WO1996026892A1 - Generateur d'hydrogene - Google Patents

Generateur d'hydrogene Download PDF

Info

Publication number
WO1996026892A1
WO1996026892A1 PCT/JP1996/000434 JP9600434W WO9626892A1 WO 1996026892 A1 WO1996026892 A1 WO 1996026892A1 JP 9600434 W JP9600434 W JP 9600434W WO 9626892 A1 WO9626892 A1 WO 9626892A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal space
supply pipe
pipe
catalyst
supply
Prior art date
Application number
PCT/JP1996/000434
Other languages
English (en)
French (fr)
Inventor
Yasuo Kuwabara
Hiroshige Ota
Akira Matsuoka
Takumi Hayashi
Nobuhisa Watanabe
Original Assignee
Aisin Seiki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Kabushiki Kaisha filed Critical Aisin Seiki Kabushiki Kaisha
Priority to EP96903237A priority Critical patent/EP0757968A4/en
Priority to CA002188653A priority patent/CA2188653A1/en
Priority to US08/727,631 priority patent/US5833723A/en
Publication of WO1996026892A1 publication Critical patent/WO1996026892A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00398Controlling the temperature using electric heating or cooling elements inside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a hydrogen generator.
  • the advantage of the above steam reforming method is that the hydrogen concentration in the obtained reformed gas is high.However, the disadvantage is that it requires a water storage means and a heating means, so that the structure is complicated and the size can be reduced. Difficulties, and (2) heating is necessary because of the endothermic reaction. As a result, the equipment can be mounted easily (the equipment becomes larger) and startability can be improved.
  • the time from startup until the generation of hydrogen is determined by steam reforming.
  • the reaction can be shortened as compared with an apparatus using the method, the reaction between methanol and oxygen is not sufficiently performed at room temperature immediately after the start due to the low activity of the catalyst, so that a sufficient amount of hydrogen generation can be obtained. Can not.
  • the catalyst needs to reach the normal operating temperature (300 to 400).
  • the technical object of the present invention is to provide a hydrogen generator capable of reducing the time from when the apparatus is started to when a sufficient amount of hydrogen can be obtained.
  • the technical measures taken in the invention of claim 1 in order to solve the above technical problem include a housing filled with a catalyst in the internal space, a supply pipe opened in the internal space, and a supply pipe opened in the internal space.
  • Hydrogen generator having a blow-out pipe through which reformed gas generated by the reaction in the internal space exits from the internal space, a methanol supply means connected to the supply pipe, and an oxygen supply means connected to the supply pipe , A heating means is provided near the opening of the supply pipe.
  • the technical measures taken in the invention of claim 2 include a housing filled with a catalyst in the internal space, a supply pipe opened in the internal space, and a reformed gas generated by reacting in the internal space. Blow-out pipe through which air exits the internal space, and methanol supply means connected to the supply pipe
  • a hydrogen generator provided with an oxygen supply means connected to a supply pipe, a reformed gas storage means provided on a communication pipe communicating the supply pipe and the blow-out pipe to store a reformed gas; Disposed on the communication pipes on the supply pipe side and the blow-out pipe side of the reformed gas storage means.
  • the technical measure taken in the invention of claim 3 is a catalyst located near the opening of the supply pipe. Then, a combustion catalyst is mixed.
  • the technical measures taken in the invention of claim 4 include a housing filled with a catalyst in the internal space, a supply pipe opened in the internal space, and a modification generated by reacting in the internal space.
  • a hydrogen generator equipped with a blow-off pipe through which the porous gas exits from the internal space, a metal supply means connected to the supply pipe, and an oxygen supply means connected to the supply pipe
  • the technical measures taken in the invention of claim 5 are a housing filled with a catalyst in the internal space, a supply pipe opened in the internal space, and a reformed gas generated by reacting in the internal space. Comes out of the internal space
  • the supply pipe has at least a large area and a small area.
  • an opening selection means for selecting an opening for blowing out methanol and oxygen supplied from the methanol supply means and the oxygen supply means.
  • the technical measures taken in the invention of claim 6 are a housing in which an internal space is filled with a catalyst, and a supply pipe opened in the internal space.
  • the hydrogen generator has a plurality of housings and a housing selecting means for selecting a housing to which methanol and oxygen are supplied.
  • the technical measures taken in the invention of claim 7 and claim 8 have a plurality of openings, and the opening and methanol Supply means and acid
  • methanol and oxygen supplied to the supply pipe from the methanol supply means and the oxygen supply means are blown into the catalyst from the opening of the supply pipe.
  • the mixed fluid of methanol and oxygen reacts as follows by contacting the catalyst.
  • the reformed gas (mixed gas of carbon dioxide and hydrogen) generated by this reaction is sequentially blown out from the blowout pipe.
  • the heating means disposed near the opening of the supply pipe provides
  • the temperature of the catalyst near the opening of the supply pipe is improved, and then a mixed fluid of methanol and oxygen is supplied, and the reaction heat and the heat of the heating means return to the normal operating temperature in a short time. Heated until.
  • the mixed fluid of methanol and oxygen becomes a mixed gas of carbon dioxide and hydrogen and is sequentially blown out from the blowing pipe by the same operation as the first aspect of the invention.
  • the switching means sets the communication pipe on the blow-out pipe side of the reformed gas storage means to the communication state ⁇ , and the communication on the supply pipe side. By shutting off the pipe, a part of the reformed gas in the blow-out pipe is stored in the reformed gas storage means. When the apparatus is stopped, the switching means also shuts off the communication pipe on the blow-out pipe side of the reformed gas storage means, and seals the reformed gas in the reformed gas storage means. When the temperature of the catalyst does not reach the normal operating temperature and the reaction between methanol and air does not sufficiently occur, such as at startup, the switching means communicates with the communication pipe on the supply pipe side of the reformed gas storage means.
  • the operation of the methanol supply means is stopped so that a mixed fluid of reformed gas and air is supplied into the housing.
  • hydrogen which reacts more easily than methanol
  • the reformed gas and air react as shown in the following formula, catalyze combustion, and the temperature near the opening of the supply pipe is reduced for a short time. It is improved by.
  • the switching means shuts off the communication pipe on the supply pipe side of the reformed gas storage means and starts the operation of the methanol supply means, whereby methanol and oxygen react actively and a sufficient amount of hydrogen is generated. Is obtained.
  • the catalyst located near the opening of the supply pipe is mixed with a combustion catalyst (preferably, platinum, gold, palladium, rhodium, or the like), so that the catalyst is located near the opening of the supply pipe. Hydrogen and oxygen in the reformed gas can be burned effectively.
  • a combustion catalyst preferably, platinum, gold, palladium, rhodium, or the like
  • the mixed fluid of methanol and oxygen becomes a mixed gas of carbon dioxide and hydrogen and is sequentially blown out from the blow-out pipe by the same operation as the invention of claim 1.
  • the temperature of the catalyst when the temperature of the catalyst has not reached the normal operating temperature, such as at the time of starting, the space between the enclosure and the housing is heated by the heating means. As a result, the temperature of the catalyst is first raised, and then a mixed fluid of methanol and oxygen is supplied to reduce the reaction heat and the heat of the heating means. Therefore, it is heated to the normal operating temperature in a short time.
  • the mixed fluid of methanol and oxygen becomes a mixed gas of carbon dioxide and hydrogen and is sequentially blown out from the blow-out pipe by the same operation as the invention of claim 1.
  • the supply pipe has at least an opening having a large area and a small area, and the opening selecting means controls whether the mixed fluid of methanol and oxygen is blown out from the opening of either the large or the small.
  • the opening selecting means controls whether the mixed fluid of methanol and oxygen is blown out from the opening of either the large or the small.
  • the mixed fluid of tanol and oxygen becomes a mixed gas of carbon dioxide and hydrogen, and is blown out sequentially from the blowout pipe.
  • the heat capacity of a single housing is reduced because the size of a single housing can be reduced to obtain the same amount of hydrogen generated by using a plurality of housings. For this 2 0, starting etc., even when the temperature of the catalyst does not reach the normal operating temperature, the reaction heat once you start supplying the mixed fluid rapidly increases the temperature of the catalyst in a short time to normal operating temperature Heated until. Further, if the mixed fluid is supplied to a plurality of housings by selecting the housing to which the mixed fluid is supplied by the housing selecting means, the amount of hydrogen generation can be rapidly increased. Can also be.
  • the mixed fluid of methanol and oxygen flows into the internal space from the plurality of openings.
  • the mixed fluid of methanol and oxygen is stirred in the stirring chamber before flowing into the internal space from the opening, and then flows into the internal space.
  • FIG. 1 shows a configuration diagram of the hydrogen generator of the first embodiment according to the present invention.
  • FIG. 2 shows a configuration diagram around a housing of a hydrogen generator of a second embodiment according to the present invention.
  • FIG. 3 shows a configuration diagram around a housing ⁇ of a hydrogen generator according to a third embodiment of the present invention (when not operating).
  • FIG. 4 shows a configuration diagram around the housing of the hydrogen generator of the third embodiment according to the present invention (assuming that the catalyst has not reached the normal operating temperature).
  • FIG. 5 shows a configuration diagram around the housing 15 of the hydrogen generator of the third embodiment according to the present invention (normal operation state).
  • FIG. 6 shows a configuration diagram around the housing of the hydrogen generator of the fourth embodiment according to the present invention (when not operating).
  • FIG. 7 shows a configuration diagram around the housing of the hydrogen generator of the fourth embodiment according to the present invention (when the catalyst has not reached the normal operating temperature).
  • FIG. 8 shows a configuration diagram around a housing of a hydrogen generator of a fourth embodiment according to the present invention (normal operation state).
  • FIG. 9 shows a configuration diagram around a housing of a hydrogen generator of a fifth embodiment according to the present invention.
  • FIG. 10 is a sectional view of a hydrogen generator of a sixth embodiment according to the present invention.
  • FIG. 11 is a sectional view taken along the line AA of FIG. 10.
  • FIG. 1 is a model diagram of the hydrogen generator of the first embodiment according to the present invention.
  • a catalyst 11 is filled in an internal space 10 a of a housing 10.
  • a copper catalyst, a nickel catalyst, a noble metal catalyst, or the like is used as the catalyst 11.
  • a supply pipe 12 opened into the internal space 10a of the housing is inserted.
  • An electric heater 13 as a heating means is disposed near the opening 12 a of the supply pipe 12.
  • the supply pipe 12 is connected to a methanol supply unit and an oxygen supply unit described later.
  • the methanol supply means sequentially supplies the methanol tank 20 for storing liquid methanol and the methanol stored in the methanol tank 20 to the supply pipe 12.
  • a vaporizer 22 for vaporizing liquid methanol.
  • the oxygen supply means includes an intake port 30 for taking in oxygen (air), a filter 31 for removing oxygen debris sucked from the intake port 30, and an air pump for sequentially supplying oxygen to the supply pipe 12. 3 2.
  • a blow-out pipe 14 through which a reformed gas generated in the housing 10 flows out is attached.
  • the reformed gas flowing through the blowing pipe 14 is supplied to, for example, a fuel cell and used as a power generation source.
  • the supply pipe 12 and the blowing pipe 14 are connected by a communication pipe 15.
  • a solenoid valve 40, 41 serving as a switching means and a solenoid valve 40, 41 are provided on the communication pipe 15.
  • a hydrogen tank (reformed gas storage means) 16 to be used and a hydrogen permeable membrane 17 disposed between the hydrogen tank 16 and the solenoid valve 41 are provided.
  • the operation control of the electric heater 13, the solenoid valves 40, 41, the methanol 51 pump 21, and the air pump 32 is performed by a control device (not shown).
  • the hydrogen generator When the hydrogen generator is started, the activity of the catalyst is low because the temperature of the catalyst is at room temperature, and a sufficient amount of hydrogen cannot be obtained. For this reason, ⁇ 0 current is passed through the electric heater 13 to increase the temperature of the catalyst near the opening 12 a of the supply pipe 12 (hereinafter referred to as “hotspot HS”). C At the same time, the solenoid Switch the valve 40 to the position where the communication pipe 15 communicates, and then operate the air bomb 32.
  • the catalyst of the hotspot HS is generated by the Joule heat generated from the electric heating tubes 13 and 5 and the reaction heat generated by catalytic combustion of hydrogen and oxygen supplied from the supply pipe 12. Heats to near normal operating temperature in a short time.
  • the current supply to the solenoid valve 25 is cut off, the metal pump 21 is operated, the solenoid valve 40 is switched so as to shut off the communication pipe 15, and the solenoid valve 41 is connected to the communication pipe 15. Switch to communicate As a result, a mixed fluid of methanol and oxygen is supplied from the supply pipe 12 and reacts, and a reformed gas of hydrogen and carbon dioxide flows out from the blowing pipe 14.
  • the catalyst when the temperature of the catalyst has not reached the normal operating temperature, such as at the time of starting, the catalyst is normally operated in a short time by the Joule heat of the electric heater 13 and the reaction heat generated by the catalytic combustion of hydrogen and oxygen. It can be heated up to the temperature, and as a result, a sufficient amount of hydrogen can be obtained in a short time.
  • FIG. 2 is a configuration diagram around a housing 10 of a second embodiment according to the present invention. In the figure, only differences from the first embodiment will be described.
  • the housing 10 is entirely covered with an enclosure member 50.
  • a burner (heating means) 51 that is burned by methanol and oxygen is provided on the bottom surface of the enclosure member 50, and the temperature of the catalyst 11 reaches the normal operating temperature at the time of starting or the like by the burner 51.
  • the burner 51 is ignited and the space between the housing 10 and the enclosure 50 is heated.
  • the burner 51 warms the catalyst 11 in the same manner as the electric heater 13 of the first embodiment, and as a result, a sufficient amount of hydrogen can be obtained in a short time.
  • 3 to 5 are configuration diagrams around a housing 10 of a third embodiment according to the present invention.
  • the lined pipe 12 of the third embodiment has a double pipe structure having two large and small openings 12b and 12c, and is a mixed fluid of methanol and oxygen. Is switched between the larger and smaller openings 1 2b and 1 2c by the switching valve 18 that constitutes the opening selection means.
  • the control device when the temperature of the catalyst 11 has not reached the normal operating temperature, such as at the time of starting, it is necessary to increase the flow rate of the mixed fluid to increase the temperature rising rate, and the control device is switched.
  • the valve 18 By controlling the valve 18, the mixed fluid is blown out from the opening 12 c having a small area (FIG. 4). If the catalyst reaches the normal operating temperature, there is no need to increase the temperature rising speed, so the control means controls the switching valve 18 to supply the mixed fluid to the large-area opening 1 2 b of the supply pipe 12. (Fig. 5). This allows the catalyst 11 to be heated to normal operating temperature in a short time, resulting in sufficient hydrogen in a short time.
  • FIGS 6 to 8 are configuration diagrams around the housing 10 of the fourth embodiment according to the present invention. In the figure, only differences from the third embodiment will be described.
  • the supply pipe 12 of the fourth embodiment has two openings, large and small.
  • the switching valve 18 of the third and fourth embodiments is switched, for example, by a solenoid valve.
  • the control device controls the switching valve 18 so that the mixed fluid is blown out from the opening 12c having a small area (FIG. 7).
  • the control means controls the switching valve 18 to supply the mixed fluid to the large-area opening 1 2 of the supply pipe 12. Make it blow out from b (Fig. 8).
  • the catalyst 11 can be heated to the normal operating temperature in a short time, and as a result, a sufficient amount of hydrogen can be obtained in a short time.
  • FIG. 9 is a configuration diagram around a housing 10 of a fifth embodiment according to the present invention. In the figure, only differences from the first embodiment will be described.
  • the housing 10 of the fifth embodiment is composed of a plurality (three in the fifth embodiment) of 10 ′, 10 ′′, and 10 ′′ ′′.
  • the mixed fluid of methanol and oxygen is selected to be supplied to any one of the housings by the selection valve 60 which is a housing selection means. , 10 '', 10 '', and 4 '', 14 '', 14 ''
  • the size of one housing can be reduced in order to obtain the same hydrogen generation amount by forming a plurality of housings, so that the heat capacity of one housing is reduced. Is reduced. For this reason, the temperature of the catalyst 11 normally operates when starting
  • FIG. 10 is a sectional view of the hydrogen generator of the sixth embodiment
  • FIG. 11 is a sectional view taken along the line AA of FIG.
  • a catalyst 11 is packed in an inner space 10 a of a cylindrical housing 10.
  • the supply pipe 12 passes through the inside of the housing 10 and communicates with the center of the stirring chamber 70, around which a plurality (eight in the sixth embodiment) of openings 12a are provided. ing.
  • the catalyst since the mixed fluid of methanol and oxygen flows into the internal space 10a from the plurality of openings 12a, the catalyst can be effectively used, and as a result, It can increase the amount of hydrogen generated per unit weight and unit volume, leading to improved performance and downsizing of the device. Further, the mixed fluid of methanol and oxygen is stirred in the stirring chamber 70 before flowing into the internal space 10a from the opening 12a, and then flows into the internal space 10a. When the catalyst comes into contact with the catalyst, the reaction easily occurs, and the startability and efficiency are improved.
  • the temperature of the catalyst when the temperature of the catalyst has not reached the normal operating temperature, such as at the time of starting, the temperature of the catalyst near the opening of the supply pipe is reduced by the heating means arranged near the opening of the supply pipe.
  • the heating means arranged near the opening of the supply pipe.
  • the reformed gas stored in the reformed gas storage means is supplied when the temperature of the catalyst has not reached the normal operating temperature, such as at the time of starting, and the hydrogen in the reformed gas is supplied.
  • the temperature near the opening of the supply pipe is improved in a short time by reacting oxygen with oxygen and causing catalytic combustion. Then, by stopping the supply of the reformed gas and starting the operation of the methanol supply means, the methanol and oxygen react vigorously to obtain a sufficient amount of hydrogen generated. Therefore, a sufficient amount of hydrogen can be obtained in a shorter time than in a method in which methanol and oxygen are reacted when the catalyst is not sufficiently heated.
  • the catalyst located near the opening of the supply pipe is mixed with a combustion catalyst (preferably, platinum, gold, palladium, rhodium, etc.) to improve the vicinity of the opening of the supply pipe. Hydrogen and oxygen in the quality gas can be burned effectively.
  • a combustion catalyst preferably, platinum, gold, palladium, rhodium, etc.
  • the space between the surrounding member and the housing is heated by the heating means.
  • the temperature of the catalyst is raised, and then a mixed fluid of methanol and oxygen is supplied and heated to the normal operating temperature in a short time by the reaction heat and the heat of the heating means. And a sufficient amount of hydrogen can be obtained.
  • a small-area opening is provided in order to increase the flow rate of the mixed fluid to increase the temperature rising speed.
  • the catalyst can be heated to the normal operating temperature in a short time, and as a result, a sufficient amount of hydrogen can be obtained in a short time.
  • the housing is composed of a plurality of housings, so that the same amount of hydrogen can be obtained.
  • the heat capacity of one housing is reduced because the size can be reduced. For this reason, even when the temperature of the catalyst has not reached the normal operating temperature, such as during start-up, if the mixed fluid is started to be supplied, the reaction heat rapidly raises the temperature of the catalyst, and the catalyst can quickly reach the normal operating temperature in a short time.
  • the mixed fluid is supplied to a plurality of housings by selecting which housing the mixed fluid is supplied to by the housing selecting means, the amount of hydrogen generation can be sharply increased.
  • the mixed fluid of methanol and oxygen flows into the internal space from the plurality of openings, so that the catalyst can be effectively used.
  • the unit weight and the unit can be obtained.
  • the amount of hydrogen generated per volume can be increased, which can improve performance and startability and reduce the size of the device.
  • the mixed fluid of methanol and oxygen is stirred in the stirring chamber before flowing into the internal space from the opening, and then flows into the internal space.
  • rebound is likely to occur, and efficiency is improved.
  • the hydrogen generator according to the present invention includes a fuel cell, a hydrogen engine, and a gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

明 細 書
水素発生装置
技術分野
本発明は、 水素発生装置に関する。
背景技術
この種の従来技術としては、 水蒸気改質法及び部分酸化改質法 を用いた装置が知られている。
前者の水蒸気改質法は、 反応管内にメタノ ールと水を混入して. 反応管に熱を加えることによって両者を下式の如く反応させ、 水 素を得るものである。
C H 3 0 H 十 H 2 0 → C 0 2 + 3 H 2
上記水蒸気改質法の長所としては、 得られる改質ガス中の水素 濃度が高いことが挙げられるが、 短所として①水の貯蔵手段及び 加熱手段が必要であるため構造が複雑であり小型化が困難である こと、 ②吸熱反応であるために加熱が必要であるこ と、 が挙げら れる。 このため、 装置の搭載性 (装置が大型化する) 、 始動性
(始動開始から十分な水素が得られるまでに時間が掛かる) 、 応 答性 (発生される水素量を一時的に増大させたい場合に必要量か 発生されるまでに時間が掛かる) が悪いという問題点があつた。
このような問題点から後者の部分酸化改質法が提案されている この方法を用いた装置としては、 特開昭 6 3— 1 4 7 8 0 2号公 報に開示されるような装置が知られている。 これは、 メ タ ノ ール と酸素 (空気) の混合物を触媒が収納されたハウジング内に流入 させるこ とによって、 両者を下式の如く反応させ、 水素を得るも のである。
C H 3 0 H + 1 /20 2 → C 0 2 + 2 H 2
上記部分酸化改質法の長所としては、 ①構造がシンプルである ために装置を小型化できること、 ②発熱反応であるために反応を 起こさせるための熱源が不要であるこ と、 が挙げられる。 このた め、 装置の搭載性 (即ち、 小型化) 、 始動性、 応答性を良好なも のとすることができる。
上記した特開昭 6 3 — 1 4 7 8 0 2号公報に開示されるような 部分酸化改質法を利用した水素発生装置では、 始動してから水素 が発生するまでの時間を水蒸気改質法を利用した装置に比べて短 くすることができるが、 始動直後の常温状態では触媒の活性が低 いためにメタノールと酸素との反応が十分に成されず十分な水素 発生量を得るこ とができない。 そして、 十分な水素発生量を得る ためには、 触媒が通常作動温度 ( 3 0 0て〜 4 0 0て) にまで達 している必要がある。
発明の開示
本発明は、 装置を始動させてから十分な水素発生量を得るこ と ができるまでの時間を低減することができる水素発生装置の提供 を技術的課題とする。
上記した技術的課題を解決するために請求項 1 の発明において 講じた技術的手段は、 内部空間内に触媒が充満されているハウジ ングと、 内部空間内に開口 した供給管と、 内部空間内で反応して 発生される改質ガスが内部空間から出るための吹き出し管と、 供 給管に接続されたメタノール供給手段と、 供給管に接続された酸 素供給手段とを備えた水素発生装置において、 供給管の開口部近 傍に配設された加熱手段を備えたこ とである。
請求項 2の発明において講じた技術的手段は、 内部空間内に触 媒が充満されているハウジングと、 内部空間内に開口 した供給管 と、 内部空間内で反応して発生される改質ガスが内部空間から出 るための吹き出し管と、 供給管に接梡されたメタノール供給手段 と、 供給管に接続された酸素供給手段とを備えた水素発生装置に おいて、 供給管と吹き出し管とを連通する連通管上に設けられ改 質ガスを貯蔵する改質ガス貯蔵手段と、 改質ガス貯蔵手段の供給 管側及び吹き出し管側の連通管上に配設され、 連通管の遮断及び
5 連通を切り換える切り換え手段とを備えたことである。
供給管の開口部近傍において改質ガス中の水素と、 酸素とを効 果的に燃焼させるため、 請求項 3の発明において講じた技術的手 段は、 供給管の開口部近傍に位置する触媒に、 燃焼触媒を混入さ せるこ とである。
, ο 請求項 4の発明において講じた技術的手段は、 内部空間内に触 媒が充満されているハウジングと、 内部空間内に開口した供給管 と、 内部空間内で反応して発生される改質ガスが内部空間から出 るための吹き出し管と、 供給管に接铙されたメ タ ノ ール供給手段 と、 供給管に接続された酸素供給手段とを備えた水素発生装置に
, 5 おいて、 ハウジングを覆う囲い部材と、 ハウジングと囲い部材と の間の空間を温める加温手段を備えたことである。
請求項 5の発明において講じた技術的手段は、 内部空間内に触 媒が充満されているハウジングと、 内部空間内に開口した供給管 と、 内部空間内で反応して発生される改質ガスが内部空間から出
2 0 るための吹き出し管と、 供給管に接続されたメタノール供給手段 と、 供給管に接続された酸素供給手段とを備えた水素発生装置に おいて、 供給管が少なく とも大面積及び小面積の開口部を有し、 メ 夕ノール供給手段及び酸素供給手段から供耠されるメタノール と酸素が吹き出すための開口部を選択する開口部選択手段を備え
2 5 たこ とである。
請求項 6の発明において講じた技術的手段は、 内部空間内に触 媒が充溝されているハウジングと、 内部空間内に開口 した供給管 と、 内部空間內で反応して発生される改質ガスが内部空間から出 るための吹き出し管と、 供給管に接続されたメタノール供給手段 と、 供給管に接続された酸素供給手段とを備えた水素発生装置に おいて、 ハウジングを複数個より構成すると共に、 メ タノールと 酸素が供給されるハウジングを選択するハウジング選択手段を備 えたことである。
単位重量 , 単位容積当たりの水素発生量及び始動性を向上させ るために、 請求項 7及び請求項 8の発明において講じた技術的手 段は、 複数の開口部を有し、 開口部とメタノール供給手段及び酸
, ο 素供給手段との間に設けられた擾拌室を備えたこ とである。
請求項 1 の発明においては、 メタノール供給手段と酸素供給手 段より供耠管に供給されたメタノールと酸素は、 供給管の開口か ら触媒中に吹き出される。 メタノールと酸素の混合流体は、 触媒 に接触するこ とによつて下式の如く反応する。
i s C H 3 O H + 1 /20 2 → C 0 2 + 2 H 2
この反応によって発生した改質ガス (二酸化炭素と水素の混合 ガス) は、 吹き出し管より順次吹き出される。
更に、 始動時等、 触媒の温度が通常作動温度に達していないと きには、 供給管の開口部近傍に配設されている加熱手段によ って,
2 0 先ず供給管開口部近傍の触媒温度を向上させ、 その後メ タ ノ ール と酸素の混合流体を供給してその反応熱と加熱手段の熱とによ つ て短時間で通常作動温度にまで加熱される。
請求項 2の発明においては、 請求項 1 の発明と同様な作用でメ 夕ノールと酸素の混合流体が二酸化炭素と水素の混合ガスとな つ て吹き出し管より順次吹き出される。
更に、 水素発生装置の作動中は、 切り換え手段が、 改質ガス貯 蔵手段の吹き出し管側の連通管を連通状憨とし、 供給管側の連通 管を遮断することにより、 吹き出し管中の改質ガスの一部が改質 ガス貯蔵手段内に蓄えられる。 装置が停止されると、 切り換え手 段が、 改質ガス貯蔵手段の吹き出し管側の連通管をも遮断して、 改質ガス貯蔵手段内の改質ガスを密封しておく。 そして、 始動時 等、 触媒の温度が通常作動温度に達しておらずメタノールと空気 の反応が十分に起こ らない時には、 切り換え手段が、 改質ガス貯 蔵手段の供給管側の連通管を連通させると共に、 メタノール供給 手段の作動を停止させて、 ハウジング内に改質ガスと空気の混合 流体が供給されるようにする。 これによつて、 ハウジング内では、 改質ガス中の水素 (メタノールより も反応し易い) と空気とが下 式の如く反応して、 触媒燃焼し、 供給管の開口部近傍の温度が短 時間で向上される。
その後、 切り換え手段が、 改質ガス貯蔵手段の供給管側の連通 管を遮断すると共に、 メタノール供給手段の作動を開始するこ と によって、 メタノールと酸素とは活発に反応して十分な水素発生 量が得られる。
請求項 3の発明においては、 供給管の開口部近傍に位置する触 媒に燃焼触媒 (好ま しく は、 白金、 金、 パラジウム、 ロジウム等) を混入させるこ とにより、 供給管の開口部近傍において改質ガ ス中の水素と、 酸素とを効果的に燃焼させるこ とができる。
請求項 4の発明においても、 請求項 1 の発明と同様な作用でメ 夕ノ ールと酸素の混合流体が二酸化炭素と水素の混合ガスとなつ て吹き出し管より順次吹き出される。
更に、 始動時等、 触媒の温度が通常作動温度に達していないと きには、 加温手段によって囲い部材とハウジングとの間の空間を 温める。 これにより、 先ず触媒の温度を向上させ、 その後メ タノ ールと酸素の混合流体を供給してその反応熱と加熱手段の熱とに よって短時間で通常作動温度にまで加熱される。
請求項 5 の発明においても、 請求項 1 の発明と同様な作用でメ 夕ノールと酸素の混合流体が二酸化炭素と水素の混合ガスとなつ て吹き出し管より順次吹き出される。
5 更に、 供給管が少なく とも大面積及び小面積の開口部を有して いて、 開口部選択手段により メ タノールと酸素の混合流体を大小 どちらの開口部から吹き出させるかを制御する。 始動時等、 触媒 の温度が通常作動温度に達していないときには、 混合流体の流速 を速く して温度上昇速度が速く なるようにするため、 小面積の開
, ο 口部から吹き出させるようにする。 そして、 触媒が通常作動温度 にまで達すれば温度上昇速度を速くする必要はないために、 開口 部選択手段は、 大面積の開口部から混合流体を吹き出させるよう にする。
請求項 6 の発明においても、 請求項 1 の発明と同様な作用でメ
, 5 タノールと酸素の混合流体が二酸化炭素と水素の混合ガスとなつ て吹き出し管より順次吹き出される。
更に、 ハウジングを複数個より構成することによって、 同じ水 素発生量を得るのに一個のハウジングのサイズを小さ くするこ と ができるために、 一個のハウジングの熱容量が減少される。 この 2 0 ため、 始動時等、 触媒の温度が通常作動温度に達していないとき でも、 混合流体を供給し始めればその反応熱は急激に触媒の温度 を上昇させ、 短時間で通常作動温度にまで加熱される。 又、 ハウ ジング選択手段により混合流体がどのハウジングに供給されるか を選択するこ とによって、 複数のハウジングに混合流体を供給す 2 5 るようにすれば、 急激に水素発生量を向上させるこ ともできる。
請求項 7の発明においては、 メタノールと酸素の混合流体が複 数の開口部から内部空間に流入される。 請求項 8の発明においては、 メ夕ノールと酸素の混合流体が、 開口部から内部空間に流入する前に攪拌室にて攪拌されてから内 部空間に流入される。
図面の簡単な説明
5 図 1 は、 本発明に係る第 1 実施例の水素発生装置の構成図を示 す。
図 2は、 本発明に係る第 2実施例の水素発生装置のハウ ジ ン グ 周辺の構成図を示す。
図 3 は、 本発明に係る第 3実施例の水素発生装置のハウ ジ ン グ , ο 周辺の構成図を示す (非作動時) 。
図 4 は、 本発明に係る第 3実施例の水素発生装置のハウ ジ ン グ 周辺の構成図を示す (触媒が通常作動温度にまで達していないと さ) 。
図 5 は、 本発明に係る第 3実施例の水素発生装置のハウ ジ ン グ 1 5 周辺の構成図を示す (通常作動状態) 。
図 6 は、 本発明に係る第 4実施例の水素発生装置のハウ ジ ン グ 周辺の構成図を示す (非作動時) 。
図 7は、 本発明に係る第 4実施例の水素発生装置のハウ ジ ン グ 周辺の構成図を示す (触媒が通常作動温度にまで達していないと
2 0 さ ) ο
図 8 は、 本発明に係る第 4実施例の水素発生装置のハウ ジ ン グ 周辺の構成図を示す (通常作動状態) 。
図 9 は、 本発明に係る第 5実施例の水素発生装置のハウ ジ ン グ 周辺の構成図を示す。
2 5 図 1 0 は、 本発明に係る第 6実施例の水素発生装置の断面図を 示す。
図 1 1 は、 図 1 0の A - A断面矢示図を示す。 本発明を実施するための最良の形態
本発明に係る実施例を図面に基づいて説明する。
実施例 1
図 1 は本発明に係る第 1 実施例の水素発生装置のモデル図であ る。 同図において、 ハウジング 1 0 の内部空間 1 0 a内には、 触 媒 1 1 が充満されている。 触媒 1 1 には、 銅触媒、 ニッケル触媒、 貴金属触媒等が用いられる。
ハウジング 1 0 の図中上面には、 ハウジングの内部空間 1 0 a 内に開口 した供給管 1 2が挿入されている。 この供給管 1 2 の開 口部 1 2 aの近傍には、 加熱手段である電熱ヒーター 1 3が配設 されている。
供給管 1 2は、 後述するメ タノ ール供給手段及び酸素供給手段 に接続されている。 メ タノ ール供給手段は、 液体のメ タノ ールを 貯えるメ タノ ールタ ンク 2 0 と、 このメ タノ ールタ ンク 2 0 内に 貯えられているメ タノ ールを供給管 1 2 に順次供給するためのメ 夕ノ ールボンブ 2 1 と、 液体のメ タ ノ ールを気化するための気化 器 2 2 とから構成されている。 酸素供給手段は、 酸素 (空気) を 取り入れる取り入れ口 3 0 と、 この取り入れ口 3 0から吸い込ん だ酸素のゴミ を取り除く フ ィ ルター 3 1 と、 酸素を供給管 1 2 に 順次供給するためのエアポンプ 3 2 とから構成されている。
一方、 ハウジング 1 0 の図中下面には、 ハウジング 1 0内で反 応して発生する改質ガスが流れだすための吹き出し管 1 4 が取り 付けられている。 この吹き出し管 1 4 を流れる改質ガスは、 例え ば燃料電池に供給されて電力の発生源と して利用される。
供給管 1 2 と吹き出し管 1 4 とは、 連通管 1 5 により接続され ている。 この連通管 1 5上には、 切り換え手段である ソ レ ノ イ ド バルブ 4 0、 4 1 と、 ソ レノ ィ ドバルブ 4 0 と 4 1 との間に配設 される水素タ ンク (改質ガス貯蔵手段) 1 6 と、 水素タ ンク 1 6 とソ レノ イ ドバルブ 4 1 との間に配設されている水素透過膜 1 7 とが配設されている。
尚、 電熱ヒーター 1 3、 ソ レノ イ ドバルブ 4 0、 4 1 、 メ タノ 5 一ルボンプ 2 1 、 エアポンプ 3 2の作動制御は、 図示しない制御 装置によ り成される。
上記した第 1 実施例の作用を説明する。
水素発生装置の始動時、 触媒の温度は常温となっているために 活性が低く 、 十分な水素発生量を得るこ とはできない。 このため、 ■ 0 電熱ヒーター 1 3 に電流を流して供給管 1 2の開口部 1 2 a近傍 (以下、 ホッ トスボッ ト H S と称す) の触媒の温度を向上させる c これと同時に、 ソ レノ ィ ドバルブ 4 0 を連通管 1 5 を連通する位 置に切り換え、 更にエアボンブ 3 2 を作動させる。
これにより、 ホッ トスボッ ト H Sの触媒は、 電熱ヒ一夕一 1 3 , 5 より発生するジュール熱と、 供給管 1 2から供給される水素と酸 素が触媒燃焼して発生する反応熱とにより、 短時間で通常作動温 度近く にまで加熱される。
このとき、 ホッ トスボッ ト H Sの触媒に、 燃焼触媒と して白金- 金、 パラ ジウム、 ロジウム等を混入させてお く と、 水素と酸素が
2 0 触媒燃焼し易 く なる。
又、 始動時、 触媒温度が常温と通常使用温度の中間 ぐ らいの温 度であった場合、 電熱ヒーター 1 3 のみを作動させるようにして もよい。
触媒が通常作動温度近く にまで加熱されたら、 電熱ヒー夕一へ
2 5 の電流供給を絶ち、 メ タノ ールポンプ 2 1 を作動させ、 ソ レ ノ ィ ドバルブ 4 0 を連通管 1 5 を遮断するように切り換える と共に、 ソ レ ノ イ ドバルブ 4 1 を連通管 1 5 を連通するように切り換える これによつて、 供給管 1 2からはメタノールと酸素の混合流体が 供給されて反応し、 水素と二酸化炭素の改質ガスが吹き出し管 1 4 より流れ出す。
吹き出し管 1 4 を流れだした改質ガスの一部は連通管 1 5 に流 れ込み、 水素透過膜 1 7を通過した水素のみが水素タ ン ク 1 6に Ιτ / έされな 0
本発明においては、 始動時等、 触媒の温度が通常作動温度に達 していないときには、 電熱ヒーター 1 3のジュール熱、 水素と酸 素の触媒燃焼による反応熱で、 触媒を短時間で通常作動温度にま で加熱するこ とができ、 結果、 短時間で十分な水素発生量を得る ことができるものである。
実施例 2
図 2は本発明に係る第 2実施例のハウ ジン グ 1 0周辺の構成図 である。 同図において第 1 実施例との相違点についてのみ説明す な 0
同図において、 ハウ ジング 1 0は囲い部材 5 0 にて全体を覆わ れている。 囲い部材 5 0の底面には、 メタノールと酸素によって 燃えるバーナー (加温手段) 5 1 が設けられていて、 このパーナ 一 5 1 により、 始動時等、 触媒 1 1 の温度が通常作動温度に達し ていないとき、 バーナー 5 1 に点火してハウ ジ ン グ 1 0 と囲い部 材 5 0 との間の空間が加温される。 これにより、 バーナー 5 1 が 第 1 実施例の電熱ヒータ一 1 3 と同様な作用で触媒 1 1 を温め、 結果、 短時間で十分な水素発生量を得ることができる。
実施例 3
図 3〜図 5 は、 本発明に係る第 3実施例のハウ ジ ン グ 1 0周辺 の構成図である。 同図において、 第 1 実施例との相違点について のみ説明する。 第 3実施例の ^袷管 1 2は、 開口部が大と小の二個の開口部 1 2 b、 1 2 cを有した二重管構造となっていて、 メ タノールと 酸素の混合流体は開口部選択手段を構成する切換弁 1 8 により大 小どちらの開口部 1 2 b、 1 2 cから吹き出されるかが切り換え
5 りれる o
この第 3実施例においては、 始動時等、 触媒 1 1 の温度が通常 作動温度に達していないときには、 混合流体の流速を速く して温 度上昇速度を速くする必要があり、 制御装置は切換弁 1 8を制御 して混合流体を小面積の開口部 1 2 cから吹き出させるようにす , ο る (図 4 ) 。 そして、 触媒が通常作動温度にまで達すれば温度上 昇速度を速くする必要がないので、 制御手段は切換弁 1 8を制御 して混合流体を供給管 1 2の大面積の開口部 1 2 bから吹き出さ せるようにする (図 5 ) 。 これにより、 触媒 1 1 を短時間で通常 作動温度にまで加熱するこ とができ、 結果、 短時間で十分な水素
, 5 発生量を得ることができる。
実施例 4
図 6〜図 8 は、 本発明に係る第 4実施例のハウジング 1 0周辺 の構成図である。 同図において、 上記第 3実施例との相違点につ いてのみ説明する。
2 0 第 4実施例の供給管 1 2は、 開口部が大と小の二個の開口部
1 2 d、 1 2 eを有した構造となつていて、 メタノールと酸素の 混合流体は開口部選択手段を構成する切換弁 1 8 により大小どち らの開口部 1 2 d、 1 2 eから吹き出されるかが切り換えられる, 第 3及び第 4実施例の切換弁 1 8 は、 例えばソ レノィ ドバルブ
2 5 あ o
この第 4実施例においては、 始動時等、 触媒 1 1 の温度が通常 作動温度に達していないときには、 混合流体の流速を速く して温 度上昇速度を速くする必要があり、 制御装置は切換弁 1 8を制御 して混合流体を小面積の開口部 1 2 cから吹き出させるようにす る (図 7 ) 。 そして、 触媒が通常作動温度にまで達すれば温度上 昇速度を速くする必要がないので、 制御手段は切換弁 1 8を制御 5 して混合流体を供給管 1 2の大面積の開口部 1 2 bから吹き出さ せるようにする (図 8 ) 。 これにより、 触媒 1 1 を短時間で通常 作動温度にまで加熱するこ とができ、 結果、 短時間で十分な水素 発生量を得るこ とができる。
実施例 5
, ο 図 9 は、 本発明に係る第 5実施例のハウジング 1 0周辺の構成 図である。 同図において、 第 1 実施例との相違点についてのみ説 明する。
第 5実施例のハウジング 1 0は、 複数個 (第 5実施例では三個) 1 0 ' 、 1 0 ' '、 1 0 ' " より構成されていて、 それぞれのハウ
, 5 ジング 1 0 ' 、 1 0 ',、 1 0 ' ' ' には供給管 1 2 ' 、 1 2 ' '、
1 2 " ' が揷入されている。 メタノールと酸素の混合流体は、 ハ ウジング選択手段である選択弁 6 0 によっていずれのハウジング に供給されるか選択される。 尚、 それぞれのハウジング 1 0 ' 、 1 0 ' '、 1 0 " ' には、 吹き出し管 1 4 ' 、 1 4 ' '、 1 4 " ' 力
2 0 取り付けられ、 更にそれらは吹き出し管 1 4 に合流している。
この第 5実施例においては、 ハウジングを複数個より構成する こ とによって、 同じ水素発生量を得るのに一個のハウジングのサ ィズを小さ くするこ とができるので、 一個のハウジングの熱容量 が減少される。 このため、 始動時等、 触媒 1 1 の温度が通常作動
2 5 温度に達していないときでも、 混合流体を供給し始めればその反 応熱は急激に触媒の温度を上昇させ、 短時間で通常作動温度にま で加熱される。 又、 選択弁 6 0により混合流体がどのハウジングに供給される かを選択するこ とによって、 複数のハウジングに混合流体を供給 するようにすれば、 急激に水素発生量を向上させることもできる 実施例 6
図 1 0は第 6実施例の水素発生装置の断面図、 図 1 1 は図 1 0 の A— A断面矢示図である。 図 1 0 において、 円筒状のハウジン グ 1 0の内部空間 1 0 a内には、 触媒 1 1 が詰められている。 供 給管 1 2は、 ハウジング 1 0内を通って攪拌室 7 0の中央部に連 通していて、 その周りには複数 (第 6実施例では 8個) の開口部 1 2 aが設けられている。
この第 6実施例においては、 メタノールと酸素の混合流体が複 数の開口部 1 2 aから内部空間 1 0 a内に流入されるために触媒 を有効に利用するこ とができて、 結果、 単位重量 · 単位容積当た りの水素発生量を増大させ、 性能向上及び装置の小型化を招く こ とができる。 更に、 メタノールと酸素の混合流体が、 開口部 1 2 aから内部空間 1 0 aに流入する前に攪拌室 7 0にて攪拌されて から内部空間 1 0 a内に流入されるため、 混合流体が触媒に接触 したときに反応が起こりやすく、 始動性及び効率が向上される。
産業上の利用の可能性
請求項 1 の発明においては、 始動時等、 触媒の温度が通常作動 温度に達していないときには、 供給管の開口部近傍に配設されて いる加熱手段によって、 供給管開口部近傍の触媒温度は、 反応熱 と加熱手段の熱によって短時間で通常作動温度にまで加熱されて 結果、 短時間で十分な水素発生量を得るこ とができる。
請求項 2の発明においては、 改質ガス貯蔵手段内に蓄えられた 改質ガスを、 始動時等、 触媒の温度が通常作動温度に達していな いときに供給し、 改質ガス中の水素 (メ タノールより も反応し易 い) と酸素を反応させ、 触媒燃焼させるこ とにより供給管の開口 部近傍の温度を短時間で向上させる。 その後、 改質ガスの供給を 停止すると共に、 メタノール供給手段の作動を開始するこ とによ つて、 メ タノールと酸素とは活発に反応して十分な水素発生量が 得られる。 このため、 触媒が十分に温まっていないときからメタ ノールと酸素を反応させる方法より も、 短時間で十分な水素発生 量を得ることができる。
請求項 3の発明においては、 供給管の開口部近傍に位置する触 媒に燃焼触媒 (好ま しく は、 白金、 金、 パラジウム、 ロジウム等) を混入させることにより、 供給管の開口部近傍において改質ガ ス中の水素と、 酸素とを効果的に燃焼させることができる。
請求項 4の発明においては、 始動時等、 触媒の温度が通常作動 温度に達していないときには、 加温手段によって囲い部材とハウ ジングとの間の空間を温める。 これにより、 先ず触媒の温度を向 上させ、 その後メタノールと酸素の混合流体を供給してその反応 熱と加熱手段の熱とによって短時間で通常作動温度にまで加熱さ れて、 結果、 短時間で十分な水素発生量を得ることができる。 請求項 5の発明においては、 始動時等、 触媒の温度が通常作動 温度に達していないときには、 混合流体の流速を速く して温度上 昇速度が速く なるようにするため、 小面積の開口部から吹き出さ せるようにする。 そして、 触媒が通常作動温度にまで達すれば温 度上昇速度を速くする必要はないために、 開口部選択手段は、 大 面積の開口部から混合流体を吹き出させるようにする。 これによ り、 触媒を短時間で通常作動温度にまで加熱するこ とができ、 結 果、 短時間で十分な水素発生量を得るこ とができる。
請求項 6の発明においては、 ハウジングを複数個より構成する こ とによって、 同じ水素発生量を得るのに一個のハウジングのサ ィズを小さ くするこ とができるために、 一個のハウジングの熱容 量が減少される。 このため、 始動時等、 触媒の温度が通常作動温 度に達していないときでも、 混合流体を供給し始めればその反応 熱は急激に触媒の温度を上昇させ、 短時間で通常作動温度にまで
5 加熱されて、 結果、 短時間で十分な水素発生量を得るこ とができ る。 又、 ハウジング選択手段により混合流体がどのハウジングに 供給されるかを選択するこ とによって、 複数のハウジングに混合 流体を供給するようにすれば、 急激に水素発生量を向上させるこ ともできる。
, ο 請求項 7の発明においては、 メタノールと酸素の混合流体が複 数の開口部から内部空間に流入されるために触媒を有効に利用す るこ とができて、 結果、 単位重量 · 単位容積当たりの水素発生量 を増大させ、 性能 · 始動性の向上及び装置の小型化を招く こ とが できる。
1 5 請求項 8の発明においては、 メタノールと酸素の混合流体が、 開口部から内部空間に流入する前に攪拌室にて攪拌されてから内 部空間に流入されるため、 混合流体が触媒に接触したときに反^ が起こ りやすく、 効率が向上される。
本発明による水素発生装置は、 燃料電池、 水素エンジン、 ガス
2 0 ター ビン、 水素を使う冶金や半導体製造分野に利用される。 又、 本発明は、 出発原料としてメタノールを用いたが、 これは経済的 に有利であるという理由からであり、 他のアルキルアルコールの 使用を制限するものでない。

Claims

請 求 の 範 囲
1 . 内部空間内に触媒が充塡されているハウ ジン グと、
前記内部空間内に開口 した供給管と、
前記内部空間内で反応して発生される改質ガスが前記内部空
5 間から出るための吹き出し管と、
前記供給管に接続されたメタノ ール供給手段と、
前記供給管に接続された酸素供給手段と
を備えた水素発生装置において、
前記供給管の前記開口部近傍に配設された加熱手段を備えた : 0 こ とを特徴とする水素発生装置。
2 . 内部空間内に触媒が充満されているハウ ジン グと、
前記内部空間内に開口した供給管と、
前記内部空間内で反応して発生される改質ガスが前記内部空 間から出るための吹き出し管と、
] 5 前記供給管に接続されたメタノ ール供給手段と、
前記供給管に接続された酸素供給手段と
を備えた水素発生装置において、
前記供給管と前記吹き出し管とを連通する連通管上に設けら れ前記改質ガスを貯蔵する改質ガス貯蔵手段と、
2 0 前記改質ガス貯蔵手段の前記供給管側及び前記吹き出し管側 の前記連通管上に配設され、 前記連通管の遮断及び連通を切り 換える切り換え手段と
を備えたこ とを特徴とする水素発生装置。
3 . 前記供給管の前記開口部近傍に位置する触媒に、 燃焼触媒を
2 5 混入させるこ とを特徴とする請求項 2記載の水素発生装置。
4 . 内部空間内に触媒が充満されているハウ ジ ン グと、
前記内部空間内に開口した供給管と、 前記内部空間内で反応して発生される改質ガスが前記内部空 間から出るための吹き出し管と、
前記供給管に接続されたメ 夕ノール供給手段と、
前記供給管に接続された酸素供給手段と
を備えた水素発生装置において、
5 前記ハウジングを覆う囲い部材と、
前記ハウジングと前記囲い部材との間の空間を温める加温手 段を備えたことを特徴とする水素発生装置。
5 . 内部空間内に触媒が充満されているハウジ ン グと、
前記内部空間内に開口した供給管と、
】 0 前記内部空間内で反応して発生される改質ガスが前記内部空 間から出るための吹き出し管と、
前記供給管に接続されたメ夕ノ ール供給手段と、
前記供給管に接続された酸素供給手段と
を備えた水素発生装置において、
1 5 前記供給管が少なく とも大面積及び小面積の前記開口部を有 し、 前記メタノール供給手段及び前記酸素供給手段から供給さ れるメタノールと酸素が吹き出すための前記開口部を選択する 開口部選択手段を備えたこ とを特徴とする水素発生装置。
6 . 内部空間内に触媒が充満されているハウ ジン グと、
2 0 前記内部空間内に開口 した供給管と、
前記内部空間内で反応して発生される改質ガスが前記内部空 間から出るための吹き出し管と、
前記供給管に接続されたメ夕ノール供給手段と、
前記供給管に接続された酸素供給手段と
を備えた水素発生装置において、
前記ハウジングを複数個より構成すると共に、 メタノールと 酸素が供給される前記ハウ ジ ン グを選択するハウ ジ ン グ選択手 段を備えたことを特徴とする水素発生装置。
. 複数の開口部を有した前記供給管を備えたことを特徴とする 請求項 1 から請求項 6のいずれか 1 項記載の水素発生装置。 . 前記開口部と前記メタノール供給手段及び酸素供給手段との 間に設けられた攙拌室を備えたこ とを特徴とする請求項 1 から 請求項 7のいずれか 1項記載の水素発生装置。
PCT/JP1996/000434 1995-02-27 1996-02-26 Generateur d'hydrogene WO1996026892A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96903237A EP0757968A4 (en) 1995-02-27 1996-02-26 HYDROGEN GENERATOR
CA002188653A CA2188653A1 (en) 1995-02-27 1996-02-26 Hydrogen generator
US08/727,631 US5833723A (en) 1995-02-27 1996-02-26 Hydrogen generating apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7/38792 1995-02-27
JP3879295 1995-02-27
JP23183395 1995-09-08
JP7/231833 1995-09-08

Publications (1)

Publication Number Publication Date
WO1996026892A1 true WO1996026892A1 (fr) 1996-09-06

Family

ID=26378081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000434 WO1996026892A1 (fr) 1995-02-27 1996-02-26 Generateur d'hydrogene

Country Status (4)

Country Link
US (1) US5833723A (ja)
EP (1) EP0757968A4 (ja)
CA (1) CA2188653A1 (ja)
WO (1) WO1996026892A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19639150A1 (de) * 1996-09-24 1998-04-02 Daimler Benz Ag Zentrale Heizvorrichtung für ein Gaserzeugungssystem
JP2005179082A (ja) * 2003-12-16 2005-07-07 Nippon Oil Corp 水素製造装置および燃料電池システム並びにその運転方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195663B2 (en) 1996-10-30 2007-03-27 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6537352B2 (en) 1996-10-30 2003-03-25 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6783741B2 (en) 1996-10-30 2004-08-31 Idatech, Llc Fuel processing system
US6494937B1 (en) 2001-09-27 2002-12-17 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US6376113B1 (en) 1998-11-12 2002-04-23 Idatech, Llc Integrated fuel cell system
DE19747010A1 (de) * 1997-10-24 1999-04-29 Dbb Fuel Cell Engines Gmbh Vorrichtung zur Erzeugung von wasserstoffhaltigem Gas
JPH11130405A (ja) * 1997-10-28 1999-05-18 Ngk Insulators Ltd 改質反応装置、触媒装置、それらに用いる発熱・触媒体、及び改質反応装置の運転方法
US6099811A (en) * 1998-02-13 2000-08-08 Energy Conversion Devices, Inc. Self-heating metal-hydride hydrogen storage system
DE19944540B4 (de) * 1999-09-17 2005-01-13 Daimlerchrysler Ag Reaktorsystem mit elektrischen Heizmitteln
DE19947312A1 (de) * 1999-10-01 2001-04-05 Volkswagen Ag Kraftstoffreformer und Verfahren zum Reformieren
DE10101098A1 (de) * 2001-01-12 2002-07-25 Emitec Emissionstechnologie Verfahren zum Betrieb einer Reformeranlage zur Bereitstellung von wasserstoffangereichertem Gas sowie Reformeranlage
US20020114984A1 (en) * 2001-02-21 2002-08-22 Edlund David J. Fuel cell system with stored hydrogen
US6569227B2 (en) 2001-09-27 2003-05-27 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US6890672B2 (en) * 2001-06-26 2005-05-10 Idatech, Llc Fuel processor feedstock delivery system
DE10132673A1 (de) * 2001-07-05 2003-01-16 Ballard Power Systems Reaktor zur katalytischen Umsetzung eines Brennmittels
DE10144891A1 (de) * 2001-09-12 2003-03-27 Basf Ag Alternatives Reaktorkonzept zur Blausäureherstellung
US20030167690A1 (en) * 2002-03-05 2003-09-11 Edlund David J. Feedstock delivery system and fuel processing systems containing the same
US20030223926A1 (en) * 2002-04-14 2003-12-04 Edlund David J. Steam reforming fuel processor, burner assembly, and methods of operating the same
US7470293B2 (en) 2004-10-29 2008-12-30 Idatech, Llc Feedstock delivery systems, fuel processing systems, and hydrogen generation assemblies including the same
US7632322B2 (en) 2005-06-07 2009-12-15 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
EP1938415B1 (en) 2005-09-16 2014-05-14 Dcns Sa Self-regulating feedstock delivery system and hydrogen-generating fuel processing assembly incorporating the same
US7601302B2 (en) 2005-09-16 2009-10-13 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
US7972420B2 (en) 2006-05-22 2011-07-05 Idatech, Llc Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US7629067B2 (en) 2006-05-22 2009-12-08 Idatech, Llc Hydrogen-producing fuel processing systems and fuel cell systems with a liquid leak detection system
US7939051B2 (en) 2006-05-23 2011-05-10 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
DE102007054768A1 (de) * 2007-11-16 2009-05-20 J. Eberspächer GmbH & Co. KG Reformer, Brennstoffzelle und zugehörige Betriebsverfahren
US8262752B2 (en) 2007-12-17 2012-09-11 Idatech, Llc Systems and methods for reliable feedstock delivery at variable delivery rates
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
TWI644057B (zh) * 2016-08-29 2018-12-11 愛烙達股份有限公司 Gas burner
CN107781810B (zh) * 2016-08-29 2019-08-20 爱烙达股份有限公司 瓦斯燃烧装置
US11316180B2 (en) 2020-05-21 2022-04-26 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134605A (en) * 1976-05-06 1977-11-11 Toyota Motor Corp Production of reformed gas
JPS6259501A (ja) * 1985-09-04 1987-03-16 ジヨンソン・マツセイ・パブリツク・リミテツド・カンパニ− 接触水素発生装置及び接触水素発生方法
JPH04313339A (ja) * 1991-04-12 1992-11-05 Toyo Eng Corp 触媒燃焼を利用した部分酸化改質反応器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946667A (en) * 1985-06-10 1990-08-07 Engelhard Corporation Method of steam reforming methanol to hydrogen
GB8623482D0 (en) * 1986-09-30 1986-11-05 Johnson Matthey Plc Catalytic generation of hydrogen
JPH0333002A (ja) * 1989-06-29 1991-02-13 Hitachi Ltd 水素製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134605A (en) * 1976-05-06 1977-11-11 Toyota Motor Corp Production of reformed gas
JPS6259501A (ja) * 1985-09-04 1987-03-16 ジヨンソン・マツセイ・パブリツク・リミテツド・カンパニ− 接触水素発生装置及び接触水素発生方法
JPH04313339A (ja) * 1991-04-12 1992-11-05 Toyo Eng Corp 触媒燃焼を利用した部分酸化改質反応器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0757968A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19639150A1 (de) * 1996-09-24 1998-04-02 Daimler Benz Ag Zentrale Heizvorrichtung für ein Gaserzeugungssystem
DE19639150C2 (de) * 1996-09-24 1998-07-02 Daimler Benz Ag Zentrale Heizvorrichtung für ein Gaserzeugungssystem
US6187066B1 (en) 1996-09-24 2001-02-13 Daimlerchrysler Ag Central heating device for a gas-generating system
JP2005179082A (ja) * 2003-12-16 2005-07-07 Nippon Oil Corp 水素製造装置および燃料電池システム並びにその運転方法

Also Published As

Publication number Publication date
EP0757968A4 (en) 1997-05-02
US5833723A (en) 1998-11-10
CA2188653A1 (en) 1996-09-06
EP0757968A1 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
WO1996026892A1 (fr) Generateur d'hydrogene
WO2007111124A1 (ja) 改質装置の運転停止方法
JP5230958B2 (ja) 改質装置の制御方法及び改質装置並びに燃料電池システム
JP2001229953A (ja) 燃料電池システム
JP2008108546A (ja) 燃料電池システム
JPH08119602A (ja) 燃料改質装置
JP2003187848A (ja) 燃料電池システム
JP4098332B2 (ja) 改質装置および燃料電池システム
JP2005353347A (ja) 燃料電池システム
JP4669408B2 (ja) 改質装置
JP2002246050A (ja) 燃料電池発電機
JP3789706B2 (ja) Co変成ユニットおよび固体高分子型燃料電池発電システム
JP2008105861A (ja) 改質装置
JP3663653B2 (ja) 水素発生装置
JP4751734B2 (ja) 改質装置
JP2006335623A (ja) 改質システム
JP2005216615A (ja) 燃料処理装置及び燃料電池発電システム
JP3927310B2 (ja) 一酸化炭素除去器
JPH08162137A (ja) 燃料電池システム及びその起動方法
JP5309799B2 (ja) 改質装置および燃料電池システム
JP2000219501A (ja) 改質装置
JP2002100389A (ja) 燃料ガス改質装置及び燃料電池システム
JPH10324501A (ja) 一酸化炭素除去装置及び一酸化炭素除去装置の起動方法
JPH08190924A (ja) 燃料電池発電装置及び燃料電池を用いた発電システム
JP2000285940A (ja) 固体高分子型燃料電池発電システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2188653

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1996903237

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08727631

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996903237

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996903237

Country of ref document: EP