WO1996020041A1 - An agitated reactor - Google Patents

An agitated reactor Download PDF

Info

Publication number
WO1996020041A1
WO1996020041A1 PCT/CN1995/000101 CN9500101W WO9620041A1 WO 1996020041 A1 WO1996020041 A1 WO 1996020041A1 CN 9500101 W CN9500101 W CN 9500101W WO 9620041 A1 WO9620041 A1 WO 9620041A1
Authority
WO
WIPO (PCT)
Prior art keywords
static mixer
nozzle
stirring
cyclone
swirler
Prior art date
Application number
PCT/CN1995/000101
Other languages
English (en)
French (fr)
Inventor
Weimin Huang
Original Assignee
Weimin Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weimin Huang filed Critical Weimin Huang
Priority to US08/860,189 priority Critical patent/US6250796B1/en
Priority to JP8520103A priority patent/JPH10511306A/ja
Priority to AU42967/96A priority patent/AU4296796A/en
Priority to DE69522243T priority patent/DE69522243T2/de
Priority to EP95941573A priority patent/EP0873781B1/en
Publication of WO1996020041A1 publication Critical patent/WO1996020041A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/822Combinations of dissimilar mixers with moving and non-moving stirring devices in the same receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00081Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00777Baffles attached to the reactor wall horizontal

Definitions

  • the invention relates to a stirred tank, which comprises a stirred tank for dispersing gas, liquid, and solid phase medium in a miscible liquid phase medium for mixing, extraction, dissolution, and the like; a unit with a slow chemical speed between reaction mediums (all) Stirring stirred tank for phase or heterogeneous chemical reaction or polymerization reaction; Stirred fermentation tank for anaerobic or aerobic bacteria fermentation during biochemical fermentation process.
  • Stirred kettle is an important unit operation equipment in chemical, biochemical and other engineering.
  • stirred tanks are generally stirred by one or more stages of mechanical stirrers to provide uniform mixing, dispersion, suspension, emulsification of the materials or to enhance mass transfer, heat transfer, chemical reactions, and biochemical reaction processes based on this.
  • conventional stirred tanks can only reduce the number of vortex rings by increasing the number of layers of stirring blades. Diameter and / or increase the blade diameter, increase the stirring speed, make high shear flow areas around the blade and near the wall of the kettle, and use turbulent diffusion to increase (or decrease) the temperature in the outermost (layer) streamline of the vortex ring ,concentration. In this way, the total heat or mass transfer can be improved, but the overall heat transfer coefficient and mass transfer coefficient cannot be significantly improved.
  • the traditional stirred kettle has poor uniformity of the processing materials, mass transfer, low heat transfer coefficient, large energy consumption, low product rate of the obtained products, and unstable quality.
  • Chinese patent 87101299. 5 discloses a fermenter using gas jets and venturi tubes for gas-liquid mixing and mechanical energy of tangential velocity of air flow to reduce the stirring power, but the patent exists 1) must be designed Work under normal conditions, otherwise the mixing effect is significantly reduced and the operation flexibility is small. 2) The axial circulation of the material liquid in the tank cannot be improved. 3) The structure is complicated and difficult to clean. 4) Unable to effectively improve uniformity.
  • an object of the present invention is to provide a stirred tank capable of effectively generating an axial circulating flow and greatly improving the stirring uniformity in order to overcome the above-mentioned defects.
  • the invention is a stirring kettle, which comprises a tank body, a motor, a mechanical paddle-type stirring device, and a process pipeline, and one or more static mixers or cyclones are also provided therein.
  • the inlet of the static mixer or swirler is provided with a collecting port or a collecting port with a deflector, which is aligned with the direction of the absolute flow velocity of the mechanical stirring blade outflow, or with the direction of the air flow or circulating liquid flow.
  • one or more nozzles are further provided in the tank, and the above nozzles are arranged in one or more layers composed of one or more nozzles.
  • Each nozzle is aligned with the header of each static mixer or swirler. Alternatively, each nozzle can be inserted into the deflector of a static mixer or swirler.
  • the forms of the blades at different levels may be different.
  • the form of the mixer or cyclone can be different.
  • Each static mixer or cyclone can have different numbers of units.
  • the static mixer is preferably a Kenneth mixer and consists of 2
  • the static mixer or cyclone outlet direction in front of the nozzle opening provided at the bottom of the tank body is ⁇ with the horizontal plane, and the included angle ⁇ is 4 ° ⁇ : 160; other parts of the tank body,
  • the best outflow direction is -110 ° ⁇ -60 ° or 30 ° ⁇ 90 °;
  • the angle of the radius r of the line ⁇ / is 0 ⁇ 90 e , and it is best in the radial direction, that is, the direction when P is 90 °.
  • the nozzle of the nozzle is circular or elliptical, the length-to-length axis ratio is 1-1 to 1: 5, the angle between the installation angle of the nozzle and the horizontal direction ⁇ is 5 ° to 90 °, and the nozzle outlet angle can be adjusted.
  • the installation angle ⁇ of the static combiner or cyclone or adjust to the installation direction of the header at the static mixer or cyclone inlet, or use the static mixer or cyclone inlet Drain at the installation angle of the nozzle.
  • a pumping liquid system and / or a circulating inert gas system are provided below the liquid surface in the tank or on the liquid surface or outside the tank.
  • the diameter of the stirring blades in the same stirred tank may be different.
  • the inlet end of the cyclone and the outlet end of the nozzle are connected in a termination manner.
  • the stirring kettle of the present invention is further provided with an interconnecting suction pipe between the nozzle and the static mixer or the swirler, and the suction pipe is cylindrical and has one or more small holes in its wall.
  • the nozzle is arranged on a gas separation box connected to a gas supply (liquid) main pipe.
  • the gas separation box is a hollow ellipsoidal container with a ratio of long axis to short axis of 1: 1 to 1:20 . Insert from the short axis (up, down) direction or the long axis (side) direction.
  • the nozzles are distributed on the ellipsoidal surface, and one or more upper and lower slag discharge holes are opened on the spherical surface.
  • the invention adopts a static mixer or a cyclone. Due to the action of mechanical paddles, the gas (liquid) flow emitted through the collecting port or through the nozzle nozzle is enhanced by the static mixing or cyclone And the generated Taylor Colums to strengthen the axial flow, and form effective convection mass transfer and heat transfer circulation in different tanks, which improves the response of dissolved oxygen and mass transfer heat transfer coefficient and diffusion control. rate. By reducing the number of blade layers, reducing the diameter of the blade or reducing the speed, the energy saving and production increase effects are obvious. Overview of the drawings
  • Figure 1 is a schematic diagram of the relative relationship between a static mixer or a cyclone and a stirring blade installed in a stirred tank;
  • Figure 2 is a schematic diagram of a stirred tank with a layer of nozzle and static mixer or cyclone combined with a three-layer mechanical paddle stirring device (a) axial turbine blades (b) radial turbine impeller on the bottom layer and axial turbine on the upper layer Paddle (c) radial turbine wheel;
  • Figure 3 is a schematic diagram of the use of a stirred tank with a one-layer nozzle and a static mixer or cyclone and a two-layer mechanical paddle stirring device, (a)-a two-layer nozzle with a static mixer or swirler and an axial turbine blade , (B) radial turbine impeller, (c)-two-layer nozzle with static mixer or swirler and upper axial turbine blades on the bottom radial turbine wheel;
  • Figure 4 is a schematic diagram of a stirred tank with a two-layer nozzle, a static mixer or a cyclone, and a two-layer mechanical paddle device;
  • Figure 5 is a schematic diagram of a stirred tank with a two-layer nozzle combined with a static mixer or cyclone and a mechanical paddle stirring device;
  • Figure 6 is a schematic diagram of the installation angle of a static mixer or cyclone, (a) the horizontal cross-section projection of the outlet; (b) the angle with the horizontal plane;
  • Figure 7 is a schematic diagram of a static mixer and a cyclone, (a) a Kenneth static mixer; (b) a cyclone; (c) a composite static mixer; (d) a static mixer with a current collector (E) a static mixer with a header and a diversion tube;
  • Fig. 8 (a) Schematic diagram of the installation of the nozzle and the static mixer or swirler, (b) a sectional view of the contraction nozzle, (c) a sectional view of the Laval nozzle;
  • FIG. 9 is a schematic diagram of an additional pumping liquid system when there is no continuous input of a gas-phase reaction medium or during an anaerobic fermentation, (a) a tank inner pump, (b) a tank inner pump, and (c) an outer pump;
  • Figure 10 shows the combination of a downward nozzle with a static mixer or cyclone and a mechanical paddle stirring device
  • Figure 11 is a schematic diagram of the arrangement of static mixers or swirlers with headers or diversion tubes along the direction of absolute flow velocity at the blade outlet; (a) straight blade radial impeller arrangement, (b) curved blade radial impeller arrangement, (C) axial turbine arrangement, (d) radial impeller arrangement;
  • FIG. 12 is a schematic view of the connection between the nozzle and the cyclone in a terminating manner; (a) is a front view, and (b) is a top view; 13 is a cross-sectional view of the nozzle of the nozzle inserted into the deflector of the static mixer or swirler;
  • FIG. 14 is a cross-sectional view of an open-hole suction pipe provided with an interconnection between a nozzle and a static mixer or swirler;
  • Fig. 15 is a schematic view showing that the nozzles in the present case are arranged on the air separation box in a two-layer manner, in which (a) is a front view and (b) is a top view.
  • the stirred tank shown in Figures 1, 2, 3, 4, 5, 9, and 10 is a long cylindrical sealed container.
  • the top of the tank (1) is provided with an exhaust port (2).
  • the reaction medium or bacteria nutrient solution inlet ( 3), manholes (4) and other interfaces, the inner wall of the tank (1) is provided with cooling or heating pipes (5) cooling or heating jackets, material liquid inlet and outlet (6) and
  • Blender (8) and the inlet (liquid) pipe (7), enter from the bottom of the tank (1) or the tank wall.
  • the diameter of the stirring blades can be different in the same stirring tank, as shown in Figure 1, the static mixer or cyclone is installed on the bracket (31).
  • the one-layer nozzle (11) is used with the static mixer or swirler (12) and the three-layer mechanical paddle stirring device, as well as the internal axial reflow condition.)
  • the three layers are all shafts.
  • a radial turbine blade (10) (b) a radial impeller (9) at the bottom, an axial turbine blade (10) at the upper two layers, and (c) radial impellers (9) at all three layers .
  • the one-layer nozzle (11) is used with the static mixer or swirler (12) and the two-layer mechanism paddle stirring device, and the internal axial reflux condition, (a) one layer and two turns Nozzle (11) with static mixer or swirler (12) and two-layer axial turbine on it
  • the two-layer nozzle (11) is used together with the static mixer or swirler (12) and the two-layer mechanical paddle stirring device (9) and the schematic diagram of axial reflow.
  • a layer of a two-circle nozzle (11) is used in conjunction with a static mixer or swirler (12) and a layer of mechanical device (9) and a schematic diagram of axial reflow.
  • the downward nozzle (11) is used in combination with the static mixer or swirler (12) and the two-layer mechanical stirring device (10) and the axial circulation in the tank.
  • the installation direction of the header (21) provided by the static mixer (12) should be a straight blade radial impeller along the direction of the absolute flow velocity of the blade outlet (a), and (b) is Curved blade radial impeller, (c) is an axial turbine blade, and (d) is a schematic diagram of a radial impeller installation in a tank.
  • the deflector (22) smoothly transfers the fluid to the installation direction of the static mixer.
  • each nozzle orifice can be inserted into a draft tube of a static mixer or a swirler.
  • an interconnected suction pipe (26) is also provided between the nozzle and the static mixer or swirler.
  • the suction pipe is cylindrical and has one or more small holes in its peripheral wall. (27).
  • the nozzle (11) may be provided on the air distribution box (23), (a) is a sectional view of the air distribution box (23), and (b) is a top view of the air distribution box, The figure shows a two-turn nozzle arrangement.
  • nozzles can be used to spray different media such as oxygen, nitrogen, carbon dioxide, reaction gas or circulating inert gas or the circulation of liquid media in the tank. liquid.
  • the kettle has the effects of improving the miscibility effect, increasing the mass transfer, dissolved (dissolved oxygen) coefficient and reaction speed.
  • the stirred tank of the present invention is applied to the suspension polymerization of polyvinyl chloride.
  • the raw materials used in the reaction are vinyl chloride monomers, initiators, and the like. After being placed in the stirred tank, they are stirred in water and polymerized to produce polyvinyl chloride.
  • the volume of the stirred tank is 50M 3 , and the baffle can be eliminated (canceled).
  • six back-curved blade disc radial blades (9) can be used, and the second and third layers use scissors (six-blade) blades. The diameter of the second layer blade is reduced by 1/3, and the diameter of the third layer blade is reduced by 1/2.
  • Each Kenneth static mixer contains 3 For each unit (120), its outlet diameter is greater than 15mm.
  • the clearance between the collecting port (21) and the blade (9) is greater than the lateral swing distance of the stirring shaft, and its direction is aligned with the direction of the absolute speed of the blade outflow.
  • the vinyl chloride monomer and water are suspended under the high-speed shearing of the stirring blade (9), and the monomer is suspended.
  • the outflow of the stirring blade (9) in the bottom layer It is collected in the direction by the collecting port (21), and the radial and circumferential flows are changed into axial flow through the diversion tube (22).
  • the water and monomer are further mixed and dispersed in the static mixer, and the outlet is changed.
  • Axial flow with swirl Under the centrifugal force field, this swirling axial flow induces a stable Taylor vortex column throughout the inner layer of the kettle.
  • the vortex column constitutes effective axial convection and convective heat transfer to the vortex column.
  • the total heat transfer coefficient can be increased by 2-3 times, the stirring power can be reduced by at least 1/3, and the power can be reduced by reducing the speed.
  • the vinyl chloride monomer concentration can be increased by 10-20%, and the polymerization can also be increased by 5-10%. It can significantly increase the output, and at the same time, it can significantly increase the utilization rate of the kettle due to the reduction of the monomer recovery amount and the heavy work and time required to clear the kettle. Due to the reduction of sticky kettles, product quality can be significantly improved. And because the temperature uniformity is significantly improved, the degree of polymerization and molecular weight distribution can be effectively controlled.
  • the stirring kettle of the present invention is applied to biological fermentation and stirring, and the raw materials used in the fermentation are the fermentation material liquid, bacteria, and the like.
  • Stirred kettle 50M 3 equipped with three layers of radial radial blades (9) with six backward curved blades, ⁇ 900 ⁇ , power of stirring motor 115KW, air consumption 30 standard MV points.
  • the liquid filling volume of the above materials is 43M 3 , and the average fermentation time taken is 233 hours.
  • six nozzles are installed on the air separation box set at the bottom of the kettle, in front of each nozzle (11)
  • a six-unit Kenneth static mixer (12) installed on the bottom bracket (31) of the kettle is provided, and a header (21) is provided at the inlet of the static mixer.
  • the first layer of blade diameter is reduced by 1/5
  • the second layer is reduced by 1/3
  • the third layer is reduced by 1/2.
  • the stirring speed is controlled by a frequency converter, and the average rotation speed is reduced by 15% during the fermentation cycle.
  • the air in the air main pipe in the kettle passes the air separation box from the nozzle
  • the high-speed injection is directed to the static mixer to inject the fermentation material liquid into the static mixer.
  • the air and the material liquid are fully mixed in the static mixer, and the dissolved oxygen coefficient is significantly improved, and the saturation can be reached when the liquid flows out of the static mixer.
  • the outflow induces a Taylor vortex column in the entire stratosphere.
  • the vortex column constitutes effective axial convection and convective mass transfer (oxygen transfer) to the vortex column.
  • the total dissolved oxygen coefficient can be increased by 2-3 times.
  • the liquid on the liquid surface and the air that has not overflowed are still circulated in the tank by the stirring blade.
  • the electric power for stirring dropped by 67%, the production of gibberellic acid increased by 16.15%, and air saving was 20%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

搅 拌 釜 技术领域
本发明涉及一种搅拌釜,它包括分散气、液、固相介质于难混溶的 液相介质中进行混合、萃取、溶解等作业的搅拌釜;反应介质间化学速 度慢的单 (均)相或多相化学反应或聚合反应的搅拌搅拌釜;生化发酵 过程中厌氧或好氧菌发酵用搅拌发酵罐。
背景技术
搅拌釜是化工、生物化学及其它工程中重要的单元操作设备。 目 前,搅拌釜一般采用一级或多级机械搅拌器进行搅拌,提供对物料的均 匀混合、分散、悬浮、乳化或在此基础上强化传质、传热和化学反应、生 化反应过程。 不过,虽然常规搅拌釜的搅拌桨叶现已作了不少改进,也 发展了象圆盘径向叶轮(也称涡轮式)、轴向透平式(轴流式)、剪式或三 叶后掠式桨叶等,但搅拌釜中搅拌时物质的基本流动还是以桨轴为涡 心的旋涡流流动以及在固体涡核区和釜壁之间的以圆周线流为涡核的 涡环、即垂直平面上为轴向循环的旋涡流组合而成。 另外,虽可采用不 同桨叶层数以及不同类型的桨叶组合,甚至辅之以档板、导流筒等附 件.但只能改变相对静止固体涡核区的大小及涡环的数量、大小和形 状,而以上二种旋涡流的流线则与速度梯度、温度梯度、浓度梯度垂直 或几乎垂直,因此,其对流传热、传质作用为零,所以其涡核中的传热、 传质作用主要依靠分子扩散。举例来说,扩散控制的呋喃西啉的硝化反 应、硝基苯的还原反应中,用常规设备搅拌涡核处的反应热无法有效地 移走,失控时会导致反应物爆炸、而温度不均匀则造成副产物增加。 在 聚氯乙烯等聚合反应中,即使在悬浮、乳液溶液聚合中也难以从涡核中 移走反应热.引起生产产品温度不均匀,产率低、而且质量控制困难。在 发酵等生物反应器中,往往由于涡核处的生物需氧(好氧发酵中)量难 以得到补充、热量难以移走,都不利于细菌的新陈代谢,也严重影响产
P ≠县
口口广重。
综上所述,常规搅拌釜就只能通过增加搅拌桨叶层数,缩小涡环直 径和 /或增加桨叶直径,提高搅拌速度,使桨叶周围以及釜壁附近产生 高剪切流区,利用湍流扩散在涡环的最外面(层)的流线中增加(或减 少)温度、浓度。 这样,可以提高总的传热量或传质量,但不能明显有效 地提高总的传热系数和传质系数。 很明显,传统搅拌釜,对加工物料的 搅拌均匀性差、传质、传热系数低、能耗大、所获得产品的产品率低、质 量不稳定。
在中国专利 87101299. 5中公开了一种用气体射流和文丘里管进 行气液混合以及利用气流切向速度的机械能来降低搅拌功率的发酵 罐,但该专利存在有 1 )必须在设计的工况下工作,否则混合效果明显 降低,操作弹性小。 2)不能改进罐内料液的轴向循环。 3)结构复杂,不 易清洗。 4)无法有效改善均匀性。
发明内容
鉴于上述之不足,本发明之目的是为了克服上述缺陷而提供一种 能有效产生轴向循环流并可大大改善搅拌均匀性的搅拌釜。
本发明为一种搅拌釜,包含有罐体、电机、机械桨叶式搅拌装置、工 艺管线,其中还设置有一个或一个以上的静态混合器或旋流器。
所述静态混合器或旋流器的入口处设有集流口或带导流管的集流 口,对准机械搅拌桨叶出流绝对流速方向,或对准气流或循环液流方 向。
本发明的搅拌釜,其中,罐体内还设有一个或一个以上喷嘴,以上 喷嘴,排成一个或一个以上的喷嘴组成的一层或几层喷嘴。每个喷嘴喷 口对准各静态混合器或旋流器的集流口。另外,每个喷嘴喷口也可插入 在静态混合器或旋流器的导流管中。
本发明的搅拌釜,其中,其各级桨叶形式可以不同,在机械桨叶式 搅拌器搅拌叶片周围可以设置一层以上静态混合器或旋流器,其各层 有 1至 10个静态混合器或旋流器的形式可以不同,每个静态混合器或 旋流器,其单元数可以不同,静态混合器最好采用肯尼思混合器并由 2
〜; 10个单元组成。
本发明的搅拌釜,其中罐体底部设置的喷嘴喷口前方的静态混合 器或旋流器出流方向与水平面成 α,夹角 α为 4°〜: 160 ;罐体其他部位, 例如中间或上部喷嘴喷口前方设置的静态混合器或旋流器出流方向与 水平面夹角为 α,α = -160β〜- 4β (负号表示向下流出)或 α为 4β〜160β, 最佳出流方向为 -110°〜- 60°或 30°〜90°;静态混合器或旋流器出流方 向横截面内的投影与出口处的圆周切线的夹角 β以及该圆周线的半径 r的夹角■/均为 0〜90e,最佳在半径方向,即 P为 90°时的方向。
本发明的搅拌釜,其中喷嘴的喷口为圆形或椭圆形,长短轴比为 1 - 1〜1: 5,喷口安装角与水平面方向夹角 Θ为 5°〜90°,喷嘴出口角可 调整到静态合器或旋流器的安装角 Φ方向上,或调整到静态混合器或 旋流器入口处所带集流口的安装方向上或利用静态混合器或旋流器入 口的集流口对准喷嘴的安装角引流。
本发明的搅拌釜,其中,当罐内无连续气相反应介质输入时,在罐 内的液面下或液面上或罐外设置泵送料液系统和 /或循环使用的惰性 气体系统。
本发明的搅拌釜,其中的搅拌桨叶的直径在同一搅拌釜中,可以不 同。
本发明的搅拌釜,其中设置的旋流器进口端与喷嘴的出口端以端 接方式相连接。
本发明的搅拌釜,其中的喷嘴和静态混合器或旋流器之间还设置 —互连的吸入管,吸入管的圆筒形的,并在其壁上开有一个或多个小 孔。
本发明的搅拌釜,其中的喷嘴设置在与供气(液)总管相连的分气 盒上,分气盒为长短轴之比为 1: 1〜1 : 20的中空椭球容器,供气管可 从短轴(上,下)方向,或长轴(侧面)方向插入,喷咀分布在椭球面上, 球面上开设一个或多个上、下排渣孔。
本发明由于采用了静态混合器或旋流器,由于机械桨叶的作用,经 过集流口,或通过喷嘴之喷口射出的气(液)流的作用,通过静态混合或 旋流器强化搅拌作用以及所产生的泰勒涡柱(Taylor Colums )而强化 轴向流,并构成不同的罐内产生有效对流传质,传热的循环回流,提高 了溶氧及传质传热系数和扩散控制的反应速率。经减少桨叶层数,减小 桨叶直径或降低转速,节能增产效果明显。 附图概述
图 1是一搅拌釜中安装的静态混合器或旋流器与搅拌桨叶的相对 关系示意图;
图 2是一层喷嘴和静态混合器或旋流器与三层机械桨叶搅拌装置 配合使用搅拌釜示意图(a )轴向透平桨叶 (b)底层径向涡轮叶轮,上层 轴向透平桨叶 (c)径向涡轮叶轮;
图 3是一层喷嘴和静态混合器或旋流器与二层机械桨叶搅拌装置 使用搅拌釜示意图,(a )—层二圈喷嘴和静态混合器或旋流器和轴向透 平桨叶,(b)径向涡轮叶轮,(c )—层二圈喷嘴与静态混合器或旋流器和 底层径向涡轮叶轮上层轴向透平桨叶;
图 4是二层喷嘴与静态混合器或旋流器和二层机械桨叶装置配合 使用的搅拌釜示意图;
图 5是一层二圈喷嘴与静态混合器或旋流器和一层机械桨叶搅拌 装置配合使用的搅拌釜示意图;
图 6是静态混合器或旋流器的安装角示意图,(a )出口水平横截面 投影;(b)与水平面夹角;
图 7是静态混合器和旋流器的示意图,(a )肯尼思静态混合器; (b) 旋流器;(c)复合型静态混合器;(d)有集流器的静态混合器;(e )带集流 口和导流管的静态混合器;
图 8 (a )喷嘴和静态混合器或旋流器的安装示意图,(b )收缩喷咀 截面视图,(c)拉瓦尔喷咀的截面视图;
图 9是无连续输入气相反应介质时或厌氧发酵时附加泵送料液系 统示意图,(a)罐顶内侧泵;(b )罐底内侧泵;(c)罐外泵;
图 10是向下喷嘴与静态混合器或旋流器和机械桨叶搅拌装置配 合使用情况;
图 11是带集流口或导流管的静态混合器或旋流器沿桨叶出口绝 对流速方向布置的示意图;(a )直叶径向叶轮布置,(b)弯叶径向叶轮布 置,(c )轴向透平布置,(d)径向叶轮布置;
图 12是喷咀同旋流器的端接方式连接示意图;(a )为正视图, (b ) 为俯视图; 图 13是喷咀的喷口插入在静态混合器或旋流器的导流管中的截 面视图;
图 14是在喷咀和静态混合器或旋流器之间设有互连的开孔吸入 管的截面视图;
图 15是在本案中的喷咀以一层二圈的方式设置在分气盒上的示 意图,其中(a)为正视图,(b)为俯视图。
本发明的最佳实施方式
图 1,2,3,4,5,9,10中所示搅拌釜是一长筒形密封容器,罐体(1 ) 顶部具有排气口(2),反应介质或菌种营养液进口(3),人孔 (4)等接口, 罐体(1 )内壁有冷却或加热排管(5)冷却或加热夹套,料液进出口(6)和
( 8) ,以及进气(液)管(7),从罐体(1 )底部进入或罐壁进入。 搅拌器的
(9) ( 10)搅拌叶片的直径在同一搅拌釜中可以不同的,如图 1所示的静 态混合器或旋流器安装在支架(31 )上。
参照图 3可知,一层喷嘴(11)与其上的静态混合器或旋流器(12) 与三层机械桨叶搅拌装置配合使用情况,以及内部的轴向回流情况, )三层都为轴向透平桨叶(10) , (b )底部为径向叶轮(9)、上二层为轴 向透平桨叶(10)的情况,(c)三层都为径向叶轮(9)。
参照图 2可知,一层喷嘴(11 )与其上的静态混合器或旋流器(12) 与二层机构桨叶搅拌装置配合使用情况以及内部的轴向回流情况,(a ) 一层二圈喷嘴(11 )与其上的静态混合器或旋流器(12)和二层轴向透平
(10),(b)二层径向叶轮(9) (c)—层二圈喷嘴(Π )与其上的静态混合 器或旋流器(12)和底层为径向叶轮(9),上层为轴向透平桨叶(10)。
参照图 4可知,二层喷嘴(11 )与其上的静态混合器或旋流器(12 ) 和二层机械桨叶搅拌装置(9)配合使用的情况和轴向回流示意图。
参照图 5可知,一层二圈喷嘴(11 )与其上的静态混合器或旋流器 (12)和一层机械装置(9)配合使用的情况和轴向回流示意图。
参照图 6可知,静态混合器或旋流器的空间安装角。
参照图 7可知, (a),(c)静态混合器和(b)旋流器的结构,及集流口 ( 21 )结构 (d),带集流口和导流管(22)的静态混合器(c),其中,静态混 合器可采用不同型号的,而且,每个静态混合器或旋流器所含的单元 (120)数可不同。
参照图 8可知,(a)在罐内设置的喷嘴和静态混合器或旋流器(12 ) 的安装相对位置和方式,以及分气盒(23)与供气总管(7)以及喷嘴 (11 ) 的连接。 以及上,下排渣口(29)。
参照图 9可知,无连续输入气相反应介质时或厌氧发酵时附加泵 送料液系统的情况,(a)为罐顶内侧泵(13 ) (b )罐底内侧泵(13) (c)罐 外泵(13)的安装情况。
参照图 10可知,采用向下喷嘴(11 )与其下的静态混合器或旋流器 (12)和二层机械搅拌装置(10)配合使用时的情况以及罐内轴向循环回 流情况。
参照图 11可知,在无喷嘴时,静态混合器(12 )所带集流口(21 )的 安装方向应沿着桨叶出口绝对流速方向(a )为直叶径向叶轮,(b )为弯 叶径向叶轮,(c)为轴向透平桨叶,(d )为径向叶轮的罐内安装示意图。 导流管 (22)则将流体平滑地过渡到静态混合器的安装方向上。
在图 12中,旋流器的进口端与喷嘴出口端以端接方式相连接。 在图 13中,每个喷嘴喷口可插入在静态混合器或旋流器的导流管 中的状况。
在图 14中,喷咀和静态混合器或旋流器之间还设置一互连的吸入 管(26),吸入管为圆筒形的,并且在其周壁上开有一个或多个小孔 (27)。
在图 15中,在本发明中喷咀(11 )可设置在分气盒(23)上,图中(a ) 为分气盒(23)的剖视图,(b )是分气盒的俯视图,图中示出了一层二圈 的喷嘴布置。
工业实用性
针对不同介质的混溶、萃取要求及不同的反应或发酵的工艺要求, 可采用喷嘴喷入不同介质如氧气、氮气、二氧化碳,反应气体或循环使 用的隋性气体或罐内的液体介质的循环液。 分别采用喷嘴与静态混合 器或旋流器与机械桨叶搅拌装置配合使用的搅拌釜或者采用用集流口 和导流管的静态混合器或旋流器与机械桨叶搅拌装置配合使用的搅拌 釜,都有提高混溶效果,提高传质、溶解 (溶氧)系数和反应速度的效果。 通过减少桨叶层数和直径及在变频调速电源控制下,在大范围内进行 调速,可有非常显著的节能增产效果。 对容积很大的搅拌釜 (原有三层 机械桨叶搅拌装置)最佳情况采用如图 2 (a )所示的装置和图 10所示 的装置,改为二层机械搅拌装置,上层桨叶直径可减小。 以及一层二圈 喷嘴和静态混合器或旋流器 (其形式结构和尺寸要视介质和工艺要求 而定。 而在没有连续输入气相介质的情况下 (包括厌氧发酵)最佳情况 采用图 11所示的带集流口和导流管的静态混合器或旋流器与机械桨 叶配合使用的搅拌釜。 在变频调整电源控制下可取得明显的节能增产 效果。
举例来说,本发明的搅拌釜应用于聚氯乙烯悬浮聚合反应,反应采 用原料为氯乙烯单体、引发剂等,放入搅拌釜中后在水中搅拌,经聚合 产生聚氯乙烯。 搅拌釜体积为 50M3、可不用(取消)档板。 在搅拌釜的 最下层可用六个后弯叶片圆盘径向式桨叶(9),第二、三层采用剪式 (六叶)桨叶。 第二层桨叶直径缩小 1/3,第三层桨叶直径缩小 1/2。 在 搅拌釜釜底的支架(31 )上设有六个带导流管(22)和集流口(21 )的肯尼 思静态混合器(12),每个肯尼思静态混合器含 3个单元(120)的,其出 口直径大于 15mm。集流口(21 )与桨叶(9)的间隙大于搅拌轴横向摆动 距离,其方向对准桨叶出流的绝对速度方向上。
氯乙烯单体和水在搅拌桨叶(9 )的高速剪切下,单体呈悬浮状,釜 内除一般搅拌釜内的料液循环外,在最下层搅拌桨叶(9 )的出流方向上 被集流口(21 )收集,经导流管(22 )使径向和周向流动变为沿轴向的流 动,在静态混合器内水与单体进一步混合分散,在出口被改变为带旋流 的轴向流动。在离心力场下,此带旋流的轴向流动在整个釜内流层中诱 导出稳定的泰勒涡柱。 该涡柱构成有效的轴向对流以及流向该涡柱的 对流传热。 总传热系数可提高 2-3倍,搅拌功率下降至少 1/3,还 通 过下降转速实现功率降低。氯乙烯单体浓度可增加 10- 20 %,聚合 ^也 可提高 5-10%。 可明显提高产量,同时由于减少单体回收量,以及减少 了粘釜所需的繁重的清釜工作及时间,可明显地提高釜的利用率。由于 减少了粘釜,可明显地改进产品质量。 而且由于温度均匀性的明显提 高,可以有效地控制聚合度和分子量的分布。 本发明的搅拌釜应用于生物发酵搅拌中,在发酵中采用罐中放入 原料为发酵料液及菌种等。 搅拌釜 50M3,釜内装有三层径向六个后弯 叶片的圆盘径向式桨叶(9),Φ900ππη,搅拌电机功率 115KW,空气用 量 30标准 MV分。以上物料的装液体积为 43Μ3,采取的平均发酵时间 233小时,经用本专利技术改造后,在釜底所设分气盒上按装六个喷 咀,每个喷咀(11 )前方设置一个按装在釜底支架(31 )上的六个单元的 肯尼思静态混合器(12),静态混合器进口处有集流口(21)。桨叶直径第 —层减少 1 /5,第二层减少 1/3,第三层减少 1/2。搅拌转速用变频器控 制,发酵周期内转速平均下降 15 %,釜内除一般发酵罐内的料液循环 以及桨液的剪切溶氧作用外,釜内空气总管中空气经分气盒从喷嘴以 高速射向静态混合器将发酵料液引射入静态混合器,空气和料液在静 态混合器中充分的混合,溶氧系数得到明显提高后,从静态混合器出流 时可达到饱和,其出流在整个流层内诱导出泰勒涡柱,该涡柱构成有效 的轴向对流及流向该涡柱的对流传质(输氧),总的溶氧系数可提高 2- 3倍,流至液面的料液和没有溢出的空气仍由搅拌桨叶完成罐内循环。 采用本发明的搅拌釜,搅拌电功率下降了 67%,赤霉酸产量增加了 16. 15 %,节约空气 20%。

Claims

权利要求
1.一种搅拌釜,由罐体,电机、机械桨叶式搅拌装置工艺管线组成, 其特征在于还设置有一个或一个以上的静态混合器或旋流器,所述静 态混合器或旋流器的入口处设有对准气流或循环料液或对准机械搅拌 桨叶出流绝对流速方向的集流口或导流管的集流口。
2.根据权利要求 1所述之搅拌釜,其特征在于罐体内还设置有一 个或一个以上排成一圈或一圈以上的喷嘴组成一层的喷嘴,每个喷嘴 喷口对准各静态混合器或旋流器的集流口。
3.根据权利要求 1所述之搅拌釜,其特征在于所述每个喷嘴喷口 插入在静态混合器或旋流器前置的导流管中。
4.根据权利要求 1所述的搅拌釜,其特征在于各机械桨叶式搅拌 器搅拌叶片的周围可以设置一层以上静态混合器或旋流器,其各层有 1至 10个静态混合器或旋流器,静态混合器最好采用肯尼思混合器, 并由 2-10个单元组成。
5.根据权利要求 1所述的搅拌釜,其特征在于罐底部静态混合器 或旋流器出流方向与水平面成。夹角, α = 4〜160°夹角,其他部位例 如罐体中间或上部的静态混合器或旋流器与水平方向成 α,α = -160° 〜- 4° (负号指向下流)或 α为 4°〜90夹角,最佳出流方向为 30°〜90°、 或 -11CT〜- 60° ,静态混合器或稳流器在出口处的水平横截面内的投影 与出口处圆切线的夹角 β以及与该圆周线的半径 r的夹角 都可为 0。 〜90°,但最好在半径,即 β为 90°时的方向上。
6.根据权利要求 2所述之搅拌釜,其特征在于喷嘴的喷口为圆形 或椭圆形,长短轴之比为 1 : 1一 1 : 5,喷嘴安装角与水平方向夹角 Θ 为 5°〜90°,喷嘴出口角可调整到静态混合器或旋流器的安装角 Φ方向 上,或调整到静态混合器或稳流器入口处所带集流口的安装方向上,或 利用静态混合器或旋流器入口处的集流口对准喷嘴安装角来引流。
7.根据权利要求 2所述之搅拌釜,其特征在于当罐内无连续气体 相反应介质输入时,在罐内的液面下或液面上或罐外设置泵送循环料 液系统或循环使用的惰性气体系统。
8.根据权利要求 4所述的搅拌釜,其特征在于所述静态混合器或 旋流器可采用不同型号的。
9.根据权利要求 4所述的搅拌釜,其特征在于每个静态混合器或 旋流器所含的单元数可不同的。
10.根据权利要求 1所述的搅拌釜,其特征在于所述旋流器的进口 端与喷嘴出口端以端接方式相连接。
11.根据权利要求 1或 2所述的搅拌釜,其特征在于所述喷咀和静 态混合器或旋流器之间还设置一互连的吸入管,吸入管为圆筒形的,并 在其周壁上开有一个或多个小孔。
12.根据权利要求 1至 11任一项所述的搅拌釜,其特征在于所述 搅拌器的搅拌叶片的直径在同一搅拌釜中可以不同的。
13.根据权利要求 2,3,6,7 , 10, 11,任一项所述的搅拌釜,其特征 在于所述的喷咀设置在与供气(液)总管相连的分气盒上,分气盒为长 短轴比为 1: 1〜1: 20的中空椭球容器,供气总管可从短轴上、下方 向,或长轴方向插入;喷咀分布在椭球面上;球面上开设一个或多个上、 下排渣孔。
PCT/CN1995/000101 1994-12-28 1995-12-26 An agitated reactor WO1996020041A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/860,189 US6250796B1 (en) 1994-12-28 1995-12-26 Agitation apparatus with static mixer or swirler means
JP8520103A JPH10511306A (ja) 1994-12-28 1995-12-26 攪はん釜
AU42967/96A AU4296796A (en) 1994-12-28 1995-12-26 An agitated reactor
DE69522243T DE69522243T2 (de) 1994-12-28 1995-12-26 Ruhreaktor
EP95941573A EP0873781B1 (en) 1994-12-28 1995-12-26 An agitated reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN94114060A CN1044334C (zh) 1994-12-28 1994-12-28 搅拌釜
CN94114060.1 1994-12-28

Publications (1)

Publication Number Publication Date
WO1996020041A1 true WO1996020041A1 (en) 1996-07-04

Family

ID=5037014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1995/000101 WO1996020041A1 (en) 1994-12-28 1995-12-26 An agitated reactor

Country Status (7)

Country Link
US (1) US6250796B1 (zh)
EP (1) EP0873781B1 (zh)
JP (1) JPH10511306A (zh)
CN (1) CN1044334C (zh)
AU (1) AU4296796A (zh)
DE (1) DE69522243T2 (zh)
WO (1) WO1996020041A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985444A1 (de) * 1998-08-12 2000-03-15 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Mischen von Produkten
WO2011075824A1 (en) * 2009-12-21 2011-06-30 Seair Inc. Method of high flow gas diffusion
CN104474958A (zh) * 2014-11-26 2015-04-01 芜湖普威技研有限公司 混合搅拌机
US9533267B2 (en) 2012-01-31 2017-01-03 Seair Inc. Multi-stage aeration apparatus
CN113262700A (zh) * 2020-07-10 2021-08-17 谢天 矿山膏体搅拌用双级卧式分流搅拌机

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7086778B2 (en) * 2000-10-09 2006-08-08 Levtech, Inc. System using a levitating, rotating pumping or mixing element and related methods
US20030029795A1 (en) * 2001-08-07 2003-02-13 Galik George M. Apparatus and methods for dispersing one fluid in another fluid using a permeable body
US7008644B2 (en) * 2002-03-20 2006-03-07 Advanced Inhalation Research, Inc. Method and apparatus for producing dry particles
FR2850039B1 (fr) * 2003-01-21 2006-06-02 Dietrich Process Systems De Brise-lames solidarise a distance de la paroi interne d'un contenant emaille par un raccordement local
GB0318449D0 (en) * 2003-08-06 2003-09-10 Glaxo Group Ltd Impeller unit
EP2813281B1 (en) * 2004-01-07 2016-08-17 Pall Technology UK limited Bioprocessing vessel
JP4724825B2 (ja) * 2004-03-30 2011-07-13 国立大学法人広島大学 液−液系エマルションの製造装置および液−液系エマルションの製造方法
DE102004020122B4 (de) * 2004-04-24 2007-06-06 Diehl Aerospace Gmbh LED-Röhren-Hybridbeleuchtungseinrichtung
US7168849B2 (en) * 2005-02-04 2007-01-30 Spx Corporation Agitation apparatus and method for dry solids addition to fluid
US8603805B2 (en) 2005-04-22 2013-12-10 Hyclone Laboratories, Inc. Gas spargers and related container systems
US8162531B2 (en) * 2005-06-22 2012-04-24 Siemens Industry, Inc. Mixing system for increased height tanks
DE102005042383B4 (de) * 2005-09-06 2007-12-06 Bähr GmbH Bremen Mischvorrichtung mit Rückspülung
US7610764B1 (en) * 2006-01-30 2009-11-03 Gerringer Jr William E Vortex heat transfer device
EP2018416B1 (en) * 2006-05-13 2018-10-24 Pall Life Sciences Belgium Disposable bioreactor
DE102006045088A1 (de) * 2006-09-21 2008-03-27 Basf Ag Verfahren zum Durchmischen einer in einem im wesentlichen abgeschlossenen Behälter befindlichen Flüssigkeit oder Mischung aus einer Flüssigkeit und einem feinteiligen Feststoff
CN101589278B (zh) * 2006-10-13 2011-07-06 开利公司 带有多级膨胀装置的多通道换热器
DE102007001711A1 (de) * 2007-01-11 2008-07-17 EKATO Rühr- und Mischtechnik GmbH Rühranordnung mit einem Rührorgan und einer Begasungseinrichtung
CN101190403B (zh) * 2007-04-27 2010-09-15 方民 一种高效流体混合搅拌叶片单元
US9044719B2 (en) * 2007-12-21 2015-06-02 Philadelphia Mixing Solutions, Ltd. Method and apparatus for mixing
SI2437874T1 (sl) 2009-06-05 2015-08-31 F. Hoffmann-La Roche Ag Naprava za gojenje celic
AU2010275687A1 (en) * 2009-07-24 2012-01-12 F. Hoffmann-La Roche Ag Stirrer system
CN102476033A (zh) * 2010-11-24 2012-05-30 昆山好烤克食品机械有限公司 双重冷却系统的真空搅拌机
CN102796650B (zh) * 2011-05-23 2014-07-02 陆飞浩 一种旋流气升式发酵罐
US9376655B2 (en) 2011-09-29 2016-06-28 Life Technologies Corporation Filter systems for separating microcarriers from cell culture solutions
CN104114266B (zh) 2011-09-30 2016-12-14 生命科技股份有限公司 具有膜喷洒器的容器
KR101417859B1 (ko) 2012-02-08 2014-07-09 에스케이케미칼주식회사 유기성 폐기물의 혐기소화 활성 유도용 미생물 배양기
CN103357366A (zh) * 2012-04-04 2013-10-23 徐慧敏 一种搅拌釜
RU2506120C1 (ru) * 2012-06-27 2014-02-10 Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология" Способ перемешивания жидких и газообразных сред и статический смеситель для его осуществления
US9441893B2 (en) 2012-07-25 2016-09-13 Grifols, S.A. Thawing vessel for biological products
US9222403B2 (en) * 2013-02-07 2015-12-29 Thrival Tech, LLC Fuel treatment system and method
EP2986367B1 (en) 2013-04-19 2023-03-22 EMD Millipore Corporation Flexible film baffle in single use bioreactor
RU2528663C1 (ru) * 2013-05-15 2014-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" Перемешивающее устройство
JP2015054272A (ja) * 2013-09-11 2015-03-23 住友金属鉱山株式会社 攪拌装置
US9079690B1 (en) 2014-06-26 2015-07-14 Advanced Scientifics, Inc. Freezer bag, storage system, and method of freezing
CN104190309A (zh) * 2014-08-27 2014-12-10 镇江宝纳电磁新材料有限公司 一种鳞片状金属软磁微粉的强力分散搅拌装置
CN107537359B (zh) * 2016-06-24 2020-07-31 神华集团有限责任公司 滤饼成浆装置
CN106237920B (zh) * 2016-08-30 2019-06-07 陆文婷 一种医疗用沉淀药液搅拌装置
US10894236B2 (en) * 2016-11-30 2021-01-19 Dresser-Rand Company Radial annular component and helical axial components coupled to and extending from the radial component
US10589197B2 (en) 2016-12-01 2020-03-17 Life Technologies Corporation Microcarrier filter bag assemblies and methods of use
ES2914725T3 (es) 2017-03-10 2022-06-15 Dow Global Technologies Llc Sistemas y métodos de fermentación aeróbica
CN106693873A (zh) * 2017-03-21 2017-05-24 北京化工大学 超空泡高速搅拌反应器
CN106867870A (zh) * 2017-04-28 2017-06-20 天津科技大学 一种l‑苏氨酸生产罐及苏氨酸生产工艺
KR101967979B1 (ko) * 2017-05-29 2019-04-10 주식회사 포스코 반응 장치 및 방법
CN107540764A (zh) * 2017-09-05 2018-01-05 慕善斌 一种节能环保甲壳素脱乙酰加工方法
CN108555012B (zh) * 2018-03-19 2020-12-18 徐州工程学院 一种处理土壤重金属污染物带旋转晾晒系统
CN110508197B (zh) * 2018-05-21 2024-05-10 广州红尚机械制造有限公司 一种电池浆料匀浆系统及其工艺流程
CN108525596B (zh) * 2018-06-20 2023-09-26 南京工业职业技术学院 一种波瓣形切削液多组分在线混合机构
KR102256402B1 (ko) * 2018-10-15 2021-05-25 한화솔루션 주식회사 회분식 반응기
CN110744830B (zh) * 2019-10-17 2022-03-15 重庆金美新材料科技有限公司 一种高导电聚酯薄膜的制备方法
CN111334422A (zh) * 2020-03-24 2020-06-26 农业部沼气科学研究所 沼气发酵罐伴热增温恒温装置及其使用方法
CN111451244B (zh) * 2020-04-09 2021-12-03 贺州塑友包装材料有限公司 一种塑料袋热熔回收处理方法
CN111569687B (zh) * 2020-04-23 2023-04-18 上海灿越化工科技有限公司 一种无动力旋流式混合装置及其混合方法
CN112629986A (zh) * 2020-11-25 2021-04-09 西安建筑科技大学 一种提取黏土颗粒的装置及提取方法
CN112973560B (zh) * 2021-02-23 2022-07-05 福建省永春金春酿造有限公司 一种液体混合处理设备
CN112569893B (zh) * 2021-03-01 2021-05-18 山东亚邦化工科技有限公司 一种气化三氧化硫脱水用环合釜
CN113546536B (zh) * 2021-07-28 2022-09-06 吉林隆源农业服务有限公司 一种防沉积的高塔复合肥生产用料浆环流式乳化装置
CN113774223B (zh) * 2021-09-14 2023-05-12 安徽超威电源有限公司 一种废铅膏的碳化反应装置及方法
CN115077215A (zh) * 2022-06-20 2022-09-20 余长攀 一种化工原料精细化生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155657A (en) * 1978-03-10 1979-05-22 Chemed Corporation Continuous mixer for preparing emulsions
JPS6211539A (ja) * 1985-07-05 1987-01-20 Lion Corp カチオン界面活性剤濃厚分散液の連続的製造方法
JPS6242729A (ja) * 1985-08-21 1987-02-24 Tanken Seiko Kk 高温環境下の流体攪拌装置
JPS6331562A (ja) * 1986-07-23 1988-02-10 Shinagawa Refract Co Ltd コンクリ−ト又は耐火物材料等の吹付機
US5176447A (en) * 1988-04-29 1993-01-05 Energiagazdalkodasi Intenzet Turbomixer with rotating injector for mixing liquid

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1413724A (en) * 1916-07-03 1922-04-25 Groch Frank Ore concentrator
US1351352A (en) * 1920-03-11 1920-08-31 Stevens Brothers Emulsifier
US1768955A (en) * 1928-11-14 1930-07-01 Turbo Mixer Corp Mixer
US1768957A (en) * 1929-01-07 1930-07-01 Turbo Mixer Corp Mixing or emulsifying apparatus
US1768956A (en) * 1929-01-10 1930-07-01 Turbo Mixel Corp Mixing apparatus
US1762950A (en) * 1929-04-24 1930-06-10 Turbo Mixer Corp Mixing apparatus
US2517743A (en) * 1946-09-11 1950-08-08 Vogel Walter Supply reservoir for heavy liquids
CA1048493A (en) * 1973-11-26 1979-02-13 Joseph Mizrahi Centrifugal impeller type liquid-liquid mixer with means for forced recirculation
DE2936388A1 (de) * 1979-09-08 1981-04-02 Hoechst Ag, 6000 Frankfurt Verfahren und vorrichtung zur verbesserung der mischguete fluessiger, insbesondere zaeher medien
GB2144052A (en) * 1983-07-29 1985-02-27 Shell Int Research Counter-current fluid-fluid contactor
JPS64995Y2 (zh) * 1984-10-02 1989-01-11
JPS61149269A (ja) * 1984-12-24 1986-07-07 Hitachi Metals Ltd 粉粒体の被覆方法およびそれに用いる装置
US4670397A (en) * 1986-02-05 1987-06-02 Phillips Petroleum Company Fermentation apparatus
US4812045A (en) * 1987-08-20 1989-03-14 Domtar Gypsum Inc. Gypsum dissolution system
CN1016617B (zh) 1987-12-17 1992-05-13 浙江省石油化工设计院 射流式好氧发酵罐
SU1678429A1 (ru) * 1988-09-08 1991-09-23 Предприятие П/Я М-5478 Аппарат с перемешивающим устройством
JPH02104270A (ja) * 1988-10-13 1990-04-17 Kirin Brewery Co Ltd 静止混合翼を有するリアクタ
US4951262A (en) * 1989-04-18 1990-08-21 Halliburton Company Agitator and baffles for slurry mixing
JPH0422433A (ja) * 1990-05-16 1992-01-27 N Ii T Kk 流体混合装置
FR2672230B1 (fr) * 1991-02-04 1993-04-16 Anjou Rech Installation de melange de deux phases fluides par agitation mecanique, notamment pour le traitement des eaux par transfert de gaz oxydant, et utilisation d'une telle installation.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155657A (en) * 1978-03-10 1979-05-22 Chemed Corporation Continuous mixer for preparing emulsions
JPS6211539A (ja) * 1985-07-05 1987-01-20 Lion Corp カチオン界面活性剤濃厚分散液の連続的製造方法
JPS6242729A (ja) * 1985-08-21 1987-02-24 Tanken Seiko Kk 高温環境下の流体攪拌装置
JPS6331562A (ja) * 1986-07-23 1988-02-10 Shinagawa Refract Co Ltd コンクリ−ト又は耐火物材料等の吹付機
US5176447A (en) * 1988-04-29 1993-01-05 Energiagazdalkodasi Intenzet Turbomixer with rotating injector for mixing liquid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0873781A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985444A1 (de) * 1998-08-12 2000-03-15 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Mischen von Produkten
WO2011075824A1 (en) * 2009-12-21 2011-06-30 Seair Inc. Method of high flow gas diffusion
AU2010335971B2 (en) * 2009-12-21 2016-10-13 Seair Inc. Method of high flow gas diffusion
US9533267B2 (en) 2012-01-31 2017-01-03 Seair Inc. Multi-stage aeration apparatus
CN104474958A (zh) * 2014-11-26 2015-04-01 芜湖普威技研有限公司 混合搅拌机
CN113262700A (zh) * 2020-07-10 2021-08-17 谢天 矿山膏体搅拌用双级卧式分流搅拌机
CN113262700B (zh) * 2020-07-10 2023-06-30 赣州骏友机械设备有限公司 矿山膏体搅拌用双级卧式分流搅拌机

Also Published As

Publication number Publication date
US6250796B1 (en) 2001-06-26
EP0873781A4 (zh) 1998-10-28
DE69522243T2 (de) 2002-05-08
CN1044334C (zh) 1999-07-28
EP0873781B1 (en) 2001-08-16
EP0873781A1 (en) 1998-10-28
DE69522243D1 (de) 2001-09-20
JPH10511306A (ja) 1998-11-04
CN1112032A (zh) 1995-11-22
AU4296796A (en) 1996-07-19

Similar Documents

Publication Publication Date Title
WO1996020041A1 (en) An agitated reactor
CA1139462A (en) Apparatus for contacting liquid with a gas
US5009816A (en) Broad liquid level gas-liquid mixing operations
US4919849A (en) Gas-liquid mixing process and apparatus
CN105854664B (zh) 一种装配扇环型凹面叶片的气液分散搅拌器装置
US4683122A (en) Gas-liquid reactor and method for gas-liquid mixing
CN202107697U (zh) 一种旋流气升式发酵罐
CN102796650A (zh) 一种旋流气升式发酵罐
CN111135778A (zh) 一种强混合反应器
WO2023151308A1 (zh) 一种具有自吸和气液分散功能的搅拌器
CN201148379Y (zh) 一种厌氧反应塔布水器
CN103525689B (zh) 基因工程菌高密度培养用高溶氧生物反应器及培养控制方法
CN105944647B (zh) 一种高效传质、传热的大规模气液和气液固反应器装置
CN212492861U (zh) 一种强混合反应器
CN211586169U (zh) 一种加热搅拌罐
JPS633590B2 (zh)
CN108404700B (zh) 一种无内导流筒的气升式旋环流高效循环混合装置
CN110302736A (zh) 一种用于强放热聚合反应的釜内换热聚合反应系统和方法
CN209530853U (zh) 一种合成树脂反应釜
CN206881723U (zh) 一种喷射搅拌装置
CN209406313U (zh) 超效搅拌在线反应器
CN205948877U (zh) 一种反应器装置
CN107715721B (zh) 一种适用于燃料油调合的管道混合器
CN1329500C (zh) 组织多管气升式反应器内部旋流场的方法及其反应器
CN206767661U (zh) 一种超微细碳酸钙制备用碳化釜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08860189

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995941573

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1995941573

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995941573

Country of ref document: EP