightly inside.
  • a DC voltage of minus 3 kV is applied to the guide bush 11 from the DC power supply 73, and a DC voltage of 50 V is applied to the anode 79 from the anode power supply 75. Further, an AC voltage of 10 V is applied to the filament 81 so that a current of 3 OA flows from the filament power supply 77.
  • the function of the auxiliary electrode at this time is the same as that described above, but the dummy member 53 performs the following function.
  • plasma is generated on the inner surface and the outer peripheral portion of the guide bush 11. Then, charges concentrate on the end face of the guide bush 11 and the open end face area has a higher potential than the inner face, that is, a so-called edge effect occurs.
  • the plasma intensity near the end face of the guide bush 11 is higher than in other regions, and is also unstable.
  • the end region of the guide bush 11 is affected by both the plasma on the inner surface and the plasma on the outer periphery.
  • the adhesiveness of the hard carbon film is slightly different between an area several mm behind the open end face of the guide bush 11 and other areas, and furthermore, the film quality is further improved. Are also slightly different.
  • the guide bush 11 If a hard carbon film is formed by arranging the dummy member 53, the region having a different film quality and adhesion is not formed on the inner surface of the guide bush 11 but on the inner surface of the opening of the dummy member 53. .
  • the width of the guide bush 11 was about 4 mm away from the open end face, and the width was l Regions with slightly different film quality and adhesion from mm to 2 mm were formed.
  • a dummy member 53 having an opening dimension substantially equal to that of the guide bush 11 and having a length of 10 mm is placed on the opening end face of the guide bush 11.
  • areas having different film quality and adhesion are formed in the dummy member 53, and the inner surface of the guide bush 11 has different film quality and adhesion. No areas were formed.
  • the hard carbon film forming method shown in FIG. 17 is similar to the hard carbon film forming method shown in FIG. 12, and is formed on the guide bush 11 via a matching circuit 67 at 13.56 MHz.
  • a high-frequency voltage from a high-frequency power source 69 having an oscillation frequency of z a plasma is generated in the vacuum chamber 61, and methane (CH 4 ) gas is used as a gas containing carbon.
  • CH 4 methane
  • plasma is applied to the vacuum chamber 61 ⁇ by applying a DC voltage of ⁇ 600 V from the DC power supply 73 ′ to the guide bush 11. This is different from the above-described method only in that
  • auxiliary electrode 71 and the dummy member a hard carbon film having a uniform thickness and uniform film quality and adhesion can be efficiently formed on the inner peripheral surface 11 b of the guide bush 11. can do.
  • the covering member 82 on the outer periphery of the guide bush 11, it is possible to form a hard carbon film only on the outer peripheral surface.
  • the tip of the auxiliary electrode 71 is arranged so as to be about 1 mm inside the opening end face of the dummy member 53. For this reason, abnormal discharge at the tip of the auxiliary electrode 71, which occurs when the tip of the auxiliary electrode 71 is exposed from the opening end face of the dummy member 53, can be suppressed, and the hard film with good film quality can be suppressed.
  • the carbon film 15 can be formed on the inner peripheral surface of the guide bush 11.
  • FIGS. 19 to 21 show this embodiment, which correspond to FIGS. 15, 17 and 18, respectively.
  • the same parts as those in the figure are denoted by the same reference numerals, and description thereof will be omitted.
  • the auxiliary electrode 71 is inserted into the center opening 11 j of the guide bush 11, so that the guide bush 11 is also formed on the vacuum layer 61 by the insulator 85. It is also insulated and supported, and a DC positive voltage (for example, positive 20 V) is applied to the auxiliary electrode 71 from the auxiliary electrode power supply 83.
  • a DC positive voltage for example, positive 20 V
  • the DC positive voltage applied to the auxiliary electrode 71 is changed from V to 30 V, and the gap between the inner surface of the guide bush 11 and the auxiliary electrode 71 is 3
  • the thickness of the hard carbon film at mm and 5 mm is shown.
  • Curve a shows the characteristic when the gap is 3 mm
  • curve b shows the characteristic when the gap is 5 mm.
  • a high DC voltage is applied to the auxiliary electrode 71.
  • a specific structural example for supporting the auxiliary electrode 71 insulated in the guide bush 11 is shown in Fig. 23.
  • a first hole 85a and a second hole 85b having different inner diameters are formed at the center thereof.
  • the auxiliary electrode 71 is passed through the first hole 85 a of the insulator 85, and the large-diameter connection electrode 87 connected to the auxiliary electrode 71 is inserted into the second hole 85 b. And hold.
  • a gap of 0.01 mm to 0.3 mm is provided between the external dimensions of the auxiliary electrode 71 and the first hole 85a of the insulator 85.
  • a gap of 0.01 to 0.3 mm is provided between the step portion 1 g of the guide bush 11 and the outer diameter of the insulator 85, 8 5 It is configured so that it is inserted into the step 11g with a certain gap size.
  • a cylindrical insertion jig 57 is arranged near the outer peripheral surface 11 b of the guide bush 11.
  • the insertion jig 57 has an inner diameter substantially equal to the diameter of the inner peripheral surface 11 b of the guide bush 11.
  • the auxiliary electrode 71 is arranged on the step portion 11g of the guide bush 11 via the insulator 85, the auxiliary electrode 71 is accurately positioned at the center of the center opening 11j of the guide bush 11. can do.
  • the plasma generated between the auxiliary electrode 71 and the inner wall of the opening loses its balance, and the rigid force film 15 Variations in film thickness and film quality occur.
  • the insulator 85 is inserted into the guide bush 11 so as to fit the inner diameter of the step portion 11 g of the guide bush 11, and the auxiliary electrode 71 is inserted through the first hole 85 a of the insulator 85.
  • the auxiliary electrode 71 can be accurately arranged at the center of the opening of the guide bush 11, so that the thickness and the quality of the hard carbon film 15 do not vary.
  • the method for forming a hard-forced-bon film described with reference to FIGS. 19 to 21 can be performed.
  • the auxiliary electrode 71 collects electrons, the plasma density in the central opening 11 j of the guide bush 11 increases, and the formation speed of the hard carbon film increases.
  • this auxiliary electrode 71 is used by connecting it to the ground potential via the connection electrode 87, it will be described with reference to FIGS. 10 to 18 described above.
  • a method for forming a hard carbon film can also be performed.
  • a negative voltage (about 1Z10) smaller than that applied to the guide bush 11 may be applied to the auxiliary electrode.
  • the movement of electrons in the guide bush 11 can be made more intense, so that the plasma density is increased and the formation speed of the hard carbon film is increased.
  • the auxiliary electrode 71 can be kept at a floating potential while being insulated. Then, a negative potential is generated at the auxiliary electrode due to the interaction with the plasma. Therefore, the same effect as when the above-mentioned small negative voltage is applied can be obtained.
  • the jig with projection 55 a ring-shaped main body 55a having an opening 55b having an inside diameter substantially the same as the diameter of the inner peripheral surface 11b of the guide bush 11b
  • three protrusions 55c that can be inserted into each slot 11c of the guide bush 11 are provided at 120 ° intervals corresponding to each slot 11c.
  • the thickness d of each projection 55c is substantially the same as the slit width of the slit 11c.
  • the jig with projection 55 is provided with three projections 55c on the dummy member 53 used in the above-described method of forming a hard carbon film.
  • this jig with projection 55 is inserted into the slit 11c of guide bush 11 as shown in Fig. 26 and placed on the end face of guide push 11 I do.
  • the hard force film 15 can be formed on the inner peripheral surface 11 b of the guide bush 11 by the above-described methods.
  • the projection 55c of the jig 55 with a projection is inserted into the slit 11c of the guide bush 11, the electric field concentration occurs at the edge of each slit 11c. Edge effect can be suppressed.
  • the film quality and adhesion of the hard carbon film 15 formed on the outer peripheral surface 11 b of the guide bush 11 are further uniformed.
  • FIG. 25 is a vertical cross-sectional view of the insertion jig 57 used by being inserted into the step portion 11 g of the guide bush 11.
  • the insertion jig 57 includes a cylindrical insertion portion 57 a having an inside diameter substantially the same as the diameter of the inner peripheral surface 11 b of the guide bush 11, and a screw portion 1 1 f of the guide bush 11. And a screw portion 57b to be screwed.
  • the outer diameter of the insertion portion 57a is a size that fits into the step 11g of the guide bush 11.
  • the inner surface of the guide bush 11 has no step due to the step 11g. That is, the auxiliary electrode 7 1
  • the gap between the guide bush 11 and the inner circumference of the guide bush 11 becomes uniform in the longitudinal direction of the guide bush 11.
  • the hard carbon film 15 can be formed on the inner peripheral surface 11 b of the guide bush 11 by the above-described methods.
  • both the jig with projection 55 shown in FIG. 24 and the jig 57 shown in FIG. 25 are attached to the guide bush 11.
  • the hard carbon film 15 may be formed.
  • a hard carbon film having better adhesion, film quality and film thickness is formed on the guide bush 11. be able to.
  • the jig with projection 55 and the insertion jig 57 are made of a metal material such as stainless steel.
  • the above-mentioned dummy member 53 and the above-mentioned insertion jig 57 may be combined and mounted on the guide bush 11 to form a hard carbon film.
  • Each of the embodiments of the method for forming a hard carbon film is an example in which the hard member 12 is provided on the outer peripheral surface 11 b of the guide bush 11 and the hard carbon film 15 is formed on the surface. It was explained in.
  • these methods for forming a hard carbon film include a hard carbon film 1 directly or through the above-described various intermediate layers 16 without providing the hard member 12 on the outer peripheral surface 11 b of the guide bush 11.
  • the present invention can be similarly applied to the case where 5 is formed, or the case where a hard carbon film 15 is further formed on the hard member 12 via an intermediate layer 16.
  • methane (CH 4 ) or benzene (C 6 H 6 ) is used as the gas containing carbon.
  • CH 4 methane
  • C 6 H 6 benzene
  • 3 Ethylene (C 2 H 4 ) and hexane (C 6 H 14 ) can also be used.
  • these gases containing carbon can be diluted with an inert gas having a low ionization voltage such as argon (Ar).
  • an inert gas having a low ionization voltage such as argon (Ar).
  • the lubricity and hardness can be increased by adding a small amount (1% or less) of an additive during the formation of the hard carbon film.
  • an additive for example, the addition of fluorine (F) or boron (B) increases lubricity, and the addition of chromium (Cr), molybdenum (Mo) or tungsten (W) increases hardness.
  • a plasma such as argon (Ar) or nitrogen (N 2 ) is generated to bombard the inner surface of the guide bush cylinder.
  • a hard carbon film may be formed by generating plasma using a gas containing carbon such as methane or benzene.
  • the temperature of the inner wall of the cylinder of the guide bush increases, and the guide bush is activated.
  • impurities on the surface of the inner wall of the cylinder are knocked out, and the surface is cleaned. Due to these effects, the adhesiveness of the hard carbon film formed on the guide bush or the inner peripheral surface is further improved.
  • the guide bush according to the present invention for a rotary or fixed type guide bush device of an automatic lathe, cutting with a large incision amount on a workpiece can be performed without causing any damage. It can be performed normally without seizure, and the processing efficiency can be greatly improved. In addition, the drastic improvement in durability extends the time for continuous machining and dramatically improves the operation efficiency of automatic lathes. In addition, by using a fixed type guide bush device, additional Cutting with high accuracy (especially roundness) can be performed efficiently.
  • a hard carbon film having properties similar to a diamond is formed on the inner peripheral surface of the guide bush that is in sliding contact with a workpiece.
  • DLC hard carbon film
  • a highly durable guide bush useful for a guide bush device of an automatic lathe can be manufactured with high productivity as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Turning (AREA)
  • Chemical Vapour Deposition (AREA)
  • Sliding-Contact Bearings (AREA)

Description

明 細 害 ガイ ドブッシュおよびその內周面への硬質カーボン膜形成方法 技術分野
この発明は、 自動旋盤に設けられ、 丸棒状の被加工物を切削工具 (刃物) の近く で回転及び軸方向に摺動可能に保持するガイ ドブッ シュと、 そのガイ ドブッシュの被加工物と摺接する内周面への硬質 カーボン膜の形成方法に関する。 背景技術 自動旋盤の自動旋盤コラムに設けられ、 丸棒状の被加工物を切削 工具の近く で回転可能に保持するガイ ドブッシュには、 回転型と固 定型とがある。 回転型のものは常に被加工物と共に回転しながらそ の被加工物を軸方向に摺動可能に保持し、 固定型のものは回転せず に被加工物を回転及び軸方向に摺動可能に保持する。
いずれの型のガイ ドブッシュ も、 外周テーパ面と、 それに弾力を 持たせるための摺り割り、 コラムに取り付けるためのネジ部と、 被 加工物を保持する内周面とを備えており 、 その内周面は常に被加工 物と摺接するため摩耗しやすく 、 特に固定型の場合はその摩耗が激 しい。
そのため、 この被加工物の回転ゃ摺動によ り被加工物と摺接する ガイ ドブッシュの内周面に、 超硬合金やセラ ミ ックスをロー付けな どによって固着して設ける ものが、 たとえば特開平 4— 1 4 1 3 0 3 号公報に見られるよ う に提案されている。
このよ うに、 耐摩耗性や耐熱性に優れた超硬合金ゃセラ ミ ッ クス をガイ ドブッシュの内周面に設けることによ り 、 ある程度のその摩 耗を抑制する効果が認められる。
しかしながら、 このよ うに超硬合金ゃセラ ミ ックスを内周面に設 けても、 自動旋盤で切削量が大き く加工速度が大きな重切削に対し ては、 超硬合金ゃセラミ ックスも摩擦係数が大き く熱伝導率が低い ため、 被加工物にキズが発生したり、 ガイ ドブッシュ と被加工物と の直径方向の隙間寸法が滅少して焼き付きが発生したりするという 問題があり、 切削量及び加工速度を上げるこ とができなかった。 固定型のガイ ドブッシュの方が、 被加工物をその軸心のブレがな く保持できるので、 真円度が高く精度のよい加工ができ、 しかも騒 音が少なく 、 自動旋盤の構造も複雑にならずコンパク トにできるな どの利点がある。
しかしながら、 ガイ ドブッシュの內周面の摩耗は、 回転型の場合 よ りはるかに大き く なるため、 一層切削量及び加工速度を上げるこ とが困難であるという問題があった。
したがって、 この発明はこのよ うな問題を解決して、 ガイ ドブッ シュの被加工物と接触する內周面の耐摩耗性を飛躍的に高め、 被加 ェ物へのキズの発生や焼き付きを発生するこ となく 、 自動旋盤によ る切削量及び加工速度を上げることができるよ うにすることを目的 とする。 また、 そのよ うなガイ ドブッシュを効率よく製造できるよ う にするこ と も目的とする。 発明の開示
そのため、 この発明は、 被加工物と摺接する内周面に硬質カーボ ン膜を設けたガイ ドブッシュと、 そのガイ ドブッシュの内周面に硬 質カーボン膜を短時間で均一且つ強固に形成するための硬質カーボ ン膜の形成方法を提供する。
この硬質カーボン膜とは、 水素化アモルフ ァ ス · カーボン膜であ り 、 ダイァモン ドによ く似た性質をもっため、 ダイアモン ドライク カーボン (D L C ) と も云われる ものである。
この、 硬質カーボン膜 (D L C ) は、 硬度が高く (ビッカース硬 度で 3 0 0 0 H v以上) 、 耐摩耗性に優れ、 摩擦係数が小さ く (超 硬合金の 1 8位) 、 耐蝕性にも優れている。 そのため、 被加工物と摺接する内周面にこの硬質カーボン膜を設 けたこの発明によるガイ ドブッシュは、 従来の超硬合金ゃセラ ミ ツ クスを内周面に設けたものに比べて、 耐摩耗性が飛躍的に向上する, したがって、 これを自動旋盤の固定型のガイ ドブッシュと して使 用して、 切削量が大き く加工速度が大きな重切削を行なっても、 被 加工物にキズを発生させたり、 焼き付きを生じたりするこ とがなく . 長期間に亘つて精度の高い加工を行なう こ とが可能になる。
上記ガイ ドブッシュの内周面に密着性を高める中間層を介して硬 質カーボン膜を設けると よい。
その中間層を、 チタン又はクロムあるいはそのいずれかの化合物 からなる下層と、 シリ コ ン又はゲルマニウムあるいはそのいずれか の化合物からなる上層との 2層膜で形成すると、 下層がガイ ドブッ シュの内周面 (基材の炭素工具銅) との密着性を保ち、 上層が硬質 カーボン膜と強く結合するため、 密着性のよい強固な硬質カーボン 膜を設けるこ とができる。
あるいは、 内周面にタングステンカーバイ ト (W C ) などの超硬 合金、 あるいはシリ コン力一バイ ト ( S i C ) などのセラ ミ ッ ク ス の焼結体等の硬質部材を介して硬質カーボン膜を設けてもよ く 、 そ の場合も、 上記と同様な中間層を介して硬質カーボン膜を設けると さ らに密着性を高めることができる。
また、 ガイ ドブッシュの內周面付近の基材に浸炭層を形成し、 そ の浸炭層による内周面に硬質カーボン膜を設けてもよく 、 その場合 も、 上記と同様な中間層を介して硬質力一ボン膜を設けると さ らに 密着性を高めることができる。
次に、 この発明によるガイ ドブッシュの內周面への硬質カーボン 膜形成方法は、 次の手順による。
自動旋盤用のガイ ドブッシュを、 排気口およびガス導入口を有し、 内部にァノ一 ドとフィラメ ン トを設けた真空槽內に配置し、 そのガ ィ ドブッシュの被加工物と摺接する内周面を形成する中心開口内に 口 ッ ド又は線状の補助電極を挿入する。 この補助電極を先にガイ ド ブッシュの中心開口内に挿入した状態で、 ガイ ドブッシュと共に真 空槽内に配置してもよい。
そして、 真空槽内を排気した後、 ガス導入口から炭素を含むガス を導入し、 ガイ ドブッシュに直流電圧を印加すると共に、 上記ァノ 一ドに直流電圧を印加し、 上記フィ ラメ ン トに交流電圧を印加して プラズマを発生させ、 上記ガイ ドブッシュの内周面に硬質カーボン 膜を形成する。
なお、 真空槽内でプラズマを発生させる方法と しては、 真空槽内 にアノー ド及びフィ ラメ ン トを設けず、 ガイ ドブッシュに高周波電 圧を印加するか、 あるいは直流電圧を印加してプラズマを発生させ るよ うにしてもよい。
このよ うに、 カイ ドブッシュの中心開口内に補助電極を挿入した 状態で、 真空槽内に炭素を含むガスを導入すると共にプラズマを発 生させることにより、 ガイ ドブッシュの内周面に速く 且つ開口端側 から奥側まで均一な膜厚で硬質カーボン膜を形成するこ とができる その硬質カーボン膜を形成中、 上記補助電極を絶縁して浮遊電位 にしてもよいが、 接地電位あるいは直流正電位に保つのが望ま しい。
さ らに、 ガイ ドブッシュの摺り割り を形成した開口端面に、 該ガ ィ ドブッシュの内周面の径と略同じ内径をもつリ ング状のダミー部 材を配置して、 硬質カーボン膜を形成するこ とによ り 、 内周面の開 口端付近における硬質カーボン膜の均質性を高めるこ とができる。 その場合、 補助電極を、 その先端がダミ一部材の開口端面よ り 内 側に位置するよ うに配置するのが望ましい。
また、 ガイ ドブッシュの摺り割り を形成した開口端面に、 該ガイ ドブッシュの内周面の径と略同じ内径をもつリ ング状の本体にガイ ドブッシュの各摺り割り にそれぞれ挿入可能な複数の突起を備えた 突起付治具を配置し、 その各突起をガイ ドブッシュの各摺り割り に 挿入して、 硬質カーボン膜を形成するこ とによ り、 内周面の開口端 付近及び摺り割り付近における硬質カーボン膜の均質性を高めるこ とができる。 ガイ ドブッシュの被加工物と摺接する内周面よ り径が大きい段差 部に、 上記内周面の径と略同じ内径をもつ円筒状の內揷治具を挿入 して、 硬質カーボン膜を形成することによ り、 上記内周面の段差部 付近における硬質カーボン膜の均質性を高めることができる。 上記突起付治具と内挿治具の両方をガイ ドブッシュに挿入して硬 質カーボン膜を形成すれば、 上記内周面の全域に亘つて均質な硬質 カーボン膜を形成することができる。
上記補助電極を、 ガイ ドブッシュの上記内周面よ り径が大きい段 差部に挿入した碍子によって支持するよ うにすれば、 補助電極をガ イ ドブッシュの中心開口內にてその中心軸線上で支持するこ とが容 易であり、 任意の電圧を印加すること も容易にできる。 図面の簡単な説明
第 1図はこの発明によるガイ ドブッシュの一例を示す縦断面図で あり、 第 2図はその外観を示す斜視図である。
第 3図はこの発明によるガイ ドブッシュの他の例を示す縦断面図 である。
第 4図乃至第 7図は第 1 図及び第 3図に円 Aで囲んで示す部分に 相当する拡大断面図である。
第 8図は第 6図の一部をさらに拡大して中間層の構成例を示す図 である。
第 9図はこの発明によるガイ ドブッシュと従来のガイ ドブッシュ を、 それぞれ固定型のガイ ドブッシュ装置に使用した自動旋盤によ る切削試験結果を比較して示す図である。
第 1 0図はこの発明によるガイ ドブッシュの内周面への硬質カー ボン膜形成方法を実施する第 1 の装置の概略断面図である。
第 1 1図は補助電極 7 1 を配置した場合と配置しない場合での、 ガイ ドブッシュの開口端からの距離と硬質カーボン膜の膜厚との関 係を示す線図である。
第 1 2図はこの発明によるガイ ドブッシュの内周面への硬質カー ボン膜形成方法を実施する第 2の装置の概略断面図である。
第 1 3図はこの発明によるガイ ドブッシュの内周面への硬質カー ボン膜形成方法を実施する第 3の装置の概略断面図である。
第 1 4図は第 1 0図の実施形態に被覆部材を追加した場合の第 1 0図と同様な断面図である。
第 1 5図はこの発明による硬質カーボン膜形成方法の他の実施形 態を示す第 1 0図と同様な概略断面図である。
第 1 6図は第 1 5図の実施例で使用するダミ一部材の斜視図であ る。
第 1 7図及び第 1 8図はこの発明による硬質カーボン膜形成方法 の他の実施形態を示す第 1 2図及び第 1 3図と同様な概略断面図で ある。
第 1 9図はこの発明による硬質力一ボン膜形成方法のさ らに他の 実施形態を示す第 1 5図と同様な概略断面図である。
第 2 0図及び第 2 1 図はこの発明による硬質カーボン膜形成方法 の他の実施形態を示す第 1 7図及び第 1 8図と同様な概略断面図で ある。
第 2 2図は補助電極に印加する直流正電圧と形成される硬質力一 ボン膜の膜厚との関係を示す線図である。
第 2 3図は補助電極の支持構造の具体例を示す断面図である。 第 2 4図はこの発明による硬質力一ボン膜形成方法に使用する突 起付治具の斜視図である。
第 2 5図はおなじく 内挿治具の縦断面図である。
第 2 6図はガイ ドプッシュに突起付治具を装着した状態の縦断面 図である。
第 2 7図はガイ ドブッシュに内挿治具を装着した状態の縦断面図 である。
第 2 8図はガイ ドブッシュに突起付治具と内挿治具を装着した状 態の縦断面図である。
第 2 9図はこの発明によるガイ ドブッシュを用いる固定型のガイ ドブッシュ装置を設けた自動旋盤の主軸近傍のみを示す断面図であ る。
第 3 0図はこの発明によるガイ ドブッシュを用いる回転型のガイ ドブッシュ装置を設けた自動旋盤の主軸近傍のみを示す断面図であ る。 発明を実施するための最良の形態
以下、 図面を参照してこの発明の実施の形態を説明する。
〔この発明のガイ ドブッシュを用いる自動旋盤の説明〕
先ず、 この発明によるガイ ドブッシュを用いる自動旋盤の構造に ついて簡単に説明する。
第 2 9図は、 数値制御自動旋盤の主軸近傍のみを示す断面図であ る。 この自動旋盤は、 ガイ ドブッシュ 1 1 を固定して、 その内周面 l i bで被加工物 5 1 (仮想線で示す) を回転自在に保持する状態 で使用する固定型のガイ ドブッシュ装置 3 7を設けたものである。 主軸台 1 7は、 この数値制御自動旋盤の図示しないベッ ド上を、 図で左右方向に摺動可能となっている。
この主軸台 1 7には、 軸受 2 1 によって回転可能な状態で支持さ れた主軸 1 9を設けている。 そして主軸 1 9の先端部には、 コ レツ トチャック 1 3を取り付けている。
このコ レツ トチャ ック 1 3 は、 チャ ックス リ ーブ 4 1 の中心孔內 に配置する。 そしてコ レツ トチャック 1 3の先端の外周テーパ面 1 3 a と、 チャックス リーブ 4 1 の内周テ一パ面 4 1 a とが互いに面 接触している。
さ らに中間ス リーブ 2 9內のコ レ ツ トチャ ック 1 3の後端部に、 帯状のバネ材をコイル状にしたプリ ング 2 5を設けている。 そして、 このスプリ ング 2 5 の働きによって、 中間ス リ ーブ 2 9内からコ レ ッ トチャック 1 3を押し出すことができる。
コ レツ トチャック 1 3の先端位置は、 主軸 1 9の先端にネジ固定 するキヤッブナッ ト 2 7に接触して位置を規制している。 このため コ レツ トチャック 1 3がスプリ ング 2 5のバネ力によって、 中間ス リーブ 2 9から飛び出すこ とを防止している。
中間ス リーブ 2 9 の後端部には、 この中間ス リーブ 2 9を介して チャック開閉機構 3 1 を設ける。 そしてチャ ック開閉爪 3 3を開閉 することによって、 コ レツ トチャ ック 1 3は開閉し、 被加工物 5 1 を把持したり解放したりする。
すなわち、 チャック開閉機構 3 1 のチャック開閉爪 3 3の先端部 が相互に開く よ うに移動すると、 チャック開閉爪 3 3の中間ス リー ブ 2 9 と接触している部分が、 第 2 9図で左方向に移動して中間ス リーブ 2 9を左方向に押す。 この中間ス リーブ 2 9の左方向への移 動によ り、 中間ス リーブ 2 9の左端に接触しているチャ ックス リ — ブ 4 1 が左方向に移動する。
そして、 コ レッ トチャック 1 3は、 主軸 1 9の先端にネジ止めし ているキャップナツ ト 2 7によって、 主軸 1 9から飛び出すのを防 止されている。
このため、 このチャックス リーブ 4 1 の左方向への移動によって, コ レツ トチャ ック 1 3の摺り割りが形成されている部分の外周テ一 パ面 1 3 a と、 チャ ックス リーブ 4 1 の内周テーパ面 4 1 a とが強 く押されて、 互いにテ一パ面に沿って移動することになる。
その結果、 コ レツ トチャ ック 1 3の内周面の直径が小さ く なり、 被加工物 5 1 を把持するこ とができる。
コ レツ トチャ ック 1 3の内周面の直径を大き く して被加工物 5 1 を解放するときは、 チャック開閉爪 3 3の先端部が相互に閉じるよ うに移動するこ とによ り 、 チャ ックス リーブ 4 1 を左方向に押す力 を除く。
するとスプリ ング 2 5 の復元力によって中間ス リーブ 2 9 とチヤ ックス リーブ 4 1 とが、 図で右方向に移動する。
このため、 コ レツ トチャック 1 3の外周テーパ面 1 3 a と、 チヤ ックス リーブ 4 1 の内周テーパ面 4 1 a との押圧力が除かれること になる。 それによつて、 コレッ トチャック 1 3は自己のもつ弾性力 で內周面の直径が大きく なり、 被加工物 5 1 を解放するこ とができ る。
さ らに、 主軸台 1 7の前方にはコラム 3 5が設けられており、 そ こに、 ガイ ドブッシュ装置 3 7をその中心軸線を主軸中心線と一致 させるよ うにして配置している。
このガイ ドブッシュ装置 3 7は、 ガイ ドブッシュ 1 1 を固定して このガイ ドブッシュ 1 1 の内周面 1 1 bで被加工物 5 1 を回転可能 な状態で保持する固定型のガイ ドブッシュ装置 3 7である。
コラム 3 5に固定したホルダ 3 9の中心孔に、 ブッシュス リーブ 2 3 を嵌入し、 そのブッシュス リーブ 2 3 の先端部には内周テーパ 面 2 3 a を設けている。
そして、 このブッシュス リーブ 2 3の中心孔に、 先端部に外周テ ーパ面 1 1 a及び摺り割り 1 1 c を形成したガイ ドブッシュ 1 1 を 嵌入させて配置している。
ガイ ドブッシュ装置 3 7 の後端部に、 ガイ ドブッシュ 1 1 のネジ 部に螺着して設けた調整ナツ ト 4 3 を回転するこ とによって、 ガイ ドブッシュ 1 1 の内径と被加工物 5 1 の外形との隙間寸法を調整す ることができる。
すなわち、 調整ナッ ト 4 3を右回転させると、 ブッシュス リーブ 2 3に対してガイ ドブッシュ 1 1 が図で右方向に移動し、 コ レツ ト チャ ック 1 3の場合と同様に、 ブッシュス リーブ 2 3の内周テ一パ 面 2 3 a とガイ ドブッシュ 1 1 の外周テーパ面 1 1 a とが相互に押 圧されて、 ガイ ドブッシュ 1 1 の先端部の内径が小さ く なるためで ある。
ガイ ドブッシュ装置 3 7のさ らに前方には、 切削工具(刃物) 4 5 を設けている。
そして、 被加工物 5 1 を主軸 1 9のコ レッ トチャック 1 3で把持 すると共に、 ガイ ドブッシュ装置 3 7で支持し、 しかもこのガイ ド ブッシュ装置 3 7を貫通して加工領域に突き出した被加工物 5 1 を、 0 切削工具 4 5の前進後退と主軸台 1 7の移動との合成運動によって 所定の切削加工を行なう。
つぎに、 被加工物を把持するガイ ドブッシュを回転する状態で使 用する回転型のガイ ドブッシュ装置について、 第 3 0図によって説 明する。 この第 3 0図において、 第 2 9図と対応する部分には同一 の符号を付している。
この回転型のガイ ドブッシュ装置と しては、 コ レツ トチャ ック 1 3 とガイ ドブッシュ 1 1 とが同期して回転するガイ ドブッシュ装置 と、 同期しないで回転するガイ ドブッシュ装置とがある。 この! ¾に 示すガイ ドブッシュ装置 3 7は、 コ レツ トチャ ック 1 3 とガイ ドブ ッシュ 1 1 とが同期して回転するものである。
この回転型のガイ ドブッシュ装置 3 7は、 主軸 1 9のキャ ップナ ッ ト 2 7から突き出した回転駆動棒 4 7によって、 ガイ ドブッシュ 装置 3 7を駆動する。 この回転駆動棒 4 7に代えて、 歯車やベル ト プーリ によってガイ ドブッシュ装置 3 7を駆動するものもある。
この回転型のガイ ドブッシュ装置 3 7は、 コラム 3 5に固定する ホルダ 3 9 の中心孔に、 軸受 2 1 を介して回転可能な状態にブッシ ュス リーブ 2 3 を嵌入させて配置している。 さ らに、 このブッシュ ス リーブ 2 3の中心孔にガイ ドプッシュ 1 1 を嵌入させて配置して いる。
ブッシュス リーブ 2 3 とガイ ドブッシュ 1 1 とは、 第 2 9図によ つて説明したものと同様な構成である。 そしてガイ ドブッシュ装置 3 7の後端部に、 ガイ ドブッシュ 1 1 のネジ部に螺着して設けた調 整ナツ ト 4 3 を回転するこ とによって、 ガイ ドブッシュ 1 1 の内径 を小さ く して、 ガイ ドブッシュ 1 1 の内径と被加工物 5 1 の外形と の隙間寸法を調整することができる。
ガイ ドブッシュ装置 3 7が回転型である以外の構成は、 第 2 9図 によって説明した自動旋盤の構成と同じであるのでそれらの説明は 省略する。 〔この発明によるガイ ドブッシュの説明〕
つぎに、 この発明によるガイ ドブッシュの構成を、 種々の実施形 態について説明する。
第 1 図はこの発明によるガイ ドブッシュの一例を示す縦断面図で あり、 第 2図はその外観を示す斜視図である。
これらの図に示すガイ ドブッシュ 1 1 は、 先端部が開いた自由な 状態を示している。 このガイ ドブッシュ 1 1 は、 長手方向の一端部 に外周テーパ面 1 1 a を形成し、 他端部にネジ部 1 1 f を有する。
さ らに、 このガイ ドブッシュ 1 1 の中心には開口径が異なる貫通 した開口を設けている。 そして外周テ一パ面 1 l a を設けた側の内 周に、 被加工物 5 1 を保持する内周面 1 1 bを形成している。 そし て、 この内周面 l i b以外の領域には、 内周面 l i bの内径よ り大 きな内径をもつ段差部 1 1 gを形成している。
また、 このガイ ドブッシュ 1 1 は、 外周テーパ面 1 1 aからパネ 部 1 1 dにまで、 外周テーパ面 1 1 a を円周方向に 3等分するよ う に摺り割り 1 1 c を、 1 2 0 ° 間隔で 3箇所に設けている。
そして、 前述したブッシュス リーブの內周テーパ面にこのガイ ド ブッシュ 1 1 の外周テ一パ面 1 1 a を押圧することによって、 バネ 部 l i dが橈み、 内周面 l i b と第 1図に仮想線で示す被加工物 5 1 との隙間寸法を調整することができる。
さ らに、 このガイ ドブッシュ 1 1 には、 バネ部 1 1 d とネジ部 1 1 ί との間に嵌合部 1 1 e を設けている。 そして、 この嵌合部 1 1 e を第 2 9図及び第 3 0図に示したブッシュス リーブ 2 3の中心孔 に嵌合させることによって、 ガイ ドブッシュ 1 1 を主軸の中心線上 で、 しかも主軸中心線に平行に配置するこ とができる。
このガイ ドブッシュ 1 1 の材料と しては、 炭素工具鋼 ( S K鋼) を用い、 外形形状と内形形状とを形成した後、 焼き入れ処理と焼き 戻し処理とを行なう。
さ らに、 好ま しく はこのガイ ドブッシュ 1 1 の内周面 1 1 bに、 第 3図に示すよ うに超硬材料 1 2をロウ付け手段によ り固定すると 2 よい。
しかし、 このガイ ドブッシュ 1 1 は、 外周テーパ面 1 1 aが閉じ た状態で、 内周面 1 1 b と被加: 0物 5 1 との間に半径方向で 5 μ m 〜 1 0 /z mの隙間を設けている。 それによ り、 被加工物 5 1 が出入 り して內周面 1 1 b と摺接するため、 その摩耗が問題となる。
さ らに、 固定型のガイ ドブッシュ装置に使用する場合は、 固定さ れたガイ ドブッシュ 1 1 に保持され被加工物 5 1 が高速で回転して 加工されるため、 内周面 1 1 b と被加工物 5 1 との間で高速摺動し しかも切削負荷による内周面 1 1 bへの過大な被加工物 5 1 の押圧 力によって、 焼き付きを発生させる問題がある。
そのため、 このガイ ドブッシュ 1 1 の內周面 1 1 bに、 前述した 硬質カーボン膜 (D L C ) 1 5を設けている。 その硬質力一ボン膜 1 5の膜厚は 1 μ πι力 ら 5 mとする。
第 1 図の例では、 ガイ ドブッシュ 1 1 の基材 (炭素工具鋼) 上に 後述する中間層を介して硬質カーボン膜 1 5を形成し、 第 3図の例 では、 超硬材料 1 2上に直接あるいは後述する中間層を介して硬質 カーボン膜 1 5 を形成する。
この硬質カーボン膜はダイァモン ドと よく似た性質をもつ。 すな わち機械的強度が高く 、 摩擦係数が小さ く潤滑性があり 、 さ らに良 好な電気的絶縁性や高い熱伝導率をもち、 腐食性にも優れている と いう特徴点を備えている。
そのため、 內周面 1 1 bに硬質カーボン膜 1 5 を設けたこのガイ ドブッシュ 1 1 は、 耐摩耗性が飛躍的に向上し、 長期間の使用や重 切削加工においても、 被加工物 5 1 と接触する内周面 1 1 bの摩耗 を抑えるこ とができる。 また、 被加工物 5 1へのキズの発生を抑え ること も可能になり、 ガイ ドブッシュ 1 1 と被加工物 5 1 との焼き 付きの発生を抑制すること もできる。
それ故、 この発明によるガイ ドブッシュ 1 1 は、 長期間の使用に 対する信頼性を格段に向上させることができ、 固定型のガイ ドブッ シュ装置にも充分使用できる。 3 ここで、 このガイ ドブッシュ 1 1 の内周面 1 1 bの硬質カーボン 膜 1 5 を設けた部分の各種の構成例を、 第 1 図及び第 3図に円 Aで 囲んだ部分に相当する拡大断面図である第 4図乃至第 7図と、 その 第 6図の一部を拡大して中間層の構成例を示す第 8図を参照して説 明する。
第 4図は第 1 図の A部の拡大図に相当 し、 ガイ ドブッシュ 1 1 の 內周面 1 1 bの基材 (炭素工具銅) 上に、 密着性を高めるための中 間層 1 6を介して、 硬質カーボン膜を 1 μ πιから の膜厚で設 けたものである。 なお、 ガイ ドブッシュ 1 1 の基材の材質によって は、 中間層 1 6 を介さずに直接その表面に硬質カーボン膜を形成す るこ と も可能である。
第 5図及び第 6図は第 3図の A部の拡大図に相当し、 いずれもガ ィ ドブッシュ 1 1 の內周面 1 1 bの基材上に、 肉厚が 2 m n!〜 5 m mの硬質部材 1 2をロー付け等によって固着し、 その内周面に硬質 カーボン膜 1 5 を形成している。 このよ うにすれば、 ガイ ドブッシ ュ 1 1 の耐久性が一層向上する。
第 5図に示した例では、 硬質部材 1 2の内周面にさ らに密着性を 高める中間層 1 6を介して、 硬質カーボン膜 1 5を形成している。
これらの例において、 硬質力一ボン膜 1 5の下層に設ける硬質部 材 1 2 と して、 ダステンカーバイ ト (W C ) などの超硬合金や、 シ リ コンカーバイ ト ( S i C ) などのセラ ミ クスの焼結体を使用する こ と もできる。 セラ ミ ックスの焼結に際しては、 通常 C r , N i , C oなどをバイ ンダと して添加するが、 その添加が少ない場合には、 中間層 1 6 を介さずに硬質力一ボン膜 1 5を直接その硬質部材 1 2 上に形成するこ と もできる。
ここで、 この硬質部材 1 2 と して用いるシリ コン力一バイ ト
( S i C ) の形成方法の一例を説明する。
原子パーセン トでシリ コ ン ( S i ) と炭素 (C ) と力 対 1 のシ リ コンカーバイ ト粉末を、 リ ング状の金型に入れ、 0 . 5から 3 ト ンの圧力を加えて加圧成型する。 次いで、 窒素やアルゴンガスなど 4 の不活性ガス雰囲気中で焼成処理を行う。
その後、 シリ コンカーバイ トの融点近く の温度 1 4 0 0 °Cから 1 7 0 0 °Cで加熱し、 この加熱と同時に加圧処理を行い、 シリ コ ン力 —バイ ト中のピンホールをなくす。 この加熱加圧処理によってシリ コ ンカーバイ トは緻密化がすすみ、 硬質部材 1 2 と してその密度と 硬度が向上し、 ビッカース硬度で 2 0 0 0力 ら 3 0 0 0になる。
その後、 このリ ング状の硬質部材 1 2にチタン (T i ) を主成分 とするメ タライズ層を形成する。 そしてガイ ドブッシュ 1 1 の内周 面 1 1 bにその硬質部材 1 2を配置して加熱処理を行い、 メ タライ ズ層を溶融させてガイ ドブッシュ 1 1 の基材と接合させる。
そして、 その硬質部材 1 2の內周研磨加工を行なった後、 そのガ ィ ドブッシュ 1 1 に摺り割り 1 1 c を形成する加工を行なう。
第 7図は、 ガイ ドブッシュ 1 1 の内周面 1 1 bに硬質部材 1 2を 設ける代わりに、 内周面 1 1 b付近の基材に浸炭層 1 1 hを形成し. その浸炭層 1 1 hによる内周面 1 1 bに硬質力一ボン膜 1 5を設け た例を示している。
浸炭とは、 鋼材の表面硬化法のひとつで、 表層は硬化させ、 深部 は強靭な性質のままに保つ公知の処理である。
ここでは、 例えばメ タン (C H 4 ) やエチレン (C 2 H 4 ) などの 炭素を含む浸炭性ガス と窒素 (N 2 ) のキャ リ アガス と の混合ガス 雰囲気中で、 次のよ うな条件で浸炭処理を行なう。
(浸炭条件)
温 度 1 1 0 0 °C
時 間 3 0分
浸炭深さ 0 . 5 m m
このよ うにして、 ガイ ドブッシュ 1 1 の内周面 1 1 bの表層に浸 炭層 1 l hを形成した場合は、 その表面に直接硬質カーボン膜 1 5 を形成することができるが、 その表面にさ らに密着性を高める中間 層 1 6 を形成し、 その中間層 1 6 を介して硬質力一ボン膜 1 5を形 成するよ うにするとなおよい。 5 この中間層 1 6 と しては、 周期律表第 I V族のシリ コ ン ( S i ) やゲルマニウム (G e ) 、 あるいはシリ コ ンやゲルマニウムの化合 物でもよい。 あるいはシリ コンカーバイ ト ( S i C) やチタンカー バイ ト (T i C) のよ うな炭素を含む化合物でもよい。
また、 この中間層 1 6 と して、 チタン (T i ) やタフングステン (W) やモリ ブデン (M o ) あるいはタンタル (T a ) とシリ コン ( S i ) との化合物も適用できる。
さ らに、 この中間層 1 6を、 第 8図に示すよ うに、 チタン (T i ) 又はクロム (C r ) による下層 1 6 a と、 シリ コン ( S i ) 又はゲ ルマニウム (G e ) による上層 1 6 b との 2層膜に形成してもよレ、。
このよ うにすると、 中間層 1 6の下層 1 6 aのチタンやク ロムは ガイ ドブッシュ 1 1の基材との密着性を保つ役割を果たし、 上層 1 6 bのシリ コンゃゲルマニウムは硬質カーボン膜 1 5 と共有結合し て、 この硬質力一ボン膜 1 5 と強く結合する役割を果たす。
さ らにまた、 この中間層 1 6 と しては、 チタン化合物又はク ロム 化合物の下層とシリ コン化合物又はゲルマニウム化合物の上層との 2層膜で形成してもよい。 あるいは、 チタン又はク ロ ムの下層とシ リ コン化合物又はゲルマニウム化合物の上層との 2層膜で形成して もよい。 さ らに、 チタン化合物又はクロム化合物の下層とシリ コ ン 又はゲルマニウムの上層との 2層膜と してもよレ、。
そして、 この中間層 1 6の形成方法と しては、 スパッタ リ ング法 やイオンブレーティ ング法、 あるいは化学気相成長 (C VD) 法や 溶射法を適用すればよい。
なお、 前述した硬質部材 1 2 と してシリ コ ンカーバイ ト ( S i C ) を用いる場合には、 この中間層 1 6の形成を省略するこ とができる。 なぜなら、 シリ コン力一バイ トは周期律表の第 I V族のシリ コンと 炭素との化合物であり、 その表面に形成される硬質カーボン膜 1 5 と共有結合して、 高い密着性が得られるからである。
第 9図はこの発明によるガイ ドブッシュと従来のガイ ドブッシュ を、 それぞれ使用した自動旋盤による切削試験結果を比較して示す 6 図である。
ここで実際の切削加工を行って、 従来のガイ ドブッシュと、 本発 明の硬質カーボン膜を內周面に形成したガイ ドブッシュとを比較し た。 比較試験したガイ ドブッシュは固定型のガイ ドブッシュである, 従来のガイ ドブッシュと しては、 內周面に超硬合金 (超硬) のみ を設けたものと、 セラ ミ ックスの焼結体のみを設けたものを使用し この発明のガイ ドブッシュは内周面に中間層を介して厚さ 3 μ τηの 硬質カーボン膜 (D L C ) を形成したものを使用した。
そして切削条件は下記に記す条件で行なった。
被加工物 ステンレス鋼 ( S U S 3 0 3 ) m. 1 6 m m 回転欽 4 0 0 0 r p m
切り込み量 軽 切 削 : d 0 . 8 m m
実用切削 : d 3 mm
苛酷切削 : d 5 . 0 m m
限界切削 : d 6 . 5 m m
送 り 量 0 . 0 5 mm L 回転
加工長さ 2 0 m m
この切削試験の結果を、 第 9図に正常に切削できたこ とを〇印で 切削不能になったことを X印で示している。
すなわち、 従来の超硬合金を設けたガイ ドブッシュを使用した場 合には、 軽切削でも 1個目の被加工物の切削開始直後にガイ ドブッ シュ内周面に焼き付きが発生して、 切削不能になってしまった。
また、 従来のセラ ミ ックスを設けたガイ ドブッシュを使用した場 合には、 軽切削は正常に 1 0 0個の被加工物を切削できたが、 実用 切削では、 1個目の被加工物の切削開始直後にガイ ドブッシュ內周 面に焼き付きが発生して、 切削不能になってしまった。
これに対して、 この発明による硬質カーボン膜 (D L C ) を設け たガイ ドブッシュでは、 軽切削から限界切削まで、 それぞれ 1 0 0 個ずつの被加工物を連続切削加工試験した後、 すなわち 2 0 0 0 m の切削距離の加工を行なっても、 焼き付きの発生は一切なく 、 さ ら にガイ ドブッシュ內周面の摩耗や D L Cの剥離もまったく発生して いなかった。
このよ うに、 この発明によるガイ ドブッシュを使用すれば、 苛酷 な条件での切削加工も可能になり、 加工能率を著しく高めることが でき、 しかも長期間に亘つて信頼性の高い切削加工を行なう ことが できる。
〔ガイ ドブッシュの内周面への硬質カーボン膜形成方法の説明〕 つぎに、 この発明によるガイ ドブッシュへの内周面への硬質カー ボン膜の形成方法の実施形態を説明する。 第 3図に示したガイ ドブッシュ 1 1 の内周面 1 1 bへの硬質カー ボン膜 (D L C ) 1 5の形成方法を説明示する。
第 3図に示したガイ ドブッシュ 1 1 は、 炭素工具銷 ( S K ) 材料 を用いて切削加工を行なって、 外周テ一パ面 1 1 a とバネ部 1 1 d と嵌合部 1 l e とネジ部 1 1 f と、 中心開口 1 1 j による内周面 1 1 b とそれよ り内径が大きい段差部 1 1 g とを形成する。 その後、 円筒形状の超硬材料 1 2をこのガイ ドブッシュ 1 1 の内周面 1 1 b に、 ロ ウ付けにより接合して固着する。
そして、 放電加工を行なって、 このガイ ドブッシュ 1 1 の外周テ ーパ面 1 1 a側に 1 2 0 ° 間隔で摺り割り 1 1 c を形成する。
さ らに研磨加工を行なって、 內周面 1 1 b と外周テーパ面 1 1 a と嵌合部 1 1 e との研磨を行ない、 硬質カーボン膜を形成する前の ガイ ドブッシュ 1 1 を得る。
つぎに、 このガイ ドブッシュ 1 1 に硬質カーボン膜 1 5を形成す る。 硬質カーボン膜 1 5 を形成する第 1 の装置は、 第 1 0図に示す よ うに構成されている。
6 1 は、 ガス導入口 6 3 と排気口 6 5 とを有する真空槽で、 その 中の中央上部に、 アノー ド 7 9 とフィ ラメ ン ト 8 1 が配設されてい る。 この真空槽 6 1 内の中央下部に、 前述したガイ ドブッシュ 1 1 8 を絶縁支持具 8 0に下部を固定して垂直に配置する。
そして、 このガイ ドブッシュ 1 1 の中心開口 1 1 j 內には、 真空 槽 6 1 を介して接地電位に接続される細いロ ッ ド状の補助電極 7 1 を挿入するよ うに配設する。 このと き補助電極 7 1がガイ ドブッシ ュ 1 1 の中心開口 1 1 j の中央部 (略軸線上) に位置するよ うにす る。
なお、 この補助電極 7 1 はステン レス等の金属材料で作られる。 そして、 この補助電極 7 1 は、 その先端がガイ ドブッシュ 1 1 の開 口端面 (第 1 0図では上端面) から突出しないよ うに、 1 m m程度 内側に配置されるよ うにするのが望ま しい。
そして、 真空槽 6 1 内を真空度が 3 X 1 0 - 5 torrになるよ うに、 排気口 6 5から真空排気する。
そしてさ らに、 ガス導入口 6 3から炭素を含むガスと してべンゼ ンを真空槽 6 1 内に導入して、 真空槽 6 1 内の圧力を 5 X 1 0 - 3 torrになるよ うに制御する。
その後、 このガイ ドブッシュ 1 1 に直流電源 7 3から負の直流電 圧を印加し、 ァノ一 ド 7 9にはァノー ド電源 7 5から正の直流電圧 を印加し、 さ らにフィ ラメ ン ト 8 1 にはフ ィ ラ メ ン ト電源 7 7から 交流電圧を印加する。
このとき、 直流電源 7 3からガイ ドブッシュ 1 1 に印加する直流 電圧はマイナス 3 k V、 アノー ド電源 7 5からアノー ド 7 9に印加 する直流電圧はプラス 5 0 V程度とする。 また、 フ ィ ラメ ン ト電源 7 7からフィ ラメ ン ト 8 1 に印加する交流電圧は、 3 O Aの電流が 流れるよ うに 1 0 V程度の交流電圧を印加する。
このよ うにして、 真空槽 6 1 内に配置したガイ ドブッシュ 1 1 の 周囲領域にプラズマを発生させて、 ガイ ドブッシュ 1 1 の表面に硬 質カーボン膜を形成する。
この第 1 0図に示す硬質カーボン膜の形成方法において、 ガイ ド ブッシュ 1 1 の中心開口 1 1 j 內に挿入するよ うに補助電極 7 1 を 設けたことにより、 ガイ ドブッシュ 1 1 の外周部だけでなく 、 内周 9 部にもプラズマを形成することができる。
また、 これによつて異常放電であるホロ一放電が発生することが なく なり、 硬質カーボン膜 1 5 の密着性が向上する。
さ らに、 ガイ ドブッシュ 1 1 の内周面の長手方向で電位特性が均 —になるので、 内周面 1 1 bに形成する硬質カーボン膜の膜厚分布 が均一になる。 しかも、 成膜速度が速く なるため、 開口端面側から と開口奥側まで均一な膜厚の硬質カーボン膜を、 短時間の処理で形 成することができる。
これを、 補助電極 7 1 を配置せずに、 このガイ ドブッシュ 1 1 に 硬質カーボン膜を形成した場合と比較してみる と、 第 1 1図に示す よ うになる。
ガイ ドブッシュ 1 1 の內周面 1 1 bの内径が 1 2 m mの場合、 補 助電極 7 1 を配置しない場合は、 第 1 1図に三角印でプロ ッ ト した 折線 bで示されるよ うに、 膜厚が薄く 、 しかも開口端から奥へ行く に従って膜厚がさらに薄く なる。 これに対し、 補助電極 7 1 を配置 した場合には、 同図に四角印でプロ ッ ト した折線 aで示すよ う に膜 厚が厚く形成され、 しかも開口端からの距離に係わらず略均一な膜 厚になる。
この補助電極 7 1 の径は、 ガイ ドブッシュ 1 1 の開口径よ り小さ ければよいが、 好ま しく は硬質カーボン膜を形成する内周面 1 1 b に対して 5 m m程度の隙間、 すなわちプラズマ形成領域を設けるよ うにするのが望ましい。 この補助電極 7 1 の径とガイ ドブッシュ 1 1 の開口径との比を 1 Z 1 0以下にするのが望ま しく 、 補助電極 7 1 を細くする場合は線状にするこ と もできる。
そして、 この補助電極 7 1 はステンレスで形成する と説明した力 タングステン (W ) やタンタル (T a ) のよ うな高融点の金属材料 で作成してもよい。 また、 この補助電極 7 1 の断面形状は円形とす る。
つぎに、 上述の方法とは異なる実施形態によるガイ ドブッシュの 内周面への硬質カーボン膜形成方法を、 第 1 2図によって説明する。 第 1 2図において、 第 1 0図と対応する部分には同一の符号を付し、 それらの説明は省略する。
この実施形態に使用する第 2の装置の真空槽 6 1 は、 その内部に アノー ド及びフィラメ ン トを設けていない。
この装置を使用する硬質カーボン膜形成方法において、 第 1 0図 に示した装置を使用する硬質カーボン膜形成方法と相違する点は、 真空槽 6 1 内に接地された補助電極を挿入して配置したガイ ドブッ シュ 1 1 に、 マッチング回路 6 7を介して 1 3 . 5 6 MH z の発振 周波数を有する高周波電源 6 9から高周波電圧を印加するよ う にし た点と、 炭素を含むガスと して、 メ タン(C H4) ガスを真空槽 6 1 內 4 に導入し、 真空度が 0. 1 Torrになるよ うに調整するよ う にし た点だけである。
このよ うにしても、 ガイ ドブッシュ 1 1 の外周面側だけでなく 内 周面側にもプラズマが発生し、 ガイ ドブッシュ 1 1 の全面に硬質力 一ボン膜が形成される。 特に、 補助電極 7 1 と対向する第 3図に示 した內周面 1 1 bに、 全長に亘つて略均一な膜厚の硬質力一ボン膜 1 5 を短時間で形成することができる。
つぎに、 上述の方法とはまた異なる実施形態によるガイ ドブッシ ュの內周面への硬質カーボン膜形成成方法を、 第 1 3図によって説 明する。 第 1 3図においても、 第 1 0図と対応する部分には同一の 符号を付し、 それらの説明は省略する。
この実施形態で使用する第 3の装置も、 真空槽 6 1 内にアノー ド 及びフィラメ ン トは設けていない。
この装置を使用する硬質カーボン膜形成方法において、 第 1 0図 に示した装置を使用する硬質カーボン膜形成方法と相違する点は、 真空槽 6 1 内に接地された補助電極を挿入して配置したガイ ドブッ シュ 1 1 に、 直流電源 7 3 ' からマイナス 6 0 0 Vの直流電圧だけ を印加するよ うにした点と、 炭素を含むガスと して、 メ タン(C H4) ガスを真空槽 6 1 內 4に導入し、 真空度が 0. 1 Torrになるよ うに 調整するよ うにした点だけである。 2 のみである。
このよ うにしても、 ガイ ドブッシュ 1 1 の外周面側だけでなく 内 周面側にもプラズマが発生し、 ガイ ドブッシュ 1 1 の全面に硬質力 一ボン膜が形成される。 特に、 補助電極 7 1 と対向する第 3図に示 した內周面 1 1 bに、 全長に亘つて略均一な膜厚の硬質カーボン膜 1 5 を短時間で形成するこ とができる。
以上の説明においては、 ガイ ドブッシュ 1 1 の外周面と内周面の 両方に硬質カーボン膜を形成するよ うにしたが、 内周面にのみ硬質 カーボン膜を形成するよ うにするこ と もできる。
その場合は、 第 1 4図に示すよ うに、 ガイ ドブッシュ 1 1 の外周 部に被覆部材 8 2を配置すればよいが、 簡易的にはこの被覆部材 8 2 と してアルミニウム箔をガイ ドブッシュ 1 1 の外周部に巻き付け るよ うにしてもよい。
第 1 4図は、 第 1 0図に示した第 1の装置を使用した例で、 ガイ ドブッシュ 1 1 の外周部に被覆部材 8 2 を配置した例を示している が、 第 1 2図又は第 1 3図の示した第 2, あるいは第 3の装置を使 用する場合でも、 同様にガイ ドブッシュの外周面にアルミ箔等の被 覆部材 8 2を配置して、 内周面にのみ均一な硬質カーボン膜を強固 に形成するこ もできる。
また、 これらの硬質カーボン膜形成方法は、 第 4図乃至第 8図に よって説明した、 ガイ ドブッシュ 1 1の内周面 1 1 bへの種々の層 構成による硬質カーボン膜 1 5の形成に同様に適用することができ る。
さ らに、 上述の各実施形態によるガイ ドブッシュへの内周面への 硬質カーボン膜形成方法では、 炭素を含むガスと してメ タンガスや ベンゼンガスを用いると説明したが、 メ タン以外にエチレンなどの 炭素を含むガスや、 あるいはへキサンなどの炭素を含む液体の蒸発 蒸気も使用することができる。
これらの実施形態によるガイ ドブッシュへの硬質カーボン膜形成 方法では、 ガイ ドブッシュの開口內に、 硬質カーボン膜を形成すベ き内周面 1 1 わに、 接地電位の補助電極を配置して硬質カーボン膜 を形成しているので、 同電位の電極同士が対向している内周面間に 接地電位の補助電極を設けること となり、 同電位同士が対向するこ とがなく なり、 異常放電であるホロ一放電が発生しない。 そのため 密着の良好な硬質カーボン膜をガイ ドブッシュ 1 1 の内周面 1 1 b に形成することができる。
次に、 この発明によるガイ ドブッシュへの内周面への硬質カーボ ン膜形成方法の他の実施形態を、 第 1 5図乃至第 1 8図を参照して 説明する。
第 1 5図, 第 1 7図, 及び第 1 8図は、 それぞれ前述の第 1 0図, 第 1 2図, 及び第 1 3図に示した第 1 , 第 2, 及び第 3 の装置と同 じ装置を使用してガイ ドブッシュ 1 1 に硬質カーボン膜を形成する 例を示している。 したがって、 これらの各図と同じ部分には同一符 号を付してあり、 それらの説明は省略する。
ここで、 前述の方法と異なる点は、 ガイ ドブッシュ 1 1 の内周面 1 1 b (第 1図参照) の径と略同じ内径をもつ第 1 6図に示すよ う なリ ング状のダミー部材 5 3 を使用する点だけである。 このダミー 部材 5 3 も、 補助電極 7 1 と同様にステン レスによって形成する。
このダミー部材 5 3の外径寸法は、 ガイ ドブッシュ 1 1 の開口端 面の大きさ と略同じ大き さ とする。
そして、 第 1 5図に示すよ う に、 ガス導入口 6 3 と排気口 6 5 と を有する真空槽 6 1 内に、 硬質力一ボン膜を形成するガイ ドブッシ ュ 1 1 を配置する。 このときガイ ドブッシュ 1 1 の外周テ一パ面側 の開口端面 (図では上端面) 上にダミー部材 5 3を載置する。
このとき、 ガイ ドブッシュ 1 1 の内周面とダミー部材の内周面と がー致するよ うにする。
このガイ ドブッシュ 1 1 の內周面 1 1 b には、 前述のよ うに予め 硬質材料を固着したり、 中間層を形成しておく。
そして、 前述の場合と同様にこのガイ ドブッシュ 1 1 の中心開口 1 1 j 内の中心に、 接地電位の補助電極 7 1 を挿入するよ うに設け る。 このとき、 補助電極 7 1 の先端がダミー部材 5 3の上端面から 突出せず、 幾分内側に位置するよ うにするのがよい。
その他については第 1 0図によって説明した方法と同様であるが 念のため説明すると、 真空槽 6 1 内を真空度が 3 X 1 0- 5torrにな るよ うに、 排気口 6 5から真空排気する。
その後、 ガス導入口 6 3から炭素を含むガスと してベンゼン (C6H6) を真空槽 6 1 内に導入して、 真空槽 6 1 内の圧力を 5 X 1 0 -3torrになるよ うに制御する。
そして、 ガイ ドブッシュ 1 1 に直流電源 7 3からマイナス 3 k V の直流電圧を印加し、 ァノー ド 7 9にはァノ一 ド電源 7 5からブラ ス 5 0 Vの直流電圧を印加し、 さ らにフィ ラメ ン ト 8 1 にはブイ ラ メ ン ト電源 7 7から 3 O Aの電流が流れるよ うに 1 0 Vの交流電圧 を印加する。
それによつて、 真空槽 6 1 内のガイ ドブッシュ 1 1 の周囲領域に プラズマを発生させて、 ガイ ドブッシュ 1 1 の第 1 図に示した内周 面 1 1 bを含む表面に硬質カーボン膜を形成する。
その際の補助電極の作用は前述の場合と同様であるが、 ダミー部 材 5 3は次のよ うな作用をなす。
すなわち、 このよ う なガイ ドブッシュ 1 1 への硬質力一ボン膜の 形成方法においては、 ガイ ドブッシュ 1 1 の内面と外周部とにプラ ズマが発生する。 そして、 ガイ ドブッシュ 1 1 の端面は電荷が集中 しゃすく 、 内面に比べて開口端面領域は電位が高い状態、 いわゆる ェッジ効果が発生する。 ここでガイ ドブッシュ 1 1 の端面近傍のプ ラズマ強度は他の領域よ り大き く 、 しかも不安定でもある。
さ らに、 ガイ ドブッシュ 1 1 の端部領域は、 内面のプラズマと外 周部のプラズマとの双方のプラズマの影響を受けるこ とになる。
そして、 このよ うな状態で硬質カーボン膜を形成すると、 ガイ ド ブッシュ 1 1 の開口端面から数 mm奥側の領域と他の領域とでは、 硬質カーボン膜の密着性が若干異なり、 さ らに膜質も若干異なる。
そこで、 第 1 5図に示すよ う にガイ ドブッシュ 1 1 の開口端面に ダミー部材 5 3を配置して硬質カーボン膜を形成すれば、 この膜質 や密着性が異なる領域はガイ ドブッシュ 1 1 の内面に形成されず、 ダミー部材 5 3の開口内面に形成されることになる。
実験によれば、 第 1 0図に示した方法でガイ ドブッシュ 1 1 に硬 質カーボン膜を形成した場合には、 ガイ ドブッ シュ 1 1 の開口端面 から 4 mm程度奥側に、 幅寸法が l mmから 2 mmの膜質や密着性 が若干異なる領域が形成された。
しかし、 第 1 5図に示すよ うに、 ガイ ドブッシュ 1 1 の開口寸法 とほぼ同じ開口寸法をもち、 長さ寸法が 1 0 mmのダミー部材 5 3 をガイ ドブッシュ 1 1 の開口端面に載置して、 前述の硬質カーボン 膜の形成条件で被膜形成を行なった結果、 膜質や密着性が異なる領 域はダミー部材 5 3に形成され、 ガイ ドブッシュ 1 1 の内面には膜 質や密着性が異なる領域は全く形成されなかった。
第 1 7図に示す硬質カーボン膜形成方法は、 第 1 2図に示した硬 質カーボン膜形成方法と同様に、 ガイ ドブッシュ 1 1 に、 マツチン グ回路 6 7を介して 1 3 . 5 6 MH zの発振周波数を有する高周波 電源 6 9から高周波電圧を印加することによって、 真空槽 6 1 内に プラズマを発生させる点と、 炭素を含むガスと してメ タン(C H4) ガスを真空槽 6 1 內 4 に導入し、 真空度が 0. 1 Torrになるよ うに 調整するよ うにした点が、 上述の方法と異なるだけである。
また、 第 1 8図に示す硬質カーボン膜形成方法も、 ガイ ドブッシ ュ 1 1 に、 直流電源 7 3 ' からマイナス 6 0 0 Vの直流電圧を印加 するこ とによって、 真空槽 6 1 內にプラズマを発生させる点が上述 の方法と異なるだけである。
これらの場合も補助電極 7 1 およびダミー部材を使用することに よって、 ガイ ドブッシュ 1 1 の内周面 1 1 b に均一な膜厚で膜質及 び密着性も均一な硬質カーボン膜を能率よく 形成するこ とができる。
さ らに、 第 1 4図に示した例のよ うに、 ガイ ドブッシュ 1 1 の外 周に被覆部材 8 2を配置することによって、 內周面にのみ硬質力一 ボン膜を形成すること もできる。 なお、 これらの硬質カーボン膜の形成方法においては、 補助電極 7 1の先端部をダミー部材 5 3の開口端面よ り 1 m m程度内側にな るよ うに配置している。 このため補助電極 7 1 の先端部がダミー部 材 5 3の開口端面から露出している場合に発生する補助電極 7 1 の 先端部の異常放電を抑制するこ とができ、 膜質が良好な硬質カーボ ン膜 1 5をガイ ドブッシュ 1 1 の内周面に形成することができる。 次に、 この発明によるガイ ドブッシュへの内周面への硬質カーボ ン膜形成方法のさ らに他の実施形態を、 第 1 9図乃至第 2 3図を参 照して説明する。
第 1 9図乃至第 2 1 図はこの実施形態を示す図であるが、 それぞ れ前述の第 1 5図, 第 1 7図, 及び第 1 8図と対応する図であり、 それらの各図と同じ部分には同一符号を付し、 それらの説明は省略 する。
ここで、 前述の方法と異なる点は、 補助電極 7 1 をガイ ドブッシ ュ 1 1 の中心開口 1 1 j に嵌入させたガイシ 8 5によって、 ガイ ド ブッシュ 1 1 に対しても真空層 6 1 に対しても絶縁して支持し、 そ の補助電極 7 1 に補助電極電源 8 3から直流正電圧 (例えばプラス 2 0 V ) を印加するよ うにした点である。
この補助電極 7 1 に印加する直流正電圧と、 ガイ ドブッシュ 1 1 の開口内面に形成される硬質カーボン膜厚との関係を、 第 2 2図の 線図に示す。
この図においては、 補助電極 7 1 に印加する直流正電圧をゼ口 V から 3 0 Vまで変化させ、 さ らにガイ ドブッシュ 1 1 の開口内面と 補助電極 7 1 との間の隙間寸法が 3 m mと 5 m mのと きの硬質カー ボン膜の膜厚を示す。 なお、 曲線 a は上記隙間が 3 m mのと きの特 性を、 曲線 bは上記隙間が 5 m mのときの特性をそれぞれ示す。
この曲線 a , bに示されるよ うに、 補助電極 7 1 に印加する直流 正電圧を増加させると、 硬質カーボン膜の膜形成速度は向上する。 また、 ガイ ドブッシュ 1 1 の開口内面と補助電極 7 1 との間の隙間 寸法が大きいほど、 硬質カーボン膜の膜形成速度は向上する。 そして、 ガイ ドブッシュ 1 1 の開口内面と補助電極 7 1 との間の 隙間寸法が 3 m mのとき (曲線 a ) は、 補助電極 7 1 に印加する電 位がゼロ Vの接地電圧では、 ガイ ドブッシュ 1 1 の中心開口 1 1 j の内面にプラズマが発生せず、 硬質カーボン膜は形成できない。
しかし、 この場合でも補助電極 7 1 に印加する直流正電圧を高く していく と、 ガイ ドブッシュ 1 1 の中心開口 1 1 j 内の補助電極 7 1 の周囲にプラズマが発生し、 硬質カーボン膜を形成することがで きる。
したがって、 中心開口 1 1 j の径が小さいガイ ドブッシュの內周 面にも、 補助電極 7 1 に直流正電圧を印加して使用するこの実施形 態によれば、 硬質力一ボン膜の被膜形成が可能になる。
このよ うな作用は、 第 1 9図乃至第 2 1 図に示すいずれの方法に よって、 ガイ ドブッシュ 1 1 に硬質カーボン膜を形成する場合でも 同様である。
また、 第 1 0図乃至第 1 3図によって説明したよ うに、 ダミー部 材 5 3を使用せずに硬質力一ボン膜を形成する場合でも、 補助電極 7 1 に直流高電圧を印加するこ とによ り、 上述の作用が得られる。 これらの方法を実施する場合に、 補助電極 7 1 をガイ ドブッシュ 1 1 内に絶縁して支持するための具体的な構造例を第 2 3図に示す 第 2 3図において、 セラ ミ ックスからなる絶縁材料であるガイシ 8 5 をガイ ドブッシュ 1 1 の段差部 1 1 g に挿入する。 このガイシ 8 5には、 内径が異なる第 1 の孔 8 5 a と第 2の孔 8 5 b とがその 中心部に形成されている。
そして、 このガイシ 8 5の第 1 の孔 8 5 a に補助電極 7 1 を揷通 させ、 第 2の孔 8 5 bにその補助電極 7 1 に結合した太径の接続電 極 8 7 を嵌入して保持させる。
なお、 補助電極 7 1 の外形寸法とガイシ 8 5の第 1 の孔 8 5 a と の間に 0 . 0 1 m mから 0 . 0 3 m mの隙間を設けるよ う に構成する。
さ らに、 ガイ ドブッシュ 1 1 の段差部 1 1 g とガイシ 8 5の外径 寸法との間にも 0 . 0 1 m mから 0 . 0 3 m mの隙間を設け、 ガイシ 8 5がある隙間寸法をもって段差部 1 1 gに挿入されるよ うに構成 する。
また、 ガイ ドブッシュ 1 1 の內周面 1 1 bの近傍に円筒状の內挿 治具 5 7を配置する。 この内挿治具 5 7には、 ガイ ドブッシュ 1 1 の内周面 1 1 b の径と略同じ内径を有する。
この内挿治具 5 7をガイシ 8 5 とガイ ドブッシュ 1 1 の内周面 1 1 b との間に装着し、 さ らにガイ ドブッシュ 1 1 の開口端面にダミ —部材 5 3を装着すると、 ガイ ドブッシュ 1 1 の硬質カーボン膜 1 5 を形成する内周面 1 1 b の近傍には段差がなく なる。 すなわち硬 質力一ボン膜 1 5を形成する內周面 1 1 bの近傍と補助電極 7 1 と の間の隙間寸法は均一になる。
このよ うに、 ガイ ドブッシュ 1 1 の段差部 1 1 g にガイシ 8 5を 介して補助電極 7 1 を配置すると、 ガイ ドブッシュ 1 1 の中心開口 1 1 j の中心に正確に補助電極 7 1 を配置することができる。
補助電極 7 1 がガイ ドブッシュ 1 1 の開口中心からずれて配置さ れた場合は、 補助電極 7 1 と開口内壁との間に発生するプラズマは そのバランスがくずれ、 硬質力一ボン膜 1 5の膜厚や膜質のばらつ きを生じる。
そこで、 このよ うにガイ ドブッシュ 1 1 の段差部 1 1 gの内径寸 法に合う よ うにガイシ 8 5 を挿入し、 さ らにガイシ 8 5の第 1 の孔 8 5 a で補助電極 7 1 を位置制御すると、 ガイ ドブッシュ 1 1 の開 口中心に正確に補助電極 7 1 を配置することができ、 硬質カーボン 膜 1 5 の膜厚や膜質のばらつきが発生しない。
この補助電極 7 1 に接続電極 8 7 を介して直流正電圧を印加して 使用すれば、 前述の第 1 9図乃至第 2 1 図によって説明した硬質力 一ボン膜形成方法を実施できる。 その場合は、 補助電極 7 1 が電子 を集めるので、 ガイ ドブッシュ 1 1 の中心開口 1 1 j 内のプラズマ 密度が高く なり、 硬質カーボン膜の形成速度が速く なる。
また、 この補助電極 7 1 を接続電極 8 7を介して接地電位に接続 して使用すれば、 前述した第 1 0図乃至第 1 8図によって説明した 硬質カーボン膜形成方法を実施すること もできる。
あるいは、 この補助電極に、 ガイ ドブッシュ 1 1 に印加するよ り も小さな ( 1 Z 1 0 ぐらい) 負電圧を印加するよ うにしてもよい。 それによつて、 ガイ ドブッシュ 1 1 内の電子の運動をよ り激しくす ることができるので、 プラズマ密度が上がり 、 硬質力一ボン膜の形 成速度が速く なる。
さ らに、 この補助電極 7 1 を絶縁状態のままの浮遊電位にしてお く こ と もできる。 そうすると、 プラズマ と の相互作用によ り 、 補助 電極に負の電位が発生する。 従って、 上述の小さい負電圧を印加し た場合と同様な効果が得られる。
第 1 0図乃至第 2 3図による硬質力一ボン膜の形成方法の説明に おいては、 ガイ ドブッシュ 1 1 の開口端面にダミー部材 5 3 を配置 して硬質カーボン膜を形成する実施形態で説明したが、 ダミー部材 5 3 に代えて、 第 2 4図に示すよ うな突起付治具 5 5 を使用するよ うにしてもよい。
この突起付治具 5 5、 第 2 4図に示すよ う に、 ガイ ドブッシュ 1 1 の内周面 1 1 bの径と略同じ内径の開口 5 5 b を有する リ ング状 の本体 5 5 a に、 ガイ ドブッシュ 1 1 の各摺り割り 1 1 c に挿入可 能な 3個の突起 5 5 c を、 各摺り割り 1 1 c に対応する 1 2 0 ° 間 隔で設けている。 その各突起 5 5 c の厚さ寸法 dは、 摺り割り 1 1 c のス リ ッ ト幅寸法とほぼ同じである。
したがって、 前述の硬質カーボン膜形成方法において使用したダ ミ一部材 5 3に 3個の突起 5 5 c を設けたものがこの突起付治具 5 5である。
この突起付治具 5 5を、 第 2 6図に示すよ う にその各突起 5 5 c をガイ ドブッシュ 1 1 の摺り割り 1 1 c に挿入させて、 ガイ ドプッ シュ 1 1 の端面部に配置する。
この状態で前述の各方法によって、 ガイ ドブッシュ 1 1 の内周面 1 1 bに硬質力一ボン膜 1 5を形成するこ とができる。
この突起付治具 5 5を使用してガイ ドブッシュ 1 1 に硬質カーボ ン膜を形成すると、 次のよ うな効果がある。
前述のよ うに、 ガイ ドブッシュ 1 1の開口端面に発生する電荷集 中に起因して、 ガイ ドブッシュ 1 1 の内面に比べてその端面領域は 電荷が高い状態であるエッジ効果が発生する。 しかし、 この突起付 治具 5 5をガイ ドブッシュ 1 1 に装着して硬質カーボン膜を被膜形 成すると、 このエッジ効果を抑制することができる。
すなわち、 ガイ ドブッシュ 1 1 の開口端面に突起付治具 5 5を配 置して硬質カーボン膜を形成すれば、 エッジ効果に起因する硬質力 —ボン膜の膜質や密着性が異なる領域が生じるのを防ぐことができ る。
さ らに、 突起付治具 5 5の突起 5 5 cがガイ ドブッシュ 1 1 の摺 り割り 1 1 c に挿入されているため、 各摺り割り 1 1 c のエッジ部 に発生する電界集中に起因するエッジ効果も抑制するこ とができる。
したがって、 ガイ ドブッシュ 1 1 の內周面 1 1 b に形成される硬 質カーボン膜 1 5の膜質と密着性が一層均一化される。
一方、 第 2 5図に示すのは、 ガイ ドブッシュ 1 1 の段差部 1 1 g に挿着して使用する內挿治具 5 7の縦断面図である。
この内挿治具 5 7には、 ガイ ドブッシュ 1 1 の内周面 1 1 bの径 と略同じ内径をもつ円筒状の内挿部 5 7 a と、 ガイ ドブッシュ 1 1 のネジ部 1 1 f と螺合するネジ部 5 7 b とを備えている。 この内挿 部 5 7 a の外径寸法はガイ ドブッシュ 1 1 の段差部 1 1 gに嵌合す る寸法とする。
この内挿治具 5 7を、 第 2 7図に示すよ うにその内挿部 5 7 a を ガイ ドブッシュ 1 1 の段差部 1 1 gに挿入して、 ネジ部 5 7 b をガ ィ ドブッシュ 1 1 のネジ部 1 1 ί にねじ込んで装着すると、 ガイ ド ブッシュ 1 1 の中心開口 1 1 j の内面には段差がなく なる。 すなわ ちガイ ドブッシュ 1 1 の内面はすべて同一の開口寸法をもつよ う に なる。
この內挿治具 5 7の装着によって、 ガイ ドブッシュ 1 1 の内面に は段差部 1 1 g に起因する段差がなく なる。 すなわち補助電極 7 1 とガイ ドブッシュ 1 1 の内周との隙間寸法は、 ガイ ドブッシュ 1 1 の長手方向で均一になる。
この状態で前述の各方法によって、 ガイ ドブッシュ 1 1の内周面 1 1 bに硬質カーボン膜 1 5を形成することができる。
この內挿治具 5 7を使用してガイ ドブッシュ 1 1 に硬質カーボン 膜を形成すると、 ガイ ドブッシュ 1 1 の長手方向の中心開口 1 1 j の內面で電位特性が均一になり、 硬質力一ボン膜の密着性と膜質と 膜厚とが均一になる。
さ らに、 第 2 8図に示すよ うに、 第 2 4図に示した突起付治具 5 5 と第 2 5図に示した內揷治具 5 7の両方をガイ ドブッシュ 1 1 に 装着して、 硬質カーボン膜 1 5 を形成してもよい。 その場合には、 突起付治具 5 5 と内挿治具 5 7 との相乗効果によ り、 ガイ ドブッシ ュ 1 1 に密着性と膜質と膜厚とが一層良好な硬質カーボン膜を形成 するこ とができる。
この突起付治具 5 5及び内挿治具 5 7は、 ステンレス等の金属材 料によって作られる。
なお、 前述したダミー部材 5 3 と上記內挿治具 5 7 とを組み合わ せて、 それぞれガイ ドブッシュ 1 1 に装着して硬質カーボン膜を形 成するよ うにしてもよい。
なお、 これらの硬質カーボン膜形成方法の各実施形態は、 ガイ ド ブッシュ 1 1 の內周面 1 1 bに硬質部材 1 2を設けて、 その表面に 硬質カーボン膜 1 5を形成する場合の例で説明した。
しかし、 これらの硬質カーボン膜形成方法は、 ガイ ドブッシュ 1 1 の內周面 1 1 bに硬質部材 1 2を設けずに、 直接あるいは前述し た各種の中間層 1 6を介して硬質カーボン膜 1 5を形成する場合、 あるいは硬質部材 1 2上にさらに中間層 1 6 を介して硬質カーボン 膜 1 5 を形成する場合にも同様に適用するこ とができる。
また、 上述したこの発明によるガイ ドブッシュの内周面への硬質 カーボン膜形成方法の各実施形態では、 炭素を含むガスと してメ タ ン (C H 4 ) あるいはベンゼン (C 6 H 6 ) を用いる例で説明したが、 3 エチレン (C2H4) やへキサン (C6H14) などを使用するこ と も できる。
さ らに、 これらの炭素を含むガスを、 アルゴン (A r ) などの電 離電圧の低い不活性ガスで希釈して使用するこ と もできる。 その場 合つ、 ガイ ドブッシュの円筒內のプラズマが更に安定する効果があ る。
あるいはまた、 硬質カーボン膜の生成時に少量 ( 1 %以下) の添 加物を加えることによ り、 潤滑性や硬度を高めることができる。 例えば、 フッ素 (F) 又はボロ ン (B ) を添加する と潤滑性が増 し、 ク ロム (C r ) , モ リ ブデン (M o ) 又はタ ングステン (W) を添加すると硬度が増す。
また、 真空槽内にガイ ドブッシュを配置した後、 硬質カーボン膜 を形成する前に、 アルゴン (A r ) や窒素 (N2) などのプラズマ を発生させてガイ ドブッシュの円筒内面をボンバー ドし、 その後メ タンやベンゼンなどの炭素を含むガスによるプラズマを発生させて、 硬質カーボン膜を形成すると よい。
このよ うに、 不活性ガスによるボンバー ドの前処理を行なう こ と によ り、 ガイ ドブッシュの円筒内壁の温度が上昇して活性状態とな る。 同時に円筒内壁の表面の不純物がたたき出され、 表面がク リ 一 エングされる。 これらの効果によ り、 ガイ ドブッシュのないし内周 面に形成される硬質力一ボン膜の密着性が一層向上する。 産業上の利用可能性
以上説明してきたよ うに、 この発明によるガイ ドブッシュを自動 旋盤の回転型あるいは固定型のガイ ドブッシュ装置に使用すること によ り、 被加工物に対して切り込み量の大きな切削加工をキズの発 生や焼き付きを生ずることなく正常に行なう ことができ、 加工効率 を大幅に高められる。 また、 その耐久性の大幅な向上によ り、 連続 加工可能な時間が長く なり、 自動旋盤の稼動効率も飛躍的に向上す る。 また、 固定型のガイ ドブッシュ装置に使用するこ とによ り 、 加 ェ精度 (特に真円度) の高い切削加工を効率よく行なう こ とができ る。
また、 この発明によるガイ ドブッシュの内周面への硬質カーボン 膜形成方法によれば、 ガイ ドブッシュの被加工物と摺接する内周面 にダイァモン ドとよ く似た性質をもつ硬質カーボン膜 (D L C ) を、 短時間で密着性よく均一な膜厚で形成することができる。
したがって、 上述のよ う に自動旋盤のガイ ドブッシュ装置に有用 な耐久性の高いガイ ドブッシュを生産性よく製造するこ とができる。

Claims

請 求 の 範 囲
1 . 自動旋盤に設けられ、 被加工物を切削工具の近く で回転及び軸 方向に摺動可能に保持するガイ ドブッシュであって、 被加工物と摺 接する内周面に硬質カーボン膜を設けたこ とを特徴とするガイ ドブ ッシュ。
2 . 前記內周面に密着性を高める中間層を介して前記硬質カーボン 膜を設けた請求の範囲第 1項記載のガイ ドブッシュ。
3 . 前記中間層が、 チタン又はク ロムあるいはそのいずれかの化合 物からなる下層と、 シリ コ ン又はゲルマニウムあるいはそのいずれ かの化合物からなる上層との 2層膜で形成されている請求の範囲第
2項記載のガイ ドブッシュ。
4 . 前記内周面に超硬合金又はセラ ミ ッタ スの焼結体等の硬質部材 を介して前記硬質カーボン膜を設けた請求の範囲第 1項記載のガイ ドブッシュ。
5 . 前記硬質部材と前記硬質カーボン膜との間に、 密着性を高める 中間層を設けた請求の範囲第 4項記載のガイ ドブッシュ。
6 . 前記中間層が、 チタン又はク ロムあるいはそのいずれかの化合 物からなる下層と、 シリ コ ン又はゲルマニウムあるいはそのいずれ かの化合物からなる上層との 2層膜で形成されている請求の範囲第 5項記載のガイ ドブッシュ。
7 . 前記内周面付近の基材に浸炭層を形成し、 該浸炭層による内周 面に前記硬質カーボン膜を設けた請求の範囲第 1項記載のガイ ドブ ッシュ。
8 . 前記浸炭層による内周面と前記硬質カーボン膜との間に、 密着 性を高める中間層を設けた請求の範囲第 6項記載のガイ ドブッシュ,
9 . 前記中間層が、 チタン又はク ロムあるいはそのいずれかの化合 物からなる下層と、 シリ コ ン又はゲルマニウムあるいはそのいずれ かの化合物からなる上層との 2層膜で形成されている請求の範囲第 7項記載のガイ ドブッシュ。
1 0 . 自動旋盤用のガイ ドブッシュを、 排気口およびガス導入口を 有し、 內部にアノー ドとフィ ラ メ ン トを設けた真空槽内に配置し、 そのガイ ドブッシュの被加工物と摺接する内周面を形成する中心 開口内に口 ッ ド又は線状の補助電極を挿入し、
前記真空槽內を排気した後、 前記ガス導入口から炭素を含むガス を導入し、 前記ガイ ドブッシュに直流電圧を印加すると共に、 前記 ァノー ドに直流電圧を印加し、 前記フィ ラメ ン 卜に交流電圧を印加 してプラズマを発生させ、
前記ガイ ドブッシュの内周面に硬質力一ボン膜を形成するこ とを 特徴とするガイ ドブッシュの内周面への硬質力一ボン膜形成方法。
1 1 . 前記硬質カーボン膜を形成中、 前記補助電極を接地電位ある いは直流正電位に保つこ とを特徴とする請求の範囲第 1 0項記載の ガイ ドブッシュの內周面への硬質カーボン膜形成方法。
1 2 . 前記ガイ ドブッシュの摺り割り を形成した開口端面に、 該ガ ィ ドブッシュの前記内周面の径と略同じ内径をもつリ ング状のダミ 一部材を配置して、 前記硬質カーボン膜を形成することを特徴とす る請求の範囲第 1 0項記載のガイ ドブッシュの内周面への硬質カー ボン膜形成方法。
1 3 . 前記補助電極を、 その先端が前記ダミー部材の開口端面よ り 内側に位置するよ うに配鷺するこ とを特徴とする請求の範囲第 1 2 項記載のガイ ドブッシュの内周面への硬質カーボン膜形成方法。
1 4 . 前記ガイ ドプッシュの摺り割りを形成した開口端面に、 該ガ ィ ドブッシュの前記内周面の径と略同じ内径をもつリ ング状の本体 に前記ガイ ドブッシュの各摺り割り にそれぞれ挿入可能な複数の突 起を備えた突起付治具を配置し、 前記各突起を前記ガイ ドブッシュ の各摺り割り に挿入して、 前記硬質カーボン膜を形成することを特 徴とする請求の範囲第 1 0項記載のガイ ドブッシュの內周面への硬 質カーボン膜形成方法。
1 5 . 前記ガイ ドブッシュの前記内周面よ り径が大きい段差部に、 前記內周面の径と略同じ内径をもつ円筒状の內挿治具を挿入して、 前記硬質カーボン膜を形成するこ とを特徴とする請求の範囲第 1 0 項記載のガイ ドブッシュの內周面への硬質カーボン膜形成方法。
1 6 . 前記ガイ ドブッシュの摺り割り を形成した開口端面に、 該ガ ィ ドブッシュの前記内周面の径と略同じ内径をもつリ ング状の本体 に前記ガイ ドブッシュの各摺り割りにそれぞれ挿入可能な複数の突 起を備えた突起付治具を配置し、 前記各突起を前記ガイ ドブッシュ の各摺り割り に挿入する と と もに、
前記ガイ ドブッシュの前記内周面よ り径が大きい段差部に、 前記 内周面の径と略同じ内径をもつ円筒状の内挿治具を挿入して、 前記硬質力一ボン膜を形成することを特徴とする請求の範囲第 1 0項記載のガイ ドブッシュの内周面への硬質カーボン膜形成方法。
1 7 . 前記補助電極を、 前記ガイ ドブッシュの前記内周面よ り径が 大きい段差部に挿入した碍子によって支持して、 前記硬質カーボン 膜を形成するこ とを特徴とする請求の範囲第 8項記載のガイ ドブッ シュの內周面への硬質カーボン膜形成方法。
1 8 . 自動旋盤用のガイ ドブッシュを、 排気口およびガス導入口を 有する真空槽内に配置し、
そのガイ ドブッシュの被加工物と摺接する内周面を形成する中心 開口内にロ ッ ド又は線状の補助電極を挿入し、
前記真空槽内を排気した後、 前記ガス導入口から炭素を含むガス を導入し、 前記ガイ ドブッシュに高周波電圧を印加してプラズマを 発生させ、
該ガイ ドブッシュの內周面に硬質カーボン膜を形成することを特 徴とするガイ ドブッシュの内周面への硬質カーボン膜形成方法。
1 9 . 前記硬質力一ボン膜を形成中、 前記補助電極を接地電位ある いは直流正電位に保つこ とを特徴とする請求の範囲第 1 8項記載の ガイ ドブッシュの内周面への硬質カーボン膜形成方法。
2 0 . 前記ガイ ドブッシュの摺り割り を形成した開口端面に、 該ガ ィ ドブッシュの前記内周面の径と略同じ内径をもつリ ング状のダミ 一部材を配置して、 前記硬質カーボン膜を形成するこ とを特徴とす る請求の範囲第 1 8項記載のガイ ドプッシュの内周面への硬質カー ボン膜形成方法。
2 1 . 前記補助電極を、 その先端が前記ダミー部材の開口端面よ り 内側に位置するよ うに配置することを特徴とする請求の範囲第 2 0 項記載のガイ ドブッシュの内周面への硬質カーボン膜形成方法。
2 2 . 前記ガイ ドブッシュの摺り割り を形成した開口端面に、 該ガ ィ ドブッシュの前記内周面の径と略同じ內径をもつリ ング状の本体 に前記ガイ ドブッシュの各摺り割り にそれぞれ挿入可能な複数の突 起を備えた突起付治具を配置し、 前記各突起を前記ガイ ドブッシュ の各摺り割りに挿入して、 前記硬質カーボン膜を形成することを特 徴とする請求の範囲第 1 8項記載のガイ ドブッシュの内周面への硬 質カーボン膜形成方法。
2 3 . 前記ガイ ドブッシュの前記内周面よ り径が大きい段差部に、 前記内周面の径と略同じ內径をもつ円筒状の内挿治具を挿入して、 前記硬質カーボン膜を形成することを特徴とする請求の範囲第 1 8 項記載のガイ ドブッシュの内周面への硬質カーボン膜形成方法。
2 4 . 前記ガイ ドブッシュの摺り割りを形成した開口端面に、 該ガ ィ ドブッシュの前記内周面の径と略同じ內径をもつリ ング状の本体 に前記ガイ ドブッシュの各摺り割り にそれぞれ挿入可能な複数の突 起を備えた突起付治具を配置し、 前記各突起を前記ガイ ドブッシュ の各摺り割り に挿入すると と もに、
前記ガイ ドブッシュの前記內周面よ り径が大きい段差部に、 前記 内周面の径と略同じ内径をもつ円筒状の内挿治具を挿入して、 前記硬質力一ボン膜を形成するこ とを特徴とする請求の範囲第 1 8項記載のガイ ドブッシュの内周面への硬質カーボン膜形成方法。
2 5 . 前記補助電極を、 前記ガイ ドブッシュの前記內周面よ り径が 大きい段差部に挿入した碍子によって支持して、 前記硬質力一ボン 膜を形成するこ とを特徴とする請求の範囲第 1 8項記載のガイ ドブ ッシュの內周面への硬質カーボン膜形成方法。
2 6 . 自動旋盤用のガイ ドブッシュを、 排気口およびガス導入口を 有する真空槽内に配置し、
そのガイ ドブッシュの被加工物と摺接する内周面を形成する中心 開口内にロ ッ ド又は線状の補助電極を挿入し、
前記真空槽内を排気した後、 前記ガス導入口から炭素を含むガス を導入し、 前記ガイ ドブッシュに直流電圧を印加してプラズマを発 生させ、
該ガイ ドブッシュの内周面に硬質カーボン膜を形成することを特 徴とするガイ ドブッシュの內周面への硬質カーボン膜形成方法。
2 7 . 前記硬質カーボン膜を形成中、 前記補助電極を接地電位ある いは直流正電位に保つことを特徴とする請求の範囲第 2 6項記載の ガイ ドブッシュの内周面への硬質カーボン膜形成方法。
2 8 . 前記ガイ ドブッシュの摺り割りを形成した開口端面に、 該ガ ィ ドブッシュの前記內周面の径と略同じ内径をもつリ ング状のダミ 一部材を配置して、 前記硬質カーボン膜を形成するこ とを特徴とす る請求の範囲第 2 6項記載のガイ ドブッシュの内周面への硬質力一 ボン膜形成方法。
2 9 . 前記補助電極を、 その先端が前記ダミー部材の開口端面よ り 内側に位置するよ うに配置することを特徴とする請求の範囲第 2 8 項記載のガイ ドブッシュの内周面への硬質力一ボン膜形成方法。
3 0 . 前記ガイ ドブッシュの摺り割り を形成した開口端面に、 該ガ ィ ドブッシュの前記内周面の径と略同じ内径をもつリ ング状の本体 に前記ガイ ドブッシュの各摺り割りにそれぞれ挿入可能な複数の突 起を備えた突起付治具を配置し、 前記各突起を前記ガイ ドブッシュ の各摺り割り に挿入して、 前記硬質カーボン膜を形成するこ とを特 徴とする請求の範囲第 2 6項記載のガイ ドブッシュの內周面への硬 質カーボン膜形成方法。
3 1 . 前記ガイ ドブッシュの前記内周面よ り径が大きい段差部に、 前記内周面の径と略同じ内径をもつ円筒状の内挿治具を挿入して、 前記硬質カーボン膜を形成することを特徴とする請求の範囲第 2 6 項記載のガイ ドブッシュの內周面への硬質カーボン膜形成方法。
3 2 . 前記ガイ ドブッシュの摺り割り を形成した開口端面に、 該ガ ィ ドブッシュの前記内周面の径と略同じ内径をもつリ ング状の本体 に前記ガイ ドブッシュの各摺り割り にそれぞれ挿入可能な複数の突 起を備えた突起付治具を配置し、 前記各突起を前記ガイ ドブッシュ の各摺り割りに挿入すると と もに、
前記ガイ ドブッシュの前記內周面よ り径が大きい段差部に、 前記 内周面の径と略同じ内径をもつ円筒状の内挿治具を挿入して、 前記硬質カーボン膜を形成することを特徴とする請求の範囲第 2 6項記載のガイ ドブッシュの内周面への硬質カーボン膜形成方法。
3 3 . 前記補助電極を、 前記ガイ ドブッシュの前記内周面よ り径が 大きい段差部に挿入した碍子によって支持して、 前記硬質カーボン 膜を形成することを特徴とする請求の範囲第 2 6項記載のガイ ドブ ッシュの内周面への硬質カーボン膜形成方法。
PCT/JP1996/000580 1995-03-09 1996-03-08 Douille de guidage et procede de formation d'un film de carbone dur sur la surface circonferentielle interne de ladite douille WO1996028270A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96905043A EP0813923A4 (en) 1995-03-09 1996-03-08 GUIDE SLEEVE AND METHOD FOR APPLYING A HARD CARBON FILM TO AN INNER SURFACE OF SUCH A SLEEVE
JP52745996A JP3201773B2 (ja) 1995-03-09 1996-03-08 ガイドブッシュの内周面への硬質カーボン膜形成方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP7/49473 1995-03-09
JP4947395 1995-03-09
JP7/157276 1995-06-23
JP15727695 1995-06-23
JP7/256060 1995-10-03
JP25606095 1995-10-03
JP28471095 1995-11-01
JP7/284710 1995-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/514,896 Division US6419997B1 (en) 1995-03-09 2000-02-28 Guide bush and method of forming hard carbon film over the inner surface of the guide bush

Publications (1)

Publication Number Publication Date
WO1996028270A1 true WO1996028270A1 (fr) 1996-09-19

Family

ID=27462355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000580 WO1996028270A1 (fr) 1995-03-09 1996-03-08 Douille de guidage et procede de formation d'un film de carbone dur sur la surface circonferentielle interne de ladite douille

Country Status (7)

Country Link
US (2) US20030057662A1 (ja)
EP (1) EP0813923A4 (ja)
JP (1) JP2000176704A (ja)
KR (1) KR100261534B1 (ja)
CN (2) CN1063116C (ja)
TW (1) TW312640B (ja)
WO (1) WO1996028270A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501793A (ja) * 2000-04-12 2004-01-22 ユナキス・バルツェルス・アクチェンゲゼルシャフト 滑り特性が向上したdlc層システム、およびそのような層システムを生成するためのプロセス

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264209B1 (en) * 1998-04-28 2001-07-24 Citizen Watch Co., Ltd. Guide bush and method of forming diamond-like carbon film over the guide bush
FR2807353B1 (fr) * 2000-04-10 2002-05-31 Alain Marchand Pince de ravitaillement pour machine-outil
JP2003111990A (ja) * 2001-10-09 2003-04-15 Brother Ind Ltd ミシン
JP3945752B2 (ja) * 2002-01-15 2007-07-18 シチズンホールディングス株式会社 ガイドブッシュ
CN100515624C (zh) * 2004-03-31 2009-07-22 西铁城控股株式会社 坯料导向装置及自动车床
WO2005106065A1 (de) * 2004-04-29 2005-11-10 Oc Oerlikon Balzers Ag Dlc hartstoffbeschichtungen auf kupferhaltigen lagerwerkstoffen
JP5456476B2 (ja) * 2007-09-03 2014-03-26 日本碍子株式会社 一軸偏心ネジポンプ用ロータ
KR200452975Y1 (ko) * 2008-06-09 2011-04-14 주식회사 진영엠에스씨 공구파손 감지장치를 구비한 탭핑머신의 마스터스핀들
JP5012761B2 (ja) * 2008-10-30 2012-08-29 大日本印刷株式会社 プラスチック製容器の製造法
JP5012762B2 (ja) * 2008-10-30 2012-08-29 大日本印刷株式会社 プラスチック製容器の製造法
FR2979554B1 (fr) * 2011-09-07 2014-05-16 Peugeot Citroen Automobiles Sa Bras de serrage d'une piece a travailler
JP6063698B2 (ja) * 2011-12-19 2017-01-18 ミネベア株式会社 摺動部材及び流体動圧軸受装置
DE102013103168B3 (de) 2012-12-21 2014-04-17 Franz Haimer Maschinenbau Kg Werkzeughalter mit eingebauten Kavitäten
DE102015002943A1 (de) * 2015-03-10 2016-09-15 Franz Haimer Maschinenbau Kg Neuartiges Spannzangenfutter
CN105385983B (zh) * 2015-11-09 2017-10-24 中国矿业大学 一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法
CN115070360B (zh) * 2022-07-21 2024-01-26 北京健源科兴机械加工有限公司 用于超长细杆的加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138370A (ja) * 1989-10-23 1991-06-12 Toshiba Corp 薄膜製造装置
JPH04141303A (ja) * 1990-10-01 1992-05-14 Fusao Yamada 棒材加工用の主軸移動型自動旋盤における固定形ガイドブッシュとこれを用いたワーク繰り出し方法
JPH06200377A (ja) * 1992-12-11 1994-07-19 Citizen Watch Co Ltd 硬質カーボン膜の形成方法および形成装置
JPH0660404B2 (ja) * 1985-11-15 1994-08-10 シチズン時計株式会社 カ−ボン硬質膜を被覆した金属部材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1900922A (en) * 1930-09-23 1933-03-14 Morrison Machine Products Inc Gripping face for chucks and method of making the same
FR2592874B1 (fr) * 1986-01-14 1990-08-03 Centre Nat Rech Scient Procede pour tremper un objet en verre ou vitreux et objet ainsi trempe
JPH0270059A (ja) * 1987-12-02 1990-03-08 Idemitsu Petrochem Co Ltd 器具およびその製造方法
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip
JPH0660404A (ja) 1991-04-16 1994-03-04 Ricoh Co Ltd レーザー光軸制御方法及び制御装置
FR2697767B1 (fr) * 1992-11-06 1994-10-21 Alain Marchand Dispositif de guidage des barres sur une machine à décolleter.
JPH06173944A (ja) * 1992-12-03 1994-06-21 Ebara Corp 気体動圧軸受
JP3138370B2 (ja) 1993-09-09 2001-02-26 株式会社日立製作所 情報処理装置
JP3490122B2 (ja) * 1993-09-17 2004-01-26 シチズン時計株式会社 コレットチャック又はガイドブッシュの構造及び製造方法
US5688557A (en) * 1995-06-07 1997-11-18 Lemelson; Jerome H. Method of depositing synthetic diamond coatings with intermediates bonding layers
US5786570A (en) * 1996-01-19 1998-07-28 Citizen Watch Co., Ltd. Heating roller device
KR100230256B1 (ko) * 1996-05-30 1999-11-15 윤종용 원추형 유체베어링을 채용한 헤드드럼 및 스핀들모터
US5922418A (en) * 1996-08-15 1999-07-13 Citizen Watch Co., Ltd. Method of forming a DLC film over the inner surface of guide bush
US5939152A (en) * 1996-08-19 1999-08-17 Citizen Watch Co., Ltd. Method of forming hard carbon film over the inner surface of guide bush
US5879763A (en) * 1997-09-03 1999-03-09 Citizen Watch Co., Ltd. Method of forming hard carbon film over inner surface of cylindrical member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660404B2 (ja) * 1985-11-15 1994-08-10 シチズン時計株式会社 カ−ボン硬質膜を被覆した金属部材
JPH03138370A (ja) * 1989-10-23 1991-06-12 Toshiba Corp 薄膜製造装置
JPH04141303A (ja) * 1990-10-01 1992-05-14 Fusao Yamada 棒材加工用の主軸移動型自動旋盤における固定形ガイドブッシュとこれを用いたワーク繰り出し方法
JPH06200377A (ja) * 1992-12-11 1994-07-19 Citizen Watch Co Ltd 硬質カーボン膜の形成方法および形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0813923A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501793A (ja) * 2000-04-12 2004-01-22 ユナキス・バルツェルス・アクチェンゲゼルシャフト 滑り特性が向上したdlc層システム、およびそのような層システムを生成するためのプロセス
JP4849759B2 (ja) * 2000-04-12 2012-01-11 エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ 滑り特性が向上したdlc層システム、およびそのような層システムを生成するためのプロセス

Also Published As

Publication number Publication date
CN1318443A (zh) 2001-10-24
EP0813923A1 (en) 1997-12-29
KR19980702236A (ko) 1998-07-15
CN1177937A (zh) 1998-04-01
CN1063116C (zh) 2001-03-14
US6419997B1 (en) 2002-07-16
CN1131752C (zh) 2003-12-24
TW312640B (ja) 1997-08-11
KR100261534B1 (ko) 2000-08-01
US20030057662A1 (en) 2003-03-27
JP2000176704A (ja) 2000-06-27
EP0813923A4 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
US6056443A (en) Guide bush and method of forming film over guide bush
WO1996028270A1 (fr) Douille de guidage et procede de formation d'un film de carbone dur sur la surface circonferentielle interne de ladite douille
US5941647A (en) Guide bush and method of forming hard carbon film over the inner surface of the guide bush
JP6337944B2 (ja) 被覆工具
US5922418A (en) Method of forming a DLC film over the inner surface of guide bush
JP3224134B2 (ja) ガイドブッシュの内周面に形成された硬質カーボン膜の剥離方法
JP6308298B2 (ja) 被覆工具の製造方法
US5939152A (en) Method of forming hard carbon film over the inner surface of guide bush
US6337000B1 (en) Guide bush and method of forming diamond-like carbon film over the guide bush
JP3090430B2 (ja) ガイドブッシュへの被膜形成方法
JP3043669B2 (ja) ガイドブッシュおよびその内周面に硬質カーボン膜を形成する方法
JP3043674B2 (ja) ガイドブッシュの内周面への硬質カーボン膜形成方法
JP3043670B2 (ja) ガイドブッシュの内周面に硬質カーボン膜を形成する方法
JP3665247B2 (ja) ガイドブッシュ
JP3201773B2 (ja) ガイドブッシュの内周面への硬質カーボン膜形成方法
US6131533A (en) Jig for forming hard carbon film over inner surface of guide bush using the jig
JP3924051B2 (ja) 被膜形成用治具およびそれを用いてガイドブッシュの内周面に硬質カーボン膜を形成する方法
JP2000071103A (ja) ガイドブッシュおよびガイドブッシュへのダイヤモンドライク・カ―ボン膜の形成方法
JPH10110270A (ja) ガイドブッシュの内周面に硬質カーボン膜を形成する方法
JP2000024803A (ja) ガイドブッシュおよびそのガイドブッシュへの硬質カーボン膜の形成方法
JPH11124671A (ja) ガイドブッシュ内周面への被膜形成方法
JP2000042802A (ja) ガイドブッシュおよびそのガイドブッシュへの被膜の形成方法
JPH0938801A (ja) 自動旋盤のガイドブッシュ装置
JPH1112743A (ja) ガイドブッシュ内周面への被膜形成方法
JPH10328904A (ja) ガイドブッシュ内周面への被膜形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96192438.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996905043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970705633

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08913187

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996905043

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970705633

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970705633

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996905043

Country of ref document: EP