WO2005106065A1 - Dlc hartstoffbeschichtungen auf kupferhaltigen lagerwerkstoffen - Google Patents

Dlc hartstoffbeschichtungen auf kupferhaltigen lagerwerkstoffen Download PDF

Info

Publication number
WO2005106065A1
WO2005106065A1 PCT/CH2005/000225 CH2005000225W WO2005106065A1 WO 2005106065 A1 WO2005106065 A1 WO 2005106065A1 CH 2005000225 W CH2005000225 W CH 2005000225W WO 2005106065 A1 WO2005106065 A1 WO 2005106065A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bearing material
material according
elements
metal
Prior art date
Application number
PCT/CH2005/000225
Other languages
English (en)
French (fr)
Inventor
Thomas Jabs
Michael Scharf
Martin Grischke
Orlaw Massler
Original Assignee
Oc Oerlikon Balzers Ag
Wieland Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oc Oerlikon Balzers Ag, Wieland Werke Ag filed Critical Oc Oerlikon Balzers Ag
Priority to EP05731502A priority Critical patent/EP1769100A1/de
Priority to JP2007509847A priority patent/JP4805255B2/ja
Publication of WO2005106065A1 publication Critical patent/WO2005106065A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/02Carbon based material
    • F16C2206/04Diamond like carbon [DLC]

Definitions

  • the invention relates to a bearing material made of a copper-containing alloy for use in slide bearings according to the preamble of claim 1.
  • Bearing materials containing copper are known from the prior art, as is the good suitability of copper materials for the application of galvanic layers for surface finishing.
  • PVD, CVD or PVD / CVD layers have so far hardly been used on the relatively soft copper bearing materials, since, for example, the layer is pressed or broken through in the base material when subjected to sliding loads with high loads and many layer systems used for tool coating have too high a coefficient of friction, too high roughness or similar lengths1.
  • DE 4006550 describes a textured roller for the forming and processing of steel, which is used to protect the texture with galvanic hard chromium and a medium thereon PVD or CVD process deposited hard material layer is protected against wear.
  • the texture tips are provided with a thicker layer, while the depressions are only coated thinner or not at all.
  • DE 3011694 discloses a method for coating wear surfaces of contact surfaces. Among other things, the application of a galvanic adhesive layer to various metallic materials and a subsequent PVD coating in high-frequency plasma are described, in which a hard material layer based on carbide is deposited. This achieves good electrical conductivity and increased wear protection, but the carbide coating results in a relatively high coefficient of friction.
  • DE 10018143 discloses DLC layer systems with an adhesive layer of a transition layer and a cover layer, in which the cover layer contains exclusively carbon and hydrogen.
  • Coated tools are known from DE 4421144, in which a hard material layer made of metal carbide and then a free carbon-containing friction reduction layer based on tungsten carbide are first applied to increase the service life.
  • the invention is based on the object of providing a copper-containing bearing material in which the disadvantages of the prior art are avoided and better service life compared to conventionally coated materials.
  • DLC diamond like carbon sliding or hard layers modified according to the invention, which are deposited on copper or copper alloys, it is possible to increase the hardness of the surface and thus the wear and abrasion resistance of the materials without their excellent quality Change tribological material properties significantly.
  • a hard layer with defined tribological properties is deposited using a process as described in more detail below, which leads to an extension of the service life of the bearing materials.
  • the layers are hard against the carrier material and thus protect it against abrasive wear.
  • these hard layers for example when used with steel as counter-rotating partner, have a low coefficient of friction and thus prevent an excessive increase in temperature when the surface is subjected to sliding or rolling loads.
  • electroplated bearing materials examples include Cr, Ni and CrNi layers which are applied in front of the support layer.
  • plasma CVD, PVD or PVD / CVD hybrid processes are particularly suitable for the deposition of DLC layers for the coating of copper materials.
  • Support layers which at least one metal Me from the elements of the IV, V, and VI subgroup of the periodic table of the elements (ie Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) or Includes aluminum or Si, this adverse effect can be avoided.
  • Support layers have proven to be particularly advantageous which, in addition to the metallic phase, also contain a non-metal such as C, N, B, or 0 or Contain hard metal compounds with these non-metals.
  • the support layer systems TiN or Ti / TiN ie a metallic titanium layer with an adjoining titanium nitride hard layer
  • CrN or Cr / CrN, Cr x C ⁇ or Cr / Cr x C y , Cr x (CN) y are only examples here or Cr / Cr x (CN) y , TiAl or TiAlN and TiAl / TiAlN mentioned.
  • the support layer has a minimum layer thickness. This is mainly due to the one that occurs depending on the application
  • a layer thickness of at least 1 to approx. 3 ⁇ m is recommended.
  • larger layer thicknesses can also be advantageous.
  • the DLC sliding layer itself is therefore advantageously carried out as follows.
  • a metallic intermediate layer comprising at least one metal Me from the elements of the IV, V, VI subgroup, Al or Si is deposited directly on the support layer.
  • An intermediate layer consisting of the
  • Cr or Ti elements are used, which are known for this purpose have proven particularly suitable.
  • nitridic, carbidic, boridic or oxidic intermediate layers, or intermediate layers which use a mixture of one or more metals with one or more of the non-metals mentioned, which, if necessary, are built up on a metallic base layer with or without a graded transition could be.
  • transition layer in particular in the form of a gradient layer, in the course of which the metal content decreases and the C content increases perpendicular to the workpiece surface.
  • the increase in carbon can be achieved by increasing different carbidic phases, by increasing free carbon, or by mixing such phases with the metallic phase
  • the thickness of the gradient layer can, as is known to the person skilled in the art, be adjusted by setting suitable process ramps.
  • the increase in the C content or decrease in the metallic phase can take place continuously or in stages, furthermore a sequence of metal-rich and C-rich individual layers can also be provided in at least part of the gradient layer in order to further reduce layer stresses. Due to the mentioned configurations of the gradient layer, the material properties (e.g. modulus of elasticity, structure, etc.) of the support and DLC layers are essentially continuously adapted to one another and thus the risk of crack formation along an otherwise occurring metal or Si / DLC interface counteracted.
  • the end of the layer package is essentially composed exclusively of carbon and hydrogen Layer formed with a greater layer thickness compared to the intermediate layer.
  • Such coatings are generally suitable for non-reworkable bearings with high specific loads and limited lubrication conditions, such as in the construction machinery industry or in engine construction.
  • the hardness of the entire DLC layer is set to a value greater than 15 GPa, preferably greater than or equal to 20 GPa, with an adhesive strength better or better even with layer thicknesses> 1 ⁇ m, preferably> 2 ⁇ m on a steel test specimen with a hardness of approx equal to HF 3, but preferably equal to HF 1 according to VDI 3824 sheet 4.
  • the present DLC layer is characterized by the low friction coefficients typical of DLC, preferably ⁇ ⁇ 0.3 in the pen / disk test.
  • the growth rate of the DLC layer in the coating process is around 1-3 ⁇ m / h and, in addition to the process parameters, also depends on the loading of the coating system and the mounting of the parts. In particular, this affects whether the parts to be coated are rotated 1, 2 or 3 times, on magnetic brackets, or clamped or plugged in. Also the
  • the overall mass and plasma consistency of the brackets is important. For example, with lightweight brackets, for example by using spoke plates instead of plates made of solid material, higher growth rates and an overall better layer quality are achieved.
  • the Layer voltage is then 1-4 GPa and thus in the usual range of hard DLC layers.
  • the coating is particularly suitable for plain bearings, since damage to the bearing, for example, can also be prevented by insufficient lubrication. Initial lubrication may even be sufficient.
  • Roughness (Rz) of the surface is therefore advantageously set to be less than or equal to a maximum of 4 ⁇ m.
  • Table 1 shows an example of profiles created by different processing of the surface, all of which have the same Rz value, namely 1 ⁇ m.
  • Profiles 5 and 7 show a particularly high load-bearing component.
  • the load-bearing component t p is therefore advantageously set at a cutting level of 0.75 ⁇ m between 60 to 98%, preferably between 75 and 95%, at a cutting level of 0.50 ⁇ m between 50 to 90% , preferably between 70 and 90%.
  • the application of the Cr adhesive layer is started by activating two Cr magnetron sputtering targets positioned at opposite points of the inside diameter of the vacuum coating system.
  • the Ar gas flow is set to 115 sccm.
  • the Cr sputter targets are with a
  • Power of 8 kW is controlled and the substrates are now rotated past the targets for a period of 6 min.
  • the resulting pressure range is between 10 ⁇ 3 mbar and 10 ⁇ 4 mbar.
  • the sputtering process occurs during the first three minutes supported by switching on the low-voltage arc and continuously by applying a negative DC bias voltage of 75 V to the substrate.
  • an additional plasma is ignited by switching on another bias voltage also applied to the workpiece holder with a bipolar pulse generator, acetylene gas is admitted with an initial pressure of 50 sccm and the flow is increased by 10 sccm every minute.
  • the bipolar pulse plasma generator is set at a frequency of 50 kHz to a pulse voltage of -900 V.
  • the generator is connected between the workpiece holders and the recipient's housing wall.
  • the Helmholtz coils attached to the recipient are both activated with a constant current flow of 2 A in the lower coil and 8 A in the upper coil.
  • the Cr targets With an acetylene flow of 230 sccm, the Cr targets are deactivated and the cover layer, which contains only carbon and hydrogen, is applied while observing the parameters given in Table 2.
  • a DLC sliding layer was applied to the support layer as described in Example 1.
  • the process parameters specified in Table 3 were used to deposit the support layer applied directly to the workpiece.
  • Test duration (including enema): 10 hours
  • Washer (counter body): 100 Cr6, 60-62 HRc, lapped, Rz approx. 1 ⁇ m, Ra approx. 0.7 ⁇ m
  • Lubricant flash lubrication: engine oil SAE30 Initial temperature: room temp. without cooling Measured quantities: frictional torque & wear (continuous, online) and light microscopic evaluation of the running surfaces after the test.
  • the product of pressure p and sliding speed v is significant for the assessment of the bearing load, p * v - values around 2 are usual orders of magnitude. If you increase one factor of the product, the other must be reduced accordingly to ensure a manageable run.
  • pressures of up to 200 MPa can be achieved.
  • Usual orders of magnitude of heavily loaded bearings such. B. in construction machines are 100 MPa.
  • Table 6 gives an overview of the tests in which a metal-containing DLC layer according to Examples 3 and 4 was applied to the coated panes.

Abstract

Lagerwerkstoff aus Kupfer oder einer kupferhaltigen Legierung für den Einsatz in Gleitlagern mit einer zumindest auf Teilen der Gleitfläche abgeschiedenen Deckschicht, die zumindest aus einer Stützschicht und einer Gleitschicht besteht, wobei die Gleitschicht eine Hartschicht ist und diamantartigen Kohlenstoff umfasst.

Description

DLC Hartstoffbeschichtungen auf upferhaltigen Lagerwerkstoffen
Technisches Gebiet
Die Erfindung betrifft einen Lagerwerkstoff aus einer kupferhaltigen Legierung für den Einsatz in Gleitlagern gemäss dem Oberbegriff des Anspruchs 1.
Stand der Technik
Kupferhaltige Lagerwerkstoffe sind ebenso aus dem Stand der Technik bekannt, wie die gute Eignung von Kupferwerkstoffen für das Aufbringen von galvanischen Schichten für die Oberflächenveredelung. Hingegen wurden PVD-, CVD- bzw. PVD/CVD-Schichten bis heute auf den relativ weichen Kupferlagerwerkstoffen kaum eingesetzt, da beispielsweise bei einer Gleitbeanspruchungen mit hoher Belastungen die Schicht in den Grundwerksto f gedrückt wird bzw. durchbricht und viele für die Werkzeugbeschichtung eingesetzte Schichtsysteme einen zu hohen Reibkoeffizient, zu hohe Rauhigkeit oder ähnliche Mänge1 aufweisen.
Aus EP 0288677 ist weiters bekannt wälzbeanspruchte Bauteile aus verschiedenen Stahlsorten mit kupferhaltigen
Gleitlagerwerkstoffen mittels eines PVD-Verfahrens zu beschichten. Auch die Offenlegungsschrift DE 3742317 AI beschreibt ein Verfahren zur Herstellung von korrosions-, verschleiß- und pressfesten Schichten mit Hilfe der PVD- Technik auf Stahl und Edelstahl.
In DE 4006550 wird eine texturierte Walze für die Umformung und Verarbeitung von Stahl beschrieben, die zum Schutz der Textur mit galvanischem Hartchrom und einer darauf mittels PVD- bzw. CVD-Verfahren abgeschiedenen Hartstoffschicht gegen Verschleiss geschützt wird. Bei diesem Verfahren werden allerdings die Texturspitzen mit einer dickeren Schicht versehen, während die Vertiefungen nur dünner oder gar nicht beschichtet werden.
DE 3011694 offenbart ein Verfahren zur Beschichtung von Verschleissflächen von Kontaktflächen. Dabei wird unter anderem das Aufbringen einer galvanischen Haftschicht auf verschiedenen metallischen Werkstoffen und eine daran anschliessende PVD-Beschichtung im Hochfrequenzplasma beschrieben, bei der eine Hartstoffschicht auf Karbidbasis abgeschieden wird. Dadurch wird eine gute elektrische Leitfähigkeit sowie ein erhöhter Verschleisschutz erreicht, wobei sich aber aus der Carbidbeschichtung ein relativ hoher Reibkoeffizient ergibt.
Aus der DE 10018143 sind DLC-Schichtsysteme mit einer Hafteiner Übergangs- und einer Deckschicht bekannt, bei denen die Deckschicht ausschliesslich Kohlenstoff und Wasserstoff enthält .
Aus DE 4421144 sind beschichtete Werkzeuge bekannt, bei denen zur Erhöhung der Standzeit zunächst eine Hartstoffschicht aus Metallcarbid und anschliessend eine freien Kohlenstoff enthaltende ReibminderungsSchicht auf Wolframcarbidbasis aufgebracht wird.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zu Grunde, einen kupferhaltigen Lagerwerkstoff zur Verfügung zu stellen, bei welchem die Nachteile des Standes der Technik vermieden werden und ein besseres Standzeitverhalten gegenüber herkömmlich beschichteten Werkstoffen erreicht wird.
Diese Aufgabe wird durch die erfindungsgemässen Merkmale im kennzeichnenden Teil des Anspruchs 1 gelöst.
Durch die Anwendung erfidnungsgemäss modifizierter DLC (diamond like carbon) Gleit- bzw. Hartschichten, die auf Kupfer- oder Kupferlegierungen abgeschieden werden, ist es möglich die Härte der Oberfläche und damit die Verschleiß- und Abriebfestigkeit der Werkstoffe zu erhöhen, ohne dass sich deren ausgezeichneten tribologischen Werkstoffeigenschaften wesentlich ändern. Dabei wird mit einem wie unten näher beschriebenen Verfahren eine Hartschicht mit definierten tribologischen Eigenschaften abgeschieden, die zu einer Verlängerung der Standzeit der Lagerwerkstoffe führt. Die Schichten sind gegenüber dem Trägerwerkstoff hart und schützen diesen dadurch gegen abrasiven Verschleiß. Darüber hinaus haben diese Hartschichten, beispielsweise im Einsatz mit Stahl als Gegenlaufpartner, einen niedrigen Reibwert und verhindern damit eine übermässige Temperaturerhöhung bei Gleit- oder Wälzbelastung der Oberfläche.
Diese Eigenschaften machen solche Lagerwerkstoffe besonders geeignet für den Einsatz als einbaufertige Gleitlager im Allgemeinen, sowie als Gleitlager für den Motorenbau im Besonderen. Die niedrigen Reibwerte verhindern einen zu hohen Wärmeeintrag in das Lager und garantieren auch unter minimaler Schmierung einen sicheren Lauf der Anwendung und damit eine wesentliche Steigerung der Lebensdauer.
Auf folgenden erfindungsgemäss beschichteten kupferhaltigen Legierungen konnte bis jetzt beim Einsatz als Gleitlager eine besonders markante Verbesserung der Belastbarkeit festgestellt werden: Bronze, Messing oder Neusilber. Auch bei Verwendung von Kupfer bzw. anderen Legierungen, bzw. bei unterschiedlichen Belastungen, beispielsweise wie sie bei Wälzlagern auftreten, konnten teilweise deutliche Verbesserungen erzielt werden.
Weiters kann es auch vorteilhaft sein galvanisch vorbeschichtete Lagerwerkstoffe zu verwenden. Beispiele dafür sind Cr-, Ni- bzw. CrNi-Schichten, die vor der Stützschicht aufgebracht werden.
Aufgrund der niedrigen Abscheidungstemperaturen eignen sich Plasma CVD-, PVD- bzw. PVD/CVD-Hybridverfahren besonders zur Abscheidung von DLC Schichten für die Beschichtung von Kupferwerkstoffen.
Bei der Abscheidung von üblichen, beispielsweise in DE10018143 beschriebenen DLC-Schichten auf dem Lagerwerkstoff, konnte jedoch, weitgehende unabhängig von der Schichtdicke, auf dem Gegenlaufkörper abrasiver Verschleiss in Form von Riefenbildung und auf dem Lagerwerkstoff teils punktuelles Abplatzen der Schicht beobachtet werden. Weiters trat teilweise auch Blauverfärbung durch hohe Temperaturbelastung auf den Laufflächen des Gegenkörpers auf. Dies wurde zunächst auf die zu hohe Härte der DLC-Schicht zurückgeführt.
Erstaunlicherweise konnte aber durch Aufbringen einer zusätzlichen Stützschicht, die zumindest ein Metall Me aus den Elementen der IV, V, und VI Nebengruppe des Periodensystems der Elemente (d.h. Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) bzw. Aluminium oder Si umfasst, dieser nachteilige Effekt vermieden werden. Als besonders vorteilhaft haben sich dabei Stützschichten erwiesen, die neben der metallischen Phase auch noch ein Nichtmetall wie C, N, B, oder 0 bzw. die HartstoffVerbindungen der Metalle mit diesen Nichtmetallen enthalten. Lediglich beispielhaft seien hier die Stützschichtsysteme TiN bzw. Ti/TiN (d.h. eine metallische Titanschicht mit einer daran anschliessenden Titannitridhartschicht) , CrN bzw. Cr/CrN, CrxCγ bzw. Cr/CrxCy, Crx(CN)y bzw. Cr/Crx(CN)y, TiAl bzw. TiAlN und TiAl/TiAlN erwähnt .
Allerdings ist dabei je nach Anwendungsfall zu beachten, dass die Stützschicht eine Mindestschichtdicke aufweist. Dies ist vor allem von der je nach Anwendungsfall auftretenden
Flächenpressung abhängig. Beispielsweise konnte bei einer geringen Flächenpressung bereits mit Schichtdicken von 0.5 μm eine ausreichende Stützwirkung der DLC-Schicht erreicht werden, während bei einer Stützschicht von 0.3 μm die Stützwirkung nicht mehr ausreichend gegeben war. Im
Allgemeinen ist jedoch eine Schichtdicke von zumindest 1 bis ca. 3 μm empfehlenswert. Für Anwendungen bei denen besonders hohe Flächenpressungen auftreten, können auch grössere Schichtdicken vorteilhaft sein.
Zusätzlich kann noch zwischen der Stützschicht und der
Gleitschicht eine metallische Zwischenschicht mit oder ohne gradiertem Übergang, oder direkt eine ÜbergangsSchicht, beispielsweise in Form einer Gradientenschicht mit gegen die Gleitschicht hin zunehmendem Kohlenstoffgehalt aufgebracht werden.
Die DLC-Gleitschicht selbst wird daher vorteilhafterweise wie folgt ausgeführt. Direkt auf der Stützschicht wird eine metallische Zwischenschicht, die zumindest ein Metall Me aus den Elementen der IV, V, VI Nebengruppe, AI oder Si umfasst, abgelegt. Bevorzugt wird eine Zwischenschicht aus den
Elementen Cr oder Ti verwendet, die sich für diesen Zweck als besonders geeignet erwiesen haben. Es können aber auch nitridische, karbidische, boridische, oder oxydische Zwischenschichten, bzw. Zwischenschichten, die eine Mischung aus einem oder mehreren Metallen mit einem oder mehreren der genannten Nichtmetalle verwendet werden, die bei Bedarf selbst auf einer metallischen Grundschicht mit oder ohne gradiertem Übergang aufgebaut sein können.
Daran, oder alternativ direkt, ohne Zwischenschicht, schliesst sich bevorzugt eine ÜbergangsSchicht insbesondere in Form einer Gradientenschicht an, in deren Verlauf senkrecht zur Werkstückoberfläche der Metallgehalt ab- und der C-Gehalt zunimmt. Der Zuwachs des Kohlenstoffs kann dabei durch Zunahme gegebenenfalls unterschiedlicher karbidischer Phasen, durch Zunahme des freien Kohlenstoffs, bzw. durch eine Mischung derartiger Phasen mit der metallischen Phase der
Zwischenschicht erfolgen. Die Dicke der Gradientenschicht kann dabei, wie dem Fachmann bekannt, durch Einstellung geeigneter Prozessrampen eingestellt werden. Die Zunahme des C-Gehalts bzw. Abnahme der metallischen Phase kann kontinuierlich oder stufenweise erfolgen, weiters kann zumindest in einem Teil der Gradientenschicht auch eine Abfolge metallreicher und C- reicher Einzelschichten zum weiteren Abbau von SchichtSpannungen vorgesehen werden. Durch die erwähnten Ausbildungen der Gradientenschicht werden die Materialeigenschaften (beispielsweise E-Modul, Struktur etc.) der Stütz- und der DLC-Schicht im wesentlichen kontinuierlich aneinander angepasst und damit der Gefahr der Rissbildung entlang einer sonst auftretenden Metall bzw. Si / DLC-Grenzfläche entgegengewirkt .
Will man besonders harte Oberflächen erzielen, wird der Abschluss des Schichtpakets als eine im wesentlichen ausschliesslich aus Kohlenstoff und Wasserstoff bestehende Schicht, mit einer im Vergleich zur Zwischenschicht grösseren Schichtdicke gebildet. Solche Beschichtungen eignen sich generell für nicht nachbearbeitbare Lagerstellen mit hoher spezifischer Belastung und eingeschränkten Schmierbedingungen wie z.B. in der Baumaschinenindustrie oder im Motorenbau.
Die Härte der gesamten DLC-Schicht wird dabei auf einen Wert grösser 15 GPa, bevorzugt grösser/gleich 20 GPa eingestellt wobei auch bei Schichtdicken > 1 μm, bevorzugt > 2 μm auf einem Stahlprüfkörper mit einer Härte von ca. 60 HRC eine Haftfestigkeit besser oder gleich HF 3, bevorzugt aber gleich HF 1 nach VDI 3824 Blatt 4 erreicht wird. Der
Oberflächenwiderstand der DLC-Schicht liegt zwischen δ = 10~6 Ω und δ = 5 MΩ, bevorzugt zwischen 1 Ω und 500 kΩ, bei einem Elektrodenabstand von 20 mm. Gleichzeitig zeichnet sich die vorliegende DLC-Schicht durch die für DLC typischen niedrigen Reibkoeffizienten, bevorzugt μ ≤ 0.3 im Stift / Scheibetest, aus .
Schichtrauhigkeit: Ra=0.01-0.04; Rz DIN < 0.8 bevorzugt < 0.5
Die Wachstumsgeschwindigkeit der DLC Schicht liegt beim Beschichtungsprozess bei etwa 1-3 μm/h und hängt, neben den Prozessparametern, auch von der Beladung der Beschichtungsanlage und der Halterung der Teile ab. Insbesondere wirkt sich hierbei aus ob die zu beschichtenden Teile 1-, 2- oder dreifach drehend, auf Magnethalterungen, oder geklemmt bzw. gesteckt befestigt werden. Auch die
Gesamtmasse und Plasmadurchgängigkeit der Halterungen ist von Bedeutung, so werden beispielsweise mit leichtgebauten Halterungen, z.B. durch Verwendung von Speichentellern, statt Tellern aus Vollmaterial, höhere Wachstumsgeschwindigkeiten und eine gesamthaft bessere Schichtqualität erzielt. Die SchichtSpannung liegt dann bei 1-4 GPa und somit im üblichen Bereich von harten DLC-Schichten.
Will man hingegen besonders gute Gleit- und Einlaufeigenschaften erzielen, so ist es vorteilhaft auch im abschliesssenden Schichtpaket einen Restmetallgehalt von einem bis maximal 20% vorzusehen, da solche Schichten, bei etwas geringerer Härte (9 bis 15 GPa) einen deutlich geringeren Reibkoeffizienten aufweisen und weiters eine noch bessere Abfuhr der im Lager entstehenden Reibwärme ermöglichen.
Infolge des mechanischen Einlaufens der Schicht ist die Beschichtung besonders für Gleitlager geeignet, da auch beispielsweise eine Schädigung des Lagers durch eventuell auftretende MangelSchmierung verhindert wird. Gegebenenfalls ist sogar eine InitialSchmierung ausreichend.
Auf Grund der ausgezeichneten Leitfähigkeit solcher metallhaltigen DLC-Schichten können diese auch dann vorteilhaft angewandt werden, wenn neben der Lagerfunktion auch eine Übertragung elektrischer Signale ermöglicht werden soll. Ein weiterer wichtiger Faktor für die Leistungsfähigkeit erfindungsgemässer Lagerwerkstoffe ist die richtige Einstellung des Traganteils um einerseits eine möglichst gleichverteilte grossflächige Stützwirkung und andererseits eine gleichmässige Verteilung des Schmierfilms durch Bereitstellung einer genügend grossen Anzahl von sogenannten Öltaschen auf der Oberfläche sicherzustellen. Durch einen hohen Traganteil A der Lagerfläche wird vermieden, dass durch die auftretende Lagerkraft F eine zu hohe punktuelle Belastung, auch Pressung p genannt, und ein damit einhergehender Verschleiss auftritt (p = F / A) . Die
Rauhigkeit (Rz) der Oberfläche wird daher vorteilhaft kleiner bzw. maximal gleich 4 μm eingestellt. Tabelle 1 zeigt hier in beispielhafter Weise durch unterschiedliche Bearbeitung der Oberfläche entstandene Profile, die alle denselben Rz-Wert, nämlich 1 μm aufweisen. Einen besonders hohen Traganteil zeigen dabei die Profile 5 und 7. Vorteilhaft wird daher der Traganteil tp bei einem Schnittniveau von 0.75 μm zwischen 60 bis 98%, bevorzugt zwischen 75 und 95% eingestellt, bei einem Schnittniveau von 0.50 μm zwischen 50 bis 90%, bevorzugt zwischen 70 und 90%.
Die Einstellung derartiger Oberflächenstrukturen erfolgt dabei jedenfalls vor dem Aufbringen der PVD- bzw. CVD-Beschichtung, da diese Verfahren die Struktur der Oberfläche erhalten. Erfüllt auch eine eventuell vorgesehene galvanische Vorbeschichtung diese Anforderung kann die Feinbearbeitung der Oberfläche vorteilhaft noch vor diesem Schritt erfolgen.
Tabelle 1
Figure imgf000010_0001
Beispiele und Versuche
Im folgenden wird die Erfindung anhand verschiedener Ausführungsbeispiele beschrieben. Alle DLC Schichten, bzw. Stützschichten wurden bei Temperaturen von weniger als 250 °C auf Kupferwerkstoffen, in einer, wie in DE 100 18 143 unter Figur 1 und dazugehöriger Beschreibung [0076] bis [0085] modifizierten, Balzers BAI 830 C Produktionsanlage, abgeschieden. Dazu wurde bei allen Beschichtungen eine Vorbehandlung mit einem, wie aus Prozessbeispiel 1 obiger
Schrift bekannten Heiz- und Ätzprozess unter Verwendung eines Niedervoltbogens vorgenommen. Die entsprechend bezeichneten Stellen obiger Offenbarungsschrift werden zum integralen Bestandteil vorliegender Anmeldung erklärt.
Vergleichendes Beispiel 1
Dabei wurde eine im abschliesenden d.h. äusseren Schichtbereich metallfreie DLC-Gleitschicht auf einer CuSnδ- Bronze mittels ChromhaftSchicht, aber ohne zusätzliche Stützschicht aufgebracht. Nach der oben erwähnten Vorbehandlung wurden folgende Verfahrensschritte gewählt:
Zunächst wird mit der Aufbringung der Cr-Haftschicht begonnen, indem zwei an gegenüberliegenden Stellen des Innendurchmessers der Vakuumbeschichtungsanlage positionierte Cr-Magnetron- Sputtertargets aktiviert werden. Der Ar-Gasfluss wird auf 115 sccm eingestellt. Die Cr-Sputter-Targets werden mit einer
Leistung von 8 kW angesteuert und die Substrate werden nun für eine Zeit von 6 min an den Targets vorbei rotiert. Der sich einstellende Druckbereich liegt dann zwischen 10~3 mbar und 10~4 mbar. Der Sputterprozess wird während der ersten drei Minuten durch die Zuschaltung des Niedervoltbogens und durchgehend durch das Anlegen einer negativen DC-BiasSpannung von 75 V am Substrat unterstützt.
Nach Ablauf dieser Zeit und Abschalten der DC-BiasSpannung wird durch Einschalten einer anderen ebenfalls am Werkstückhalter angelegten Biasspannung mit einem bipolaren Pulsgenerator ein zusätzliches Plasma gezündet, Acetylengas mit einem Anfangsdruck von 50 sccm eingelassen und der Fluss jede Minute um 10 sccm erhöht. Der bipolare Puls-Plasmagenerator wird dabei bei einer Frequenz von 50 kHz auf eine Pulsspannung von -900 V eingestellt. Der Generator ist zwischen den Werkstückhalterungen und der Gehäusewand des Rezipienten geschaltet. Die am Rezipienten angebrachten Helmholtzspulen sind dabei beide mit einem konstanten Stromdurchfluss von 2 A in der unteren Spule und 8 A in der oberen Spule aktiviert. Bei einem Acetylenfluss von 230 sccm werden die Cr-Targets deaktiviert und die ausschliesslich Kohlenstoff und Wasserstoff enthaltende Deckschicht unter Einhaltung der in Tabelle 2 angegebenen Parametern aufgebracht.
Tabelle 2) Beschichtungsparameter DLC-Deckschicht
Figure imgf000012_0001
Beispiel 2
Für die Versuche mit einer CrN-Stützschicht wurde eine DLC- Gleitschicht wie in Beispiel 1 beschrieben auf der Stützschicht aufgebracht. Zur Abscheidung der direkt auf dem Werkstück aufgebrachten Stützschicht wurden die in Tabelle 3 angegebenen Prozessparameter verwendet.
Tabelle 3) Beschichtungsparameter CrN-Stützschicht
Figure imgf000013_0001
Vergleichendes Beispiel 3
Dabei wurde eine im abschliessenden d.h. äusseren Schichtbereich metallhaltige DLC-Gleitschicht auf einer CuSn8- Bronze mittels Chromhaftschicht, aber ohne zusätzliche Stützschicht aufgebracht. Nach der oben erwähnten Vorbehandlung wurde zunächst eine Chromhaftschicht wie in Beispiel 1 aufgebracht
Anschliessend wurden bei aktivierten Cr-Targets sechs WC- Targets mit 1kW Leistung aktiviert und beide Targettypen für 2 min gleichzeitig laufengelassen. Dabei wird die Leistung der WC-Targets bei gleich bleibendem Ar-Fluss in 2 Minuten von 1kW auf 3,5 kW erhöht. Gleichzeitig wird auf den Bauteilen der negative Substratbias in Form einer Rampe erhöht. Dieser wurde ausgehend von der am Ende der Cr-Haftschicht angelegten Spannung in 2 min bis auf -300V erhöht. Die -300V sind also dann erreicht, wenn die WC-Targets auf höchster Leistung laufen. Anschliessend werden die Cr-Targets abgeschaltet. Die WC-Targets werden 6 min bei konstantem Ar-Fluss laufengelassen, dann wird der Acetylengasfluss in 11 min. auf 200sccm erhöht.
Während der letzten Beschichtungsphase zum Aufbringen der metallhaltigen DLC-Deckschicht werden die in Tabelle 4 beschriebenen Parameter konstant gehalten. Tabelle 4) Beschichtungsparameter metallhaltige DLC- Deckschicht
Beispiel 4
Für die Versuche mit einer CrN-Stützschicht wurde eine metallhaltige DLC-Gleitschicht wie in Beispiel 3 beschrieben auf einer wie in Beispiel 2 ausgeführten CrN-Stützschicht aufgebracht . Tribometertests
Zur Beurteilung der Eignung der jeweiligen Schicht für den Einsatz als Lagerwerkstoff wurden verschiedene Versuche mit einem Wazau TRM 1000 Ring/Scheibe Tribometer (Flächenkontakt) durchgeführt .
Dabei wurden folgende Testbedingungen eingestellt:
Kontaktgeometrie : Ring/Scheibe Flächenkontakt, Ringdurchmesser 30/35 mm; Fläche 255,3 mm Umfang 102, 1 mm
Bewegung: rotierend, 30 U/min
Gleitgeschwindigkeit : 0,5 m/s
Belastung Einlauf: 300 N, 5 Minuten
Belastung Lauf: 1000 N
Spezifische Belastung (Pressung) 4 MPa
Prüfdauer (inkl. Einlauf): 10 Stunden
Gleitweg nach 10h: 18.378 m
Ring (Buchse) : CuSn8 beschichtet
Rauhigkeit: Rz < 4 μm
Scheibe (Gegenkörper) : 100 Cr6, 60-62 HRc, geläppt, Rz ca. 1 μm, Ra ca. 0,7 μm
Schmierstoff (Tauchschmierung) : Motorenöl SAE30 Ausgangstemperatur : Räumtemp. ohne Kühlung Messgrossen: Reibungsmoment & Verschleiss (kontinuierlich, online) und lichtmikroskopische Bewertung der Laufflächen nach dem Versuch. Für die Beurteilung der Lagerbelastung ist das Produkt aus Pressung p und Gleitgeschwindigkeit v signifikant, p * v - Werte um 2 sind übliche Grössenordnungen. Erhöht man einen Faktor des Produktes ist zur Sicherstellung eines beherrsch- baren Laufes der andere entsprechend zu reduzieren. In
Abhängigkeit der Grundfestigkeit des Lagerwerkstoffes sind Pressungen bis 200 MPa realisierbar. Übliche Grössenordnungen hoch belasteter Lager z. B. in Baumaschinen liegen bei 100 MPa.
Die folgende Tabelle 5 gibt einen Überblick über die Versuche bei denen jeweils eine unbeschichtete Scheibe (Gegenkörper) auf einer unbeschichteten bzw. beschichteten stehenden Scheibe (Lager) rotiert. Auf den beschichteten Lagern wurden hierbei eine DLC-Schichten gemäss Beispiel 1 und 2 (metallfreie Deckschicht) aufgebracht.
Versuche 1, beide Scheiben unbeschichtet: Die Verschleissge- schwindigkeit ist immer sehr hoch und die Streuung des Verschleiss extrem. Würden solche Werkstoffkombinationen beispielsweise in Motorenlagern unter derart hohen Lasten eingesetzt käme es sofort oder zumindest sehr rasch zu einem völligen Lagerversagen.
Versuche 2 und 3, Gegenkörper DLC beschichtet, ohne Stützschicht: Die Verschleissgeschwindigkeit ist um den Faktor 2 bis 7 kleiner als bei den Versuchen mit unbeschichteten Scheiben. Allerdings erkennt man bei der optischen Beurteilung mit freiem Auge bzw. unter dem Makroskop immer noch Schädigungen der Oberfläche, wie eine teilweise Blauverfärbung durch Überhitzung, punktuelle Abplatzungen der Schicht, punktuelles Auftreten von Adhäsionserscheinungen auf dem Gegenkörper und ähnliches. Versuch 4 und 5, Gegenkörper mit Stütz- und DLC-Schicht nach Beispiel 2 beschichtet: Verschleissgeschwindigkeit ähnlich niedrig wie bei Versuchen 2 und 3. Gleichzeitig sind bei der optischen Beurteilung keinerlei Fehlstellen mehr auf dem beschichteten Lager zu erkennen. Auf den Gegenkörper sind auch nach 18.378 m (= Gleitweg nach 10 h) nur milde Abrasionserscheinungen unter dem Mikroskop erkennbar.
Tabelle 6 gibt einen Überblick über die Versuche, bei denen auf den beschichteten Scheiben eine metallhaltige DLC-Schicht gemäss Beispiel 3 und 4 aufgebracht wurde.
Dabei zeigt sich, wie in Versuchen 6 und 7 erkennbar, dass sich bei direkter Aufbringung der Gleitschicht keine ausreichende Stabilität der Schicht auf dem Grundwerkstoff erzielen lässt. Unter Gleitbeanspruchung kommt es zu einem frühzeitigen Versagen der Oberfläche mit schuppenförmiger
Abplatzung einzelner Schichtteile, was einen stark abrasiven Verschleiß auf beiden Laufpartnern verursachen kann.
Versuch 8 und 9, Gegenkörper mit Stütz- und DLC-Schicht nach Beispiel 4 beschichtet: Im Gegensatz zu der bei den Versuchen 6 und 7 festgestellten hohen Verschleissgeschwindigkeit auf teils beiden Scheiben zeigt eine derartige Lager/Gegenkörperkombination nur eine sehr geringe Verschleissgeschwindigkeit. Die bei der optischen Beurteilung auf dem beschichteten Lager erkennbaren Fehlstellen sind nur noch unter dem Mikroskop vereinzelt und punktuell erkennbar. Auf den Gegenkörper sind auch nach 18.378 m (= Gleitweg nach 10 h) nur milde Abrasionserscheinungen unter dem Mikroskop erkennbar. Tabelle 5
Figure imgf000018_0001
I
Figure imgf000018_0002
Tabelle 6
Figure imgf000019_0001
Figure imgf000019_0002
oo I
Figure imgf000019_0003

Claims

Patentansprüche
1. Lagerwerkstoff aus Kupfer oder einer kupferhaltigen Legierung für den Einsatz in Gleitlagern mit einer zumindest auf Teilen der Gleitfläche abgeschiedenen Deckschicht, die zumindest aus einer Stützschicht und einer Gleitschicht besteht, dadurch gekennzeichnet, dass die Gleitschicht eine Hartschicht ist und diamantartigen Kohlenstoff umfasst.
2. Lagerwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass zumindest die Gleitschicht ausschliesslich die Elemente Kohlenstoff, oder Kohlenstoff und Wasserstoff sowie unvermeidbare Verunreinigungen aus dem Beschichtungsprozess wie z.B. Edelgase enthält.
3. Lagerwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass die Gleitschicht zusätzlich zumindest ein Metall Me aus den Elementen der IV, V, und VI Nebengruppe des Periodensystems der Elemente (d.h. Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) bzw. Si umfasst.
4. Lagerwerkstoff gemäss Anspruch 3, dadurch gekennzeichnet, dass die Gleitschicht eine WC- und eine darauf abgelegte WC-Schicht mit einem gegen die Oberfläche ansteigenden Gehalt an freiem Kohlenstoff enthält.
5. Lagerwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass die Stützschicht zumindest ein Metall Me aus den Elementen der IV, V, und VI Nebengruppe des Periodensystems der Elemente (d.h. Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) bzw. Aluminium oder Si umfasst.
6. Lagerwerkstoff gemäss Anspruch 3, dadurch gekennzeichnet, dass die Stützschicht zusätzlich oder ausschliesslich eine oder mehrere HartstoffVerbindungen die zumindest ein Metall Me und zumindest ein Nichtmetall umfasst, das Metall zumindest eines der Elemente der IV, V, und VI Nebengruppe des PSE (d.h. Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) , Aluminium oder Si und das Nichtmetall zumindest eines der Elemente C, N, B oder O ist.
7. Lagerwerkstoff gemäss Anspruch 3, dadurch gekennzeichnet, dass zwischen der Stützschicht und der Gleitschicht eine ÜbergangsSchicht aufgebracht ist.
8. Lagerwerkstoff gemäss Anspruch 7, dadurch gekennzeichnet, dass die ÜbergangsSchicht aus zumindest einem Metall Me aus den Elementen der IV, V, und VI Nebengruppe des Periodensystems der Elemente (d.h. Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) bzw. Aluminium oder Si besteht.
9. Lagerwerkstoff gemäss Anspruch 7, dadurch gekennzeichnet, dass die ÜbergangsSchicht eine Gradientenschicht ist, wobei der C-Gehalt der ÜbergangsSchicht zur Gleitschicht hin zunimmt .
10. Lagerwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet/ dass die kupferhaltige Legierung Bronze, Messing oder Neusilber ist.
11. Lagerwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass die kupferhaltige Legierung galvanisch vorbeschichtet ist.
12. Lagerwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass die kupferhaltige Legierung mit einer Cr, einer Ni bzw. einer CrNi-Legierung galvanisch vorbeschichtet ist.
13. Lagerwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass der Traganteil tp bei einem Schnittniveau von 0.75 zwischen 60 bis 98%, bervorzugt zwischen 75 und 95% liegt.
14. Lagerwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass der Traganteil tp bei einem Schnittniveau von 0.50 zwischen 50 bis 90%, bervorzugt zwischen 70 und 90% liegt,
PCT/CH2005/000225 2004-04-29 2005-04-22 Dlc hartstoffbeschichtungen auf kupferhaltigen lagerwerkstoffen WO2005106065A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05731502A EP1769100A1 (de) 2004-04-29 2005-04-22 Dlc hartstoffbeschichtungen auf kupferhaltigen lagerwerkstoffen
JP2007509847A JP4805255B2 (ja) 2004-04-29 2005-04-22 銅含有軸受材料のdlc硬質コーティング

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH751/04 2004-04-29
CH7512004 2004-04-29
CH8972004 2004-05-25
CH897/04 2004-05-25

Publications (1)

Publication Number Publication Date
WO2005106065A1 true WO2005106065A1 (de) 2005-11-10

Family

ID=34964628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2005/000225 WO2005106065A1 (de) 2004-04-29 2005-04-22 Dlc hartstoffbeschichtungen auf kupferhaltigen lagerwerkstoffen

Country Status (4)

Country Link
US (1) US20050242156A1 (de)
EP (1) EP1769100A1 (de)
JP (1) JP4805255B2 (de)
WO (1) WO2005106065A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006049974A1 (de) * 2006-10-24 2008-04-30 Oerlikon Leybold Vacuum Gmbh Turbomaschine
WO2011051008A1 (de) * 2009-11-02 2011-05-05 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere kolbenring, und kombination eines gleitelements mit einem laufpartner
WO2011120866A1 (de) 2010-04-01 2011-10-06 Aktiebolaget Skf Lagerring eines gleit- oder wälzlagers
WO2012171897A1 (de) * 2011-06-15 2012-12-20 Schaeffler Technologies AG & Co. KG Gleitlager

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091586A1 (de) * 2002-04-24 2003-11-06 Diaccon Gmbh Gleitelement und verfahren zur herstellung des gleitelements
CN1899992A (zh) * 2005-07-19 2007-01-24 鸿富锦精密工业(深圳)有限公司 模仁及其制备方法
DE102006002034A1 (de) * 2006-01-13 2007-07-19 Hauzer Techno-Coating B.V. Gegenstand, der ein relativ weiches Trägermaterial und eine relativ harte dekorative Schicht aufweist, sowie Verfahren zu dessen Herstellung
JP5741891B2 (ja) 2009-06-19 2015-07-01 株式会社ジェイテクト Dlc膜形成方法
GB2500465B (en) * 2010-07-09 2016-10-05 Daido Metal Co Sliding bearing
TW201213101A (en) * 2010-09-29 2012-04-01 Hon Hai Prec Ind Co Ltd Roller
AT511605B1 (de) * 2011-12-12 2013-01-15 High Tech Coatings Gmbh Kohlenstoffbasierende beschichtung
DE102013006317A1 (de) * 2013-04-12 2014-10-16 Hella Kgaa Hueck & Co. Verfahren zur Erzeugung einer tiefschwarzen Optik
CN107326363A (zh) * 2017-07-27 2017-11-07 中国科学院宁波材料技术与工程研究所 基体表面的高硬度、耐磨损,且在乳化液环境中耐腐蚀的碳基涂层及其制备方法
DE102018202842A1 (de) * 2018-02-26 2019-08-29 Robert Bosch Gmbh Verschleißschutzbeschichtetes metallisches Bauteil insbesondere für ein Kugelventil und Verfahren zum Aufbringen einer mehrschichtigen Verschleißschutzschicht zur Erzeugung eines solchen Bauteils
CN111020573B (zh) * 2019-12-05 2022-04-01 沈阳工业大学 基于铜表面的导热防腐蚀的复合膜层及制备方法
CN114262868A (zh) * 2021-12-03 2022-04-01 中船重工重庆液压机电有限公司 一种铜合金外填隙片表面dlc涂层结合方法
CN115095604A (zh) * 2022-07-15 2022-09-23 江苏徐工工程机械研究院有限公司 一种粉末冶金含油轴承及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100565A (en) * 1990-06-29 1992-03-31 Tokyo Yogyo Kabushiki Kaisha Valve of faucet
US5328772A (en) * 1991-02-20 1994-07-12 Daido Metal Company Multilayer sliding material for high-speed engine and method of producing same
DE10018143A1 (de) * 2000-04-12 2001-10-25 Balzers Hochvakuum DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
JP2002363773A (ja) * 2001-06-12 2002-12-18 Tdk Corp Dlcを施したリテーナー
US20030180572A1 (en) * 2002-03-19 2003-09-25 Daido Metal Company Ltd. Slide member

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960643A (en) * 1987-03-31 1990-10-02 Lemelson Jerome H Composite synthetic materials
US5288556A (en) * 1987-03-31 1994-02-22 Lemelson Jerome H Gears and gear assemblies
DE3873813D1 (de) * 1987-04-30 1992-09-24 Balzers Hochvakuum Bauteil, insbesondere maschinenelement.
US4992153A (en) * 1989-04-26 1991-02-12 Balzers Aktiengesellschaft Sputter-CVD process for at least partially coating a workpiece
US5237967A (en) * 1993-01-08 1993-08-24 Ford Motor Company Powertrain component with amorphous hydrogenated carbon film
DE4421144C2 (de) * 1993-07-21 2003-02-13 Unaxis Balzers Ag Beschichtetes Werkzeug mit erhöhter Standzeit
KR100261534B1 (ko) * 1995-03-09 2000-08-01 하루타 히로시 가이드 부쉬 및 그 안둘레면으로의 경질 카본막 형성방법
US5688557A (en) * 1995-06-07 1997-11-18 Lemelson; Jerome H. Method of depositing synthetic diamond coatings with intermediates bonding layers
NL1007046C2 (nl) * 1997-09-16 1999-03-17 Skf Ind Trading & Dev Bekleed wentellager.
JP2001065571A (ja) * 1999-06-25 2001-03-16 Tdk Corp 動圧流体軸受
JP4560964B2 (ja) * 2000-02-25 2010-10-13 住友電気工業株式会社 非晶質炭素被覆部材
US6994474B2 (en) * 2001-05-29 2006-02-07 Nsk Ltd. Rolling sliding member and rolling apparatus
JP2003322152A (ja) * 2001-06-05 2003-11-14 Daido Metal Co Ltd 摺動部材
US7318847B2 (en) * 2002-04-25 2008-01-15 Oerlikon Trading Ag, Trubbach Structured coating system
JP2004043837A (ja) * 2002-07-09 2004-02-12 Nissin Electric Co Ltd 機械部品及びその製造方法並びに電気機械製品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100565A (en) * 1990-06-29 1992-03-31 Tokyo Yogyo Kabushiki Kaisha Valve of faucet
US5328772A (en) * 1991-02-20 1994-07-12 Daido Metal Company Multilayer sliding material for high-speed engine and method of producing same
DE10018143A1 (de) * 2000-04-12 2001-10-25 Balzers Hochvakuum DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
JP2002363773A (ja) * 2001-06-12 2002-12-18 Tdk Corp Dlcを施したリテーナー
US20030180572A1 (en) * 2002-03-19 2003-09-25 Daido Metal Company Ltd. Slide member

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 04 2 April 2003 (2003-04-02) *
VOEVODIN A A ET AL: "Tribological performance and tribochemistry of nanocrystalline WC/amorphous diamond-like carbon composites", 26 March 1999, THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, PAGE(S) 194-200, ISSN: 0040-6090, XP004168094 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006049974A1 (de) * 2006-10-24 2008-04-30 Oerlikon Leybold Vacuum Gmbh Turbomaschine
WO2011051008A1 (de) * 2009-11-02 2011-05-05 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere kolbenring, und kombination eines gleitelements mit einem laufpartner
CN102666925A (zh) * 2009-11-02 2012-09-12 联邦摩高布尔沙伊德公司 特别是活塞环的滑动元件及滑动元件与匹配运行元件组合
US10131988B2 (en) 2009-11-02 2018-11-20 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, and combination of a sliding element with a mating running element
WO2011120866A1 (de) 2010-04-01 2011-10-06 Aktiebolaget Skf Lagerring eines gleit- oder wälzlagers
DE102010013630A1 (de) * 2010-04-01 2011-10-06 Aktiebolaget Skf Lagerring eines Gleit- oder Wälzlagers
WO2012171897A1 (de) * 2011-06-15 2012-12-20 Schaeffler Technologies AG & Co. KG Gleitlager
CN103608598A (zh) * 2011-06-15 2014-02-26 谢夫勒科技股份两合公司 滑动轴承
US9062713B2 (en) 2011-06-15 2015-06-23 Schaeffler Technologies AG & Co. KG Slide bearing

Also Published As

Publication number Publication date
US20050242156A1 (en) 2005-11-03
EP1769100A1 (de) 2007-04-04
JP4805255B2 (ja) 2011-11-02
JP2007534904A (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
EP1769100A1 (de) Dlc hartstoffbeschichtungen auf kupferhaltigen lagerwerkstoffen
EP2668309B1 (de) Gleitelement, insbesondere kolbenring, mit einer beschichtung sowie verfahren zur herstellung eines gleitelements
EP3215651B1 (de) Pvd verfahren zur herstellung eines schneidwerkzeugs mit mehrlagiger beschichtung
DE60133705T2 (de) Werkzeug aus einem gesinterten Bornitrid Körper mit beschichteter Oberfläche
EP1771596A1 (de) KUPFERHATLTIGER LEITWERKSTOFF MIT Me-DLC HARTSTOFFBESCHICHTUNG
EP2209929B1 (de) Beschichtetes werkzeug
EP2912206B1 (de) Bauteil mit einer beschichtung und verfahren zu seiner herstellung
AT8346U1 (de) Beschichtetes werkzeug
EP2275585A1 (de) Wekstück mit ALCR-haltiger Hartstoffschicht und Verfahren zur Herstellung
EP2912207B1 (de) Bauteil mit einer beschichtung und verfahren zu seiner herstellung
EP0962674B1 (de) Gleitlager und Verfahren zu seiner Herstellung
EP0724023A1 (de) Harte, amorphe, wasserstoffreie C-Schichten
EP3056587B1 (de) VHM-Schaftfräser mit TiAlN-ZrN-Beschichtung
DE19630149C2 (de) Gleitbauteil und dessen Verwendung als Kolbenring
Khanchaiyaphum et al. Wear behaviours of filtered cathodic arc deposited TiN, TiAlSiN and TiCrAlSiN coatings on AISI 316 stainless steel fishing net-weaving machine components under dry soft-sliding against nylon fibres
DE102006057484A1 (de) Wälzlager mit einer Oberflächenbeschichtung
AT511605A4 (de) Kohlenstoffbasierende beschichtung
DE69833272T2 (de) Gradientenkompositmaterial auf metallbasis mit guten schmier- und abriebswiderstandseigenschaften, herstellungsverfahren und verwendung
EP1136585A1 (de) Hartstoffschicht mit selbstschmierenden Eigenschaften
DD202898A1 (de) Hartstoff und festkoerperschmierstoffschichtsystem
WO2007028791A2 (de) Verschleissfeste beschichtung und verfahren zur herstellung derselben
EP1413647B1 (de) Verschleissschutzschicht
JPH05125521A (ja) 摺動材料及びその製造方法
DE102012017033A1 (de) PVD Lichtbogenbeschichtung mit verbesserten reibungsmindernden und verschleissreduzierenden Eigenschaften
EP3957768A1 (de) Verfahren zur herstellung einer hartstoffschicht auf einer metalloberfläche

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005731502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007509847

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005731502

Country of ref document: EP