WO1996003799A1 - Oscillateur a quartz du type a compensation de temperature - Google Patents

Oscillateur a quartz du type a compensation de temperature Download PDF

Info

Publication number
WO1996003799A1
WO1996003799A1 PCT/JP1995/001501 JP9501501W WO9603799A1 WO 1996003799 A1 WO1996003799 A1 WO 1996003799A1 JP 9501501 W JP9501501 W JP 9501501W WO 9603799 A1 WO9603799 A1 WO 9603799A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature compensation
variable
temperature
voltage
capacitor
Prior art date
Application number
PCT/JP1995/001501
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Sakurai
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to US08/765,459 priority Critical patent/US5801596A/en
Publication of WO1996003799A1 publication Critical patent/WO1996003799A1/ja
Priority to NO970311A priority patent/NO970311L/no

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/011Modifications of generator to compensate for variations in physical values, e.g. voltage, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0307Stabilisation of output, e.g. using crystal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/026Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using a memory for digitally storing correction values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/028Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only of generators comprising piezoelectric resonators

Definitions

  • the present invention relates to a configuration of a temperature-compensated crystal oscillator, and more particularly to a structure suitable for a small digital temperature-compensated crystal oscillator mounted on a cellular phone or the like.
  • the frequency adjustment method of the digital temperature compensated crystal oscillator is basically the same as that of the analog temperature compensated crystal oscillator.
  • the oscillation frequency is kept constant by changing the load capacitance of the crystal oscillation means in accordance with the temperature characteristics of the crystal unit or the deviation from the reference frequency of the base station.
  • the former method using a switch and a capacitor circuit makes it very difficult to change the load capacity slowly. For this reason, there is a problem that the frequency of the crystal oscillator is rapidly corrected when the temperature changes, and FM noise is generated in a telephone using the crystal oscillator.
  • the latter method using a DZA conversion circuit inserts an integrating circuit (low-pass filter) between the DZA conversion circuit and the variable capacitance diode. It is easy to change the load capacitance slowly, for example, by slowing down the operation of the DZA conversion circuit itself, and there is no problem of generating FM noise.
  • variable capacitance diode when adjusting the oscillation frequency to the reference frequency of the base station, the variable capacitance diode is used because the external input signal to be tuned is an analog voltage that assumes a variable capacitance diode.
  • the means used are employed.
  • FIG. 11 is a circuit diagram showing an example of the configuration of a conventional digital temperature-compensated crystal oscillator.
  • the oscillation inverter and the like are shown using circuit symbols, and the temperature information creation unit and the like are shown using block diagrams.
  • the crystal oscillator 1, the oscillation inverter 3, and the feedback resistor 5 are connected in parallel to form the crystal oscillation means 2, and the temperature compensation DC blocking capacitor 23 and the temperature compensation
  • the temperature compensation control means 6 is configured by connecting the variable capacitance diode 25 in series. Then, one terminal of the DC blocking capacitor 23 for temperature compensation is connected to the input terminal of the oscillation inverter 3 and the other terminal of the DC blocking capacitor 23 for temperature compensation is connected to the variable capacitor diode 25 for temperature compensation.
  • the anode is connected, and the cathode of the variable capacitance diode 25 for temperature compensation is connected to the high-potential side power supply + Vcc.
  • the external frequency control means 8 is configured by connecting an external frequency control DC blocking capacitance 27 and an external frequency control variable capacitance diode 29 in series.
  • One terminal of the external frequency control DC blocking capacitor 27 is connected to the output terminal of the oscillation inverter 3, and the external frequency control variable capacitor diode is connected to the other terminal of the external frequency controlling DC blocking capacitor 27.
  • a power source of 29 is connected, and a variable capacitance diode for external frequency control 29 is connected to the low-potential side power supply-Vcc.
  • the temperature compensation voltage generation means 4 is a
  • the DZA conversion circuit 9 converts the digital temperature compensation information into an analog voltage, and the integration circuit 11 prevents an abrupt change in the output of the DZA conversion circuit 9.
  • the temperature compensation voltage generating means 4 outputs a voltage for the temperature compensation operation from the integration circuit 4, and its output terminal is connected to the temperature compensation variable capacitance diode 25 via the temperature compensation fixed resistor 31. Connected to this node.
  • the external frequency control variable capacitance diode 29 has a cathode connected to an external voltage input terminal 13 for adjusting to the base station reference frequency via an external frequency control fixed resistor 33. I have.
  • variable capacitance diode 25 for temperature compensation and the variable capacitance diode 29 for external frequency control used here are formed by means of epitaxy growth with an impurity concentration gradient. In terms of matching with other circuit elements and cost, they are not easily built into semiconductor integrated circuits and are usually external components.
  • variable capacitance diodes have dimensions of 3.3 mm X 1.6 mm X 1.1 mm even if they are small, and are particularly large among the components that make up the digital temperature compensated crystal oscillator. It belongs to the category.
  • the digital temperature compensated crystal oscillator with such a conventional configuration has the problem that the number of components other than the semiconductor integrated circuit such as the variable capacitance diode increases, which limits the miniaturization, and also raises the cost. There are also problems.
  • the present invention has been made to solve such a problem, and a temperature-compensated crystal that can achieve a small size while achieving as many components as possible in a semiconductor integrated circuit to achieve a small size.
  • the purpose is to provide an oscillator. Disclosure of the invention
  • the present invention comprises a temperature-compensated crystal oscillator configured as follows to adjust the temperature compensation operation and the reference frequency of the base station. It is designed to perform squatting.
  • crystal oscillation means temperature compensation control means connected between one terminal of the crystal oscillation means and the power supply, and external frequency control means connected between the other terminal of the crystal oscillation means and the power supply
  • a temperature compensation voltage generating means connected to a control terminal of the temperature compensation control means, and an external voltage input terminal connected to a control terminal of the external frequency control means.
  • the temperature-compensation control means is connected in series with a fixed capacitor for temperature compensation and a voltage-controlled variable resistor for temperature compensation between one terminal of the crystal oscillation means and a power supply.
  • the above-mentioned external frequency control means is constituted by connecting an external frequency control fixed capacitor and a voltage control type external frequency control variable resistor in series between the other terminal of the crystal oscillation means and the power supply. Constitute.
  • the temperature compensation voltage generation means is means for generating an output voltage of a voltage output type D / A conversion circuit as a temperature compensation voltage, and applying the temperature compensation voltage to a control terminal of the temperature compensation variable resistor. It is preferable that a voltage input from the external voltage input terminal be applied to a control terminal of the external frequency control variable resistor.
  • the temperature-compensating fixed capacitance constituting the temperature compensation control means is a temperature-compensating fixed capacitance of a two-layer polycrystalline silicon film, and the temperature-compensating variable resistor is used for temperature compensation.
  • Variable M ⁇ S resistor is used for temperature compensation.
  • the fixed capacitor for external frequency control constituting the external frequency control means is a fixed capacitor for external frequency control of a two-layer polycrystalline silicon film, and the variable resistor for external frequency control is a variable resistor for external frequency control. Resistance.
  • the temperature compensation voltage generated by the temperature compensation voltage generation means is applied to the control terminal of the variable M ⁇ S resistor for temperature compensation, and the voltage input from the external voltage input terminal is applied to the variable MOSFET for external frequency control. It is preferable to apply the voltage to the control terminal of the resistor.
  • the fixed capacitor for temperature compensation constituting the temperature compensation control means is a fixed MOS capacitor for temperature compensation using the high-concentration diffusion region as an opposing electrode, and the variable resistor for temperature compensation is a variable MOS resistor for temperature compensation.
  • the fixed capacitor for external frequency control constituting the external frequency control means is a fixed M ⁇ S capacitor for external frequency control using the high concentration diffusion region as a counter electrode, and the variable resistor for external frequency control is external frequency control.
  • Variable M 0 S resistor is external M 0 S resistor.
  • the temperature compensation voltage generated by the temperature compensation voltage generating means is applied to the control terminal of the variable MOS resistor for temperature compensation, and the voltage input from the external voltage input terminal is applied to the variable MOS resistor for external frequency control. You may comprise so that it may apply to a control terminal.
  • the temperature-compensation control means is provided by connecting a temperature-compensating variable capacitor and a voltage-controlled temperature-compensating variable resistor in series between one terminal of the crystal oscillating means and a power supply.
  • the external frequency control means is connected between the other terminal of the crystal oscillation means and the power supply by connecting a fixed capacitor for external frequency control and a variable resistor for voltage control type external frequency control in series. You may comprise.
  • the temperature compensation voltage generating means generates the output voltage of the compressing output type DZA conversion circuit as the temperature compensation voltage, and the temperature compensation voltage is applied to the control terminal of the above temperature compensation variable resistor.
  • a voltage input from an external voltage input terminal is applied to a control terminal of the external frequency control variable resistor.
  • the temperature-compensating variable capacitance constituting the temperature-compensating control means is a temperature-compensating variable MOS capacitance
  • the temperature-compensating variable resistor constituting the temperature-compensating controlling means is a variable for temperature compensation.
  • the external frequency control variable resistor constituting the external frequency control means may be an external frequency control variable MOS resistor.
  • the temperature compensation voltage generated by the temperature compensation voltage generating means is applied to the control terminal of the above-described temperature compensation variable MOS resistor, and the voltage input from the external voltage input terminal is applied to the external frequency control variable M 0 S. Resistance It is preferable to apply the voltage to the control terminal.
  • the temperature-compensation control means is provided between one terminal of the crystal oscillation means and a power supply, and a temperature-compensating variable capacitor and a voltage-controlled temperature-compensating variable resistor.
  • the temperature compensation voltage generating means generates the output voltage of the voltage output type DZA conversion circuit as a temperature compensation voltage, and applies the temperature compensation voltage to the control terminal of the temperature compensation variable resistor.
  • the voltage input from the external voltage input terminal is applied to the control terminal of the external frequency control variable resistor.
  • variable capacitor for temperature compensation constituting the temperature compensation control means is a variable MOS capacitor for temperature compensation
  • variable resistor for temperature compensation is a variable MOS resistor for temperature compensation
  • variable capacitor for external frequency control constituting the external frequency control means is a variable MOS capacitor for external frequency control
  • variable resistor for external frequency control is a variable MOS resistor for external frequency control
  • the temperature compensation voltage generated by the temperature compensation voltage generating means is applied to the control terminal of the variable MOS resistor for temperature compensation, and the voltage input from the external voltage input terminal is applied to the variable M ⁇ S for external frequency control. It is preferable to apply the voltage to the control terminal of the resistor.
  • a crystal oscillation means a temperature compensation control means comprising a temperature compensation DC blocking capacitor and a temperature compensation variable capacitor connected in series between one terminal of the crystal oscillation means and a power supply
  • An external frequency control means consisting of an external frequency control DC blocking capacitor and an external frequency control variable capacitor connected in series between the other terminal of the crystal oscillator and the power supply
  • a voltage output DZA converter The output voltage of the circuit is output as the temperature compensation voltage, and the output terminal is connected to the connection point between the temperature compensation DC blocking capacitor and the temperature compensation variable capacitor via the temperature compensation fixed resistor.
  • a temperature-compensated crystal oscillator is provided by a compensation voltage generating means and an external voltage input terminal connected to a connection point between the external frequency control DC blocking capacitor and the external frequency control variable capacitor via an external frequency control fixed resistor. May be configured.
  • the DC-blocking capacitance for temperature compensation constituting the temperature-compensation control means is defined as the DC-blocking capacitance for temperature compensation of a two-layer polycrystalline silicon film containing high-concentration impurities.
  • the variable capacitor for compensation should be a variable M ⁇ S capacitor for temperature compensation.
  • the DC blocking capacitance for external frequency control constituting the external frequency control means is a DC blocking capacitance for external frequency control of a two-layer polycrystalline silicon film containing high-concentration impurities. It is preferable that the variable capacitors for external frequency control be replaced with variable MOS capacitors for external frequency control.
  • the temperature compensation DC blocking capacitance constituting the temperature compensation control means is a temperature compensation DC blocking capacitance having a high-concentration diffusion region as an opposing electrode, and the temperature compensation variable capacitance constituting the temperature compensation control means is provided.
  • the variable MOS capacitor for temperature compensation having the low concentration diffusion region as a counter electrode may be used.
  • the DC blocking capacitance for external frequency control constituting the external frequency control means is a DC blocking capacitance for external frequency control with the high-concentration diffusion region as an opposing electrode, and the variable capacitance for external frequency control is a low-concentration diffusion capacitor.
  • An external frequency control variable MOS capacitor having a region as a counter electrode may be used.
  • crystal oscillation means temperature compensation control means connected between one terminal of the crystal oscillation means and a power supply, fixed capacitance connected between the other terminal of the crystal oscillation means and the power supply
  • the temperature compensation type crystal oscillator may be constituted by the temperature compensation voltage generation means connected to the control terminal of the temperature compensation control means.
  • the temperature-compensation control means is configured by connecting a temperature-compensation fixed capacitance and a voltage-control-type temperature-compensation variable resistor in series, and the temperature-compensation voltage generating means is a voltage output.
  • the output voltage of the A conversion circuit is generated as a temperature compensation voltage, and the temperature compensation voltage is applied to a control terminal of the variable resistor for temperature compensation.
  • the fixed capacitor for temperature compensation constituting the temperature compensation control means is a fixed capacitor for temperature compensation of the two-layer polycrystalline silicon film
  • the variable resistor for temperature compensation is a variable MOS resistor for temperature compensation. It is preferable that the fixed capacitance connected between the other terminal of the crystal oscillation means and the power supply is the fixed capacitance of the two-layer polycrystalline silicon film.
  • the temperature compensation voltage generated by the temperature compensation voltage generating means is applied to the control terminal of the variable MOS resistor for temperature compensation.
  • the fixed capacitor for temperature compensation constituting the temperature compensation control means is a fixed MOS capacitor for temperature compensation using the high-concentration diffusion region as an opposing electrode
  • the variable resistor for temperature compensation is a variable MOS resistor for temperature compensation
  • the fixed capacitor connected between the other terminal of the crystal oscillation means and the power supply may be a fixed MOS capacitor having the high-concentration diffusion region as a counter electrode.
  • the temperature compensation voltage generated by the temperature compensation voltage generating means is applied to the control terminal of the variable MOS resistor for temperature compensation.
  • the temperature-compensation control means is configured by connecting a variable capacitor for temperature compensation and a variable resistor for temperature compensation of voltage control type in series to generate a temperature-compensated voltage.
  • the means may be a means for generating an output voltage of a voltage output type DZA conversion circuit as a temperature compensation voltage and applying the temperature compensation voltage to a control terminal of the variable resistor for temperature compensation.
  • a crystal oscillation means As a different temperature-compensated crystal oscillator, a crystal oscillation means, a DC blocking capacitance for temperature compensation and a variable capacitance for temperature compensation are connected in series between one terminal of the crystal oscillation means and a power supply. Temperature compensation control means, a fixed capacitor connected between the other terminal of the crystal oscillation means and a power supply, and a voltage compensation type output voltage of the DZA conversion circuit. Temperature compensation voltage generating means for connecting the output terminal thereof to a connection point between the temperature compensation DC blocking capacitor and the temperature compensation variable capacitor via a temperature compensation fixed resistor. I do.
  • the temperature-compensating DC blocking capacitance constituting the temperature-compensating control means is defined as the temperature-compensating DC blocking capacitance of a two-layer polycrystalline silicon film containing high-concentration impurities.
  • the variable capacitor for compensation is a variable MOS capacitor for temperature compensation, and the fixed capacitor connected between the other terminal of the crystal oscillation means and the power supply is fixed to a two-layer polycrystalline silicon film containing high-concentration impurities. It is good to have capacity.
  • the DC blocking capacitance for temperature compensation constituting the temperature compensation control means is a DC blocking capacitance for temperature compensation using the high concentration diffusion region as a counter electrode, the variable capacitance for temperature compensation is used as a counter electrode for the low concentration diffusion region.
  • the variable M ⁇ S capacitance for temperature compensation and the fixed capacitance connected between the other terminal of the crystal oscillation means and the power supply are fixed M ⁇ S capacitance with the high concentration diffusion region as the counter electrode. Is also good.
  • the capacitance in the temperature compensation control means and the external frequency control means is a fixed capacity, and a voltage-controlled variable resistor connected in series to the fixed capacity is the By varying the resistance of the voltage-controlled variable resistor, the load capacitance can be varied without changing the capacitance itself.
  • the capacitance in the temperature compensation control means and the external frequency control means is a MOS capacitor having a variable capacitance value, and a voltage control type variable resistor connected in series to this variable MOS capacitor has the resistance of the voltage control type variable resistor.
  • the load capacitance can be varied by superimposing the change in the capacitance value due to the change in the terminal voltage of the variable MS capacitor.
  • the load capacitance can be varied by replacing the variable MOS capacitance with a conventional variable capacitance diode.
  • the reason that the load capacitance of the crystal oscillation means can be varied by series connection of the fixed capacitance and the voltage-controlled variable resistor is as follows.
  • this resistance will prevent the charge and discharge of the charge, and the discharge will start before the charge is completely terminated, and before the discharge is completely terminated. The battery will start charging soon.
  • This state means that the amount of charge that is charged and discharged within the oscillation period of the crystal oscillator decreases, and is electrically equivalent to connecting a capacitor with a small capacitance value without a resistor.
  • the speed of charge and discharge is determined by the product of the resistance value and the capacitance value of the connected resistor. Therefore, even if the capacitance value is fixed, the amount of charge to be charged / discharged can be varied by making the connected resistor a voltage-controlled variable resistor and adjusting the resistance value with an external voltage. .
  • the resistance value of the voltage-controlled variable resistor does not need to be constant during the charge / discharge period of the electric charge, and that the voltage between the terminals of the voltage-controlled variable resistor changes with the charge / discharge of the electric charge. Even if the resistance value changes, if the center value of the change can be controlled by an external voltage, the amount of charge to be charged and discharged can be varied by the external voltage.
  • the capacitance value increases.
  • the variable width of the load capacity by the voltage-controlled variable resistor can be further increased.
  • connecting the variable MOS capacitor so that the capacitance value increases and becomes the same as the fixed capacitance is the same as connecting a fixed capacitance and a voltage-controlled variable resistor in series. It can be a load capacity.
  • variable MOS capacitor is connected in the direction in which the capacitance value of the variable MOS capacitor becomes smaller, the load capacitance will be smaller than when a fixed capacitor and a voltage-controlled variable resistor are connected in series. Can be made even smaller.
  • the direction of the voltage change of the variable M 0 S capacitor is made to coincide with the change of the load capacitance caused by the voltage-controlled variable resistor, and by superimposing it, the fixed capacitor and the voltage-controlled variable resistor are connected in series.
  • the change width of the load capacity can be made larger than in the case of connection.
  • the temperature compensation voltage generation means used in conventional digital temperature-compensated crystal oscillators can be used almost as is, and also connected directly to an external voltage input terminal for adjusting the oscillation frequency to the base station reference frequency.
  • MOS resistors are advantageous in that they are possible.
  • the circuit configuration of the temperature-compensated crystal oscillator shown at the end is the same as that of the conventional technology.However, by replacing the variable capacitance diode with a variable M ⁇ S capacitance, most components other than the crystal unit are integrated into a semiconductor. Achieved to be built into the circuit. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a circuit diagram showing a configuration of a temperature compensated crystal oscillator according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing characteristics of a crystal oscillating means of a temperature compensated crystal oscillator according to one embodiment of the present invention.
  • FIG. 3 is a diagram showing C-V characteristics of MS capacitance in one embodiment of the present invention.
  • FIG. 4 is a diagram showing C-V characteristics of a MOS capacitor according to another embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing a configuration of a temperature-compensated crystal oscillator according to a second embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a configuration of a temperature compensated crystal oscillator according to a third embodiment of the present invention.
  • FIG. 7 is a diagram showing C-V characteristics of a MOS capacitor according to still another embodiment of the present invention.
  • FIG. 8 is a circuit diagram showing a configuration of a temperature-compensated crystal oscillator according to a fourth embodiment of the present invention.
  • FIG. 9 is a circuit diagram showing a configuration of a temperature-compensated crystal oscillator according to a fifth embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a configuration of a temperature-compensated crystal oscillator according to a sixth embodiment of the present invention.
  • FIG. 11 is a circuit diagram showing the configuration of a conventional digital temperature-compensated crystal oscillator. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a circuit diagram showing a configuration of a temperature-compensated crystal oscillator according to a first embodiment of the present invention.
  • the oscillation inverter and the like are shown using a circuit symbol
  • the temperature information creation unit and the like are shown using a block diagram.
  • This temperature-compensated crystal oscillator is a digital temperature-compensated crystal oscillator, and a crystal oscillator 1, an oscillation inverter 3, and a feedback resistor 5 are connected in parallel to form a crystal oscillator 2.
  • a temperature compensation fixed capacitor 15 made of two layers of polycrystalline silicon film containing high-concentration impurities and a MOS resistor 17 for temperature compensation of p-channel M ⁇ S resistor are connected in series to provide temperature compensation.
  • the control means 6 is constituted. Then, between the output terminal of the oscillation inverter 3 which is one terminal of the crystal oscillation means 1 and the power supply + Vcc on the high potential side, the temperature compensating M ⁇ S resistor 17 is provided on the power supply side. Temperature compensation control means 6 is connected.
  • a fixed capacitor for external frequency control 19 made of two layers of polycrystalline silicon film containing high-concentration impurities and an MS resistor 21 for external frequency control of p-channel MS resistor are connected in series.
  • the external frequency control means 8 is constituted.
  • the external frequency control means 8 is connected between the input terminal of the oscillation inverter 3 and the power supply + Vcc on the high potential side so that the external frequency control MOS resistor 21 is on the power supply side.
  • Reference numeral 4 denotes a temperature compensation voltage generating means, a temperature information creation section 7 for creating digital temperature compensation information, a voltage output type DZA conversion circuit 9 for converting the digital temperature compensation information into an analog voltage, and a voltage output type And an integration circuit 11 for preventing a rapid change in the output of the DZA conversion circuit 9.
  • the temperature compensation voltage generating means 4 outputs the output voltage of the voltage output type DZA conversion circuit 9 as a voltage for the temperature compensation operation. Compensation M ⁇ S resistance 17 Connected to the gate that is the control terminal.
  • the gate which is the control terminal of the external frequency control MOS resistor 21, is connected to the external voltage input terminal 13.
  • the MOS resistor is a voltage-controlled variable resistor whose resistance value is varied by a gate voltage. Since the M ⁇ S resistor 17 for temperature compensation is a p-channel M ⁇ S resistor, the source and the substrate are connected to the high-potential side power supply + Vcc, and the gate voltage increases and the gate voltage increases. When the potential difference between the gate and the source decreases, the resistance increases. When the gate voltage decreases and the potential difference between the gate and the source increases, the resistance decreases.
  • the resistance value of the temperature compensation M 1S resistor 17 is low, the charge and discharge of the charge of the temperature compensation fixed capacitor 15 is hardly hindered, so the charge and discharge of the charge within the oscillation period of the crystal unit 1 Is completely terminated, and the fixed capacitor 15 for temperature compensation works according to its capacitance value.
  • the speed of charging and discharging the charge of the temperature compensation fixed capacitor 15 is determined by the product of the resistance value of the temperature compensation MOS resistor 17 and the capacitance value of the temperature compensation fixed capacitor 15. Therefore, even if the capacitance value of the temperature compensation fixed capacitor 15 is fixed, the charge amount to be charged / discharged can be varied by adjusting the resistance value of the temperature compensation MOS resistor 17. .
  • connecting the series connection of the temperature compensation fixed capacitor 15 and the temperature compensation MOS resistor 17 between the crystal oscillator 2 and the power supply means that the variable capacitor is connected between the crystal oscillator 2 and the power supply. It is electrically equivalent to connecting to.
  • the capacitance value connected to the output terminal of the oscillation inverter 3 can be equivalently changed, whereby the load The temperature can be compensated for the oscillation frequency by changing the capacitance.
  • the resistance value of the temperature compensating MOS resistor 17 changes according to the change in the source-drain voltage. Since the voltage changes every moment, the time constant of charge and discharge also changes every moment.
  • the change in the resistance value of the temperature compensation M ⁇ S resistor 17 due to the change in the source-drain voltage is gradual, and the charge / discharge time constant of the temperature compensation fixed capacitor 15 changes by orders of magnitude. Therefore, it can be said that the time constant of charge and discharge of the charge of the fixed capacitor 15 for temperature compensation is substantially under the control of the gate voltage of the MOS resistor 17 for temperature compensation.
  • the capacitance value connected to the input terminal of the oscillation inverter 3 can be equivalently varied. This makes it possible to adjust the oscillation frequency to the reference frequency of the base station by changing the load capacity.
  • neither the temperature compensation control means 6 nor the external frequency control means 8 has a path through which a DC current flows. It just flows.
  • This AC current is not limited to the present invention, but is a current that is inevitably involved in controlling the frequency of the crystal oscillating means 2 by means of a capacitor. There is no increase in current due to the configuration of the first embodiment of the present invention.
  • the temperature compensation operation is performed by the M ⁇ S resistor 17 for temperature compensation on the output terminal side of the oscillation inverter 3, and the operation to match the reference frequency of the base station is performed.
  • the external frequency control MOS resistor 21 on the input terminal side of the oscillation inverter 3 is used.
  • the frequency adjustment range required for the temperature compensation operation is about 20 to 4 Oppm (part per million).
  • the frequency adjustment range required for operation to match the reference frequency of the station is within 1 Oppm.
  • the input terminal of the oscillation inverter 3 It is known that the variable width of the frequency is about twice as large as that of the output terminal side, so the input terminal side of the oscillation inverter 3 is used for the temperature compensation operation.
  • the frequency of the output terminal of the oscillation inverter 3 is more variable than that of the input terminal.
  • the width is about twice as large. This is shown below based on experimental data.
  • FIG. 2 shows the gate voltage of the p-channel MOS resistor of the digital temperature-compensated crystal oscillator shown in Fig. 1 and the MOS resistor 17 for temperature compensation of the MOS resistor and the MS resistor 21 for external frequency control.
  • FIG. 3 is a diagram showing a relation between an absolute value and a change rate of an oscillation frequency.
  • the capacitance value of the fixed capacitor for temperature compensation 15 and the fixed capacitor for external frequency control 19 are both 3 OpF
  • Both the channel length and channel width of 1 are set to 30 ⁇
  • the absolute values of the threshold voltage of the MOS resistor 17 for temperature compensation and the M 0 S resistor 21 for external frequency control are both 0.7.
  • V the fundamental frequency of crystal unit 1 is 12.8 MHz.
  • the oscillation frequency on the output terminal side of oscillation inverter 3 Both the rate of change of the number a and the rate of change of the oscillation frequency at the input terminal side of the oscillation inverter 3b, the oscillation frequency increases rapidly when the absolute value of the gate voltage exceeds the threshold voltage of 0.7 V. It is common that the absolute value of the gate voltage changes from around 2 V, and the change in the oscillation frequency slightly saturates.However, the absolute value of the frequency change rate is closer to the output terminal side of the oscillator inverter 3. It is about twice as large as the input terminal side of the oscillation inverter 3.
  • the reason for this phenomenon is that the amplitude of the output terminal side of the oscillation inverter 3 is large, and the potential of the counter electrode of the fixed capacitor 15 for temperature compensation exceeds the power supply voltage due to the principle of the booster circuit. This is considered to be related to the fact that the drain of the temperature compensation MOS resistor 17 is directed forward with respect to the substrate.
  • the capacitance value of the temperature compensation fixed capacitor 15 in FIG. 1 needs to be large enough to compensate for the temperature change of the oscillation frequency of the crystal unit 1. According to calculations and experiments, as long as a normal AT-cut crystal resonator is used as the crystal resonator 1, it may be about 30 to 50 pF or less.
  • This capacitance value slightly increases or decreases depending on the setting of the driving capability of the oscillation inverter 3.
  • the capacitance of the two-layer polycrystalline silicon film having such a size is occupied by two in the semiconductor integrated circuit. Since it can be made in the range of 0 ⁇ m ⁇ ⁇ 300 ⁇ or less, it can be easily incorporated in a semiconductor integrated circuit.
  • the resistance value of the MOS resistor 17 for temperature compensation and the MOS resistor 21 for external frequency control are proportional to the channel length and inversely proportional to the channel width, and are naturally changed by the source-drain voltage.
  • The dependence on the applied gate voltage is the most dominant, and can vary from a large value of 1 G ⁇ or more to a small value of 100 ⁇ or less depending on the gate voltage.
  • the time constant of charge / discharge of the temperature compensating fixed capacitor 15 of about 30 to 50 pF becomes 30 to 50 msec or more.
  • the oscillation cycle of a digital temperature-compensated crystal oscillator is about 50 to 100 nsec.Therefore, charge and discharge hardly occur within the oscillation cycle. This is because the fixed capacitor 15 for temperature compensation is connected to the oscillation inverter 3 It is almost equal to the state where it is not connected.
  • the time constant of charge and discharge of the fixed capacitor 15 for temperature compensation of about 30 to 50 pF is 3 55 nsec or less, and the charge / discharge of the charge is almost completed within the oscillation cycle. In other words, this is almost equivalent to a state in which the temperature compensation fixed capacitor 15 is directly connected to the power supply without passing through the temperature compensation MOS resistor 17.
  • the capacitance value connected to the output terminal side of the oscillation inverter 3 becomes substantially 30 to 50 pF. It can be changed.
  • the temperature information creation unit 7 may be configured. For example, a method may be used in which a non-volatile memory is mounted in the temperature information creation unit 7 and temperature compensation data is written.
  • the external frequency control MOS resistor 21 on the input terminal side of the oscillation inverter 3 is a p-channel MOS resistor as shown in FIG. Must be n-channel M ⁇ S resistors. With a p-channel MOS resistor, the resistance increases with an increase in the external input voltage, and the effective load capacitance decreases. As a result, the oscillation frequency increases and the operation becomes positive.
  • the change in the oscillation frequency may be either positive or negative with respect to the change in the output voltage of the temperature compensation voltage generating means 4, it is connected to the output terminal side of the oscillation inverter 3.
  • the variable resistor may be an n-channel M 0 S resistor.
  • the frequency change required in the operation of adjusting the oscillation frequency to the reference frequency of the base station is generally within 1 Oppm, and more specifically, about 3 to 5 ppm per 1 V of external voltage change.
  • the capacitance value of the fixed capacitor 19 for external frequency control for producing such a frequency change is usually 15 to 30 pF or less according to actual measurement, so that the occupied area in the semiconductor integrated circuit is 1 0 0 ⁇ ⁇ ⁇ 3 0 0 ⁇ ⁇ or less.
  • the digital temperature-compensated crystal oscillator shown in Fig. 1 can easily incorporate everything except the crystal oscillator 1 into a semiconductor integrated circuit, achieving both miniaturization and cost reduction by reducing the number of components. It is clear that this is possible.
  • the digital temperature compensation type crystal oscillator of the first embodiment shown in FIG. 1 has a temperature compensation fixed capacitor 15 and an external frequency control fixed capacitor 19 connected to the oscillation inverter 3 and a temperature compensation MOS resistor. 17 and the external frequency control MOS resistor 21 are connected to the power supply on the high potential side.
  • the drain of the MOS resistor 17 for temperature compensation and the MOS resistor 21 for external frequency control has an extra stray capacitance called pn junction capacitance. ⁇ Connecting the drain of S resistor 17 and MOS resistor 21 for external frequency control is more efficient than connecting fixed capacitor 15 for temperature compensation and fixed capacitor 19 for external frequency control to oscillation inverter 3. However, there are problems such as poor oscillation start-up. Therefore, as shown in FIG. 1, it is more advantageous to connect a fixed capacitor 15 for temperature compensation and a fixed capacitor 19 for external frequency control to the oscillation inverter 3.
  • the fixed capacitor 15 for temperature compensation and the fixed capacitor 19 for external frequency control are both capacitances of a two-layer polycrystalline silicon film containing high-concentration impurities, but these capacitances depend on the voltage range used. It goes without saying that any type of capacitance may be used as long as the capacitance value has no voltage dependence and can be easily mounted on a semiconductor integrated circuit.
  • a capacitor that satisfies these conditions is that any conductor such as a polycrystalline silicon film, a high melting point metal film, or a high melting point metal silicide film is used as the gate electrode, and the high-concentration diffusion region is used as a counter electrode. MOS capacity.
  • the capacitance value does not depend on the voltage because the depletion layer is hardly formed by the electric field from the gate electrode within the normally used power supply voltage range.
  • the counter electrode of the MS capacitor used as the fixed capacitor 15 for temperature compensation or the fixed capacitor 19 for external frequency control must be electrically separated from the surroundings using a pn junction. Therefore, if this counter electrode is connected to the oscillation inverter 3, there is a disadvantage in that the oscillation startability is alienated. Therefore, the gate electrode is more advantageous as the electrode connected to the oscillation inverter 3.
  • ion implantation may be performed after forming a gate insulating film.
  • a gate may be used. Ion implantation may be performed before forming an insulating film.
  • the capacitance value depends on the voltage within the range of the voltage used. Otherwise, it can be regarded as a fixed capacity.
  • the counter electrode is a low-concentration diffusion region and has a MOS capacitance whose capacitance value is voltage-dependent, the work function of the gate electrode and the substrate that is the counter electrode is selected and connected. Thus, it can be used as the fixed capacity in FIG.
  • Fig. 3 shows the relationship between the voltage and the capacitance value of the MOS capacitance with the p-type polycrystalline silicon film as the gate electrode and the p-type diffusion region as the counter electrode, and the gate electrode with the counter electrode as the reference potential. This is the so-called C-V characteristic.
  • FIG. 3 shows an example in which the measurement frequency is 1 MHz, but even if the frequency is in the 10 MHz band, there is no change in the C-V characteristics.
  • the MOS capacitor having a p-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode has a lower potential at the gate electrode than at the counter electrode.
  • the capacitance value has almost no voltage dependence, as long as it is used in such a potential relationship, it should be regarded as almost fixed capacitance Can be.
  • Fig. 4 shows the relationship between the voltage and the capacitance value of the gate electrode using the n-type polycrystalline silicon film as the gate electrode and the n-type diffusion region as the counter electrode, and the gate electrode using the counter electrode as the reference potential.
  • This is a C-V characteristic showing the relationship.
  • FIG. 4 shows an example in which the measurement frequency is 1 MHz, but even if the frequency is in the 10 MHz band, there is no change in the C-V characteristic.
  • the M ⁇ S capacitance with the n-type polycrystalline silicon film as the gate electrode and the n-type diffusion region as the counter electrode has a higher potential than the counter electrode.
  • the configuration of the digital temperature-compensated crystal oscillator shown in Fig. 1 is such that the output terminal of the oscillation inverter 3 is always low with respect to the connection point between the fixed capacitor 15 for temperature compensation and the MOS resistor 17 for temperature compensation.
  • the input terminal of the oscillation inverter 3 is always low potential with respect to the connection point between the external frequency control fixed capacitor 19 and the external frequency control MOS resistor 21.
  • the fixed capacitor 15 for temperature compensation and the fixed capacitor 19 for external frequency control are connected to the fixed MOS capacitor for temperature compensation using the p-type polycrystalline silicon film as the gate electrode and the P-type diffusion region as the counter electrode.
  • the MOS capacitor can be used as a fixed capacitor.
  • a temperature compensation fixed capacitance 15 and an external frequency control fixed capacitance 19 are combined with a temperature compensation fixed MOS capacitance using an n-type polycrystalline silicon film as a gate electrode and an n-type diffusion region as a counter electrode. Even if it is replaced with a fixed MS capacitor for external frequency control and its counter electrode is connected to the output terminal and input terminal of the oscillation inverter 3 respectively, the MS capacitor can be used as a fixed capacitor. It is possible.
  • the MOS capacitor with the highest processing accuracy among the capacitors that can be mounted on the semiconductor integrated circuit is changed to the temperature-compensated crystal oscillator according to the present invention. It can be used as a fixed capacity in a vessel.
  • connecting the counter electrode of the MS capacitor to the oscillating inverter 3 has a problem such as worse oscillation start-up than connecting the gate electrode of the MOS capacitor to the oscillating inverter 3. This is disadvantageous in performance.
  • the M ⁇ S capacitor is used as the fixed capacitor. If used, it is more advantageous to use a MOS capacitor having a p-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode.
  • the MOS capacitor is not formed on a normal semiconductor substrate but is formed on a silicon-on-insulator (S ⁇ I), the counter electrode is also insulated and isolated, so connect the counter electrode to the oscillation inverter 3. There is no disadvantage.
  • variable resistor for temperature compensation connected to the output terminal side of the oscillation inverter 3 is an n-channel MOS resistor.
  • the power supply of the connection destination may be on the low potential side.
  • the fixed capacitor 15 for temperature compensation is replaced with a fixed M ⁇ S capacitor for temperature compensation using the n-type polycrystalline silicon film as a gate electrode and the n-type diffusion region as a counter electrode, and the gate electrode is oscillated.
  • the gate electrode Connected to the output terminal of the inverter 3 and the fixed capacitor 19 for external frequency control is used as a fixed M ⁇ S capacitor for external frequency control using the P-type polycrystalline silicon film as the gate electrode and the p-type diffusion region as the counter electrode.
  • the gate electrode can be connected to the input terminal of the oscillation inverter 3.
  • the counter electrode at a potential different from the power supply voltage.
  • the OS capacitor is formed on a normal semiconductor substrate, the counter electrode must be electrically separated from the surroundings using a pn junction.
  • a fixed M ⁇ S capacitor for temperature compensation Inevitably, the periphery of the counter electrode must be surrounded by a P-type diffusion region, and if a P-type semiconductor substrate is used, the circumference of the counter electrode of the fixed M ⁇ S capacitor for external frequency control should be p It has to be a double diffusion structure in which it is surrounded by a shaped diffusion region, which is disadvantageous in manufacturing.
  • the fixed MOS capacitor for temperature compensation and the fixed for external frequency control are used. It is more advantageous to use the same type of MOS capacitance.
  • FIG. 5 is a circuit diagram showing a configuration of a temperature-compensated crystal oscillator according to a second embodiment of the present invention.
  • the oscillation inverter and the like are shown using circuit symbols, and the temperature information creation unit and the like are shown using block diagrams.
  • the second embodiment is also a digital temperature-compensated crystal oscillator, in which a crystal oscillator 1, an oscillation inverter 3, and a feedback resistor 5 are connected in parallel to constitute a crystal oscillation means 2, which contains a high concentration of impurities.
  • the temperature compensation fixed means 15 of the two-layer polycrystalline silicon film and the temperature compensation MOS resistance 17 of the n-channel MOS resistance are connected in series to constitute the temperature compensation control means 6.
  • the temperature compensation control means 6 is connected between the output terminal of the oscillation inverter 3 which is one terminal of the crystal oscillation means 2 and the low potential side power supply 1 Vcc.
  • the DZA conversion circuit 9 includes an integration circuit 11 for preventing a rapid change in the output. Then, the temperature compensation voltage generating means 4 outputs the output voltage of the voltage output type DZA conversion circuit 9 as a voltage for the temperature compensation operation, and outputs the output terminal of the integration circuit 11 which is the output terminal. It is connected to the gate, which is the control terminal of the M ⁇ S resistor 17, and the input terminal of the oscillation inverter 3, the other terminal of the crystal oscillation means 2, and the low-potential side power supply, Vcc. Between them, a fixed capacitance 20 of a two-layer polycrystalline silicon film containing high-concentration impurities is connected, and the external frequency control means as shown in the first embodiment is not provided.
  • the capacitance value of the fixed capacitor 15 for temperature compensation is about 30 to 50 pF or less as described in the first embodiment.
  • the capacitance value of the fixed capacitance 20 depends on the setting of the load capacitance in the frequency adjustment when the crystal unit 1 is manufactured, but is generally about 15 to 30 pF.
  • the fixed capacitance 15 for temperature compensation and the fixed capacitance 20 are both the capacitance of a two-layer polycrystalline silicon film containing high-concentration impurities, but the polycrystalline silicon film, the refractory metal film, or It is also possible to use an MS capacitor in which an arbitrary conductor such as a refractory metal silicide film is used as a gate electrode and a high-concentration diffusion region is used as a counter electrode.
  • the counter electrode of the M ⁇ S capacitor used as the fixed capacitor 15 for temperature compensation or the fixed capacitor 20 must be electrically separated from the surroundings using a pn junction. Connected to the oscilloscope has the disadvantage of alienating the oscillation startability.
  • the gate electrode is more advantageous as the electrode connected to the inverter 3.
  • the temperature compensation fixed capacitance 15 even if a capacitance having a voltage dependence on the capacitance value is used as the temperature compensation fixed capacitance 15, the capacitance value falls within the range of the used voltage. If it does not depend on, it can be regarded as a fixed capacity for temperature compensation. Therefore, even if the MOS capacitor has voltage dependence, the temperature compensation fixed in FIG. 5 depends on the selection of the work function between the gate electrode and the substrate as the counter electrode and the connection method. It can be used as capacity 15.
  • the MOS capacitance with the n-type polycrystalline silicon film as the gate electrode and the n-type diffusion region as the counter electrode has a higher potential at the gate electrode than at the counter electrode.
  • the output terminal of the oscillation inverter 3 is always at a high potential in contrast to the MOS resistor 17 for temperature compensation.
  • the MOS capacitance can be used as the fixed capacitance 15 for temperature compensation.
  • the temperature compensation fixed capacitor 15 has a p-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode. Even if the capacitor is replaced with an S capacitor and its counter electrode is connected to the output terminal of the oscillation inverter 3, the MOS capacitor can be used as the fixed capacitor 15 for temperature compensation.
  • the MS capacitor having the highest processing accuracy among the capacitors that can be mounted on the semiconductor integrated circuit is used as the temperature-compensating fixed capacitor 15 in the temperature-compensated crystal oscillator according to the present invention.
  • the counter electrode uses a Pn junction. Must be electrically isolated from surroundings. Therefore, when connecting an opposing electrode of the MOS capacitor to the output terminal of the oscillation inverter 3 due to extra stray capacitance such as the pn junction capacitance, the output terminal of the oscillation inverter 3 Compared to connecting a gate electrode, there is a problem in that the oscillation start-up performance is worse, which is disadvantageous in terms of performance.Therefore, it is fixed to a low-potential side power supply as shown in Fig. 5 for temperature compensation.
  • the MOS capacitor formed on a normal semiconductor substrate is used as the fixed capacitor 15 for temperature compensation. If so, it is more advantageous to use an MS capacitor using the n-type polycrystalline silicon film as a gate electrode and the n-type diffusion region as a counter electrode.
  • the temperature compensation control means 6 is connected to the output terminal side of the oscillation inverter 3, but may be connected to the input terminal side of the oscillation inverter 3.
  • the temperature compensation control means 6 is connected to the input terminal side of the oscillation inverter 3 as compared to when it is connected to the output terminal side of the oscillation inverter 3, as shown in FIG. Since the variable width is reduced to about half, if it is connected to either one, it is more advantageous to connect it to the output terminal side of the oscillation inverter 3 as shown in FIG.
  • the fixed capacitor 15 for temperature compensation is connected to the output terminal of the oscillation inverter 3, and the MS resistor 17 for temperature compensation is connected to the low-potential side.
  • the drain of the temperature compensation MOS resistor 17 is connected to the output terminal of the oscillation inverter 3, and the temperature compensation fixed capacitor 15 is connected to the source of the temperature compensation MOS resistor 17.
  • the other terminal of the fixed capacitor 15 for temperature compensation can be connected to the power supply on the low potential side.
  • the temperature compensation MOS resistor 1 is connected to the output terminal of the oscillation inverter 3.
  • the drain 7 is connected, there is a problem that the oscillation starting performance is worse than when the fixed capacitor 15 for temperature compensation is connected to the output terminal of the oscillation inverter 3. Therefore, as shown in FIG. 5, it is more advantageous to connect the temperature compensation fixed capacitor 15 to the output terminal of the oscillation inverter 3.
  • the temperature compensation control means 6 is connected to the input terminal of the oscillation inverter 3, similarly, it is more advantageous to connect the fixed capacitor 15 for temperature compensation to the input terminal of the oscillation inverter 3.
  • the temperature compensation control means 6 is connected between the output terminal of the oscillation inverter 3 and the power supply on the low potential side. It may be connected between the output terminal and the power supply on the high potential side. However, in that case, it is more advantageous to change the temperature compensation MS resistor 17 to a p-channel MOS resistor to eliminate the effect of the backgate effect.
  • a MOS capacitor formed on a normal semiconductor substrate is used as the fixed capacitor 15 for temperature compensation, a p-type MOSFET is used. It is more advantageous to use a MOS capacitor having a crystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode, and connecting the gate electrode to the oscillation inverter 3.
  • the MS capacitance be used as the temperature compensation fixed capacitance 15, but also the fixed capacitance 20 can be an MS capacitance with good processing accuracy.
  • the power supply to which the temperature compensation may be on the high potential side or on the low potential side.
  • the MOS capacitance that can be used as a substantially fixed capacitance depending on the connection state between the gate electrode and the counter electrode is such that the p-type polycrystalline silicon film is used as the gate electrode and the p-type diffusion region is used as the counter electrode.
  • MOS capacitors There are two types of MOS capacitors, namely, a MOS capacitor that uses an n-type polycrystalline silicon film as a gate electrode and an MS capacitor that uses an n-type diffusion region as a counter electrode.
  • the temperature compensation fixed capacitance 15 and the fixed capacitance 20 are different types of MOS capacitances and the connection destination is the same power supply, or the temperature compensation fixed capacitance 15 and the fixed capacitance 20 If both are connected to the same type of MS capacitor and each connection destination is to a different power supply, the opposing electrode of one of the MOS capacitors should be connected to the oscillation inverter 3. Then, as described above, when a semiconductor integrated circuit is formed using a normal semiconductor substrate, there are problems such as exclusion of oscillation startability.
  • the p-type polycrystalline silicon film should be used as the gate electrode.
  • the P-type diffusion region is used as a counter electrode.
  • the counter electrode of the MOS capacitor is connected to the high-potential power supply, the n-type polycrystalline silicon film is used as the gate electrode, and the n-type diffusion region is used as the counter electrode. If the opposite electrode of the MOS capacitor is connected to the low-potential-side power supply, there is no problem of alienation of oscillation activation.
  • this substrate is connected to the power supply on the low potential side, so the P-type polycrystalline silicon film is used as the gate electrode and the P-type diffusion
  • the connection of the counter electrode to the high-potential side power supply of the MOS capacitor with the region as the counter electrode is used, a double diffusion structure that surrounds the P-type diffusion region, which is the counter electrode, with an n-type diffusion region is used. I have no choice.
  • n-type semiconductor substrate When a semiconductor integrated circuit is formed using an n-type semiconductor substrate, this substrate is connected to a power supply on the high potential side.Therefore, the n-type polycrystalline silicon film is used as a gate electrode, and the ⁇ -type diffusion region is used as a counter electrode. If the opposing electrode of the MOS capacitor is connected to the low-potential side power supply, the double-diffusion structure must surround the n-type diffusion region, which is the opposing electrode, with a p-type diffusion region. . In both cases, there is a manufacturing disadvantage.
  • both the fixed capacitor 15 for temperature compensation and the fixed capacitor 20 are made of a p-type polycrystalline silicon film as a gate electrode and a P-type diffusion region is formed.
  • the MOS capacitor used as the counter electrode, the counter electrode used as the power supply on the high potential side, or the n-type polycrystalline silicon film was used as the gate electrode for both the fixed capacitor 15 for temperature compensation and the fixed capacitor 20 for ⁇ -type diffusion.
  • the gate electrode and the counter electrode are of the same conductivity type, and gates are formed so that a depletion layer is not formed in the active layer of S ⁇ I.
  • this ⁇ 0S capacitance can be regarded as almost a fixed capacitance, so that there is no restriction on the relationship between the type of MOS capacitance and the power supply to which it is connected, and any combination is possible.
  • the first and second embodiments described above both use a fixed capacitor and a variable resistor connected in series, and the capacitance itself changes by varying the resistance of the variable resistor. Without it, the load capacity is variable.
  • FIG. 3 is a circuit diagram showing a configuration of a temperature compensated crystal oscillator of FIG.
  • the oscillation inverter and the like are shown using circuit symbols, and the temperature information creation unit and the like are shown using block diagrams.
  • This third embodiment is also a digital temperature-compensated crystal oscillator.
  • the crystal oscillator 1, the oscillation inverter 3, and the feedback resistor 5 are connected in parallel to connect the crystal oscillation means 2 to each other. Make up.
  • variable MOS capacitor 35 for temperature compensation using an n-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode, and a MOS resistor 17 for temperature compensation of a p-channel M MS resistor are used.
  • the temperature compensation control means 6 is configured by being connected in series. This temperature compensation control means 6 is connected between the output terminal of the oscillation inverter 3 which is one terminal of the crystal oscillation means 2 and the power supply + Vcc on the high potential side, and the temperature compensation M ⁇ S resistor 17 is connected to the power supply. Side.
  • the external frequency control M ⁇ S resistor 21 is connected between the external frequency control means 8 and the input terminal of the oscillation inverter 3 which is the other terminal of the crystal oscillation means 2 and the power supply + Vcc on the high potential side. Connected to be on the power supply side.
  • Reference numeral 4 denotes a temperature compensation voltage generating means, a temperature information creation unit 7 for creating digital temperature compensation information, a voltage output type D / A conversion circuit 9 for converting the digital temperature compensation information into an analog voltage, and a
  • the output type DZA conversion circuit 9 includes an integration circuit 11 for preventing a rapid change in the output.
  • the temperature compensation voltage generating means 4 outputs the output voltage of the voltage output type DZA conversion circuit 9 as a voltage for the temperature compensation operation.
  • ⁇ ⁇ 3 Connected to the gate, which is the control terminal of resistor 17.
  • the gate which is the control terminal of the external frequency control MOS resistor 21, is connected to the external voltage input terminal 13.
  • the capacitance value connected to the output terminal of the oscillation inverter 3 is equivalently changed by varying the resistance value of the MOS resistor 17 for temperature compensation by the gate voltage. This makes it possible to vary the load capacitance and to perform temperature compensation of the oscillation frequency.
  • the capacitance value connected to the input terminal of the oscillation inverter 3 can be equivalently changed.
  • the oscillation frequency can be adjusted to the reference frequency of the base station by varying the load capacity, as in the first embodiment.
  • the third embodiment differs from the first embodiment in that the capacitance connected in series with the variable resistor is not a fixed capacitance but a variable capacitance.
  • variable MOS capacitor 35 for temperature compensation and the variable M ⁇ S capacitor 37 for external frequency control both use an n-type polycrystalline silicon film as a gate electrode and a P-type diffusion region as a counter electrode.
  • the electrode side is connected to the input terminal and output terminal of the oscillation inverter 3.
  • the opposing electrode of the temperature-compensating variable MOS capacitor 35 is connected to the high-potential power supply + Vcc via the temperature-compensating MOS resistor 17, and the opposing electrode of the external frequency controlling variable MOS capacitor 37 is connected. Is connected to the high-potential side power supply + Vcc via the external frequency control M0S resistor 21.
  • FIG. 7 is a so-called C-V characteristic showing the relationship between the voltage of the gate electrode and the capacitance value using the counter electrode of the MOS capacitor as the reference potential.
  • the gate electrode is an n-type polycrystalline silicon film
  • the C-V characteristic c of the MOS capacitor is a p-type diffusion region as a counter electrode
  • the p-type polycrystalline silicon film is a gate electrode.
  • the electrode also shows the C-V characteristic d of the M ⁇ S capacitance with the n-type diffusion region as the counter electrode.
  • FIG. 7 shows an example in which the measurement frequency is 1 MHz. However, even when the frequency is in the 10 MHz band, there is no change in these C-V characteristics.
  • the MOS capacitor having an n-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode has a negative gate electrode voltage of ⁇ 0. .
  • the capacitance changes greatly around 5 to 2V.
  • the M ⁇ S capacitance with the P-type polycrystalline silicon film as the gate electrode and the n-type diffusion region as the counter electrode also has a capacitance value near the gate electrode voltage of 0.5 to 2 V with respect to the counter electrode. It changes greatly.
  • the capacitance value of the MOS capacitor with the n-type polycrystalline silicon film as the gate electrode and the p-type diffusion region as the counter electrode is maximum when the voltage of the gate electrode with respect to the counter electrode is high in the negative direction
  • the change width of the load capacitance can be made larger than in the case where the fixed capacitance and the MS resistor are connected in series.
  • the temperature-compensating variable MOS capacitor 35 is a MOS capacitor having an n-type polycrystalline silicon film as a gate electrode and a P-type diffusion region as a counter electrode, and using the gate electrode as an oscillation inverter. 3 and the opposing electrode is connected to the high-potential power supply + Vcc via the MOS resistor 17 for temperature compensation, so that the gate electrode of the variable MOS capacitor 35 for temperature compensation is connected.
  • the potential is always lower than the potential of the counter electrode.
  • the voltage change of the capacitance value can be obtained by the curve of the C-V characteristic c of the M ⁇ S capacitor using the n-type polycrystalline silicon film as the gate electrode and the p-type diffusion region as the counter electrode as shown in Fig. 7.
  • the gate voltage is on the negative side, and the connection is such that the capacitance value increases as the potential difference between the gate electrode and the counter electrode increases.
  • the capacitance value of the temperature compensation variable M ⁇ S capacitance 35 also changes at the same time, and since the direction of the change is the same, the temperature compensation MOS resistor 17
  • the variable width of the load capacity can be increased.
  • variable M ⁇ S capacitor 35 for temperature compensation.
  • variable M ⁇ S capacitor 37 for external frequency control.
  • the variable width of the load capacity according to 2 1 can be increased.
  • the digital temperature-compensated crystal oscillator can easily incorporate everything except the crystal oscillator 1 into a semiconductor integrated circuit, and can achieve downsizing and cost reduction by reducing the number of components.
  • the temperature compensation operation is performed by the temperature compensation MS resistor 17 on the output terminal side of the oscillation inverter 3, and the temperature of the base station is reduced.
  • the external frequency control MS resistor 21 on the input terminal side of the oscillation inverter 3 performs the operation to match the reference frequency.
  • the frequency variable width of the output terminal side of the oscillation inverter 3 is larger. Because it is wide, it is used for temperature compensation operation that requires a wide frequency variable width.
  • both the variable M ⁇ S capacitor 15 for temperature compensation and the MOS resistor 21 for external frequency control use an n-type polycrystalline silicon film as the gate electrode.
  • the P-type diffusion region is an M ⁇ S capacitor that serves as a counter electrode, and its gate electrode is the output terminal of crystal oscillation means 2. And the input terminal.
  • the p-type polycrystalline silicon film is used as the gate electrode, the n-type diffusion region is used as the counter electrode, and the M ⁇ S capacitor is used as the counter electrode.
  • the output terminal and the input terminal of the vibration means 2 may be connected respectively.
  • an extra stray capacitance such as a pn junction capacitance is connected to the crystal oscillation means 2 and the like, which is somewhat disadvantageous in terms of oscillation startability, but such a configuration is also possible.
  • the external frequency control MOS resistor 21 on the input terminal side of the oscillation inverter 3 must be a p-channel MOS resistor. It must not be an n-channel M ⁇ S resistor. If the resistance is a p-channel M ⁇ S resistor, the resistance value increases with an increase in the external input voltage, and the effective load capacitance decreases. As a result, the oscillation frequency increases and the operation becomes positive.
  • the direction of the change of the oscillation frequency can be set arbitrarily with respect to the change of the output voltage of the temperature compensation voltage generating means 4, so the variable resistor connected to the output terminal side of the oscillation inverter 3 May be an n-channel MOS resistor.
  • the M ⁇ S resistor 17 for temperature compensation is connected to the low-potential side power supply as an n-channel MOS resistor, and the M0S resistor for external frequency control is high as a p-channel M ⁇ S resistor.
  • a configuration that connects to the power supply on the potential side is possible.
  • variable M ⁇ S capacitance 35 for temperature compensation is an M ⁇ S capacitance with the n-type polycrystalline silicon film as the gate electrode and the p-type diffusion region as the counter electrode.
  • variable M ⁇ S capacitor 35 for temperature compensation and the variable MOS capacitor 37 for external frequency control are different types of MOS capacitors
  • the counter electrode of the MOS capacitor of this type must be a diffusion region of the same conductivity type as the semiconductor substrate, and a potential different from that of the semiconductor substrate must be applied to this counter electrode. It is disadvantageous in manufacturing because it must have a heavy diffusion structure.
  • variable M ⁇ S capacitor 35 for temperature compensation and the variable M capacitor S 37 for external frequency control have the same type of M ⁇ S capacitor, and the variable MOS capacitor 35 5 for temperature compensation. If the power supply connected to the low-potential side is connected to the low-potential side and the power supply connected to the variable MOS capacitor for external frequency control 37 is set to the high-potential side, the counter electrode of either M ⁇ S Although it has to be connected to 2, it is somewhat disadvantageous in terms of oscillation startup, but it is more practical than another type of M ⁇ S capacitor.
  • the 6 has a temperature-compensating MOS capacitor 35 and a variable MS capacitor 37 for external frequency control connected to the oscillation inverter 3, and a temperature-compensating MOS.
  • the S resistor 17 and the external frequency control MOS resistor 21 are connected to the high-potential power supply + Vcc.
  • the drain of the MOS inverter 17 for temperature compensation is connected to the output terminal of the oscillation inverter 3, and the drain of the MOS resistor 21 for external frequency control is connected to the input terminal of the oscillation inverter 3.
  • Connect the variable MOS capacitor for temperature compensation 35 to the source of the MOS resistor 17 for external temperature control and connect the variable MOS capacitor for external frequency control 3 7 to the source of the external frequency control M0S resistor 21.
  • the other terminal of the temperature compensation customary variable MOS capacitor 3 5 It is also possible to connect the other terminal of the external frequency control variable MOS capacitor 37 to the power supply + Vcc on the high potential side.
  • the drain of the MOS resistor 17 for temperature compensation and the MS resistor 21 for external frequency control has an extra stray capacitance called pn junction capacitance. Therefore, if one drain for temperature compensation MOS resistor and one external frequency control MOS resistor 21 are connected to the oscillation inverter 3, a variable M 3S capacitor 35 5 for temperature compensation is connected to the oscillation inverter 3. There is a problem that the oscillation start-up performance is worse than in the case where an external frequency control variable MS capacitor 37 is connected. For this reason, as shown in FIG. 6, it is more advantageous to connect a variable MOS capacitor 35 for temperature compensation and a variable MS capacitor 37 for external frequency control to the oscillation inverter 3.
  • the capacitance connected to the oscillation inverter 3 is variable, both using an n-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode.
  • the variable width of the frequency required for operation to match the base station's reference frequency is not very large, so the external frequency control variable connected to the input terminal of the oscillation inverter 3
  • the MOS capacitor 37 may be replaced with a fixed capacitor for external frequency control of a two-layer polycrystalline silicon film containing a high concentration of impurities.
  • variable MS capacitor 37 for external frequency control uses a gate electrode of any conductor such as a polycrystalline silicon film, a high-melting metal film, or a high-melting metal silicide film to provide high-concentration diffusion.
  • a gate electrode of any conductor such as a polycrystalline silicon film, a high-melting metal film, or a high-melting metal silicide film to provide high-concentration diffusion.
  • replace the area with a fixed MS capacitor for external frequency control with the area as the counter electrode connect the gate electrode to the input terminal of the oscillation inverter 3, and connect the counter electrode via the MOS resistor 21 for external frequency control. It can be connected to the high-potential power supply + Vcc.
  • variable frequency-variable MOS capacitor 37 for external frequency control uses a p-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode.
  • its gate electrode can be connected to the input terminal of the oscillation inverter 3 and its counter electrode can be connected to the power supply on the high potential side via the external frequency control MOS resistor 21. Absent.
  • FIG. 8 is a circuit diagram showing a configuration of the temperature compensated crystal oscillator.
  • the oscillation inverter and the like are shown using circuit symbols, and the temperature information creation unit and the like are shown using block diagrams.
  • the fourth embodiment shown in FIG. 8 is also a digital temperature-compensated crystal oscillator, in which a crystal oscillator 1, an oscillation inverter 3, and a feedback resistor 5 are connected in parallel to constitute a crystal oscillator 2. .
  • the temperature compensation control means 6 is configured by connecting the drain of FIG.
  • the gate electrode of the temperature compensation variable MOS capacitor 35 is connected to the output terminal of the oscillation inverter 3 which is one terminal of the crystal oscillation means 2, and the source of the temperature compensation MOS resistor 17 and the substrate are connected to a low potential.
  • the power supply on the side is connected to Vcc.
  • the temperature compensation voltage generating means 4 is configured in the same manner as in each of the above-described embodiments.
  • the output terminal of the integration circuit 11 as its output terminal is connected to the gate terminal as the control terminal of the temperature compensation MOS resistor 17.
  • a two-layer polycrystalline silicon film containing high-concentration impurities is provided between the input terminal of the oscillation inverter 3, which is the other terminal of the crystal oscillation means 2, and the power supply 1 Vcc on the low potential side. Is connected to the fixed capacity 20.
  • variable MOS capacitor for temperature compensation 35 is a fixed capacitor, the capacitance value required for temperature compensation is about 3 ⁇ ⁇ to 50 pF or less as described in the first embodiment. Therefore, the occupied area in the semiconductor integrated circuit is approximately 200 mX 30 X ⁇ or less.
  • the third embodiment has been described with reference to the C-V characteristic shown in FIG. Similarly to the above, the direction of the change in the load capacitance due to the MOS resistor 17 for temperature compensation and the direction of the change in the capacitance value of the variable M ⁇ S capacitor 35 for temperature compensation match.
  • the change width of the load capacitance due to the temperature-compensating MOS resistor 17 can be made larger than in the case of using the capacitor, and the same load capacitance can be used in a smaller area than in the case of using the fixed capacitance.
  • the capacitance value of the fixed capacitance 20 depends on the setting of the load capacitance in the frequency adjustment at the time of manufacturing the crystal unit 1, but is generally about 15 to 30 pF.
  • variable MOS capacitor 35 and the fixed capacitor 20 for temperature compensation can be easily built in the semiconductor integrated circuit.
  • the temperature compensation control means 6 is connected to the output terminal side of the oscillation inverter 3, but may be connected to the input terminal side of the oscillation inverter 3. .
  • the temperature compensation control means 6 is connected to the input terminal side of the oscillation inverter 3, as compared to the case where it is connected to the output terminal side of the oscillation inverter 3, as shown in FIG. Since the variable width of the signal becomes about half, if it is connected to either one, it is more advantageous to connect it to the output terminal side of the oscillation inverter 3 as shown in FIG.
  • the temperature compensation variable MOS capacitor 35 is connected to the output terminal of the oscillation inverter 3, and the temperature compensation MOS resistor 17 is connected to the low potential side. Connected to the power supply, but connected the drain of temperature compensation M ⁇ S resistor 17 to the output terminal of oscillation inverter 3, and connected the source of temperature compensation MOS resistor 17 to the temperature compensation variable MOS capacitor 3 5 It is also possible to connect the gate electrode of the above, and to connect the opposing electrode of the variable MOS capacitor 35 for temperature compensation to the power supply on the low potential side.
  • the temperature compensation MOS resistor is connected to the output terminal of the oscillation inverter 3 because the drain of the temperature compensation MS resistor 17 has an extra stray capacitance called the pn junction capacitance. 1 Connect 7 drains In this case, there is a problem that the oscillation starting performance is worse than when the temperature compensation variable MOS capacitor 35 is connected to the output terminal of the oscillation inverter 3.
  • the temperature compensation control means 6 is connected between the output terminal of the oscillation inverter 3 and the power supply on the low potential side. It may be connected to the power supply on the high potential side. However, in that case, it is more advantageous to replace the temperature compensation MOS resistor 17 with a p-channel MOS resistor to eliminate the effect of the backgate effect.
  • the gate electrode is connected to the oscillation inverter 3 when the counter electrode of the M ⁇ S capacitance is connected to the oscillation inverter 3 because extra stray capacitance called the pn junction capacitance accompanies the counter electrode of the MOS capacitor. This is because it has disadvantages such as alienating the oscillation startability as compared with the case where it is performed.
  • the capacitance of a two-layer polycrystalline silicon film containing high-concentration impurities is used as the fixed capacitance 20, but as described in the second embodiment.
  • the fixed capacity 20 can also be set to the MS capacity with good processing accuracy.
  • the MOS capacitor with the high-diffusion region as the counter electrode has a variable temperature compensating process for the counter electrode. Since it is independent of the manufacturing process of the counter electrode of the M ⁇ S capacitor 35 and does not affect each other, there is no need to consider how to combine it with the temperature-compensating variable MOS capacitor 35 and the oscillation start-up property is not alienated. Except for connecting the gate electrode to the oscillation inverter 3 as described above, the same treatment as the capacitance of the two-layer polycrystalline silicon film may be performed.
  • the M ⁇ S capacitance with the p-type polycrystalline silicon film as the gate electrode and the p-type diffusion region as the counter electrode, and the n-type polycrystalline silicon film as the gate electrode and counter the n-type diffusion region Care must be taken in the combination of the MS capacitance as an electrode, because in practice the counter electrode cannot be formed independently of the counter electrode of the variable MOS capacitor 35 for temperature compensation.
  • the counter electrode of the variable M ⁇ S capacitor 35 for temperature compensation and the fixed capacitor 20 is connected to a diffusion region of another conductivity type and connected. Use the same power supply at the other end, or set the counter electrode of the variable M ⁇ S capacitor 35 and the fixed capacitor 20 for temperature compensation to a diffusion region of the same conductivity type, and use a different power supply at each connection destination.
  • the counter electrode of one of the MS capacitors is connected to the oscillation inverter 3.As described above, when forming a semiconductor integrated circuit using a normal semiconductor substrate, There are problems such as alienating the startability.
  • the counter diffusion electrode is the type diffusion region. If the counter electrode of the MOS capacitor is connected to the power supply on the high potential side and the n-type diffusion region is the counter electrode, the counter electrode of the MOS capacitor is connected to the power supply on the low potential side, the oscillation start-up is not isolated. The problem does not arise.
  • a semiconductor integrated circuit when a semiconductor integrated circuit is formed using a normal semiconductor substrate, it must be electrically separated from its surroundings using a pn junction in order to apply an arbitrary potential to the counter electrode side.
  • the periphery of the counter electrode of the other MOS capacitor must have a double diffusion structure, which is disadvantageous in manufacturing. More specifically, when a semiconductor integrated circuit is formed using a p-type semiconductor substrate, this substrate is connected to the power supply on the low potential side, so the connection of the counter electrode of the MOS capacitor with the p-type diffusion region as the counter electrode If the power supply on the high-potential side is used first, a double-diffusion structure in which the p-type diffusion region, which is the counter electrode, is surrounded by an n-type diffusion region must be used.
  • this substrate is connected to the power supply on the high potential side.
  • the counter electrode must be surrounded by a p-type diffusion region surrounding the n-type diffusion region, which is a double diffusion structure. In either case, there is a manufacturing disadvantage.
  • the temperature-compensating variable MOS capacitor 35 is an n-type polycrystalline silicon film as a gate electrode, and the p-type diffusion region is a counter electrode.
  • the fixed capacitance 20 is a p-type polycrystalline silicon film as a gate electrode
  • the p-type diffusion region is a MOS capacitor with a counter electrode
  • the counter electrode is a power supply on the high potential side.
  • the variable MOS capacitor 35 for temperature compensation is a p-type polycrystalline silicon film as a gate electrode
  • the n-type diffusion region is an M ⁇ S capacitor as a counter electrode
  • the fixed capacitance 20 is an n-type polycrystalline silicon.
  • the third embodiment and the fourth embodiment described above both use a series connection of a variable capacitor and a variable resistor, and when the resistance value of the variable resistor is changed, the capacitance value itself is also changed. This is to increase the variable width of the load capacity.
  • FIG. 9 is a circuit diagram showing a configuration of the temperature-compensated crystal oscillator according to the fifth embodiment.
  • the oscillation inverter and the like are shown using circuit symbols, and the temperature information creation unit and the like are shown using block diagrams.
  • the embodiment shown in FIG. 9 is also a digital temperature-compensated crystal oscillator, and the crystal oscillator 1, the oscillation inverter 3, and the feedback resistor 5 are connected in parallel to the crystal oscillator 2.
  • the DC blocking capacitance 23 for temperature compensation of a two-layer polycrystalline silicon film containing high-concentration impurities the temperature at which the n-type polycrystalline silicon film is used as a gate electrode and the P-type diffusion region is used as a counter electrode
  • the temperature compensation control means 6 is configured by connecting the compensation variable MOS capacitor 35 in series.
  • the temperature compensation variable MOS capacitor 35 is connected between the temperature compensation control means 6 and the input terminal of the oscillation inverter 3 which is one terminal of the crystal oscillation means 2 and the power supply + V on the high potential side. Connected to be on the power supply side.
  • the external frequency control means 8 is configured by connecting an external frequency control variable MS capacitor 37 in series.
  • An external frequency control variable MOS capacitor 37 is connected between the external frequency control means 8 and the output terminal of the oscillation inverter 3 which is the other terminal of the crystal oscillation means 2 and the high potential side power supply + Vcc. Connected to be on the power supply side.
  • the temperature compensation voltage generating means 4 is constructed in the same manner as in each of the above-described embodiments, and its output terminal is connected to a temperature compensation variable MOS capacitor 35 through a temperature compensation fixed resistor 31 made of a polycrystalline silicon film. Is connected to the connection point between the gate electrode of the IGBT and one terminal of the DC blocking capacitance 23 for temperature compensation.
  • the gate electrode of the variable MS capacitor 37 for external frequency control It is connected to an external voltage input terminal 13 for adjusting to the reference frequency of the base station via an external frequency control fixed resistor 33 made of a crystalline silicon film.
  • the opposing electrodes of the variable M ⁇ S capacitor 35 for temperature compensation and the variable M ⁇ S capacitor 37 for external frequency control are connected to the high-potential side power supply + Vcc, respectively.
  • the temperature compensation voltage to be output and the external input voltage applied from the external voltage input terminal 13 are usually set to the upper limit of the high-potential power supply voltage and the lower limit of the low-potential power supply voltage.
  • Each of the variable MS capacitor 35 for external use and the variable ⁇ 1 3 capacitor 37 for external frequency control has a gate electrode potential lower than that of the counter electrode.
  • the temperature compensation variable MOS capacitor 35 and the external frequency control variable M ⁇ S capacitor 37 both use an n-type polycrystalline silicon film.
  • the gate electrode is used, and the p-type diffusion region is used as a counter electrode. This is for the following reasons.
  • the capacitance value of the MOS capacitance with the n-type polycrystalline silicon film as the gate electrode and the p-type diffusion region as the counter electrode is determined by the voltage of the gate electrode with respect to the counter electrode. Significantly changes around minus 0.5 to 2 V.
  • the external frequency control variable MOS capacitor 37 connects the counter electrode to the high voltage side power supply + Vcc, and connects the gate electrode to the external voltage input terminal 13 via the external frequency control fixed resistor 33. Connected to the As the force voltage increases, the capacitance value decreases and the frequency increases, resulting in a change in positive polarity, satisfying the general specifications.
  • such a change in the capacitance value of the MOS capacitor has a minimum value of about 20% of the maximum value.
  • the maximum value is 50 pF MOS capacitance
  • the minimum value is about 10 pF
  • the difference is about 40 pF.
  • the oscillation frequency will be 30
  • the maximum value of the variable MOS capacitor for temperature compensation 35 is about 50 pF or so, as long as a normal AT-cut crystal resonator is used as the crystal resonator 1. The following may be set.
  • a MOS capacitor of this size has an occupied area of 200 ⁇ 2300 ⁇ or less in a semiconductor integrated circuit and can be easily incorporated in a semiconductor integrated circuit.
  • the external frequency control variable M ⁇ may be set to about 3 OpF.
  • variable MOS capacitor 37 for external frequency control can be easily incorporated in the semiconductor integrated circuit.
  • the capacitance values of the DC blocking capacitance 23 for temperature compensation and the DC blocking capacitance 27 for external frequency control are both sufficient at about 50 pF, the capacitance of the two-layer polycrystalline silicon film is sufficient.
  • the area occupied in the semiconductor integrated circuit is less than 200 / ⁇ 300 ⁇ , and can be easily incorporated in the semiconductor integrated circuit. It is sufficient for both the temperature compensation fixed resistor 31 and the external frequency control fixed resistor 33 to have a resistance value of about 100 k ⁇ or more. It is easy to form.
  • the fixed resistor for temperature compensation 31 and the fixed resistor for external frequency control 33 can also be formed by diffusion resistors.However, since the diffusion resistors use pn junctions for element isolation, leakage current increases at high temperatures. There is a problem that the potential of the gate electrode of the compensation variable ⁇ 3 capacitor 35 or the variable electrode of the external frequency control variable M ⁇ S capacitor 37 may be slightly distorted. In the embodiment, the resistance of the polycrystalline silicon film is used.
  • the digital temperature-compensated crystal oscillator shown in Fig. 9 uses the input terminal of oscillation inverter 3 for temperature compensation and adjusts the output terminal of oscillation inverter 3 to the reference frequency of the base station. Used for
  • the digital temperature-compensated crystal oscillator of the fifth embodiment uses a method of directly varying the capacitance value of the capacitance connected to the crystal oscillation means 2 to vary the load capacitance. This is because the change in the oscillation frequency is larger on the input terminal side than on the output terminal side, but it is also possible to reverse.
  • the maximum value of the temperature-compensating variable MOS capacitor 35 and the capacitance value of the temperature-compensating DC blocking capacitor 23 in order to secure a variable width of the oscillation frequency of about 30 to 4 O ppm Is often set to about 100 pF, which is disadvantageous because the occupied area in the semiconductor integrated circuit increases.
  • the n-type polycrystalline silicon film is used as the gate electrode, and the p-type diffusion region is used as the counter electrode.
  • the capacitance is M ⁇ S
  • the counter electrode is connected to the power supply on the high potential side
  • the P-type polycrystalline silicon film is used as the gate electrode
  • the P-type diffusion region is the counter electrode.
  • the MOS capacitor has a P-type polycrystalline silicon film as the gate electrode and an n-type diffusion region as a counter electrode
  • the gate electrode is connected to a high-potential side power supply and the n-type polycrystalline silicon is connected.
  • the MOS capacitor has a film as a gate electrode and an n-type diffusion region as a counter electrode, the gate electrode must be connected to a low-potential power supply.
  • the change of the frequency with respect to the change of the output voltage of the temperature compensation voltage generating means 4 may be either positive polarity or negative polarity. Therefore, there are two types of connection to one type of MOS capacitor.
  • a MOS capacitor with an n-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode or a !-type polycrystalline silicon film as a gate electrode and a n-type diffusion region as a counter electrode
  • the gate electrode may be connected to the temperature compensation voltage generating means 4 via the temperature compensation fixed resistor 23, and the opposing electrode may be connected to the power supply on the high potential side.
  • the counter electrode may be connected to the temperature compensation voltage generating means 4 via the temperature compensation fixed resistor 23, and the gate electrode may be connected to the power supply on the low potential side.
  • a MOS capacitor using a P-type polycrystalline silicon film as a gate electrode and a P-type diffusion region as a counter electrode or a MOS capacitor using a p-type polycrystalline silicon film as a gate electrode and an n-type diffusion region as a counter electrode
  • the counter electrode may be connected to the temperature compensation voltage generating means 4 via the temperature compensation fixed resistor 23, and the gate electrode may be connected to the power supply on the high potential side, or the gate electrode may be connected to the temperature. It may be connected to the temperature compensation voltage generating means 4 via the compensation fixed resistor 23, and the opposing electrode may be connected to the power supply on the low potential side.
  • variable M ⁇ S capacitors 35 for temperature compensation can be selected depending on the type and connection method. Since four types of capacity 37 can be selected, a total of 32 types of combinations can be selected in principle.
  • the conductivity type of the variable M ⁇ S capacitance 35 counter electrode for temperature compensation and the conductivity type of the variable M ⁇ S capacitance 37 counter electrode for external frequency control are different.
  • 16 types there is a combination that requires a double diffusion structure in which the periphery of one of the counter electrodes is surrounded by diffusion regions of different conductivity types, so all 16 types are practical from the viewpoint of manufacturing cost. It is not a target.
  • a combination that does not require a double diffusion structure even if the counter electrode has a different conductivity type is when the counter electrode connects the counter electrode of the MOS capacitor, which is the n-type diffusion region, to the power supply on the high potential side, or This is limited to the case where the counter electrode of the MS capacitor, whose electrode is a p-type diffusion region, is connected to a low-potential power supply.
  • the opposing electrode of the MOS capacitor whose opposing electrode is a P-type diffusion region, is connected to a power supply on the low potential side, a semiconductor integrated circuit is formed on the p-type semiconductor substrate, and this p-type semiconductor substrate is connected to this MOS capacitor. If it is used as a counter electrode, it is not necessary to form a P-type diffusion region, and only the n-type diffusion region, which is the counter electrode of the other MOS capacitor, needs to be formed.
  • the conductivity type of the counter electrode of the variable MOS capacitor for temperature compensation 35 and the conductivity type of the counter electrode of the variable MOS capacitor for external frequency control 37 differ from each other. There are seven practical combinations that do not require a heavy diffusion structure.
  • variable MOS capacitor 37 for external frequency control is a p-type polycrystalline silicon.
  • the variable M ⁇ S capacitor 37 for external frequency control is better because the counter electrode is connected to the power supply on the lower potential side. It satisfies the conditions that do not require a double diffusion structure, and there are no restrictions on the variable M ⁇ S capacity 35 for temperature compensation, so there are four choices.
  • the variable M ⁇ S capacitor 37 for external frequency control is the other three types of MOS capacitors, the variable M ⁇ S capacitor 35 for temperature compensation does not satisfy the condition that does not require a double diffusion structure. You must choose only one of each.
  • the DC blocking capacitor 23 for temperature compensation and the DC blocking capacitor 27 for external frequency control are both two-layer polycrystalline silicon films containing high-concentration impurities. It goes without saying that any type of capacitance may be used as long as the capacitance value has no voltage dependence in the voltage range in which the voltage is applied and the capacitance can be easily mounted on a semiconductor integrated circuit.
  • Capacitors satisfying these conditions are such that an arbitrary conductor such as a polycrystalline silicon film, a high melting point metal film, or a high melting point metal silicide film is used as a gate electrode, and a high-concentration diffusion region is used as a counter electrode. Has MOS capacity.
  • the capacitance value does not depend on the voltage because the depletion layer is hardly formed by the electric field from the gate electrode within the normally used power supply voltage range.
  • the counter electrode of the MOS capacitor used as a DC blocking capacitor must be electrically separated from the surroundings using a pn junction. If the counter electrode is connected to the oscillation inverter 3, there is a disadvantage that the oscillation start-up property is alienated. Therefore, the gate electrode is more advantageous as the electrode connected to the oscillation inverter.
  • ion implantation may be performed after forming the gate insulating film.
  • a gate oxide film may be used. Ion implantation may be performed before forming the insulating film.
  • the manufacturing process of the counter electrode in such a high-concentration diffusion region is independent of the manufacturing process of the counter electrode of the variable MOS capacitor 35 for temperature compensation and the variable MOS capacitor 37 for external frequency control. Do not give. Therefore, when using an M ⁇ S capacitor with a high-concentration diffusion region as a counter electrode as a DC blocking capacitor, the variable MOS capacitor for temperature compensation is exactly the same as when using a two-layer polysilicon film capacitor. 35 and variable MS capacitor 37 for external frequency control can be formed.
  • variable MOS capacitor 3 for temperature compensation can be used.
  • the combination of 5 and the variable MS capacitor 37 for external frequency control the above-mentioned 23 combinations are practically possible.
  • FIG. 10 is a circuit diagram showing a configuration of a temperature compensated crystal oscillator according to a sixth embodiment of the present invention.
  • the oscillation inverter and the like are shown using a circuit symbol
  • the temperature information creation unit and the like are shown using a block diagram.
  • the sixth embodiment shown in FIG. 10 is also a digital temperature-compensated crystal oscillator, and a crystal resonator 1, an oscillation inverter 3, and a feedback resistor 5 are connected in parallel, as in the above-described embodiments.
  • Oscillator 2 is configured.
  • the temperature compensation control means 6 is configured by connecting the compensation variable MOS capacitor 35 in series.
  • the temperature compensation control means 6 is connected between the input terminal of the oscillation inverter 3, which is one terminal of the crystal oscillation means 2, and the low-potential-side power supply—Vcc by a variable MOS capacitor 3 for temperature compensation. 5 is connected to the power supply side.
  • a two-layer polycrystalline silicon film containing high-concentration impurities is fixed between the output terminal of the oscillation inverter 3 which is the other terminal of the crystal oscillation means 2 and the power supply 1 Vcc on the low potential side.
  • Capacitor 20 is connected.
  • the temperature compensation voltage generating means 4 is composed of a temperature information creation section 7 for creating digital temperature compensation information, and a voltage output type D / A conversion circuit 9 for converting the digital temperature compensation information into an analog voltage. ing.
  • the temperature compensation voltage generating means 4 outputs the output voltage of the voltage output type DZA conversion circuit 9 as a voltage for temperature compensation operation, and outputs the output terminal of the temperature compensation fixed resistor made of a polycrystalline silicon film. It is connected to the gate electrode of the temperature compensation variable MOS capacitor 35 via 31.
  • the opposing electrode of the temperature-compensating variable MOS capacitor 35 is connected to the low-potential-side power supply -Vcc, and the temperature-compensating voltage output by the temperature-compensating-voltage generating means 4 is normally the high-potential-side power supply voltage. Is set as the upper limit and the power supply voltage on the lower potential side is set as the lower limit, so that the potential of the gate electrode of the variable MS capacitor 35 for temperature compensation is higher than the potential of the counter electrode.
  • the temperature compensation variable M ⁇ ⁇ S capacitor 35 uses an n-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode. And The reason is as described in the fifth embodiment. Similarly, as described in the fifth embodiment, since the capacitance value of the DC blocking capacitor 23 for temperature compensation and the variable M O S capacitor 35 for temperature compensation is sufficient if both are about 5 O pF, it is easy. It can be built in a semiconductor integrated circuit.
  • the capacitance value of the fixed capacitance 20 depends on the setting of the load capacitance in the frequency adjustment when the crystal unit 1 is manufactured, but is generally about 15 to 30 pF.
  • the fixed capacitance 20 can be easily built in the semiconductor integrated circuit.
  • the temperature-compensating fixed resistor 31 is sufficient if it is about 100 k ⁇ or more, and it is easy to form such a resistor with a polycrystalline silicon film.
  • the temperature-compensating fixed resistor 31 can also be formed by a diffused resistor, but since the diffused resistor uses a pn junction for element isolation, the leakage current increases at high temperatures, and the gate of the temperature-compensating variable MOS capacitor 35 is increased. Since there is a problem that the potential of the electrode is slightly shifted, the resistance of the polycrystalline silicon film is used in the sixth embodiment shown in FIG.
  • the input terminal side of the oscillation inverter 3 is used for the temperature compensation operation.
  • the digital temperature compensated crystal oscillator of the sixth embodiment shown in FIG. 10 uses a method in which the capacitance value of the capacitance connected to the crystal oscillation means 2 is directly varied to vary the load capacitance. This is because the change in the oscillation frequency is larger on the input terminal side of the oscillation inverter 3 than on the output terminal side, but the change can be reversed.
  • the maximum value of the variable M ⁇ S capacitor 35 for temperature compensation and the DC blocking capacitor 23 3 for temperature compensation are required to secure a variable range of the oscillation frequency of about 30 to 40 ppm.
  • the capacitance value must be set to about 100 pF, which is disadvantageous because the occupied area in the semiconductor integrated circuit increases.
  • MOS capacitors there are two types of conductivity types of the gate electrode and the counter electrode of the MOS capacitor, P-type and n-type, respectively. There are four types of MOS capacitors depending on the combination of the electric type and the conductive type of the counter electrode.
  • the change in the frequency with respect to the change in the output voltage of the temperature compensation voltage generating means 4 may be either positive or negative. Therefore, there are two types of connection to one type of M ⁇ S capacitance.
  • an MOS capacitor with an n-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode or an n-type polycrystalline silicon film as a gate electrode and an n-type diffusion region as a counter electrode
  • the gate electrode may be connected to the temperature compensation voltage generating means 4 via the temperature compensation fixed resistor 31, and the counter electrode may be connected to the power supply on the high potential side, or may be connected to the counter electrode. May be connected to the temperature compensation voltage generating means 4 via the temperature compensation fixed resistor 31, and the gate electrode may be connected to the power supply on the low potential side.
  • a P-type polycrystalline silicon film is used as a gate electrode, and a MOS capacitor using a P-type diffusion region as a counter electrode, or a p-type polycrystalline silicon film is used as a gate electrode, and an n-type diffusion region is used as a counter electrode.
  • the opposing electrode may be connected to the temperature compensation voltage generating means 4 via the temperature compensation fixed resistor 31, and the gate electrode may be connected to the power supply on the high potential side.
  • the negative electrode may be connected to the temperature compensating voltage generating means 4 via the temperature compensating fixed resistor 31, and the counter electrode may be connected to a power source on the low potential side.
  • variable M ⁇ ⁇ S capacitors 35 for temperature compensation can be selected depending on the type and connection method.
  • the DC blocking capacitance 23 for temperature compensation and the fixed capacitance 20 are both capacitances of a two-layer polycrystalline silicon film containing high-concentration impurities. Needless to say, any type of capacitance may be used as long as it has no voltage dependency and can be easily mounted on a semiconductor integrated circuit.
  • Capacitors satisfying these conditions include a gate electrode made of an arbitrary conductor such as a polycrystalline silicon film or a refractory metal film or a refractory metal silicide film, and a high-concentration diffusion region used as a counter electrode. There is M ⁇ S capacity. If the counter electrode is a high-concentration diffusion region, the capacitance value does not depend on the voltage because the depletion layer is hardly formed by the electric field from the gate electrode within the normally used power supply voltage range.
  • Such a MOS capacitor can be used as the DC blocking capacitor 23 for temperature compensation or the fixed capacitor 20 shown in FIG.
  • the counter electrode of the M ⁇ S capacitor used as a DC blocking capacitor must be electrically separated from the surroundings using a Pn junction, when this counter electrode is connected to the oscillation inverter 3, oscillation starts.
  • the gate electrode is more advantageous for the electrode connected to the oscillation inverter 3 because of the disadvantage of ignoring the characteristics.
  • the electrode connected to the oscillation inverter 3 must be a gate electrode.
  • the M ⁇ S capacitance which electrically separates the opposing electrode from the surroundings using a pn junction, is used as the fixed capacitance 20, connect it to the oscillation inverter 3 so that the oscillation start-up property is not alienated.
  • the gate electrode is more advantageous as a gate electrode.
  • ion implantation may be performed after forming a gate insulating film.
  • a gate may be used. Ion implantation may be performed before forming the insulating film.
  • the manufacturing process of the counter electrode in such a high-concentration diffusion region is independent of the manufacturing process of the counter electrode having a variable MS capacitor 35 for temperature compensation, and does not affect each other. Therefore, as the DC blocking capacitance 23 for temperature compensation or the fixed capacitance 20, a MOS capacitor with a high-concentration diffusion region as a counter electrode is used, and a capacitance of a two-layer polycrystalline silicon film is used. Finally, the same temperature-compensating variable MOS capacitor 35 can be formed. Therefore, even when a MOS capacitor having a high-concentration diffusion region as a counter electrode is used as the DC blocking capacitor 23 for temperature compensation and the fixed capacitor 20, the type and connection method of the variable MOS capacitor 35 for temperature compensation are also used. Can be selected in eight ways.
  • the fixed capacitance is fixed. Since it can be regarded as a capacitance, even if it is a MOS capacitance with voltage dependence, it depends on the work function selection and connection method between the gate electrode and the substrate that is the counter electrode and the connection. It can be used as the fixed capacity 20 in the figure.
  • the MOS capacitor with the n-type polycrystalline silicon film as the gate electrode and the n-type diffusion region as the counter electrode has a higher potential at the gate electrode than at the counter electrode.
  • the capacitance value has almost no voltage dependence, it can be regarded as almost a fixed capacitance as long as it is used in such a potential relationship.
  • the fixed capacitor 20 is connected to the n-type polycrystalline If the silicon film is used as a gate electrode, the n-type diffusion region is replaced with a fixed MOS capacitor with a counter electrode, and the gate electrode is connected to the output terminal of the oscillation inverter 3, a voltage-dependent M ⁇
  • the S capacity can be used as a fixed capacity.
  • the fixed capacitance 20 is replaced with a fixed MS capacitor having a p-type polycrystalline silicon film as a gate electrode and a p-type diffusion region as a counter electrode, and the countermeasure is taken. If the gate electrode is connected to the output terminal of the oscillation inverter 3 and its counter electrode is connected to the power supply on the high potential side, use a voltage-dependent MS capacitor as the fixed capacitor. Is possible.
  • a MOS capacitor with an n-type polycrystalline silicon film as the gate electrode and an n-type diffusion region as a counter electrode is used as the fixed capacitor 20, and the counter electrode is used as a power source on the low potential side.
  • the variable M ⁇ S capacitor for temperature compensation 35 has four combinations with the n-type diffusion region as the counter electrode, and the P-type semiconductor substrate with the p-type polycrystalline silicon film as the gate electrode. A total of five combinations can be selected, including the combination of connecting the counter electrode to the power supply on the low potential side as the electrode.
  • variable MOS capacitor for temperature compensation 35 has four combinations with the p-type diffusion region as the counter electrode, the n-type polycrystalline silicon film as the gate electrode, and the n-type semiconductor substrate as the counter electrode. A total of 5 combinations can be selected, including the combination of the counter electrode connected to the power supply on the high potential side.
  • the fifth embodiment and the sixth embodiment described above both use a fixed DC blocking capacitance and a variable capacitance in series connection, and vary the load capacitance by varying the capacitance value of the variable capacitance. is there.
  • MOS resistors generally use a gate as a resistance adjustment terminal, Assuming that the resistance is constant, the resistance value may be changed by utilizing the back gate effect caused by changing the substrate potential.
  • a power junction type field effect transistor or a bipolar transistor using a MOS resistor as a voltage-controlled variable resistor may be used.
  • connection of the MS resistor and the MS capacitor is connected to the high-potential side power supply or the low-potential side power supply. Since a generator is provided and the fixed output is used as a power supply, the MOS resistor and the MOS capacitor may be connected to a fixed potential output by the constant voltage generator.
  • the crystal oscillating means is composed of a crystal oscillator, an oscillation inverter, and a feedback resistor, but a bipolar transistor may be used instead of the oscillation inverter.
  • a plurality of bipolar transistors may be used in a one-tem pole type.
  • the temperature-compensated crystal oscillator according to the present invention can easily incorporate everything except a crystal oscillator into a semiconductor integrated circuit, and can reduce the size and cost of the digital temperature-compensated crystal oscillator by eliminating parts. Can be achieved.
  • both the temperature compensation control means and the external frequency control means are DC-like. Since there is no current path, the oscillation frequency can be controlled without increasing the consumption current in each control means.
  • the gate of the temperature compensating MOS resistor is driven by the output voltage of the voltage output type DZA conversion circuit, the output of the D / A conversion circuit Since there is no direct current path between the power supply and the power supply, the oscillation frequency can be controlled without increasing unnecessary power consumption.
  • the present invention is extremely effective when applied to various electronic devices having a built-in crystal oscillator.
  • the present invention is applied to a digital temperature-compensated crystal oscillator mounted on a mobile phone, which is required to be miniaturized, the effect will be improved. It is overwhelming.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

明 細 書 温度補償型水晶発振器 技術分野
この発明は、 温度補償型水晶発振器の構成に関し、 特に携帯電話 機等に搭載される小型のデジタル温度補償型水晶発振器に適するも のに関する。 背景技術
携帯電話機や自動車用電話機などに搭載される水晶発振器は、 小 型化への要求が強い。 また、 従来はアナログ温度補償型水晶発振器 が中心であつたが、 周波数精度と製造の容易さなどから、 最近はデ ジタル温度補償型水晶発振器が注目を集めている。
デジタル温度補償型水晶発振器においても、 周波数の調整方法は 基本的にアナログ温度補償型水晶発振器と同様である。 すなわち、 水晶振動子の温度特性に合わせ、 あるいは、 基地局の基準周波数か らのずれに合わせて水晶発振手段の負荷容量を変えることにより、 発振周波数を一定に保つというものである。
デジタル温度補償型水晶発振器の温度補償動作において、 負荷容 量を変えるには、 デジタル符号で直接スィ ッチとキャパシタ回路を 動作させる手段と、 A変換回路によつてデジタル符号をアナ口 グ電圧に変換し、 その電圧により可変容量ダイオー ドの容量値を変 化させる手段とがある。
このうち、 前者のスィ ッチとキャパシタ回路を用いる手段は、 負 荷容量をゆっく り変えることがきわめて困難である。 このため、 温 度変化の際の水晶発振器の周波数の補正が急激であり、 それを用い た電話機に F M雑音を発生させてしまうという問題がある。
一方、 後者の D Z A変換回路を用いる手段は、 D Z A変換回路と 可変容量ダイオー ドとの間に積分回路 (ローパスフィルタ) を挿入 したり、 あるいは、 D Z A変換回路の動作そのものを遅くすること などによ り、 負荷容量をゆつく り変化させることは容易であリ、 F M雑音を発生させるという問題はない。
このため、 通常のデジタル温度補償型水晶発振器の温度補償動作 においては、 D Z A変換回路と可変容量ダイオー ドとを用いる手段 が採用されている。
また、 発振周波数を基地局の基準周波数に合わせる場合にも、 合 わせるための外部入力信号が可変容量ダイオー ドを前提とするアナ 口グ電圧であるという理由もあって、 可変容量ダイォー ドを用いる 手段が採用されている。
第 1 1 図は、 従来のデジタル温度補償型水晶発振器の構成の一例 を示す回路図である。 ただし、 この第 1 1 図では、 発振インバータ などは回路記号を用いて、 また温度情報作成部などはブロック図を 用いてそれぞれ示している。
第 1 1 図に示すように、 水晶振動子 1 と発振イ ンバータ 3 と帰還 抵抗 5 とを並列に接続して水晶発振手段 2 を構成し、 温度補償用直 流阻止容量 2 3 と温度補償用可変容量ダイォー ド 2 5 とを直列に接 続して温度補償制御手段 6 を構成している。 そして、 発振インバー タ 3の入力端子に温度補償用直流阻止容量 2 3の一方の端子を接続 し、 温度補償用直流阻止容量 2 3の他方の端子に温度補償用可変容 量ダイオー ド 2 5のアノ ー ドを接続し、 温度補償用可変容量ダイォ ー ド 2 5のカソー ドを高電位側の電源 + V ccに接続している。
また、 外部周波数制御用直流阻止容量 2 7 と外部周波数制御用可 変容量ダイオー ド 2 9 とを直列に接続して外部周波数制御手段 8 を 構成している。 そして、 発振イ ンバータ 3の出力端子に外部周波数 制御用直流阻止容量 2 7の一方の端子を接続し、 外部周波数制御用 直流阻止容量 2 7の他方の端子に外部周波数制御用可変容量ダイォ — ド 2 9の力ソー ドを接続し、 外部周波数制御用可変容量ダイォー ド 2 9のァノー ドを低電位側の電源— V ccに接続している。
温度補償電圧発生手段 4は、 デジタル温度補償情報を作成する温 度情報作成部 7 と、 このデジタル温度補償情報をアナログ電圧に変 換する D Z A変換回路 9 と、 この D Z A変換回路 9の出力の急激な 変化を防止する積分回路 1 1 とで構成している。 そして、 この温度 補償電圧発生手段 4は、 積分回路 4から温度補償動作のための電圧 を出力し、 その出力端子は温度補償用固定抵抗 3 1 を介して温度補 償用可変容量ダイオー ド 2 5のアノ ー ドに接続している。
また、 外部周波数制御用可変容量ダイォー ド 2 9のカソー ドは、 外部周波数制御用固定抵抗 3 3 を介して、 基地局の基準周波数に合 わせるための外部電圧入力端子 1 3に接続している。
ここで使用される温度補償用可変容量ダイォ一 ド 2 5および外部 周波数制御用可変容量ダイォー ド 2 9は、 不純物の濃度勾配を持た せたェピタキシャル成長という手段を用いて形成されるため、 他の 回路素子との整合性およびコス 卜の面で半導体集積回路に内蔵しに く く、 通常は外付け部品である。
しかも、 これらの可変容量ダイオー ドは、 小さいものでも 3 . 3 m m X l . 6 m m X 1 . 1 m mという寸法であり、 デジタル温度補 償型水晶発振器を構成する部品の中では特に寸法が大きい部類に属 する。
このような従来の構成のデジタル温度補償型水晶発振器は、 可変 容量ダイォー ドなどの半導体集積回路以外の部品が多くなって小型 化に限界があるという問題があり、 またコス トの上昇を招く という 問題もある。
この発明はこのような問題を解決するためになされたものであり、 できる限り多くの部品を半導体集積回路に内蔵して小型化を図ると 共に、 低コス ト化を達成可能な温度補償型水晶発振器を提供するこ とを 目的とする。 発明の開示
この発明は上記の目的を達成するため、 温度補償型水晶発振器を 次のように構成して、 温度補償動作と基地局の基準周波数への合わ せ込みとを行なうようにしたものである。
すなわち、 水晶発振手段と、 その水晶発振手段の一方の端子と電 源との間に接続した温度補償制御手段と、 前記水晶発振手段の他方 の端子と電源との間に接続した外部周波数制御手段と、 前記温度補 償制御手段の制御端子に接続した温度補償電圧発生手段と、 前記外 部周波数制御手段の制御端子に接続した外部電圧入力端子とを有す ることを特徴とする。
さらに、 この温度補償型水晶発振器において、 上記温度補償制御 手段を、 水晶発振手段の一方の端子と電源との間に温度補償用固定 容量と電圧制御型の温度補償用可変抵抗とを直列に接続して構成し, 上記外部周波数制御手段を、 水晶発振手段の他方の端子と電源との 間に外部周波数制御用固定容量と電圧制御型の外部周波数制御用可 変抵抗とを直列に接続して構成する。
そして、 上記温度補償電圧発生手段を、 電圧出力型の D / A変換 回路の出力電圧を温度補償電圧として発生し、 その温度補償電圧を 上記温度補償用可変抵抗の制御端子に印加する手段とし、 上記外部 電圧入力端子から入力する電圧を上記外部周波数制御用可変抵抗の 制御端子に印加するように構成するとよい。
さらにこの温度補償型水晶発振器において、 上記温度補償制御手 段を構成する温度補償用固定容量を、 2層の多結晶シリ コン膜の温 度補償用固定容量とし、 温度補償用可変抵抗を温度補償用可変 M〇 S抵抗とする。
また、 上記外部周波数制御手段を構成する外部周波数制御用固定 容量を、 2層の多結晶シリコン膜の外部周波数制御用固定容量と し、 外部周波数制御用可変抵抗を外部周波数制御用可変 M〇 S抵抗とす る。
そして、 上記温度補償電圧発生手段が発生する温度補償電圧を上 記温度補償用可変 M〇 S抵抗の制御端子に印加し、 上記外部電圧入 力端子から入力する電圧を上記外部周波数制御用可変 M O S抵抗の 制御端子に印加するように構成するとよい。 あるいは、 上記温度補償制御手段を構成する温度補償用固定容量 を、 高濃度拡散領域を対抗電極とする温度補償用固定 M O S容量と し、 温度補償用可変抵抗を温度補償用可変 M O S抵抗とする。
また、 上記外部周波数制御手段を構成する外部周波数制御用固定 容量を、 高'濃度拡散領域を対抗電極とする外部周波数制御用固定 M 〇 S容量と し、 外部周波数制御用可変抵抗を外部周波数制御用可変 M 0 S抵抗とする。
そして、 上記温度補償電圧発生手段が発生する温度補償電圧を上 記温度補償用可変 M O S抵抗の制御端子に印加し、 上記外部電圧入 力端子から入力する電圧を上記外部周波数制御用可変 M O S抵抗の 制御端子に印加するように構成してもよい。
また、 前述の温度補償型水晶発振器において、 その温度補償制御 手段を、 水晶発振手段の一方の端子と電源との間に温度補償用可変 容量と電圧制御型の温度補償用可変抵抗とを直列に接続して構成し、 外部周波数制御手段を、 水晶発振手段の他方の端子と電源との間に 外部周波数制御用固定容量と電圧制御型の外部周波数制御用可変抵 杭とを直列に接続して構成してもよい。
その場合、 温度補償電圧発生手段を、 罨圧出力型の D Z A変換回 路の出力電圧を温度補償電圧と して発生し、 その温度補儻甯圧を上 記温度補償用可変抵抗の制御端子に印加する手段と し、 外部電圧入 力端子から入力する電圧を上記外部周波数制御用可変抵抗の制御端 子に印加するように構成する。
この温度補償型水晶発振器において、 上記温度補償制御手段を構 成する温度補償用可変容量を温度補償用可変 M O S容量と し、 上記 温度補償制御手段を構成する温度補償用可変抵抗を温度補償用可変 M〇 S抵抗とし、 上記外部周波数制御手段を構成する外部周波数制 御用可変抵抗を、 外部周波数制御用可変 M O S抵抗にするとよい。
そして、 上記温度補償電圧発生手段が発生する温度補償電圧を上 記温度補償用可変 M O S抵抗の制御端子に印加し、 上記外部電圧入 力端子から入力する電圧を上記外部周波数制御用可変 M 0 S抵抗の 制御端子に印加するように構成するとよい。
あるいはまた、 前述の請求の温度補償型水晶発振器において、 そ の温度補償制御手段を、 水晶発振手段の一方の端子と電源との間に 温度補償用可変容量と電圧制御型の温度補償用可変抵抗とを直列に 接続して構成し、 外部周波数制御手段を、 水晶発振手段の他方の端 子と電源との間に外部周波数制御用可変容量と電圧制御型の外部周 波数制御用可変抵抗とを直列に接続して構成してもよい。
その場合、 上記温度補償電圧発生手段を、 電圧出力型の D Z A変 換回路の出力電圧を温度補償電圧と して発生し、 その温度補償電圧 を上記温度補償用可変抵抗の制御端子に印加する手段と し、 外部電 圧入力端子から入力する電圧を上記外部周波数制御用可変抵抗の制 御端子に印加するように構成する。
この温度補償型水晶発振器において、 上記温度補償制御手段を構 成する前記温度補償用可変容量を温度補僂用可変 M O S容量と し、 温度補償用可変抵抗を温度補償用可変 M O S抵抗とする。
また、 上記外部周波数制御手段を構成する外部周波数制御用可変 容量を外部周波数制御用可変 M O S容量とし、 外部周波数制御用可 変抵抗を外部周波数制御用可変 M O S抵抗とする。
そして、 上記温度補償電圧発生手段が発生する温度補償電圧を上 記温度補償用可変 M O S抵抗の制御端子に印加し、 上記外部電圧入 力端子から入力する電圧を上記外部周波数制御用可変 M〇 S抵抗の 制御端子に印加するように構成するとよい。
あるいはまた、 水晶発振手段と、 その水晶発振手段の一方の端子 と電源との間に温度補償用直流阻止容量と温度補償用可変容量とを 直列に接続して構成した温度補償制御手段と、 上記水晶発振手段の 他方の端子と電源との間に外部周波数制御用直流阻止容量と外部周 波数制御用可変容量とを直列に接続して構成した外部周波数制御手 段と、 電圧出力型の D Z A変換回路の出力電圧を温度補償電圧と し て出力し、 その出力端子を温度補償用固定抵抗を介して上記温度補 償用直流阻止容量と温度補償用可変容量との接続点に接続する温度 補償電圧発生手段と、 上記外部周波数制御用直流阻止容量と外部周 波数制御用可変容量との接続点に外部周波数制御用固定抵抗を介し て接続する外部電圧入力端子とによって、 温度補償型水晶発振器を 構成するようにしてもよい。
この温度補償型水晶発振器において、 上記温度補償制御手段を構 成する温度補償用直流阻止容量を、 高濃度の不純物を含む 2層の多 結晶シリコン膜の温度補償用直流阻止容量と し、 上記温度補償用可 変容量を温度補償用可変 M〇 S容量とするとよい。
また、 上記外部周波数制御手段を構成する外部周波数制御用直流 阻止容量を、 高濃度の不純物を含む 2層の多結晶シリコン膜の外部 周波数制御用直流阻止容量と し、 上記外部周波数制御手段を構成す る外部周波数制御用可変容量を外部周波数制御用可変 M O S容量に するとよい。
あるいは、 上記温度補償制御手段を構成する前記温度補償用直流 阻止容量を、 高濃度拡散領域を対抗電極とする温度補償用直流阻止 容量とし、 上記温度補償制御手段を構成する温度補償用可変容量を、 低濃度拡散領域を対抗電極とする温度補償用可変 M O S容量と して ¾よい。
また、 上記外部周波数制御手段を構成する外部周波数制御用直流 阻止容量を、 高濃度拡散領域を対抗電極とする外部周波数制御用直 流阻止容量と し、 外部周波数制御用可変容量を、 低濃度拡散領域を 対抗電極とする外部周波数制御用可変 M O S容量にしてもよい。
あるいはまた、 水晶発振手段と、 その水晶発振手段の一方の端子 と電源との間に接続した温度補償制御手段と、 上記水晶発振手段の 他方の端子と電源との間に接続した固定容量と、 上記温度補償制御 手段の制御端子に接続する温度補償電圧発生手段とによって温度補 償型水晶発振器を構成してもよい。
この温度補償型水晶発振器において、 上記温度補償制御手段を、 温度補償用固定容量と電圧制御型の温度補償用可変抵抗とを直列に 接続して構成し、 上記温度補償電圧発生手段を、 電圧出力型の A変換回路の出力電圧を温度補償電圧と して発生し、 その温度補償 電圧を上記温度補償用可変抵抗の制御端子に印加する手段にすると よい。
さらに、 上記温度補償制御手段を構成する温度補償用固定容量を, 2層の多結晶シリ コン膜の温度補償用固定容量と し、 温度補償用可 変抵抗を温度補償用可変 M O S抵抗と し、 上記水晶発振手段の他方 の端子と電源との間に接続した固定容量を、 2層の多結晶シリ コン 膜の固定容量にするとよい。
その場合、 上記温度補償電圧発生手段が発生する温度補償電圧を 上記温度補償用可変 M O S抵抗の制御端子に印加するように構成す る。
あるいは、 上記温度補償制御手段を構成する温度補償用固定容量 を、 高濃度拡散領域を対抗電極とする温度補償用固定 M O S容量と し、 温度補償用可変抵抗を温度補僙用可変 M O S抵抗とし、 上記水 晶発振手段の他方の端子と電源との間に接続した固定容量を、 高濃 度拡散領域を対抗電極とする固定 M O S容量にしてもよい。
その場合、 上記温度補償電圧発生手段が発生する温度補償電圧を 上記温度補償用可変 M O S抵抗の制御端子に印加するように構成す る。
あるいはまた、 前述の温度補償型水晶発振器において、 その温度 補償制御手段を、 温度補俊用可変容量と電圧制御型の温度補償用可 変抵抗とを直列に接続して構成し、 温度補償電圧発生手段を、 電圧 出力型の D Z A変換回路の出力電圧を温度補償電圧として発生し、 その温度補償電圧を上記温度補償用可変抵抗の制御端子に印加する 手段にしてもよい。
さらに異なる温度補償型水晶発振器として、 水晶発振手段と、 そ の水晶発振手段の一方の端子と電源との間に温度補償用直流阻止容 量と温度補償用可変容量とを直列に接続して構成した温度補償制御 手段と、 上記水晶発振手段の他方の端子と電源との間に接続した固 定容量と、 電圧出力型の D Z A変換回路の出力電圧を温度補償電圧 と して出力し、 その出力端子を温度補償用固定抵抗を介して上記温 度補償用直流阻止容量と温度補償用可変容量との接続点に接続する 温度補償電圧発生手段とを有するものも提供する。
この温度補償型水晶発振器において、 上記温度補償制御手段を構 成する温度補償用直流阻止容量を、 高濃度の不純物を含む 2層の多 結晶シリ コン膜の温度補償用直流阻止容量と し、 温度補償用可変容 量を温度補償用可変 M O S容量とし、 上記水晶発振手段の他方の端 子と電源との間に接続する固定容量を、 高濃度の不純物を含む 2層 の多結晶シリコン膜の固定容量にするとよい。
あるいは、 上記温度補償制御手段を構成する温度補償用直流阻止 容量を、 高濃度拡散領域を対抗電極とする温度補償用直流阻止容量 と し、 温度補償用可変容量を、 低濃度拡散領域を対抗電極とする温 度補償用可変 M〇 S容量とし、 上記水晶発振手段の他方の端子と電 源との間に接続する固定容量を、 高濃度拡散領域を対抗電極とする 固定 M〇 S容量にしてもよい。
これらのこの発明による温度補償型水晶発振器において、 温度補 償制御手段及び外部周波数制御手段における容量は固定容量と し、 この固定容量に電圧制御型の可変抵抗を直列に接続したものは、 そ の電圧制御型の可変抵抗の抵抗値を可変することにより、 容量値そ のものは変化することなしに、 負荷容量を可変することができ。 温度補償制御手段及び外部周波数制御手段における容量は容量値 が可変の M O S容量と し、 この可変 M O S容量に電圧制御型の可変 抵抗を直列に接続したものは、 その電圧制御型の可変抵抗の抵抗値 を可変すると同時に、 可変 M〇 S容量の端子間電圧の変化による容 量値の変化を重畳し、 負荷容量を可変することができる。
さらに、 上記 M O S容量を構成する対抗電極となる半導体基板と ゲー 卜電極材料との組み合わせ方を適切に設定することによリ、 所 望の電圧範囲で容量値の可変量の大きい可変 M O S容量を形成し、 この可変 M O S容量を従来の可変容量ダイオー ドと置き換えて、 負 荷容量を可変することができる。 前述のように、 固定容量と電圧制御型の可変抵抗との直列接続に よ り、 水晶発振手段の負荷容量を可変することができる理由は次の 通りである。
すなわち、 水晶発振手段と電源との間に、 ある容量値の容量を抵 杭なしに接続する場合、 この容量の電荷の充放電を妨げるものは存 在しないので、 水晶発振手段の発振周期内に電荷の充放電は完全に 終了し、 接続した容量はその容量値通りの働きをする。
ここで、 この容量に直列に抵抗を接続すると、 この抵抗が電荷の 充放電を妨げることになリ、 充電が完全に終了する前に放電が始ま つてしまい、 またその放電が完全に終了する前に充電が始まってし まうという状態になる。
この状態は、 水晶振動子の発振周期内に充放電する電荷量が滅少 することを意味し、 容量値の小さな容量を抵抗なしに接続すること と電気的に等価である。
そして、 電荷の充放電の速さは、 接続する抵抗の抵抗値と容量値 との積で決まる。 したがって、 たとえ容量値が固定であっても、 接 続する抵抗を電圧制御型の可変抵抗にし、 外部電圧によってその抵 抗値を調整することにより、 充放電する電荷量を可変することがで さる。
つま り、 固定容量と電圧制御型の可変抵抗との直列接続を水晶発 振手段に接続することは、 可変容量を水晶発振手段に接続すること と電気的に等価である。 これが、 水晶発振手段の負荷容量を可変す ることが可能な理由である。
なお、 電圧制御型の可変抵抗の抵抗値が電荷の充放電の期間中常 に一定である必要はなく、 電荷の充放電に伴って電圧制御型の可変 抵抗の端子間電圧が変化したときにその抵抗値が変化したとしても、 その変化の中心値が外部電圧で制御可能ならば、 外部電圧によって 充放電する電荷量を可変することができる。
また、 上記固定容量を可変 M O S容量に変更し、 且つこの可変 M 0 S容量を端子間の電位差が大きくなったときに容量値が大きく な る方向に接続することにより、 電圧制御型の可変抵抗による負荷容 量の可変幅をよ り大きくすることができる。
すなわち、 負荷容量を大きくするときには電圧制御型の可変抵抗 の抵抗値を小さ くするわけであるが、 その状態では電圧制御型の可 変抵抗と可変 M〇 S容量との直列接続にかかる電圧の大部分は可変 M〇 S容量にかかることになリ、 可変 M〇 S容量の端子間の電位差 は大きくなる。
この状態のとき、 可変 M O S容量の容量値が大きくなつて固定容 量と同じ大きさになるように接続しておけば、 固定容量と電圧制御 型の可変抵抗とを直列に接続する場合と同じ負荷容量にすることが できる。
一方、 負荷容量を小さくするときには電圧制御型の可変抵抗の抵 抗値を大きくするわけであるが、 その状態では電圧制御型の可変抵 杭と可変 M〇 S容量との直列接続にかかる電圧の大部分は電圧制御 型の可変抵抗にかかることになり、 可変 M O S容量の端子間の電位 差は小さく なる。
この状態のとき、 可変 M O S容量の容量値が小さくなる方向に可 変 M O S容量を接続しておけば、 固定容量と電圧制御型の可変抵抗 とを直列に接続する場合に比べて、 負荷容量をよ リ小さくすること ができる。
つまり、 電圧制御型の可変抵抗による負荷容量の変化に可変 M 0 S容量の電圧変化の方向を一致させ、 それを重畳することによ り、 固定容量と電圧制御型の可変抵抗とを直列に接続する場合に比べて 負荷容量の変化幅をよ り大きくすることができる。
これらはいずれも、 電圧制御型の可変抵抗の種類に特に制限はな いが、 半導体集積回路に内蔵が容易である。 そして、 従来のデジタ ル温度補償型水晶発振器に用いられている温度補償電圧発生手段を ほとんどそのまま利用でき、 しかも、 発振周波数を基地局の基準周 波数に合わせるための外部電圧入力端子にもそのまま接続可能であ るという点から、 M O S抵抗が有利である。 最後に示した温度補償型水晶発振器は、 回路構成は従来技術と同 様であるが、 可変容量ダイオー ドを可変 M〇 S容量に置き換えるこ とにより、 水晶振動子以外のほとんどの部品を半導体集積回路に内 蔵することを達成している。 図面の簡単な説明
第 1 図は本発明の第 1 実施例の温度補償型水晶発振器の構成を示 す回路図である。
第 2図は本発明の一実施例による温度補償型水晶発振器の水晶発 振手段の特性を示す線図である。
第 3図は本発明の一実施例における M〇 S容量の C一 V特性を示 す線図である。
第 4図は本発明の他の実施例における M O S容量の C一 V特性を 示す線図である。
第 5図は本発明の第 2実施例の温度補償型水晶発振器の構成を示 す回路図である。
第 6図は本発明の第 3実施例の温度補償型水晶発振器の構成を示 す回路図である。
第 7図は本発明のさらに他の実施例における M O S容量の C一 V 特性を示す線図である。
第 8図は本発明の第 4実施例の温度補償型水晶発振器の構成を示 す回路図である。
第 9図は本発明の第 5実施例の温度補償型水晶発振器の構成を示 す回路図である。
第 1 0図は本発明の第 6実施例の温度補償型水晶発振器の構成を 示す回路図である。
第 1 1 図は従来のデジタル温度補償型水晶発振器の構成を示す回 路図である。 発明を実施するための最良の形態
以下図面を用いて、 この発明の実施例を詳述する。
[第 1 実施例〕
第 1 図は、 この発明の第 1 実施例の温度補償型水晶発振器の構成 を示す回路図である。 但し、 第 1 図では、 発振イ ンバータなどは回 路記号を用いて、 また温度情報作成部などはプロック図を用いてそ れぞれ示している。
この温度補償型水晶発振器はデジタル温度補償型水晶発振器であ り、 水晶振動子 1 と発振インバータ 3 と帰還抵抗 5 とを並列に接続 して水晶発振手段 2 を構成している。 また、 高濃度の不純物を含む 2層の多結晶シリコン膜による温度補償用固定容量 1 5 と、 pチヤ ネル M〇 S抵抗の温度補償用 M O S抵抗 1 7 とを直列に接続して、 温度補償制御手段 6 を構成している。 そして、 水晶発振手段 1 の一 方の端子である発振ィ ンパータ 3の出力端子と高電位側の電源 + V ccとの間に、 温度補償用 M〇 S抵抗 1 7が電源側となるように温度 補償制御手段 6 を接続している。
また、 高濃度の不純物を含む 2層の多結晶シリ コン膜による外部 周波数制御用固定容量 1 9 と、 pチャネル M〇 S抵抗の外部周波数 制御用 M〇 S抵抗 2 1 とを直列に接続して、 外部周波数制御手段 8 を構成している。 そして、 発振インパータ 3の入力端子と高電位側 の電源 + V ccとの間に、 外部周波数制御用 M O S抵抗 2 1 が電源側 となるように外部周波数制御手段 8 を接続している。
4 は温度補償電圧発生手段であり、 デジタル温度補償情報を作成 する温度情報作成部 7 と、 このデジタル温度補償情報をアナログ電 圧に変換する電圧出力型の D Z A変換回路 9 と、 この電圧出力型の D Z A変換回路 9の出力の急激な変化を防止する積分回路 1 1 とに よって構成されている。
この温度補償電圧発生手段 4は、 電圧出力型の D Z A変換回路 9 の出力電圧を温度補償動作のための電圧と して出力し、 その出力端 子である積分回路 1 1 の出力端子は、 温度補償用 M〇 S抵抗 1 7の 制御端子であるゲー トに接続している。
また、 外部周波数制御用 M O S抵抗 2 1 の制御端子であるゲー ト は、 外部電圧入力端子 1 3に接続している。
M O S抵抗は、 ゲー ト電圧によつてその抵抗値が可変される電圧 制御型の可変抵抗である。 そして、 温度補償用 M〇 S抵抗 1 7 は p チャネル M〇 S抵抗であるから、 ソースおよび基板を高電位側の電 源 + V ccに接続しており、 ゲー 卜電圧が高くなつてゲー 卜とソース との間の電位差が小さく なると抵抗値が高くなリ、 ゲー 卜電圧が低 くなつてゲー ト とソースとの間の電位差が大きくなると抵抗値が低 くなる。
この温度補償用 M〇 S抵抗 1 7の抵抗値が低い場合は、 温度補償 用固定容量 1 5の電荷の充放電はほとんど妨げられないので、 水晶 振動子 1 の発振周期内に電荷の充放電は完全に終了し、 温度補償用 固定容量 1 5はその容量値通りの働きをする。
温度補償用 M O S抵抗 1 7の抵抗値が高い場合は、 この抵抗が温 度補償用固定容量 1 5の電荷の充放電を妨げることになり、 充電が 完全に終了する前に放電が始まってしまい、 またその放電が完全に 終了する前に充電が始まってしまうという状態になる。
この状態は、 水晶振動子 1 の発振周期内に充放電する電荷量が滅 少することを意味し、 小さな容量値の温度補償用固定容量 1 5 を直 接高電位側の電源に接続することと電気的に等価である。
そして、 温度補償用固定容量 1 5の電荷の充放電の速さは、 温度 補償用 M O S抵抗 1 7の抵抗値と温度補償用固定容量 1 5の容量値 との積で決まる。 したがって、 たとえ温度補償用固定容量 1 5の容 量値が固定であっても、 温度補償用 M O S抵抗 1 7の抵抗値を調整 することによ り、 充放電する電荷量を可変することができる。
つま り、 温度補償用固定容量 1 5 と温度補償用 M O S抵抗 1 7 と の直列接続を水晶発振手段 2 と電源との間に接続することは、 可変 容量を水晶発振手段 2 と電源との間に接続することと電気的に等価 である。 すなわち、 温度補償用 M O S抵抗 1 7のゲー ト電圧によってその 抵抗値を可変することにより、 等価的に発振ィンバータ 3の出力端 子に接続する容量値を可変することができ、 これによ り負荷容量を 可変して発振周波数の温度補償が可能となる。
厳密に言えば温度補償用 M O S抵抗 1 7の抵抗値はソース · ドレ ーン間電圧の変化によって変化し、 温度補償用固定容量 1 5の電荷 の充放電の最中に、 このソース · ドレーン間電圧は刻一刻と変化す るから、 充放電の時定数も刻一刻と変化している。
しかし、 ソース · ドレーン間電圧の変化による温度補償用 M〇 S 抵抗 1 7 の抵抗値の変化はゆるやかであり、 温度補償用固定容量 1 5の電荷の充放電の時定数を桁違いに変化させることはないから、 温度補償用固定容量 1 5の電荷の充放電の時定数は、 ほぼ温度補償 用 M O S抵抗 1 7のゲー ト電圧の支配下にあるといえる。
同様に、 外部周波数制御用 M O S抵抗 2 1 のゲー ト電圧によって その抵抗値を可変することにより、 等価的に発振イ ンバータ 3の入 力端子に接続する容量値を可変することができ、 これによ り負荷容 量を可変して発振周波数を基地局の基準周波数に合わせることが可 能になる。
第 1 図に示したデジタル温度補償型水晶発振器の構成では、 温度 補償制御手段 6にも外部周波数制御手段 8にも、 直流電流が流れる 経路は存在せず、 電荷の充放電に伴う交流電流が流れるだけである。
この交流電流は、 この発明に限らず容量によって水晶発振手段 2 の周波数の制御を行う際には必然的に伴う電流であリ、 この発明の 第 1 実施例の構成による電流の増加はない。
第 1 図に示したデジタル温度補償型水晶発振器の構成では、 温度 補償動作を発振イ ンバータ 3の出力端子側の温度補償用 M〇 S抵抗 1 7が行い、 基地局の基準周波数に合わせる動作を発振イ ンバータ 3の入力端子側の外部周波数制御用 M O S抵抗 2 1 が行っている。 これは、 第 1 1 図に示した従来のデジタル温度補償型水晶発振器 の構成とは逆になつているが、 その理由は以下のとおりである。 一般的に、 デジタル温度補償型水晶発振器においては、 温度補償 動作に必要な周波数の調整幅は 2 0〜 4 Oppm (part per million; 百万分の一の単位) 程度であるのに対し、 基地局の基準周波数に合 わせる動作に必要な周波数の調整幅は 1 Oppm 以内である。
したがって、 同じ周波数調整手段を発振イ ンバータ 3の 2端子に 設ける場合、 周波数変化が大きい側を温度補償動作に用い、 周波数 変化が小さい側を基地局の基準周波数に合わせる動作に用いるのが 普通である。
第 1 1 図に示した従来のデジタル温度補償型水晶発振器のように, 可変容量ダイォー ドなどの可変容量素子を用いて直接容量値を可変 させる構成の場合には、 発振イ ンバータ 3の入力端子側の方が、 出 力端子側に比べて周波数の可変幅が 2倍程度大きいことが公知であ るから、 発振イ ンパータ 3の入力端子側を温度補償動作に用いてい る。
これに対して、 この発明の第 1実施例による固定容量と MO S抵 杭との直列接続を用いる構成では、 発振イ ンバータ 3の出力端子側 の方が、 入力端子側に比べて周波数の可変幅が 2倍程度大きい。 こ のことを実験データによ り以下に示す。
第 2図は、 第 1 図に示したデジタル温度補償型水晶発振器の pチ ャネル MO S抵抗の温度補償用 MO S抵抗 1 7および外部周波数制 御用 M〇 S抵抗 2 1の、 ゲー ト電圧の絶対値と発振周波数の変化率 との閲係を示す線図である。
ただし、 温度補償用固定容量 1 5および外部周波数制御用固定容 量 1 9の容量値を共に 3 O p Fと し、 温度補償用 MO S抵抗 1 7お よび外部周波数制御用 M〇 S抵抗 2 1のチャネル長とチャネル幅を 共に 3 0 μ πιと し、 また温度補償用 MO S抵抗 1 7および外部周波 数制御用 M 0 S抵抗 2 1 のスレショールド電圧の絶対値を共に 0. 7 Vとし、 水晶振動子 1 の基本周波数が 1 2. 8 MH zの場合であ る。
第 2図に示すように、 発振イ ンバータ 3の出力端子側の発振周波 数の変化率 aも、 発振イ ンバータ 3の入力端子側の発振周波数の変 化率 bも、 ゲ一 卜電圧の絶対値がスレショールド電圧の 0. 7 Vを 超えるあたりから発振周波数は急激に変化し、 ゲー ト電圧の絶対値 が 2 V付近から発振周波数の変化がやや飽和する傾向は共通である, しかし、 周波数変化率の絶対値は、 発振イ ンパータ 3の出力端子側 の方が、 発振イ ンバータ 3の入力端子側に比べて 2倍程度大きい。
このような現象が起こる理由としては、 発振イ ンバータ 3の出力 端子側の振幅が大きいので、 昇圧回路の原理によ り温度補償用固定 容量 1 5の対抗電極の電位が電源電圧を超えてしまい、 温度補償用 MO S抵抗 1 7の ドレーンが基板に対して順方向になってしまうこ とが関係していると考えられる。
これが、 第 1 図に示したように、 発振イ ンバータ 3の出力端子側 を温度補償動作に用い、 入力端子側を基地局の基準周波数に合わせ る動作に用いている理由である。
ただし、 発振イ ンバータ 3の入力端子側を温度補償動作に用い、 出力端子側を基地局の基準周波数に合わせる動作に用いることも、 不利ではあるが可能である。
ところで、 第 1 図における温度補償用固定容量 1 5の容量値は、 水晶振動子 1の発振周波数の温度変化を補償できる程度の大きさが 必要である。 計算および実験によれば、 水晶振動子 1 と して通常の A Tカツ ト水晶振動子を用いる限り、 3 0〜 5 0 p F程度かそれ以 下でよい。
この容量値は、 発振ィ ンバータ 3の駆動能力の設定によ り多少上 下するが、 この程度の大きさの 2層の多結晶シリコン膜の容量は、 半導体集積回路内での占有面積が 2 0 0 μ χη Χ 3 0 0 μ πι以下で作 ることができるから、 容易に半導体集積回路に内蔵することができ る。
温度補償用 MO S抵抗 1 7および外部周波数制御用 MO S抵抗 2 1 の抵抗値は、 チャネル長に比例しチャネル幅に反比例し、 しかも ソース · ドレーン間電圧によっても変化することは当然である力^ 印加されるゲー 卜電圧に対する依存性が最も支配的であり、 ゲー ト 電圧によって 1 G Ω以上という大きな値から、 1 0 0 Ω以下の小さ な値まで変化させることができる。
温度補償用 M O S抵抗 1 7の抵抗値が 1 以上のときには、 3 0〜 5 0 p F程度の温度補償用固定容量 1 5 に対する電荷の充放電 の時定数は 3 0〜 5 0 m s e c以上となり、 通常デジタル温度補償 型水晶発振器の発振周期が 5 0〜 1 0 0 n s e c程度であるから、 発振周期内に電荷の充放電はほとんど起こらず、 これは温度補償用 固定容量 1 5 を発振イ ンバータ 3に接続していない状態にほぼ等し い。
—方、 温度補償用 M〇 S抵抗 1 7の抵抗値が 1 0 0オーム以下の ときには、 3 0〜 5 0 p F程度の温度補償用固定容量 1 5に対する 電荷の充放電の時定数は 3〜 5 n s e c以下となり、 発振周期内に 電荷の充放電はほぼ終了する。 これはすなわち、 温度補償用 M O S 抵抗 1 7 を介さず、 温度補償用固定容量 1 5 を直接電源に接続した 状態にほぼ等しい。
したがって、 温度補償用 M O S抵抗 1 7の抵抗値をゲー 卜電圧に よって変化させることにより、 発振イ ンバータ 3の出力端子側に接 続する容量値を、 実質的に 3 0〜 5 0 p F程度変化させることがで さる。
この程度の容量値の変化ならば、 発振周波数を 3 0〜 4 0 p p m 程度変化させることができるから、 あとは水晶振動子 1 の温度特性 に合わせて、 それを補償するデータ を発生するように温度情報作成 部 7 を構成すればよい。 たとえば、 温度情報作成部 7の中に不揮発 性メモリ を搭載して、 温度補償データ を書き込むという手段でもよ い。
ところで、 発振周波数を基地局の基準周波数に合わせる動作にお いては、 通常は外部入力電圧に対して周波数変化が正極性であるこ とという指定があるので、 用いる電圧制御型の可変抵抗は、 外部入 力電圧の上昇に応じて抵抗値が増加するものでなければならない。 したがって、 電圧制御型の可変抵抗と して M O S抵抗を用いる限 り、 第 1 図に示したように、 発振イ ンバータ 3の入力端子側の外部 周波数制御用 M O S抵抗 2 1 は、 pチャネル M O S抵抗でなければ ならず、 nチャネル M〇 S抵抗であってはならない。 pチャネル M O S抵抗であれば、 外部入力電圧の上昇に対し抵抗値は増加し、 実 効的な負荷容量は減少するから、 発振周波数は上昇するので正極性 の動作となる。
一方、 温度補償動作の場合は、 温度補償電圧発生手段 4 の出力電 圧の変化に対し、 発振周波数の変化は正極性でも負極性でもかまわ ないから、 発振イ ンバータ 3の出力端子側に接続する可変抵抗は n チャネル M 0 S抵抗であつてもよい。
ただしその場合は、 バックゲー ト効果の影響を排除するために、 接続先の電源を低電位側にする方が有利である。
なお、 発振周波数を基地局の基準周波数に合わせる動作において 要求される周波数の変化幅は、 おおむね 1 O p p m以内であり、 さ らに詳しくは外部電圧変化 1 V当たり 3〜 5 p p m程度である。 この程度の周波数変化を生じさせるための外部周波数制御用固定 容量 1 9の容量値は、 実測によれば通常 1 5〜 3 0 p F以下で済む から、 半導体集積回路内での占有面積が 1 0 0 μ πι Χ 3 0 0 μ πι以 下である。
したがって、 第 1 図に示したデジタル温度補償型水晶発振器は、 水晶振動子 1以外のすべてを半導体集積回路に容易に内蔵でき、 部 品の削減による小型化と低コス 卜化とを、 ともに達成可能であるこ とが明らかである。
第 1 図に示した第 1 実施例のデジタル温度補償型水晶発振器は、 温度補償用固定容量 1 5 と外部周波数制御用固定容量 1 9 とを発振 イ ンバータ 3に接続し、 温度補償用 M O S抵抗 1 7 と外部周波数制 御用 M O S抵抗 2 1 とを高電位側の電源に接続している。
しかしこれを変更して、 発振インバータ 3の出力端子に温度補償 用 M〇 S抵抗 1 7のドレインを接続し、 発振インバータ 3の入力端 子に外部周波数制御用 M O S抵抗 2 1 のドレインを接続し、 温度補 償用 M O S抵抗 1 7のソースに温度補償用固定容量 1 5の一方の端 子を接続し、 外部周波数制御用 M〇 S抵抗 2 1 のソースに外部周波 数制御用固定容量 1 9の一方の端子を接続し、 温度補償用固定容量 1 5の他方の端子と外部周波数制御用固定容量 1 9の他方の端子と を高電位側の電源に接続することも可能である。
ただし、 温度補償用 M O S抵抗 1 7 および外部周波数制御用 M O S抵抗 2 1 の ドレインには、 p n接合容量という余分な浮遊容量が 付随しているなどのために、 発振イ ンバータ 3に温度補償用 M〇 S 抵抗 1 7 および外部周波数制御用 M O S抵抗 2 1 の ドレイ ンを接続 する場合は、 発振インバータ 3に温度補償用固定容量 1 5および外 部周波数制御用固定容量 1 9 を接続する場合よりも、 発振起動性が 悪くなるなどの問題がある。 そのため、 第 1 図に示したように、 発 振ィ ンパータ 3には温度補償用固定容量 1 5および外部周波数制御 用固定容量 1 9 を接続する方が有利である。
ところで、 温度補償用固定容量 1 5および外部周波数制御用固定 容量 1 9は、 共に高濃度の不純物を含む 2層の多結晶シリ コン膜の 容量としているが、 これらの容量は使用する電圧範囲で容量値に電 圧依存性がないものであって、 しかも半導体集積回路に容易に搭載 可能であれば、 どのような種類の容量でもよいことは言うまでもな い。
このような条件を満たす容量と しては、 多結晶シリコン膜, 高融 点金属膜, あるいは高融点金属シリサイ ド膜などの任意の導電体を ゲー ト電極とし、 高濃度の拡散領域を対抗電極とする M O S容量が ある。
対抗電極が高濃度の拡散領域であれば、 通常使用する電源電圧範 囲内ではゲー ト電極からの電界による空乏層の形成がほとんどない ので、 容量値は電圧に依存しない。
したがって、 このような M O S容量を第 1 図に示した温度補償用 固定容量 1 5、 あるいは外部周波数制御用固定容量 1 9 として使用 することができる。
ただし、 温度補償用固定容量 1 5あるいは外部周波数制御用固定 容量 1 9 と して用いる M〇 S容量の対抗電極は、 p n接合を用いて 周囲から電気的に分離しなければならない。 そのため、 この対抗電 極を発振イ ンバータ 3に接続すると、 発振起動性を疎外するという 不利があるから、 発振イ ンバ一タ 3に接続する電極はゲー ト電極の 方が有利である。
なお、 ゲー ト絶縁膜の下に高濃度の不純物を導入し、 高濃度拡散 領域の対抗電極を形成することは容易である。
たとえば、 高濃度の不純物と してボロンを導入する場合は、 ゲー 卜絶縁膜を形成後にイオン注入を行えばよく、 高濃度の不純物と し てリ ンやひ素などを導入する場合は、 ゲー 卜絶縁膜を形成する前に イオン注入を行えばよい。
ところで、 温度補償用固定容量 1 5および外部周波数制御用固定 容量 1 9 と して、 容量値に電圧依存性のある容量を用いたとしても、 使用する電圧の範囲内において容量値が電圧に依存しなければ、 固 定容量とみなすことができることはいうまでもない。
したがって、 対抗電極が低濃度拡散領域であるために容量値に電 圧依存性がある M O S容量であっても、 ゲー ト電極とその対抗電極 である基板との仕事関数の選択およびその接続の仕方によ り、 第 1 図における固定容量と して使用することが可能である。
第 3図は、 p形多結晶シリコン膜をゲー ト電極と し、 p形拡散領 域を対抗電極とする M O S容量の、 対抗電極を基準電位とするゲー 卜電極の電圧と容量値との関係を示す、 いわゆる C一 V特性である。 ただし、 第 3図は測定周波数が 1 M H zの場合の例であるが、 周波 数が 1 0 M H z帯であっても、 この C— V特性に変化はない。
この第 3図に示すように、 p形多結晶シリ コン膜をゲー ト電極と し、 p形拡散領域を対抗電極とする M O S容量は、 ゲ一 卜電極が対 抗電極よりも低電位である限り容量値の電圧依存性はほとんどなく、 そのような電位関係で使用する限りは、 ほぼ固定容量とみなすこと ができる。
また第 4 図は、 n形多結晶シリコン膜をゲー ト電極と し、 n形拡 散領域を対抗電極とする M O S容量の、 対抗電極を基準電位とする ゲー 卜電極の電圧と容量値との関係を示す C一 V特性である。 ただ し、 第 4図は測定周波数が 1 M H zの場合の例であるが、 周波数が 1 0 M H z帯であっても、 この C一 V特性に変化はない。
この第 4 図に示すように、 n形多結晶シリ コン膜をゲー ト電極と し、 n形拡散領域を対抗電極とする M〇 S容量は、 ゲー ト電極が対 抗電極よ リも高電位である限リ容量値の電圧依存性はほとんどなく、 そのような電位関係で使用する限りは、 ほぼ固定容量とみなすこと ができる。
そして、 第 1 図に示したデジタル温度補償型水晶発振器の構成は, 温度補償用固定容量 1 5 と温度補償用 M O S抵抗 1 7 との接続点に 対し、 発振イ ンパータ 3の出力端子は常に低電位であり、 外部周波 数制御用固定容量 1 9 と外部周波数制御用 M O S抵抗 2 1 との接続 点に対し、 発振イ ンバータ 3の入力端子は常に低電位である。
そこで、 温度補償用固定容量 1 5 と外部周波数制御用固定容量 1 9 とを、 p形多結晶シリコン膜をゲー ト電極とし、 P形拡散領域を 対抗電極とする温度補償用固定 M O S容量と外部周波数制御用固定 M O S容量とに置き換え、 そのゲー 卜電極をそれぞれ発振ィ ンバー タ 3の出力端子と入力端子とに接続すれば、 M O S容量を固定容量 と して用いることが可能である。
あるいはまた、 温度補償用固定容量 1 5 と外部周波数制御用固定 容量 1 9 とを、 n形多結晶シリ コン膜をゲー ト電極とし、 n形拡散 領域を対抗電極とする温度補償用固定 M O S容量と外部周波数制御 用固定 M〇 S容量とに置き換え、 その対抗電極をそれぞれ発振ィ ン バ一タ 3の出力端子と入力端子とに接続しても、 M〇 S容量を固定 容量として用いることが可能である。
このようにすれば、 半導体集積回路に搭載可能な容量の中で最も 加工精度が良い M O S容量を、 この発明による温度補償型水晶発振 器における固定容量と して用いることができる。
ただし、 対抗電極を電源電圧と異なる電位で使用する M O S容量 を通常の半導体基板に形成する場合、 対抗電極は p n接合を用いて 周囲から電気的に分離しなければならないので、 p n接合容量とい う余分な浮遊容量が付随するなどの問題がある。
そのため、 発振インバータ 3に M〇 S容量の対抗電極を接続する 場合は、 発振イ ンパータ 3に M O S容量のゲー 卜電極を接続する場 合よ りも、 発振起動性が悪くなるなどの問題があり、 性能面で不利 である。
したがって、 第 1 図に示したような高電位側の電源に固定容量と M〇 S抵抗とを直列に接続する構成のデジタル温度補償型水晶発振 器の場合、 M〇 S容量を固定容量と して用いるのであれば、 p形多 結晶シリ コン膜をゲー ト電極と し、 p形拡散領域を対抗電極とする M O S容量を用いる方が有利である。
M O S容量を通常の半導体基板に形成するのではなく、 シリ コン オンインシユレ一タ ( S〇 I ) に形成するのであれば、 対抗電極も 絶縁分離されるので、 発振イ ンバータ 3に対抗電極を接続しても不 利になることはない。
また前述のように、 第 1 図に示した第 1 実施例の温度補償型水晶 発振器は、 発振イ ンバータ 3の出力端子側に接続する温度補償用の 可変抵抗を nチャネル M O S抵抗と し、 その接続先の電源を低電位 側と してもよい。
そこで、 温度補償用固定容量 1 5 を n形多結晶シリコン膜をゲー 卜電極と し、 n形拡散領域を対抗電極とする温度補償用固定 M〇 S 容量に置き換え、 そのゲー ト電極を発振イ ンパータ 3の出力端子に 接続し、 外部周波数制御用固定容量 1 9 を P形多結晶シリ コン膜を ゲー ト電極とし、 p形拡散領域を対抗電極とする外部周波数制御用 固定 M〇 S容量に置き換え、 そのゲー ト電極を発振インバータ 3の 入力端子に接続することも可能である。
ただしその場合、 対抗電極を電源電圧と異なる電位で使用する M O S容量を通常の半導体基板に形成するのであれば、 対抗電極は p n接合を用いて周囲から電気的に分離しなければならないので、 n 形半導体基板を用いる場合は温度補償用固定 M〇 S容量の対抗電極 の周囲を P形拡散領域で囲むという二重拡散構造にせざるを得ない, また、 P形半導体基板を用いる場合は、 外部周波数制御用固定 M〇 S容量の対抗電極の周囲を p形拡散領域で囲むという二重拡散構造 にせざるを得ず、 製造上不利である。
したがって、 S 0 I を用いて半導体集積回路を形成する場合を除 き、 電圧依存性のある M〇 S容量を固定容量と して用いるならば、 温度補償用固定 M O S容量と外部周波数制御用固定 M O S容量とは, 同一種類の M O S容量にする方が有利である。
S 0 I を用いて半導体集積回路を形成する場合には、 M O S容量 の種類には制約はなく、 その接続の仕方に制約があるのみである。 次に、 この発明の他の実施例を詳述する。
[第 2実施例〕
第 5図は、 この発明の第 2実施例の温度補償型水晶発振器の構成 を示す回路図である。 ただし第 5図では、 発振イ ンバータなどは回 路記号を用いて、 また温度情報作成部などはプロック図を用いて、 それぞれ示している。
この第 2の実施例もデジタル温度補償型水晶発振器であり、 水晶 振動子 1 と発振イ ンバータ 3 と帰還抵抗 5 とを並列に接続して水晶 発振手段 2 を構成し、 高濃度の不純物を含む 2層の多結晶シリ コン 膜の温度補償用固定容量 1 5 と、 nチャネル M O S抵抗の温度補償 用 M O S抵抗 1 7 とを直列に接続して温度補償制御手段 6 を構成し ている。 そして、 水晶発振手段 2の一方の端子である発振インバー タ 3の出力端子と低電位側の電源一 V ccとの間に、 上記温度補償制 御手段 6 を接続している。
は温度補償電圧発生手段であり、 デジタル温度補償情報を作成 する温度情報作成部 7 と、 このデジタル温度補償情報をアナログ電 圧に変換する電圧出力型の D Z A変換回路 9 と、 この電圧出力型の D Z A変換回路 9の出力の急激な変化を防止する積分回路 1 1 とに よって構成されている。 そして、 この温度補償電圧発生手段 4 は、 電圧出力型の D Z A変換回路 9の出力電圧を温度補償動作のための 電圧として出力し、 この出力端子である積分回路 1 1 の出力端子を. 温度補償用 M〇 S抵抗 1 7の制御端子であるゲー 卜に接続している, また、 水晶発振手段 2の他方の端子である発振イ ンバータ 3の入 力端子と低電位側の電源一 V ccとの間に、 高濃度の不純物を含む 2 層の多結晶シリ コン膜の固定容量 2 0 を接続しており、 第 1 実施例 に示したような外部周波数制御手段は設けていない。
これは、 日本国内以外のほとんどの携帯電話の仕様では、 通話の 開始時点で温度補償型水晶発振器の発振周波数を基地局の基準周波 数に合わせるという動作がないので、 そのような海外向けのデジタ ル温度補償型水晶発振器は、 第 1 実施例に示したような外部周波数 制御手段は設ける必要がないからである。
ところで、 温度補償用固定容量 1 5の容量値は、 第 1 実施例で述 ベたように、 3 0〜 5 0 p F程度かそれ以下である。
一方、 固定容量 2 0の容量値は、 水晶振動子 1 を製造する際の周 波数調整における負荷容量の設定に依存するが、 おおむね 1 5〜 3 0 p F程度である。
したがって、 温度補償用固定容量 1 5および固定容量 2 0は、 容 易に半導体集積回路に内蔵することができる。
ところで、 温度補償用固定容量 1 5および固定容量 2 0は、 共に 高濃度の不純物を含む 2層の多結晶シリコン膜の容量と しているが、 多結晶シリ コン膜, 高融点金属膜, あるいは高融点金属シリサイ ド 膜などの任意の導電体をゲー ト電極と し、 高濃度の拡散領域を対抗 電極とする M〇 S容量を用いてもよい。
ただし、 温度補償用固定容量 1 5あるいは固定容量 2 0 として用 いる M〇 S容量の対抗電極は、 p n接合を用いて周囲から電気的に 分離しなければならないので、 この対抗電極を発振ィンバータ 3に 接続すると、 発振起動性を疎外するという不利があるから、 発振ィ ンバータ 3に接続する電極はゲー 卜電極の方が有利である。
また、 第 1 実施例で説明したように、 温度補償用固定容量 1 5 と して容量値に電圧依存性のある容量を用いたと しても、 使用する電 圧の範囲内において容量値が電圧に依存しなければ、 温度補償用固 定容量とみなすことができる。 したがって、 たとえ電圧依存性のあ る M O S容量であっても、 ゲー 卜電極とその対抗電極である基板と の仕事関数の選択およびその接続の仕方によ り、 第 5図における温 度補償用固定容量 1 5 と して使用することが可能である。
第 4図に示したように、 n形多結晶シリ コン膜をゲー ト電極と し, n形拡散領域を対抗電極とする M O S容量は、 ゲー 卜電極が対抗電 極よ りも高電位である限リ容量値の電圧依存性はほとんどなく、 そ のような電位関係で使用する限りは、 ほぼ固定容量とみなすことが できる。
そして、 第 5図に示したデジタル温度補償型水晶発振器の構成は, 温度補償用 M O S抵抗 1 7に対し、 発振イ ンバータ 3の出力端子は 常に高電位であるから、 温度補償用固定容量 1 5 を、 n形多結晶シ リ コン膜をゲー ト電極と し、 n形拡散領域を対抗電極とする温度補 償用固定 M O S容量に置き換え、 そのゲー ト電極を発振イ ンバータ 3の出力端子に接続すれば、 M O S容量を温度補償用固定容量 1 5 と して用いることが可能である。 '
あるいはまた、 第 3図から明らかなように、 温度補償用固定容量 1 5 を p形多結晶シリ コン膜をゲー ト電極と し、 p形拡散領域を対 抗電極とする温度補償用固定 M〇 S容量に置き換え、 その対抗電極 を発振イ ンバータ 3の出力端子に接続しても、 M O S容量を温度補 償用固定容量 1 5 として用いることが可能である。
このようにすれば、 半導体集積回路に搭載可能な容量の中で最も 加工精度が良い M〇 S容量を、 この発明による温度補償型水晶発振 器における温度補償用固定容量 1 5 と して用いることができる。
ただし、 対抗電極を電源電圧と異なる電位で使用する M O S容量 を通常の半導体基板に形成する場合、 対抗電極は P n接合を用いて 周囲から電気的に分離しなければならない。 そのため、 p n接合容 量という余分な浮遊容量が付随するなどのために、 発振イ ンバータ 3の出力端子に M O S容量の対抗電極を接続する場合は、 発振イ ン バータ 3の出力端子に M O S容量のゲー ト電極を接続する場合よ り も、 発振起動性が悪くなるなどの問題があり、 性能面で不利である, したがって、 第 5図に示したような低電位側の電源に温度補償用 固定容量 1 5 と温度補償用 M O S抵抗 1 7 とを直列に接続する構成 のデジタル温度補償型水晶発振器の場合、 通常の半導体基板に形成 する M O S容量を温度補償用固定容量 1 5 と して用いるのであれば、 n形多結晶シリ コン膜をゲー ト電極と し n形拡散領域を対抗電極と する M〇 S容量を用いる方が有利である。
ただし、 S〇 I を用いて半導体集積回路を形成する場合には、 M 0 S容量の種類に制約はない。 S 0 I を用いて半導体集積回路を形 成する場合の制約は、 M O S容量がほぼ固定容量とみなせる電位関 係になるように、 ゲー 卜電極と対抗電極を接続するということだけ である。
第 5図に示したデジタル温度補償型水晶発振器は、 温度補償制御 手段 6 を発振イ ンバータ 3の出力端子側に接続しているが、 発振ィ ンバータ 3の入力端子側に接続してもよい。
ただし、 温度補償制御手段 6 を発振インバータ 3の入力端子側に 接続する場合は、 発振イ ンバータ 3の出力端子側に接続する場合に 比較して、 第 2図に示したように、 発振周波数の可変幅が半分程度 になってしまうので、 どちらか一方に接続するのであれば、 第 5図 に示したように、 発振イ ンバータ 3の出力端子側に接続する方が有 利である。
また、 第 5図に示したデジタル温度補償型水晶発振器は、 温度補 償用固定容量 1 5 を発振イ ンバータ 3の出力端子に接続し、 温度補 償用 M〇 S抵抗 1 7 を低電位側の電源に接続しているが、 発振イ ン バータ 3の出力端子に温度補償用 M O S抵抗 1 7の ドレイ ンを接続 し、 温度補償用 M O S抵抗 1 7のソースに温度補償用固定容量 1 5 を接続し、 温度補償用固定容量 1 5の他方の端子を低電位側の電源 に接続することも可能である。
ただし、 温度補償用 M O S抵抗 1 7の ドレイ ンには、 p n接合容 量という余分な浮遊容量が付随しているなどのために、 発振イ ンバ ータ 3の出力端子に温度補償用 M O S抵抗 1 7の ドレイ ンを接続す る場合は、 発振イ ンバータ 3の出力端子に温度補償用固定容量 1 5 を接続する場合よりも、 発振起動性が悪くなるなどの問題がある。 そのため、 第 5図に示したように、 発振イ ンバータ 3の出力端子 には温度補償用固定容量 1 5 を接続する方が有利である。
また、 温度補償制御手段 6 を発振ィ ンバータ 3の入力端子に接続 する場合も、 同様に発振インバータ 3の入力端子には温度補償用固 定容量 1 5 を接続する方が有利である。
さらに、 第 5図に示したデジタル温度補償型水晶発振器は、 温度 補償制御手段 6 を発振イ ンバータ 3の出力端子と低電位側の電源と の間に接続しているが、 発振イ ンバータ 3の出力端子と高電位側の 電源との間に接続してもよい。 ただしその場合は、 温度補償用 M〇 S抵抗 1 7 を pチャネル M O S抵抗に変更して、 バックゲー ト効果 の影響を排除した方が有利である。
そして、 pチャネル M O S抵抗を用いて高電位側の電源に接続す る場合は、 通常の半導体基板に形成する M O S容量を温度補償用固 定容量 1 5 と して用いるのであれば、 p形多結晶シリコン膜をゲー 卜電極と し p形拡散領域を対抗電極とする M O S容量を用い、 その ゲ一 卜電極を発振インバータ 3に接続する方が有利である。
ただし、 S〇 I を用いて半導体集積回路を形成する場合には、 M 〇 S容量がほぼ固定容量とみなせる電位関係になるようにゲー ト電 極と対抗電極を接続する限り、 M O S容量の種類に制約はない。
ところで、 温度補償用固定容量 1 5 として M〇 S容量を用いるこ とができるだけでなく、 固定容量 2 0も加工精度の良い M〇 S容量 にすることができる。
そして、 温度補償制御手段 6の接続先の電源が高電位側でも低電 位側でもかまわないと同様に、 固定容量 2 0の接続先の電源も高電 位側でも低電位側でもかまわない。
さらに、 ゲー ト電極と対抗電極との接続状態によ りほぼ固定の容 量と して使用できる M O S容量は、 p形多結晶シリ コン膜をゲー ト 電極と し、 P形拡散領域を対抗電極とする M O S容量と、 n形多結 晶シリコン膜をゲー ト電極と し、 n形拡散領域を対抗電極とする M 〇 S容量との 2種類がある。
したがって、 温度補償用固定容量 1 5および固定容量 2 0をどち らの M〇 S容量にするか、 そしてそれらをどちらの電源に接続する かによリ、 非常に多くの組み合わせ方が可能である。
それらの組み合わせのうち、 温度補償用固定容量 1 5 と固定容量 2 0 とを別の種類の M O S容量にして接続先を同一の電源にしたり、 あるいは温度補償用固定容量 1 5 と固定容量 2 0 とを同じ種類の M 〇 S容量にして、 それぞれの接続先を別の電源にしたりする場合は、 どちらかの M O S容量の対抗電極を発振ィ ンバータ 3に接続するこ とになる。 そうすると、 前述のように通常の半導体基板を用いて半 導体集積回路を形成する場合、 発振起動性を疎外するなどの問題が ある。
また、 温度補償用固定容量 1 5 と固定容量 2 0 とを別の種類の M 〇 S容量にして、 接続先を別の電源にする場合は、 p形多結晶シリ コン膜をゲー ト電極と し、 P形拡散領域を対抗電極とする M O S容 量の対抗電極の接続先を高電位側の電源と し、 n形多結晶シリ コン 膜をゲー ト電極と し、 n形拡散領域を対抗電極とする M O S容量の 対抗電極の接続先を低電位側の電源とすれば、 発振起動性の疎外と いう問題はない。
しかし、 通常の半導体基板を用いて半導体集積回路を形成する場 合、 対抗電極側に任意の電位を与えるためには、 p n接合を用いて 周囲から電気的に分離しなければならないので、 どちらか一方の M 〇 S容量の対抗電極の周囲は二重拡散構造にせざるを得ず、 製造上 不利である。 もう少し詳しく述べれば、 P形半導体基板を用いて半導体集積回 路を形成する場合、 この基板は低電位側の電源に接続するから、 P 形多結晶シリコン膜をゲー ト電極と し、 P形拡散領域を対抗電極と する M O S容量の、 対抗電極の接続先を高電位側の電源にしょうと すると、 この対抗電極である P形拡散領域の周囲を n形拡散領域で 囲むという二重拡散構造にせざるを得ない。
また、 n形半導体基板を用いて半導体集積回路を形成する場合、 この基板は高電位側の電源に接続するから、 n形多結晶シリコン膜 をゲー ト電極とし、 η形拡散領域を対抗電極とする M O S容量の、 対抗電極の接続先を低電位側の電源にしょう とすると、 この対抗電 極である n形拡散領域の周囲を p形拡散領域で囲むという二重拡散 構造にせざるを得ない。 どちらの場合も、 製造上不利である。
そこで、 通常の半導体基板を用いて半導体集積回路を形成する場 合は、 温度補償用固定容量 1 5 も固定容量 2 0も p形多結晶シリコ ン膜をゲー ト電極とし、 P形拡散領域を対抗電極とする M O S容量 と し、 対抗電極を高電位側の電源とするか、 温度補償用固定容量 1 5 も固定容量 2 0も n形多結晶シリコン膜をゲー ト電極と し、 η形 拡散領域を対抗電極とする M O S容量とし、 対抗電極を低電位側の 電源とするかの、 2通り しかない。
S〇 I を用いて半導体集積回路を形成する場合には、 ゲー ト電極 と対抗電極とを同一の導電型と し、 S〇 I の活性層内に空乏層が形 成されないようにゲ一 卜電極と対抗電極とを接続する限り、 この Μ 0 S容量はほぼ固定容量とみなせるから、 M O S容量の種類と接続 先の電源との関係に制約はなく、 自由な組み合わせが可能である。 以上で述べた第 1 実施例と第 2実施例とは、 いずれも固定容量と 可変抵抗との直列接続を用い、 この可変抵抗の抵抗値を可変するこ とによって、 容量値そのものは変化することなしに、 負荷容量を可 変するものである。
[第 3実施例〕
次にこの発明の第 3実施例を説明する。 第 6図はその第 3実施例 の温度補償型水晶発振器の構成を示す回路図である。 ただし、 第 6 図では、 発振イ ンバータなどは回路記号を用いて、 また温度情報作 成部などはプロック図を用いて、 それぞれ示している。
この第 3実施例もデジタル温度補償型水晶発振器であリ、 前述の 各実施例と同様に、 水晶振動子 1 と発振イ ンバータ 3 と帰還抵抗 5 とを並列に接続して水晶発振手段 2 を構成している。
そして、 n形多結晶シリコン膜をゲー ト電極と し、 p形拡散領域 を対抗電極とする温度補償用可変 M O S容量 3 5 と、 pチャネル M 〇 S抵抗の温度補償用 M O S抵抗 1 7 とを直列に接続して温度補償 制御手段 6 を構成している。 この温度補償制御手段 6 を、 水晶発振 手段 2の一方の端子である発振イ ンバータ 3の出力端子と高電位側 の電源 + V ccとの間に、 温度補償用 M〇 S抵抗 1 7が電源側となる よう接続している。
また、 n形多結晶シリ コン膜をゲー ト電極とし、 p形拡散領域を 対抗電極とする外部周波数制御用可変 M O S容量 3 7 と、 pチヤネ ル M〇 S抵抗の外部周波数制御用 M O S抵抗 2 1 とを直列に接続し て外部周波数制御手段 8 を構成している。 この外部周波数制御手段 8 を、 水晶発振手段 2の他方の端子である発振インバータ 3の入力 端子と高電位側の電源 + V ccとの間に、 外部周波数制御用 M〇 S抵 抗 2 1 が電源側となるように接続している。
4 は温度補償電圧発生手段であり、 デジタル温度補償情報を作成 する温度情報作成部 7 と、 このデジタル温度補償情報をアナログ電 圧に変換する電圧出力型の D / A変換回路 9 と、 この電圧出力型の D Z A変換回路 9の出力の急激な変化を防止する積分回路 1 1 とに よって構成されている。 この温度補償電圧発生手段 4は、 電圧出力 型の D Z A変換回路 9の出力電圧を温度補償動作のための電圧と し て出力し、 この出力端子である積分回路の出力端子は、 温度補償用 1^〇 3抵抗 1 7 の制御端子であるゲー 卜に接続している。
また、 外部周波数制御用 M O S抵抗 2 1 の制御端子であるゲ一 卜 は、 外部電圧入力端子 1 3に接続している。 第 1 実施例で述べたように、 温度補償用 M O S抵抗 1 7のゲー ト 電圧によってその抵抗値を可変することによ り、 等価的に発振イ ン バータ 3の出力端子に接続する容量値を可変することができ、 これ によ り負荷容量を可変して発振周波数の温度補償が可能となる。 また、 外部周波数制御用 M O S抵抗 2 1 のゲー ト電圧によってそ の抵抗値を可変することによ り、 等価的に発振イ ンバータ 3の入力 端子に接続する容量値を可変することができ、 これによ り負荷容量 を可変して発振周波数を基地局の基準周波数に合わせることが可能 になることも、 第 1実施例と同様である。
この第 3実施例が第 1 実施例と異なる点は、 可変抵抗と直列に接 続する容量が固定容量ではなく可変容量であることである。
温度補償用可変 M O S容量 3 5および外部周波数制御用可変 M〇 S容量 3 7 は、 どちらも n形多結晶シリコン膜をゲー ト電極と し、 P形拡散領域を対抗電極としており、 それぞれそのゲー ト電極側を、 発振イ ンバータ 3の入力端子と出力端子とに接続している。
そして、 温度補償用可変 M O S容量 3 5の対抗電極は、 温度補償 用 M O S抵抗 1 7 を介して高電位側の電源 + V ccに接続し、 外部周 波数制御用可変 M O S容量 3 7の対抗電極は、 外部周波数制御用 M 0 S抵抗 2 1 を介して高電位側の電源 + V ccに接続している。
このように接続することによ り、 固定容量を使用する場合に比べ て、 M O S抵抗による負荷容量の可変幅をよ り大きくすることがで きる。 このことを、 M〇 S容量の電気特性を用いて以下に説明する。 第 7図は、 M O S容量の対抗電極を基準電位とするゲー ト電極の 電圧と容量値との関係を示す、 いわゆる C一 V特性である。 ただし 第 7 図においては、 n形多結晶シリ コン膜をゲー ト電極と し、 p形 拡散領域を対抗電極とする M O S容量の C— V特性 c と、 p形多結 晶シリコン膜をゲー ト電極と し、 n形拡散領域を対抗電極とする M 〇 S容量の C一 V特性 d とを併記している。
また、 第 7図は、 測定周波数が 1 M H zの場合の例であるが、 周 波数が 1 0 M H z帯であっても、 これらの C一 V特性に変化はない。 この第 7 図に示すように、 n形多結晶シリ コン膜をゲ一 卜電極と し、 P形拡散領域を対抗電極とする M O S容量は、 対抗電極に対す るゲー 卜電極の電圧がマイナス 0 . 5〜 2 V付近で容量値が大きく 変化する。 また、 P形多結晶シリコン膜をゲー ト電極と し n形拡散 領域を対抗電極とする M〇 S容量も、 対抗電極に対するゲー ト電極 の電圧がプラス 0 . 5〜 2 V付近で容量値が大きく変化する。
そして、 n形多結晶シリコン膜をゲー ト電極と し、 p形拡散領域 を対抗電極とする M O S容量の容量値は、 対抗電極に対するゲー 卜 電極の電圧が負方向に高いときに最大となり、 p形多結晶シリ コン 膜をゲー ト電極と し、 n形拡散領域を対抗電極とする M〇 S容量の 容量値は、 対抗電極に対するゲー 卜電極の電圧が正方向に高いとき に最大となる。
したがって、 n形多結晶シリコン膜をゲー ト電極とし、 p形拡散 領域を対抗電極とする M O S容量と M O S抵抗とを直列に接続して 用いる場合、 負荷容量を大きく したいときには、 対抗電極に対して ゲー 卜電極に負方向の高い電圧がかかるようにして、 その容量値が 最大になるようにする。 反対に、 負荷容量を小さく したいときには、 対抗電極に対してゲー ト電極にほとんど電圧がかからないようにし て、 その容量値が小さくなるようにすればよい。 このようにすれば、 固定容量を使用する場合に比べて負荷容量の変化幅を大きくするこ とができる。
同様に、 P形多結晶シリコン膜をゲー ト電極と し、 n形拡散領域 を対抗電極とする M O S容量と M O S抵抗とを直列に接続して用い る場合、 負荷容量を大きく したいときには、 対抗電極に対してゲー 卜電極に正方向の高い電圧がかかるようにして、 その容量値が最大 になるようにする。 反対に、 負荷容量を小さく したいときには、 対 抗電極に対してゲー 卜電極にほとんど電圧がかからないようにして、 その容量値が小さくなるようにすればよい。 このようにしても、 固 定容量を使用する場合に比べて負荷容量の変化幅を大きくすること ができる。 つま り、 M〇 S抵抗により負荷容量が変化する際に、 M O S容量 の 2つの電極間の電圧を同時に変化させ、 且つ、 その電圧の変化に よる M〇 S容量の容量値の変化の方向と負荷容量の変化の方向とを 一致させることで、 固定容量と M〇 S抵抗とを直列に接続する場合 に比べて負荷容量の変化幅をよ り大きくすることができる。
そして、 これを具体的に実現した一例が、 第 6図に示した第 3実 施例のデジタル温度補償型水晶発振器である。
すなわち、 温度補償用可変 M O S容量 3 5は、 n形多結晶シリ コ ン膜をゲ一 卜電極とし、 P形拡散領域を対抗電極とする M O S容量 であって、 そのゲー ト電極を発振イ ンバータ 3の出力端子に接続し、 対抗電極を温度補償用 M O S抵抗 1 7 を介して高電位側の電源 + V ccに接続しているから、 温度補償用可変 M O S容量 3 5のゲー 卜電 極の電位は、 常に対抗電極の電位以下になっている。
そのため、 その容量値の電圧変化は、 第 7図に示した n形多結晶 シリ コン膜をゲー ト電極とし、 p形拡散領域を対抗電極とする M〇 S容量の C一 V特性 cの曲線上のうち、 ゲー ト電圧が負の側になつ ており、 ゲー ト電極と対抗電極との電位差が大きくなるほど容量値 が大きくなる接続になっている。
そして、 負荷容量を大きくするときには、 温度補償用 M O S抵抗 1 7の抵抗値を小さくするわけであるが、 その場合は温度補償用 M 〇 S抵抗 1 7の両端の電位差はほとんどなくなるため、 発振イ ンバ ータ 3の出力端子の電圧がほとんど温度補償用可変 M O S容量 3 5 にかかることになリ、 温度補償用可変 M O S容量 3 5の容量値は最 大になる。
逆に、 負荷容量を小さくするときには、 温度補償用 M O S抵抗 1 7の抵抗値を大きくするわけである力 その場合は発振イ ンバータ 3の出力端子の電圧がほとんど温度補償用 M〇 S抵抗 1 7の両端に かかるため、 温度補償用可変 M〇 S容量 3 5の 2つの電極間の電位 差はほとんどなくなり、 その容量値は最小になる。
つまり、 温度補償用 M O S抵抗 1 7 によ り負荷容量が変化する際 に、 温度補償用可変 M〇 S容量 3 5の容量値も同時に変化し、 しか もその変化の方向が一致しているために、 固定容量を用いる場合よ りも、 温度補償用 M O S抵抗 1 7による負荷容量の可変幅を大きく できる。
以上は温度補償用可変 M〇 S容量 3 5についての説明であるが、 外部周波数制御用可変 M〇 S容量 3 7 についても同様であり、 固定 容量を用いる場合よりも、 外部周波数制御用 M O S抵抗 2 1 による 負荷容量の可変幅を大きくできる。
したがって、 固定容量を用いる場合と同じ負荷容量の可変幅を得 るのであれば、 可変 M〇 S容量を用いる方が半導体集積回路内での 占有面積が小さくて済むから、 第 6 図に示したデジタル温度補償型 水晶発振器は、 水晶振動子 1以外のすべてを半導体集積回路に容易 に内蔵でき、 部品の削減による小型化と低コス 卜化とを達成できる ことが明らかである。
第 6図に示した第 3実施例のデジタル温度補償型水晶発振器の構 成では、 温度補償動作を発振ィ ンバータ 3の出力端子側の温度補償 用 M〇 S抵抗 1 7が行い、 基地局の基準周波数に合わせる動作を発 振イ ンバータ 3の入力端子側の外部周波数制御用 M〇 S抵抗 2 1 が 行っている。
その理由は、 第 1 実施例で述べたと同様に、 可変 M O S容量と可 変 M O S抵抗との直列接続を用いて周波数制御を行う場合、 発振ィ ンバータ 3の出力端子側の方が周波数可変幅が広いから、 広い周波 数可変幅を要求される温度補償動作にそれを用いているのである。
ただし、 発振イ ンバータ 3の入力端子側を温度補償動作に用い、 出力端子側を基地局の基準周波数に合わせる動作に用いることも、 不利ではあるが可能である。
第 6図に示したデジタル温度補償型水晶発振器は、 温度補償用可 変 M〇 S容量 1 5 も外部周波数制御用 M O S抵抗 2 1 も、 ともに n 形多結晶シリコン膜をゲー ト電極と し、 P形拡散領域を対抗電極と する M〇 S容量と し、 そのゲー 卜電極を水晶発振手段 2の出力端子 と入力端子とにそれぞれ接続している。 しかし、 第 7図から明らか なように、 ともに p形多結晶シリ コン膜をゲー ト電極と し、 n形拡 散領域を対抗電極とする M〇 S容量と して、 その対抗電極を水晶発 振手段 2の出力端子と入力端子とにそれぞれ接続してもよい。
その場合は、 p n接合容量という余分な浮遊容量が水晶発振手段 2に接続されるなどのために、 発振起動性の点で多少不利ではある が、 その様な構成も可能である。
ところで、 第 1 実施例でも述べたように、 発振周波数を基地局の 基準周波数に合わせる動作においては、 通常は外部入力電圧に対し て周波数変化が正極性であることという指定があるので、 用いる電 圧制御型の可変抵抗は、 外部入力電圧が上昇するにつれて抵抗値が 増加するものでなければならない。
したがって、 電圧制御型の可変抵抗として M O S抵抗を用いる限 リ、 第 6図に示したように、 発振イ ンバータ 3の入力端子側の外部 周波数制御用 M O S抵抗 2 1 は pチャネル M O S抵抗でなければな らず、 nチャネル M〇 S抵抗であってはならない。 pチャネル M〇 S抵抗であれば、 外部入力電圧の上昇に対し抵抗値は増加し、 実効 的な負荷容量は滅少するから、 発振周波数は上昇するので、 正極性 の動作となる。
一方、 温度補償動作の場合は、 温度補償電圧発生手段 4の出力電 圧の変化に対し、 発振周波数の変化の方向は任意に設定できるので、 発振イ ンバータ 3の出力端子側に接続する可変抵抗は、 nチャネル M O S抵抗であってもよい。
ただしその場合は、 バックゲー ト効果の影響を排除するために、 接続先の電源を低電位側にする方が有利である。
つま り、 温度補償用 M〇 S抵抗 1 7 は、 nチャネル M O S抵抗と して低電位側の電源に接続し、 外部周波数制御用 M 0 S抵抗は、 p チャネル M〇 S抵抗と して高電位側の電源に接続するという構成が 可能である。
そして、 接続先の電源を低電位側にする場合には、 第 7図から明 らかなように、 温度補償用可変 M〇 S容量 3 5は、 n形多結晶シリ コン膜をゲー ト電極と し、 p形拡散領域を対抗電極とする M〇 S容 量と して、 その対抗電極を発振ィ ンバータ 3の出力端子に接続する 力、、 あるいは p形多結晶シリ コン膜をゲー ト電極と し、 n形拡散領 域を対抗電極とする MO S容量として、 そのゲー ト電極を発振イ ン バータ 3の出力端子に接続しなければならない。
どちらの構成でも原理的には実現可能であるが、 温度補償用可変 M〇 S容量 3 5 と、 外部周波数制御用可変 M O S容量 3 7 とを別の 種類の M O S容量にしょうとすると、 どちらかの MO S容量の対抗 電極は半導体基板と同一導電型の拡散領域にならざるを得ず、 この 対抗電極に半導体基板とは異なる電位を与えなければならないこと から、 電気的に分離するために二重拡散構造にしなければならない ので、 製造上不利である。
一方、 温度補償用可変 M〇 S容量 3 5と、 外部周波数制御用可変 Mひ S容量 3 7 とを同一の種類の M〇 S容量にして、 かつ、 温度補 償用可変 MO S容量 3 5の接続先の電源を低電位側とし、 外部周波 数制御用可変 MO S容量 3 7の接続先の電源を高電位側と しょうと すると、 どちらかの M〇 S容量の対抗電極を水晶発振手段 2に接続 しなければならなくなるため、 発振起動性の点で多少不利ではある が、 別の種類の M〇 S容量にするよ りは実用性の面で優れている。 第 6図に示したデジタル温度補償型水晶発振器は、 温度補償用可 変 MO S容量 3 5 と外部周波数制御用可変 M〇 S容量 3 7 とを発振 イ ンバータ 3に接続し、 温度補償用 MO S抵抗 1 7 と外部周波数制 御用 MO S抵抗 2 1 とを高電位側の電源 +Vccに接続している。
しかし、 発振イ ンバータ 3の出力端子に温度補償用 M O S抵抗 1 7の ドレイ ンを接続し、 発振イ ンバータ 3の入力端子に外部周波数 制御用 MO S抵抗 2 1 の ドレイ ンを接続し、 温度補償用 MO S抵抗 1 7のソースに温度補償用可変 MO S容量 3 5を接続し、 外部周波 数制御用 M0 S抵抗 2 1 のソースに外部周波数制御用可変 MO S容 量 3 7 を接続し、 温度補慣用可変 MO S容量 3 5の他方の端子と、 外部周波数制御用可変 M O S容量 3 7の他方の端子とを高電位側の 電源 + V ccに接続することも可能である。
ただし、 温度補償用 M O S抵抗 1 7 および外部周波数制御用 M〇 S抵抗 2 1 のドレインには、 p n接合容量という余分な浮遊容量が 付随している。 そのために、 発振イ ンパータ 3に温度補償用 M O S 抵抗 1 つおよび外部周波数制御用 M O S抵抗 2 1 のそれぞれドレイ ンを接続する場合は、 発振イ ンバータ 3に温度補償用可変 M〇 S容 量 3 5、 および外部周波数制御用可変 M〇 S容量 3 7 を接続する場 合よりも、 発振起動性が悪くなるなどの問題がある。 そのため、 第 6図に示したように、 発振イ ンバータ 3には温度補償用可変 M O S 容量 3 5および外部周波数制御用可変 M〇 S容量 3 7 を接続する方 が有利である。
この第 6図に示したテダジタル温度補償型水晶発振器は、 発振ィ ンバータ 3に接続する容量を、 どちらも n形多結晶シリコン膜をゲ — 卜電極とし、 p形拡散領域を対抗電極とする可変 M〇 S容量と し ているが、 基地局の基準周波数に合わせる動作に必要な周波数の可 変幅はあま り大きくはないので、 発振イ ンバータ 3の入力端子に接 続する外部周波数制御用可変 M O S容量 3 7 は、 高濃度の不純物を 含む 2層の多結晶シリコン膜の外部周波数制御用固定容量に置き換 えても差し支えない。
あるいは、 外部周波数制御用可変 M〇 S容量 3 7 は、 多結晶シリ コン膜, 高融点金属膜, あるいは高融点金属シリサイ ド膜などの任 意の導電体をゲー ト電極とし、 高濃度の拡散領域を対抗電極とする 外部周波数制御用固定 M〇 S容量に置き換えて、 そのゲー ト電極を 発振イ ンバータ 3の入力端子に接続し、 その対抗電極を外部周波数 制御用 M O S抵抗 2 1 を介して高電位側の電源 + V ccに接続しても 差し支えない。
あるいはまた、第 3図に示した C一 V特性から明らかなように、 外部周波数制御用可変 M O S容量 3 7 は、 p形多結晶シリ コン膜を ゲー ト電極とし、 p形拡散領域を対抗電極とする外部周波数制御用 固定 M O S容量に置き換えて、 そのゲ一 卜電極を発振イ ンバータ 3 の入力端子に接続し、 その対抗電極を外部周波数制御用 M O S抵抗 2 1 を介して高電位側の電源に接続しても差し支えない。
[第 4実施例〕
次に、 この発明の第 4実施例を説明する。 第 8図は、 その温度補 償型水晶発振器の構成を示す回路図である。 ただし、 第 8図でも、 発振インバータなどは回路記号を用いて、 また温度情報作成部など はブロック図を用いて、 それぞれ示している。
この第 8図に示す第 4実施例も、 デジタル温度補償型水晶発振器 であり、 水晶振動子 1 と発振イ ンバータ 3 と帰還抵抗 5 とを並列に 接続して水晶発振手段 2 を構成している。
また、 P形多結晶シリ コン膜をゲ一 卜電極とし、 n形拡散領域を 対抗電極とする温度補償用可変 M O S容量 3 5の対抗電極と、 nチ ャネル M O S抵抗の温度補償用 M O S抵抗 1 7の ドレーンとを接続 して、 温度補償制御手段 6 を構成している。
そして、 水晶発振手段 2の一方の端子である発振インバータ 3の 出力端子に、 温度補償用可変 M O S容量 3 5のゲー ト電極を接続し、 温度補償用 M O S抵抗 1 7のソースおよび基板を低電位側の電源一 V ccに接続している。
そして、 温度補償電圧発生手段 4は前述の各実施例と同様に構成 されており、 その出力端子である積分回路 1 1 の出力端子を、 温度 補償用 M O S抵抗 1 7の制御端子であるゲー トに接続している。
また、 水晶発振手段 2の他方の端子である発振イ ンパ一タ 3の入 力端子と低電位側の電源一 V ccとの間に、 高濃度の不純物を含む 2 層の多結晶シリ コン膜の固定容量 2 0 を接続している。
もし、 温度補償用可変 M O S容量 3 5が固定容量であれば、 温度 補償のために必要な容量値は、 第 1 実施例で述べたように、 3 〇〜 5 0 p F程度かそれ以下であるから、 半導体集積回路内での占有面 積はおおむね 2 0 0 m X 3 0 Ο μ πι以下である。
第 7図に示した C一 V特性を参照しながら第 3実施例で説明した のと同様に、 温度補償用 M O S抵抗 1 7による負荷容量の変化の方 向と、 温度補償用可変 M〇 S容量 3 5の容量値の変化の方向とは一 致しているから、 固定容量を用いる場合よ りも温度補償用 M O S抵 抗 1 7 による負荷容量の変化幅を大きくすることができ、 同一の負 荷容量の変化幅ならば固定容量を用いる場合よりも小面積の容量で 済む。
一方、 固定容量 2 0の容量値は、 水晶振動子 1 を製造する際の周 波数調整における負荷容量の設定に依存するが、 おおむね 1 5〜3 0 p F程度である。
したがって、 温度補償用可変 M O S容量 3 5および固定容量 2 0 は、 容易に半導体集積回路に内蔵することができる。
第 8図に示したデジタル温度補僂型水晶発振器は、 温度補償制御 手段 6 を発振イ ンバータ 3の出力端子側に接続しているが、 発振ィ ンバータ 3の入力端子側に接続してもよい。
ただし、 温度補償制御手段 6 を発振イ ンバータ 3の入力端子側に 接続する場合は、 発振イ ンバータ 3の出力端子側に接続する場合に 比較して、 第 2図に示したように、 発振周波数の可変幅が半分程度 になってしまうので、 どちらか一方に接続するのであれば、 第 8図 に示したように、 発振イ ンバータ 3の出力端子側に接続する方が有 利である。
また、 この第 8図に示したデジタル温度補償型水晶発振器は、 温 度補償用可変 M O S容量 3 5 を発振イ ンバータ 3の出力端子に接続 し、 温度補償用 M O S抵抗 1 7 を低電位側の電源に接続しているが、 発振イ ンバータ 3の出力端子に温度補償用 M〇 S抵抗 1 7のドレイ ンを接続し、 温度補償用 M O S抵抗 1 7のソースに温度補償用可変 M O S容量 3 5のゲー ト電極を接続し、 温度補償用可変 M O S容量 3 5の対抗電極を低電位側の電源に接続することも可能である。 ただし、 温度補償用 M〇 S抵抗 1 7のドレインには、 p n接合容 量という余分な浮遊容量が付随しているなどのために、 発振イ ンバ 一タ 3の出力端子に温度補償用 M O S抵抗 1 7の ドレイ ンを接続す る場合は、 発振イ ンバータ 3の出力端子に温度補償用可変 M O S容 量 3 5 を接続する場合よ りも、 発振起動性が悪く なるなどの問題が ある。
そのため、 第 8図に示したように、 発振イ ンバータ 3の出力端子 には、 温度補償用可変 M〇 S容量 3 5 を接続する方が有利である。 また、 温度補償制御手段 6 を発振イ ンバータ 3の入力端子に接続 する場合も、 同様に発振イ ンバータ 3の入力端子には、 温度補償用 可変 M O S容量 3 5のゲー 卜電極を接続する方が有利である。
さらに、 このデジタル温度補償型水晶発振器は、 温度補償制御手 段 6 を発振インバータ 3の出力端子と低電位側の電源との間に接続 しているが、 発振イ ンバ一タ 3の出力端子と高電位側の電源との間 に接続してもよい。 ただしその場合は、 温度補償用 M O S抵抗 1 7 を pチャネル M O S抵抗に変更して、 バックゲー ト効果の影響を排 除した方が有利である。
そして、 Pチャネル M〇 S抵抗を用いて高電位側の電源に接続す る場合は、 n形多結晶シリコン膜をゲー ト電極と し、 p形拡散領域 を対抗電極とする M O S容量を用い、 そのゲー ト電極を発振イ ンバ —タ 3に接続する方が、 p形多結晶シリコン膜をゲー ト電極と し、 n形拡散領域を対抗電極とする M O S容量を用い、 その対抗電極を 発振インパータ 3に接続するよ りも有利である。
なぜならば、 M O S容量の対抗電極側には p n接合容量という余 分な浮遊容量が付随するなどのために、 発振インバータ 3に M〇 S 容量の対抗電極を接続する場合は、 ゲー ト電極を接続する場合よ り も発振起動性を疎外するなどの不利があるからである。
第 8図に示した第 4実施例では、 固定容量 2 0 と して高濃度の不 純物を含む 2層の多結晶シリコン膜の容量を用いているが、 第 2実 施例で述べたように、 固定容量 2 0も加工精度の良い M〇 S容量に することができる。
このような M O S容量のうち、 高攮度拡散領域を対抗電極とする M O S容量については、 その対抗電極の製造工程が温度補償用可変 M〇 S容量 3 5の対抗電極の製造工程とは独立であって互いに影響 しないから、 温度補償用可変 M O S容量 3 5 との組み合わせ方を考 慮しなくてもよく、 発振起動性を疎外しないようにゲー ト電極を発 振イ ンバータ 3に接続するということ以外は、 2層の多結晶シリ コ ン膜の容量と同様な扱いでよい。
しかし、 p形多結晶シリコン膜をゲー ト電極と し、 p形拡散領域 を対抗電極とする M〇 S容量と、 n形多結晶シリコン膜をゲー ト電 極と し、 n形拡散領域を対抗電極とする M〇 S容量については、 実 用上はその対抗電極を温度補償用可変 M O S容量 3 5の対抗電極と 独立には形成できないから、 組み合わせ方に注意を要する。
温度補償用可変 M O S容量 3 5 と固定容量 2 0 との組み合わせの うち、 温度補償用可変 M〇 S容量 3 5 と固定容量 2 0 との対抗電極 を別の導電型の拡散領域にして、 接続先を同一の電源にしたり、 あ るいは温度補償用可変 M〇 S容量 3 5 と固定容量 2 0 との対抗電極 を同じ導電型の拡散領域にして、 それぞれの接続先を別の電源にし たりする場合は、 どちらかの M〇 S容量の対抗電極を発振インバー タ 3に接続することになるから、 前述のように、 通常の半導体基板 を用いて半導体集積回路を形成する場合には、 発振起動性を疎外す るなどの問題がある。
また、 温度補償用可変 M O S容量 3 5 と固定容量 2 0 との対抗電 極を別の導電型の拡散領域にして、 接続先を別の電源にする場合は、 形拡散領域を対抗電極とする M O S容量の対抗電極の接続先を高 電位側の電源と し、 n形拡散領域を対抗電極とする M O S容量の対 抗電極の接続先を低電位側の電源とすれば、 発振起動性の疎外とい う問題は生じない。
しかしながら、 通常の半導体基板を用いて半導体集積回路を形成 する場合、 対抗電極側に任意の電位を与えるためには、 p n接合を 用いて周囲から電気的に分離しなければならないので、 どちらか一 方の M O S容量の対抗電極の周囲は二重拡散構造にせざるを得ず、 製造上不利である。 もう少し詳しく述べれば、 p形半導体基板を用いて半導体集積回 路を形成する場合、 この基板は低電位側の電源に接続するから、 p 形拡散領域を対抗電極とする M O S容量の対抗電極の接続先を、 高 電位側の電源にしょう とすると、 この対抗電極である p形拡散領域 の周囲を n形拡散領域で囲むという二重拡散構造にせざるを得ない, また、 n形半導体基板を用いて半導体集積回路を形成する場合、 この基板は高電位側の電源に接続するから、 n形拡散領域を対抗電 極とする M〇 S容量の対抗電極の接続先を、 低電位側の電源にしょ う とすると、 この対抗電極である n形拡散領域の周囲を、 p形拡散 領域で囲むという二重拡散構造にせざるを得ない。 いずれの場合も, 製造上不利である。
そこで、 通常の半導体基板を用いて半導体集積回路を形成する場 合は、 温度補償用可変 M O S容量 3 5 を n形多結晶シリコン膜をゲ 一卜電極と し、 P形拡散領域を対抗電極とする M O S容量と し、 固 定容量 2 0 を p形多結晶シリコン膜をゲー ト電極と し、 p形拡散領 域を対抗電極とする M O S容量として、 対抗電極を高電位側の電源 とするか、 温度補償用可変 M O S容量 3 5 を p形多結晶シリコン膜 をゲー ト電極と し、 n形拡散領域を対抗電極とする M〇 S容量と し、 固定容量 2 0 を n形多結晶シリ コン膜をゲー ト電極と し、 n形拡散 領域を対抗電極とする M O S容量と して、 対抗電極を低電位側の電 源とする力、、 この 2通り しかない。
固定容量 2 0 と して高濃度の不純物を含む 2層の多結晶シリ コン 膜の容量を用いる場合や、 高濃度拡散領域を対抗電極とする M O S 容量を用いる場合は、 その接続先の電源は任意でかまわないから、 温度補償用可変 M〇 S容量 3 5の種類と接続方法だけに注意を払え ば良い。
以上述べた第 3実施例と第 4の実施例とは、 いずれも可変容量と 可変抵抗との直列接続を用い、 この可変抵抗の抵抗値を可変する際 に、 容量値そのものも同時に変化させ、 負荷容量の可変幅を大きく するものである。 。 [第 5実施例〕
次に、 この発明の第 5実施例を説明する。 第 9 図は、 この第 5実 施例の温度補償型水晶発振器の構成を示す回路図である。 ただし第 9図では、 発振イ ンバータなどは回路記号を用いて、 また温度情報 作成部などはブロック図を用いて、 それぞれ示している。
この第 9 図に示す実施例もデジタル温度補償型水晶発振器であり , 前述の各実施例と同様に、 水晶振動子 1 と発振イ ンバータ 3 と帰還 抵抗 5 とを並列に接続して水晶発振手段 2 を構成ている。
また、 高濃度の不純物を含む 2層の多結晶シリ コン膜の温度補償 用直流阻止容量 2 3 と、 n形多結晶シリコン膜をゲー ト電極と し、 P形拡散領域を対抗電極とする温度補償用可変 M O S容量 3 5 とを 直列に接続して、 温度補償制御手段 6 を構成している。
そして、 この温度補償制御手段 6 を、 水晶発振手段 2の一方の端 子である発振イ ンバータ 3の入力端子と高電位側の電源 + V との 間に、 温度補償用可変 M O S容量 3 5が電源側となるように接続し ている。
また、 高濃度の不純物を含む 2層の多結晶シリコン膜の外部周波 数制御用直流阻止容量 2 7 と、 n形多結晶シリコン膜をゲー ト電極 と し、 P形拡散領域を対抗電極とする外部周波数制御用可変 M〇 S 容量 3 7 とを直列に接続して、 外部周波数制御手段 8 を構成してい る。 そして、 この外部周波数制御手段 8 を、 水晶発振手段 2の他方 の端子である発振インバータ 3の出力端子と高電位側の電源 + V cc との間に、 外部周波数制御用可変 M O S容量 3 7 が電源側となるよ う接続している。
そして、 温度補償電圧発生手段 4は前述の各実施例と同様に構成 されており、 その出力端子を多結晶シリコン膜からなる温度補償用 固定抵抗 3 1 を介して温度補償用可変 M O S容量 3 5のゲー ト電極 と、 温度補償用直流阻止容量 2 3の一方の端子との接続点に接続し ている。
また、 外部周波数制御用可変 M〇 S容量 3 7のゲー ト電極は、 多 結晶シリ コン膜からなる外部周波数制御用固定抵抗 3 3 を介して、 基地局の基準周波数に合わせるための外部電圧入力端子 1 3に接続 している。
温度補償用可変 M〇 S容量 3 5および外部周波数制御用可変 M〇 S容量 3 7の対抗電極は、 それぞれ高電位側の電源 + V ccに接続し ており、 また温度補償電圧発生手段 4が出力する温度補償電圧およ び外部電圧入力端子 1 3から印加される外部入力電圧は、 通常は高 電位側の電源電圧を上限とし、 低電位側の電源電圧を下限としてい るから、 温度補償用可変 M〇 S容量 3 5および外部周波数制御用可 変^1〇 3容量 3 7 は、 それぞれゲー ト電極の電位が対抗電極の電位 以下である。
このような電位関係のもとで有効に負荷容量を可変するために、 温度補償用可変 M O S容量 3 5および外部周波数制御用可変 M〇 S 容量 3 7 は、 どちらも n形多結晶シリコン膜をゲー ト電極とし、 p 形拡散領域を対抗電極と している。 これは以下のような理由による。
すなわち、 第 7 図に示したように、 n形多結晶シリコン膜をゲ一 卜電極と し、 P形拡散領域を対抗電極とする M O S容量の容量値は、 対抗電極に対するゲー 卜電極の電圧がマイナス 0 . 5〜 2 V付近で 大きく変化する。
したがって、 温度補償用固定抵抗 3 1 を介して温度補償用可変 M 0 S容量 3 5のゲー ト電極にこのような電圧を印加することによ リ、 水晶発振手段 2の負荷容量を可変することができ、 温度補償が可能 となる。
また、 外部周波数制御用固定抵抗 3 3 を介して外部周波数制御用 可変 M〇 S容量 3 7のゲー 卜電極にこのような電圧を印加すること により、 水晶発振手段 2の負荷容量を可変することができ、 外部か らの周波数制御が可能となる。
しかも、 外部周波数制御用可変 M O S容量 3 7 は対抗電極を高電 位側の電源 + V ccに接続し、 ゲー 卜電極を外部周波数制御用固定抵 抗 3 3 を介して外部電圧入力端子 1 3に接続しているから、 外部入 力電圧の増加に対して容量値は減少し、 周波数は上昇するので正極 性の変化となり、 一般的な仕様を満足している。
これが、 対抗電極を高電位側の電源 + Vccに接続する温度補償用 可変 M O S容量 3 5 と外部周波数制御用可変 MO S容量 3 7 とを、 どちらも n形多結晶シリ コン膜をゲー ト電極とし p形拡散領域を対 抗電極と している理由である。
第 7図に示したように、 このような MO S容量の容量値の変化は, 最小値が最大値の 2 0 %程度である。
したがって、 たとえば最大値が 5 0 p Fの MO S容量であれば、 最小値は 1 0 p F程度であリ、 その差は 4 0 p F程度になる。
温度補償用直流阻止容量 2 3の容量値が十分な大きさであって、 温度補償用可変 MO S容量 3 5に 4 0 p F程度の容量値の変化があ れば、 発振周波数は 3 0〜4 O p p m程度可変することができるか ら、 水晶振動子 1 として通常の A Tカツ 卜水晶振動子を用いる限り、 温度補償用可変 MO S容量 3 5は最大値を 5 0 p F程度かそれ以下 に設定してよい。
この程度の大きさの MO S容量は、 半導体集積回路内での占有面 積が 2 0 0 μ πι Χ 3 0 0 μ πι以下であり、 容易に半導体集積回路に 内蔵することができる。
また、 外部電圧入力端子 1 3による発振周波数の可変幅は 1 O p p m以内であるから、 発振イ ンバータ 3の出力端子側に設けている ことを考慮したと しても、 外部周波数制御用可変 M〇 S容量 3 7は 最大値を 3 O p F程度に設定してよい。
したがって、 外部周波数制御用可変 MO S容量 3 7も容易に半導 体集積回路に内蔵することができる。
また、 温度補償用直流阻止容量 2 3および外部周波数制御用直流 阻止容量 2 7の容量値は、 どちらも 5 0 p F程度あれば十分である から、 2層の多結晶シリ コン膜の容量なら半導体集積回路内での占 有面積が 2 0 0 /χ πιΧ 3 0 0 μ πι以下であり、 容易に半導体集積回 路に内蔵することができる。 また、 温度補償用固定抵抗 3 1 および外部周波数制御用固定抵抗 3 3の抵抗値は、 どちらも 1 0 0 k Ω程度以上であれば十分であり , 多結晶シリ コン膜でこのような抵抗を形成することは容易である。 温度補償用固定抵抗 3 1 および外部周波数制御用固定抵抗 3 3は 拡散抵抗でも形成可能であるが、 拡散抵抗は素子分離を p n接合で 行っているから、 高温ではリーク電流が多くなリ、 温度補償用可変 〇 3容量 3 5のゲー 卜電極あるいは外部周波数制御用可変 M〇 S 容量 3 7のゲー 卜電極の電位を微妙に狂わせてしまうという問題が あるので、 第 9図に示した第 5実施例では多結晶シリコン膜の抵抗 を用いている。
この第 9図に示すデジタル温度補償型水晶発振器は、 発振イ ンバ —タ 3の入力端子側を温度捕償動作に用い、 発振イ ンバータ 3の出 力端子側を基地局の基準周波数に合わせる動作に用いている。
それは、 この第 5実施例のデジタ 温度補償型水晶発振器が、 水 晶発振手段 2に接続する容量の容量値を直接可変して負荷容量を可 変する方法を用いているため、 発振イ ンバータ 3の入力端子側の方 が出力端子側よ りも発振周波数の変化が大きいからであるが、 逆に することも可能である。
ただし、 逆にする場合は 3 0〜4 O p p m程度の発振周波数の可 変幅を確保するために、 温度補償用可変 M O S容量 3 5の最大値と 温度補償用直流阻止容量 2 3の容量値とを 1 O O p F程度に設定せ ざるを得なくなることが多く、 半導体集積回路内での占有面積が大 きくなるので不利である。
ところで、 M〇 S容量のゲー ト電極および対抗電極の導電型はそ れぞれ P形および n形の 2種類があり、 したがってゲー ト電極の導 電型と対抗電極の導電型との組み合わせによ り 4種類の M O S容量 が存在するが、 外部電圧入力端子 1 3に印加される外部入力電圧の 変化に対し、 周波数の変化は正極性でなければならないから、 外部 周波数制御用可変 M O S容量 3 7の接続先の電源およびどちらの電 極をその電源に接続するかは、 4種類の M O S容量それぞれに対し て 1 通り しかない。
すなわち、 第 3図と第 4図および第 7図に示した C一 V特性から 明らかなように、 n形多結晶シリコン膜をゲ一 卜電極と し、 p形拡 散領域を対抗電極とする M〇 S容量ならば、 対抗電極を高電位側の 電源に接続し、 P形多結晶シリ コン膜をゲー ト電極とし、 P形拡散 領域を対抗電極とする M O S容量ならば、 対抗電極を低電位側の電 源に接続しなければならない。 また、 P形多結晶シリ コン膜をゲ一 卜電極と し、 n形拡散領域を対抗電極とする M O S容量ならば、 ゲ 一ト電極を高電位側の電源に接続し、 n形多結晶シリコン膜をゲー 卜電極と し、 n形拡散領域を対抗電極とする M O S容量ならば、 ゲ 一卜電極を低電位側の電源に接続しなければならない。
これに対して、 温度補償電圧発生手段 4の出力電圧の変化に対す る周波数の変化は、 正極性でも負極性でもかまわないから、 1 種類 の M O S容量に対し 2通りの接続の仕方がある。
たとえば、 n形多結晶シリ コン膜をゲー ト電極と し、 p形拡散領 域を対抗電極とする M O S容量、 あるいは ]!形多結晶シリコン膜を ゲ一 卜電極とし、 n形拡散領域を対抗電極とする M O S容量ならば、 ゲー 卜電極を温度補償用固定抵抗 2 3 を介して温度補償電圧発生手 段 4 に接続し、 対抗電極を高電位側の電源に接続してもよいし、 対 抗電極を温度補償用固定抵抗 2 3 を介して温度補償電圧発生手段 4 に接続し、 ゲー ト電極を低電位側の電源に接続してもよい。
また、 P形多結晶シリ コン膜をゲー ト電極とし、 P形拡散領域を 対抗電極とする M O S容量、 あるいは p形多結晶シリコン膜をゲー 卜電極とし、 n形拡散領域を対抗電極とする M O S容量ならば、 対 抗電極を温度補償用固定抵抗 2 3 を介して温度補償電圧発生手段 4 に接続し、 ゲー ト電極を高電位側の電源に接続してもよいし、 ゲー 卜電極を温度補償用固定抵抗 2 3 を介して温度補償電圧発生手段 4 に接続し、 対抗電極を低電位側の電源に接続してもよい。
したがって、 温度補償用可変 M〇 S容量 3 5は種類と接続の仕方 によって 8通り選択することができ、 外部周波数制御用可変 M O S 容量 3 7 は 4通り選択することができるから、 原理的には合計 3 2 通りの組み合わせを選択することができる。
しかしながら、 この 3 2通りの組み合わせのうち、 温度補償用可 変 M〇 S容量 3 5の対抗電極の導電型と、 外部周波数制御用可変 M 〇 S容量 3 7の対抗電極の導電型とが異なる 1 6通りについては、 どちらかの対抗電極の周囲を異なる導電型の拡散領域で囲むという 二重拡散構造にしなければならなくなる組み合わせがあるので、 製 造コス トの面から 1 6通りすべてが実用的というわけではない。 対抗電極の導電型が異なっていても二重拡散構造にしなくて済む 組み合わせとは、 対抗電極が n形拡散領域である M O S容量の対抗 電極を高電位側の電源に接続する場合か、 あるいは対抗電極が p形 拡散領域である M〇 S容量の対抗電極を低電位側の電源に接続する 場合に限られる。
その理由は、 対抗電極が n形拡散領域である M O S容量の対抗電 極を高電位側の電源に接続する場合は、 n形半導体基板に半導体集 積回路を形成し、 この n形半導体基板をこの M O S容量の対抗電極 と して利用すれば、 あえて n形拡散領域を形成する必要がないため、 もう一方の M O S容量の対抗電極である p形拡散領域だけを形成す ればよいからである。
また、 対抗電極が P形拡散領域である M O S容量の対抗電極を低 電位側の電源に接続する場合は、 p形半導体基板に半導体集積回路 を形成し、 この p形半導体基板をこの M O S容量の対抗電極と して 利用すれば、 あえて P形拡散領域を形成する必要がないため、 もう 一方の M O S容量の対抗電極である n形拡散領域だけを形成すれば よいからである。
このような条件をあてはめると、 温度補償用可変 M O S容量 3 5 の対抗電極の導電型と外部周波数制御用可変 M O S容量 3 7の対抗 電極の導電型とが異なる 1 6通りの組み合わせのうち、 二重拡散構 造にしなくて済むという実用的な組み合わせは 7通りになる。
つま り、 外部周波数制御用可変 M O S容量 3 7が p形多結晶シリ コン膜をゲー ト電極と し P形拡散領域を対抗電極とする M O S容量 の場合は、 対抗電極を低電位側の電源に接続するから、 外部周波数 制御用可変 M〇 S容量 3 7の方が二重拡散構造にしなくて済む条件 を満たしており、 温度補償用可変 M〇 S容量 3 5には制約がないの で 4通り選ぶことができる。 しかし、 外部周波数制御用可変 M〇 S 容量 3 7がその他の 3種類の M O S容量の場合は、 温度補償用可変 M〇 S容量 3 5の方が二重拡散構造にしなくて済む条件を満たさな ければならないので、 それぞれ 1通り しか選ぶことができない。
したがって、 温度補償用可変 M〇 S容量 3 5の対抗電極の導電型 と外部周波数制御用可変 M O S容量 3 7の対抗電極の導電型とが等 しい 1 6通りの組み合わせと合わせて、 合計 2 3通りの組み合わせ が実用上可能である。
ところで、 温度補償用直流阻止容量 2 3および外部周波数制御用 直流阻止容量 2 7は、 共に高濃度の不純物を含む 2層の多結晶シリ コン膜の容量と しているが、 これらの容量は使用する電圧範囲で容 量値に電圧依存性がないものであって、 しかも半導体集積回路に容 易に搭載可能であれば、 どのような種類の容量でもよいことは言う までもない。
このような条件を満たす容量としては、 多結晶シリコン膜, 高融 点金属膜, あるいは高融点金属シリサイ ド膜などの任意の導電体を ゲー ト電極とし、 高濃度の拡散領域を対抗電極とする M O S容量が ある。
対抗電極が高濃度の拡散領域であれば、 通常使用する電源電圧範 囲内ではゲー ト電極からの電界による空乏層の形成がほとんどない ので、 容量値は電圧に依存しない。
したがって、 このような M〇 S容量を第 9図に示した温度補償用 直流阻止容量 2 3、 あるいは外部周波数制御用直流阻止容量 2 7 と して使用することができる。
ただし、 直流阻止容量として用いる M O S容量の対抗電極は p n 接合を用いて周囲から電気的に分離しなければならないので、 この 対抗電極を発振イ ンバータ 3に接続すると、 発振起動性を疎外する という不利があるから、 発振ィ ンバータに接続する電極はゲー 卜電 極の方が有利である。
なお、 ゲー ト絶縁膜の下に高濃度の不純物を導入し、 高濃度拡散 領域の対抗電極を形成することは容易である。
たとえば、 高濃度の不純物と してボロンを導入する場合は、 ゲ一 ト絶縁膜を形成後にイオン注入を行えばよく、 高濃度の不純物と し てリ ンやひ素などを導入する場合は、 ゲー 卜絶縁膜を形成する前に イオン注入を行えばよい。
このような高濃度拡散領域の対抗電極の製造工程は、 温度補償用 可変 M O S容量 3 5および外部周波数制御用可変 M〇 S容量 3 7の 対抗電極の製造工程とは独立であり、 互に影響を与えない。 そのた め、 直流阻止容量と して高濃度の拡散領域を対抗電極とする M〇 S 容量を用いる場合も、 2層の多結晶シリコン膜の容量を用いる場合 とまったく同じ温度補償用可変 M O S容量 3 5および外部周波数制 御用可変 M〇 S容量 3 7 を形成することができる。
したがって、 温度補償用直流阻止容量 2 3および外部周波数制御 用直流阻止容量 2 7 と して、 高濃度の拡散領域を対抗電極とする M 〇 S容量を用いる場合も、 温度補償用可変 M O S容量 3 5 と外部周 波数制御用可変 M〇 S容量 3 7 との組み合わせは、 前述の 2 3通り の組み合わせが実用上可能である。
[第 6実施例〕
次に、 この発明の第 6実施例を説明する。 第 1 0図は、 この発明 の第 6の実施例の温度補償型水晶発振器の構成を示す回路図である。 ただし第 1 0図においても、 発振イ ンバータなどは回路記号を用い て、 また温度情報作成部などはブロック図を用いて、 それぞれ示し ている。
この第 1 0図に示す第 6実施例もデジタル温度補償型水晶発振器 であり、 前述の各実施例と同様に水晶振動子 1 と発振イ ンバータ 3 と帰還抵抗 5 とを並列に接続して水晶発振手段 2 を構成している。 また、 高濃度の不純物を含む 2層の多結晶シリ コン膜の温度補償 用直流阻止容量 2 3 と p形多結晶シリ コン膜をゲー ト電極と し、 n 形拡散領域を対抗電極とする温度補償用可変 M O S容量 3 5 とを直 列に接続して温度補償制御手段 6 を構成している。 そして、 この温 度補償制御手段 6 を、 水晶発振手段 2の一方の端子である発振イ ン バータ 3の入力端子と低電位側の電源— V ccとの間に、 温度補償用 可変 M O S容量 3 5が電源側となるよう接続している。
また、 水晶発振手段 2の他方の端子である発振イ ンバータ 3の出 力端子と低電位側の電源一 V ccとの間に、 高濃度の不純物を含む 2 層の多結晶シリ コン膜の固定容量 2 0 を接続している。
そして、 温度補償電圧発生手段 4は、デジタル温度補償情報を作 成する温度情報作成部 7 と、 このデジタル温度補償情報をアナログ 電圧に変換する電圧出力型の D / A変換回路 9 とで構成されている。
この温度補償電圧発生手段 4は、 電圧出力型の D Z A変換回路 9 の出力電圧を温度補償動作のための電圧と して出力し、 その出力端 子を多結晶シリコン膜からなる温度補償用固定抵抗 3 1 を介して温 度補償用可変 M O S容量 3 5のゲー ト電極に接続している。
このデジタル温度補償型水晶発振器は、 A変換回路 9 と温度 補償用固定抵抗 3 1 との間に積分回路が存在しないが、 この例では D Z A変換回路 9 自身の動作が遅く、 その出力の急激な変化がない ために、 積分回路を必要と しないことを示している。
温度補償用可変 M O S容量 3 5の対抗電極は、 低電位側の電源- V ccに接続しており、 また温度補償電圧発生手段 4が出力する温度 補償電圧は、 通常は高電位側の電源電圧を上限とし低電位側の電源 電圧を下限と しているから、 温度補償用可変 M〇 S容量 3 5はゲ一 卜電極の電位が対抗電極の電位以上である。
このような電位関係のもとで有効に負荷容量を可変するために、 温度補償用可変 M〇 S容量 3 5は n形多結晶シリコン膜をゲー 卜電 極とし、 p形拡散領域を対抗電極と している。 この理由は第 5実施 例で述べた通りである。 同じく第 5実施例で述べたように、 温度補償用直流阻止容量 2 3 および温度補償用可変 M 0 S容量 3 5の容量値は、 どちらも 5 O p F程度あれば充分であるから、 容易に半導体集積回路に内蔵するこ とができる。
一方、 固定容量 2 0の容量値は、 水晶振動子 1 を製造する際の周 波数調整における負荷容量の設定に依存するが、 おおむね 1 5〜 3 0 p F程度である。
したがって、 固定容量 2 0も容易に半導体集積回路に内蔵するこ とができる。
また、 温度補償用固定抵抗 3 1 は 1 0 0 k Ω程度以上であれば充 分であり、 多結晶シリ コン膜でこのような抵抗を形成することは容 易である。
温度補償用固定抵抗 3 1 は拡散抵抗でも形成可能であるが、 拡散 抵抗は素子分離を p n接合で行っているから、 高温ではリーク電流 が多くなり、 温度補償用可変 M O S容量 3 5のゲー ト電極の電位を 微妙に狂わせてしまうという問題があるので、 第 1 0図に示した第 6実施例では多結晶シリコン膜の抵抗を用いている。
この第 6実施例では、 発振イ ンバータ 3の入力端子側を温度補償 動作に用いている。 それは、 この第 1 0図に示した第 6実施例のデ ジタル温度補償型水晶発振器が、 水晶発振手段 2に接続する容量の 容量値を直接可変して負荷容量を可変する方法を用いているため、 発振インバータ 3の入力端子側の方が出力端子側よりも発振周波数 の変化が大きいからであるが、 逆にすることも可能である。
ただし、 逆にする場合は、 3 0〜4 0 p p m程度の発振周波数の 可変幅を確保するために、 温度補償用可変 M〇 S容量 3 5の最大値 と温度補償用直流阻止容量 2 3の容量値とを、 1 0 0 p F程度に設 定せざるを得なくなることが多く、 半導体集積回路内での占有面積 が大きくなるので不利である。
ところで、 M O S容量のゲー 卜電極および対抗電極の導電型はそ れぞれ P形および n形の 2種類があり、 したがってゲー ト電極の導 電型と対抗電極の導電型との組み合わせによ り 4種類の M O S容量 が存在する。
そして、 温度補償電圧発生手段 4の出力電圧の変化に対する周波 数の変化は正極性でも負極性でもかまわないから、 1 種類の M〇 S 容量に対し 2通りの接続の仕方がある。
たとえば、 n形多結晶シリ コン膜をゲー 卜電極と し、 p形拡散領 域を対抗電極とする M O S容量、 あるいは n形多結晶シリコン膜を ゲー ト電極とし、 n形拡散領域を対抗電極とする M O S容量ならば、 ゲー 卜電極を温度補償用固定抵抗 3 1 を介して温度補償電圧発生手 段 4 に接続し、 対抗電極を高電位側の電源に接続してもよいし、 対 抗電極を温度補償用固定抵抗 3 1 を介して温度補償電圧発生手段 4 に接続し、 ゲー 卜電極を低電位側の電源に接続してもよい。
また、 P形多結晶シリ コン膜をゲー ト電極と し、 P形拡散領域を 対抗電極とする M O S容量、 あるいは p形多結晶シリコン膜をゲー 卜電極と し、 n形拡散領域を対抗電極とする M〇 S容量ならば、 対 抗電極を温度補償用固定抵抗 3 1 を介して温度補償電圧発生手段 4 に接続し、 ゲー ト電極を高電位側の電源に接続してもよいし、 ゲー 卜電極を温度補償用固定抵抗 3 1 を介して温度補償電圧発生手段 4 に接続し、 対抗電極を低電位側の電源に接続してもよい。
したがって、 温度補償用可変 M〇 S容量 3 5は種類と接続の仕方 によって 8通り選択することができる。
ところで、 温度補償用直流阻止容量 2 3および固定容量 2 0は、 共に高濃度の不純物を含む 2層の多結晶シリ コン膜の容量としてい るが、 これらの容量は使用する電圧範囲で容量値に電圧依存性がな いものであって、 しかも半導体集積回路に容易に搭載可能であれば、 どのような種類の容量でもよいことは言うまでもない。
このような条件を満たす容量としては、 多結晶シリコン膜あるい は高融点金属膜あるいは高融点金属シリサイ ド膜などの任意の導電 体をゲー ト電極と し、 高濃度の拡散領域を対抗電極とする M〇 S容 量がある。 対抗電極が高濃度の拡散領域であれば、 通常使用する電源電圧範 囲内ではゲー ト電極からの電界による空乏層の形成がほとんどない ので、 容量値は電圧に依存しない。
したがって、 このような M O S容量を、 第 1 0図に示した温度補 償用直流阻止容量 2 3あるいは固定容量 2 0 として使用することが できる。 ただし、 直流阻止容量と して用いる M〇 S容量の対抗電極 は、 P n接合を用いて周囲から電気的に分離しなければならないの で、 この対抗電極を発振インバータ 3に接続すると、 発振起動性を 疎外するという不利があるから、 発振イ ンバータ 3に接続する電極 はゲー ト電極の方が有利である。
また、 固定容量 2 0 と して用いる M〇 S容量の場合は、 必ずしも 対抗電極を周囲から分離する必要はないが、 そのような M〇 S容量 は対抗電極を電源に接続しなければならないから、 発振イ ンバータ 3に接続する電極はゲ一 ト電極でなければならない。
もちろん、 p n接合を用いて対抗電極を周囲から電気的に分離し ている M〇 S容量を固定容量 2 0 と して用いる場合は、 発振起動性 を疎外しないように、 発振イ ンパータ 3に接続する電極はゲー ト電 極の方が有利である。
なお、 ゲー ト絶縁膜の下に高濃度の不純物を導入し、 高濃度拡散 領域の対抗電極を形成することは容易である。
たとえば、 高濃度の不純物と してボロンを導入する場合は、 ゲー ト絶縁膜を形成後にィオン注入を行えばよく、 高濃度の不純物と し てリ ンやひ素などを導入する場合は、 ゲー ト絶縁膜を形成する前に ィオン注入を行えばよい。
このような高濃度拡散領域の対抗電極の製造工程は、 温度補償用 可変 M〇 S容量 3 5の対抗電極の製造工程とは独立であり、 互に影 響を与えない。 そのため、 温度補償用直流阻止容量 2 3あるいは固 定容量 2 0 と して、 高濃度の拡散領域を対抗電極とする M O S容量 を用いる場合も、 2層の多結晶シリコン膜の容量を用いる場合とま つたく同じ温度補償用可変 M O S容量 3 5 を形成することができる。 したがって、 温度補償用直流阻止容量 2 3および固定容量 2 0 と して、 高濃度の拡散領域を対抗電極とする M O S容量を用いる場合 も、 温度補償用可変 M O S容量 3 5は種類と接続の仕方によって 8 通り選択することができる。
ところで、 第 2実施例で説明したように、 固定容量 2 0 として容 量値に電圧依存性のある容量を用いたとしても、 使用する電圧の範 囲内において容量値が電圧に依存しなければ固定容量とみなすこと ができるから、 たとえ電圧依存性のある M O S容量であっても、 ゲ 一ト電極とその対抗電極である基板との仕事関数の選択およびその 接続の仕方によ り、 第 1 0図における固定容量 2 0 として使用する ことが可能である。
第 4図に示したように、 n形多結晶シリ コン膜をゲー ト電極と し、 n形拡散領域を対抗電極とする M O S容量は、 ゲー 卜電極が対抗電 極よ りも高電位である限り容量値の電圧依存性はほとんどなく、 そ のような電位関係で使用する限りはほぼ固定容量とみなすことがで きる。
そして、 第 1 0図に示したデジタル温度補償型水晶発振器の構成 は、 固定容量 2 0に対し発振イ ンバータ 3の出力端子は常に高電位 であるから、 固定容量 2 0を、 n形多結晶シリコン膜をゲ一 卜電極 と し、 n形拡散領域を対抗電極とする固定 M O S容量に置き換え、 そのゲー ト電極を発振イ ンバータ 3の出力端子に接続するならば、 電圧依存性のある M〇 S容量を固定容量と して用いることが可能で ある。
あるいはまた、 第 3図から明らかなように、 固定容量 2 0を p形 多結晶シリ コン膜をゲー ト電極とし、 P形拡散領域を対抗電極とす る固定 M〇 S容量に置き換え、 その対抗ゲー ト電極を発振イ ンバー タ 3の出力端子に接続し、 その対抗電極を高電位側の電源に接続す るならば、 電圧依存性のある M〇 S容量を固定容量と して用いるこ とが可能である。
ただし、 これら 2種類の電圧依存性のある M O S容量を固定容量 と して用いる場合は、 第 5実施例で述べたように、 その対抗電極の 導電型と温度補償用可変 M〇 S容量 3 5の対抗電極の導電型とが異 なる 4通りの組み合わせのうち、 二重拡散構造にしなくて済む組み 合わせでなければ実用的ではないから、 それぞれ 1 通り しか選択で きない。
したがって、 これら 2種類の電圧依存性のある M O S容量の対抗 電極の導電型と、 温度補償用可変 M〇 S容量 3 5の対抗電極の導電 型とが等しいそれぞれ 4通りの組み合わせと合わせて、 選択できる 組み合わせはそれぞれ 5通りである。
具体的に述べれば、 固定容量 2 0 と して n形多結晶シリ コン膜を ゲー ト電極とし、 n形拡散領域を対抗電極とする M O S容量を用い, その対抗電極を低電位側の電源に接続する場合、 温度補償用可変 M 〇 S容量 3 5は n形拡散領域を対抗電極とする 4通りの組み合わせ と、 p形多結晶シリコン膜をゲー ト電極と し、 P形半導体基板を対 抗電極と してその対抗電極を低電位側の電源に接続する組み合わせ との、 合計 5通り を選択することができる。
また、 固定容量 2 0 と して p形多結晶シリ コン膜をゲー ト電極と し、 P形拡散領域を対抗電極とする M〇 S容量を用い、 その対抗電 極を高電位側の電源に接続する場合、 温度補償用可変 M O S容量 3 5は p形拡散領域を対抗電極とする 4通りの組み合わせと、 n形多 結晶シリ コン膜をゲー ト電極とし、 n形半導体基板を対抗電極と し てその対抗電極を高電位側の電源に接続する組み合わせとの、 合計 5通りを選択することができる。
以上説明した第 5実施例と第 6実施例とは、 いずれも固定の直流 阻止容量と可変容量との直列接続を用い、 この可変容量の容量値を 可変することによって負荷容量を可変するものである。
〔その他の変更例〕
以上のように実施例に基づいてこの発明を具体的に説明したが、 この発明は上記の実施例に限定されるものではなく、 その要旨を逸 脱しない範囲で種々の変更が可能であることはいうまでもない。 例えば、 第 1 図, 第 5図, 第 6図, あるいは第 8図に示したよう に、 M O S抵抗はゲー ト を抵抗調整端子と して使用することが一般 的であるが、 ゲー ト電圧を一定と し、 基板電位を変化させることに よるバックゲー ト効果を利用して抵抗値を変化させてもよい。
また、 例えば第 1 図, 第 5図, 第 6 図, あるいは第 8図に示した ように、 電圧制御型の可変抵抗と して M O S抵抗を用いている力 接合型電界効果 トランジスタやバイポーラ トランジスタ と抵抗との 組み合わせを用いてもよい。
さらに、 上述の各実施例では、 M〇 S抵抗や M〇 S容量の接続先 を高電位側の電源あるいは低電位側の電源と しているが、 一般にデ ジタル温度補償型水晶発振器は定電圧発生手段を備え、 その固定出 力を電源と しているから、 M O S抵抗や M O S容量を定電圧発生手 段が出力する固定電位に接続してもよい。
また、 上述の各実施例では、 水晶発振手段は水晶振動子と発振ィ ンバ一タ と帰還抵抗とで構成しているが、 発振イ ンバータの代わり にバイポーラ トランジスタを用いてもよいし、 またそのバイポーラ トランジスタを 卜一テムポール型に複数個用いてもよい。 産業上の利用性
このように、 この発明による温度補償型水晶発振器は、 水晶振動 子以外のすべてを半導体集積回路に容易に内蔵でき、 部品の削滅に よるデジタル温度補償型水晶発振器の小型化と低コス 卜化とを達成 することが可能になる。
さらに、 温度補償用および外部周波数制御用の可変抵抗として、 それぞれ単体の M O S抵抗を使用し、 その各ドレーンを容量に接続 する構成にすれば、 温度補償制御手段も外部周波数制御手段も直流 的な電流の経路が存在しないので、 それぞれの制御手段での消费電 流を増加させることなしに発振周波数の制御が可能になる。
また、 電圧出力型の D Z A変換回路の出力電圧で温度補償用 M O S抵抗のゲー ト を駆動するようにすれば、 D / A変換回路の出力と 電源との間に直流的な電流の経路が存在しないので、 その点からも 余分な消费電流を増加させることなしに、 発振周波数の制御が可能 になる。
したがって、 この発明は水晶発振器を内蔵する各種電子機器に適 用して極めて有効であり、 特に小型化の要求が厳しい携帯電話機搭 載用のデジタル温度補償型水晶発振器に適用すれば、 その効果は絶 大である。

Claims

請 求 の 範 囲
1 . 水晶発振手段と、 その水晶発振手段の一方の端子と電源との間 に接続した温度補償制御手段と、 前記水晶発振手段の他方の端子と 電源との間に接続した外部周波数制御手段と、 前記温度補償制御手 段の制御端子に接続した温度補償電圧発生手段と、 前記外部周波数 制御手段の制御端子に接続した外部電圧入力端子とを有することを 特徴とする温度補償型水晶発振器。
2 . 請求の範囲 1 の温度補償型水晶発振器において、
前記温度補償制御手段が、 前記水晶発振手段の一方の端子と電源 との間に温度補償用固定容量と電圧制御型の温度補償用可変抵抗と を直列に接続して構成したものであリ、
前記外部周波数制御手段が、 前記水晶発振手段の他方の端子と電 源との間に外部周波数制御用固定容量と電圧制御型の外部周波数制 御用可変抵抗とを直列に接続して構成したものであり、
前記温度補償電圧発生手段が、 電圧出力型の D Z A変換回路の出 力電圧を温度補償電圧と して発生し、 その温度補償電圧を前記温度 補償用可変抵抗の制御端子に印加する手段であり、
前記外部電圧入力端子から入力する電圧を前記外部周波数制御用 可変抵抗の制御端子に印加するようにしたことを特徴とする温度補 償型水晶発振器。
3 . 請求の範囲 2の温度補償型水晶発振器において、
前記温度補償制御手段を構成する前記温度補償用固定容量が、 2 層の多結晶シリ コン膜の温度補償用固定容量であり、
前記温度補償制御手段を構成する前記温度補償用可変抵抗が、 温 度補償用可変 M〇 S抵抗であり、
前記外部周波数制御手段を構成する前記外部周波数制御用固定容 量が、 2層の多結晶シリ コン膜の外部周波数制御用固定容量であり、 前記外部周波数制御手段を構成する前記外部周波数制御用可変抵 杭が、 外部周波数制御用可変 M〇 S抵抗であり、
前記温度補償電圧発生手段が発生する温度補償電圧を前記温度補 償用可変 M〇 S抵抗の制御端子に印加し、
前記外部電圧入力端子から入力する電圧を前記外部周波数制御用 可変 M〇 S抵抗の制御端子に印加するようにしたことを特徴とする 温度補償型水晶発振器。
4 . 請求の範囲 2の温度補償型水晶発振器において、
前記温度補償制御手段を構成する前記温度補償用固定容量が、 高 濃度拡散領域を対抗電極とする温度補償用固定 M O S容量であり、 前記温度補償制御手段を構成する前記温度補償用可変抵抗が、 温 度補償用可変 M〇 S抵抗であり、
前記外部周波数制御手段を構成する前記外部周波数制御用固定容 量が、 高濃度拡散領域を対抗電極とする外部周波数制御用固定 M O S容量であリ、
前記外部周波数制御手段を構成する前記外部周波数制御用可変抵 杭が、 外部周波数制御用可変 M〇 S抵抗であり、
前記温度補償電圧発生手段が発生する温度補償電圧を前記温度補 償用可変 M O S抵抗の制御端子に印加し、
前記外部電圧入力端子から入力する電圧を前記外部周波数制御用 可変 M O S抵抗の制御端子に印加するようにしたことを特徴とする 温度補償型水晶発振器。
5 . 請求の範囲 1 の温度補償型水晶発振器において、
前記温度補償制御手段が、 前記水晶発振手段の一方の端子と電源 との間に温度補償用可変容量と電圧制御型の温度補償用可変抵抗と を直列に接続して構成したものであり、
前記外部周波数制御手段が、 前記水晶発振手段の他方の端子と電 源との間に外部周波数制御用固定容量と電圧制御型の外部周波数制 御用可変抵抗とを直列に接続して構成したものであり、
前記温度補償電圧発生手段が、 電圧出力型の D Z A変換回路の出 力電圧を温度補償電圧と して発生し、 その温度補償電圧を前記温度 補償用可変抵抗の制御端子に印加する手段であり、
前記外部電圧入力端子から入力する電圧を前記外部周波数制御用 可変抵抗の制御端子に印加するようにしたことを特徴とする温度補 償型水晶発振器。
6 . 請求の範囲 5の温度補償型水晶発振器において、
前記温度補償制御手段を構成する前記温度補償用可変容量が、 温 度補償用可変 M O S容量であり、
前記温度補償制御手段を構成する温度補償用可変抵抗が、 温度補 償用可変 M〇 S抵抗であり、
前記外部周波数制御手段を構成する外部周波数制御用可変抵抗が、 外部周波数制御用可変 M O S抵抗であり、
前記温度補償電圧発生手段が発生する温度補償電圧を前記温度補 償用可変 M〇 S抵抗の制御端子に印加し、
前記外部電圧入力端子から入力する電圧を前記外部周波数制御用 可変 M〇 S抵抗の制御端子に印加するようにしたことを特徴とする 温度補償型水晶発振器。
7 . 請求の範囲 1 の温度補償型水晶発振器において、
前記温度補償制御手段が、 前記水晶発振手段の一方の端子と電源 との間に温度補償用可変容量と電圧制御型の温度補償用可変抵抗と を直列に接続して構成したものであり、
前記外部周波数制御手段が、 前記水晶発振手段の他方の端子と電 源との間に外部周波数制御用可変容量と電圧制御型の外部周波数制 御用可変抵抗とを直列に接続して構成したものであり、
前記温度補償電圧発生手段が、 電圧出力型の D / A変換回路の出 力電圧を温度補償電圧と して発生し、 その温度補償電圧を前記温度 補償用可変抵抗の制御端子に印加する手段であり、
前記外部電圧入力端子から入力する電圧を前記外部周波数制御用 可変抵抗の制御端子に印加するようにしたことを特徴とする温度補 償型水晶発振器。
8 . 請求の範囲 7の温度補償型水晶発振器において、
前記温度補償制御手段を構成する前記温度補償用可変容量が、 温 度補償用可変 M〇 S容量であり、
前記温度補償制御手段を構成する温度補償用可変抵抗が、 温度補 償用可変 M〇 S抵抗であリ、
前記外部周波数制御手段を構成する外部周波数制御用可変容量が、 外部周波数制御用可変 M O S容量であり、
前記外部周波数制御手段を構成する外部周波数制御用可変抵抗が、 外部周波数制御用可変 M O S抵抗であリ、
前記温度補償電圧発生手段が発生する温度補償電圧を前記温度補 償用可変 M O S抵抗の制御端子に印加し、
前記外部電圧入力端子から入力する電圧を前記外部周波数制御用 可変 M〇 S抵抗の制御端子に印加するようにしたことを特徴とする 温度補償型水晶発振器。
9 . 水晶発振手段と、 その水晶発振手段の一方の端子と電源との間 に温度補償用直流阻止容量と温度補償用可変容量とを直列に接続し て構成した温度補償制御手段と、
前記水晶発振手段の他方の端子と電源との間に外部周波数制御用 直流阻止容量と外部周波数制御用可変容量とを直列に接続して構成 した外部周波数制御手段と、
電圧出力型の A変換回路の出力電圧を温度補償電圧と して出 力し、 その出力端子を温度補償用固定抵抗を介して前記温度補償用 直流阻止容量と温度補償用可変容量との接続点に接続する温度補償 電圧発生手段と、 前記外部周波数制御用直流阻止容量と外部周波数制御用可変容量 との接続点に外部周波数制御用固定抵抗を介して接続する外部電圧 入力端子とを有することを特徴とする温度補償型水晶発振器。
1 0 . 請求の範囲 9の温度補償型水晶発振器において、
前記温度補償制御手段を構成する前記温度補償用直流阻止容量が. 高濃度の不純物を含む 2層の多結晶シリコン膜の温度補償用直流阻 止容量であり、
前記と温度補償制御手段を構成する前記温度補償用可変容量が、 温度補償用可変 M O S容量であり、
前記外部周波数制御手段を構成する前記外部周波数制御用直流阻 止容量が、 高濃度の不純物を含む 2層の多結晶シリコン膜の外部周 波数制御用直流阻止容量であリ、
前記外部周波数制御手段を構成する前記外部周波数制御用可変容 量が、 外部周波数制御用可変 M O S容量であることを特徴とする温 度補償型水晶発振器。
1 1 . 請求の範囲 9の温度補償型水晶発振器において、
前記温度補償制御手段を構成する前記温度補償用直流阻止容量が、 高濃度拡散領域を対抗電極とする温度補償用直流阻止容量であり、 前記温度補償制御手段を構成する温度補償用可変容量が、 低濃度 拡散領域を対抗電極とする温度補償用可変 M O S容量であり、
前記外部周波数制御手段を構成する前記外部周波数制御用直流阻 止容量が、 高濃度拡散領域を対抗電極とする外部周波数制御用直流 阻止容量であリ、
前記外部周波数制御手段を構成する前記外部周波数制御用可変容 量が、 低濃度拡散領域を対抗電極とする外部周波数制御用可変 M 0
S容量であることを特徴とする温度補償型水晶発振器。
1 2 . 水晶発振手段と、 その水晶発振手段の一方の端子と電源との 間に接続した温度補償制御手段と、 前記水晶発振手段の他方の端子 と電源との間に接続した固定容量と、 前記温度補償制御手段の制御 端子に接続する温度補償電圧発生手段とを有することを特徴とする 温度補償型水晶発振器。
1 3 . 請求の範囲 1 2の温度補償型水晶発振器において、
前記温度補償制御手段が、 温度補償用固定容量と電圧制御型の温 度補償用可変抵抗とを直列に接続して構成したものであり、
前記温度補償電圧発生手段が、 電圧出力型の D Z A変換回路の出 力電圧を温度補償電圧と して発生し、 その温度補償電圧を前記温度 補償用可変抵抗の制御端子に印加する手段であることを特徴とする 温度補償型水晶発振器。
1 4 . 請求の範囲 1 3の温度補償型水晶発振器において、
前記温度補償制御手段を構成する前記温度補償用固定容量が、 2 層の多結晶シリコン膜の温度補償用固定容量であリ、
前記温度補償制御手段を構成する前記温度補償用可変抵抗が、 温 度補償用可変 M O S抵抗であり、
前記水晶発振手段の他方の端子と電源との間に接続した固定容量 が、 2層の多結晶シリコン膜の固定容量であり、
前記温度補償電圧発生手段が発生する温度補償電圧を前記温度補 償用可変 M〇 S抵抗の制御端子に印加するようにしたことを特徴と する温度補償型水晶発振器。
1 5 . 請求の範囲 1 3の温度補償型水晶発振器において、
前記温度補償制御手段を構成する温度補償用固定容量が、 高濃度 拡散領域を対抗電極とする温度補償用固定 M O S容量であり、 前記温度補償制御手段を構成する前記温度補償用可変抵抗が、 温 度補償用可変 M O S抵抗であり、 前記水晶発振手段の他方の端子と電源との間に接続した固定容量 が、 高濃度拡散領域を対抗電極とする固定 M O S容量であり、 前記温度補償電圧発生手段が発生する温度補償電圧を前記温度補 償用可変 M 0 S抵抗の制御端子に印加するようにしたことを特徴と する温度補償型水晶発振器。
1 6 . 請求の範囲 1 2の温度補償型水晶発振器において、
前記温度補償制御手段が、 温度補償用可変容量と電圧制御型の温 度補償用可変抵抗とを直列に接続して構成したものであり、
前記温度補償電圧発生手段が、 電圧出力型の D Z A変換回路の出 力電圧を温度補償電圧と して発生し、 その温度補償電圧を前記温度 補償用可変抵抗の制御端子に印加する手段であることを特徴とする 温度補償型水晶発振器。
1 7 . 水晶発振手段と、 その水晶発振手段の一方の端子と電源との 間に温度補償用直流阻止容量と温度補償用可変容量とを直列に接続 して構成した温度補償制御手段と、
前記水晶発振手段の他方の端子と電源との間に接続した固定容量 と、
電圧出力型の D / A変換回路の出力電圧を温度補償電圧として出 力し、 その出力端子を温度補償用固定抵抗を介して前記温度補償用 直流阻止容量と温度補償用可変容量との接続点に接続する温度補償 電圧発生手段とを有することを特徴とする温度補償型水晶発振器。
1 8 . 請求の範囲 1 Ίの温度補償型水晶発振器において、
前記温度補償制御手段を構成する前記温度補償用直流阻止容量が、 高濃度の不純物を含む 2層の多結晶シ リ コン膜の温度補償用直流阻 止容量であり、
前記温度補償制御手段を構成する前記温度補償用可変容量が、 温 度補償用可変 M O S容量であり、 前記水晶発振手段の他方の端子と電源との間に接続する固定容量 が、 高濃度の不純物を含む 2層の多結晶シリ コン膜の固定容量であ ることを特徴とする温度補償型水晶発振器。
1 9 . 請求の範囲 1 7 の温度補償型水晶発振器において、
前記温度補償制御手段を構成する前記温度補償用直流阻止容量が. 高濃度拡散領域を対抗電極とする温度補償用直流阻止容量であり、 前記温度補償制御手段を構成する前記温度補償用可変容量が、 低 濃度拡散領域を対抗電極とする温度補償用可変 M O S容量であり、 前記水晶発振手段の他方の端子と電源との間に接続する固定容量 が、 高濃度拡散領域を対抗電極とする固定 M〇 S容量であることを 特徴とする温度補償型水晶発振器。
PCT/JP1995/001501 1994-07-27 1995-07-27 Oscillateur a quartz du type a compensation de temperature WO1996003799A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/765,459 US5801596A (en) 1994-07-27 1995-07-27 Temperature compensation type quartz oscillator
NO970311A NO970311L (no) 1994-07-27 1997-01-24 Kvartsoscillator av temperaturkompensasjonstypen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP17465294 1994-07-27
JP6/174652 1994-07-27
JP6/271033 1994-11-04
JP27103394 1994-11-04

Publications (1)

Publication Number Publication Date
WO1996003799A1 true WO1996003799A1 (fr) 1996-02-08

Family

ID=26496192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001501 WO1996003799A1 (fr) 1994-07-27 1995-07-27 Oscillateur a quartz du type a compensation de temperature

Country Status (3)

Country Link
US (1) US5801596A (ja)
NO (1) NO970311L (ja)
WO (1) WO1996003799A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824290A1 (en) * 1996-08-12 1998-02-18 Matsushita Electric Industrial Co., Ltd. Controllable-frequency oscillator
US6052036A (en) * 1997-10-31 2000-04-18 Telefonaktiebolaget L M Ericsson Crystal oscillator with AGC and on-chip tuning
WO2005046046A1 (ja) * 2003-11-10 2005-05-19 Toyo Communication Equipment Co., Ltd. 水晶発振器
KR101241264B1 (ko) * 2005-06-07 2013-03-14 소니 가부시끼가이샤 저항 회로, 부하 회로, 차동 앰프 회로 및 통신기

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3271610B2 (ja) * 1999-04-05 2002-04-02 日本電気株式会社 半導体装置
CA2328813C (en) * 2000-02-09 2005-09-20 Secretary Of Agency Of Industrial Science And Technology High-frequency oscillation circuit
JP2002094364A (ja) * 2000-09-19 2002-03-29 Toshiba Tec Corp 容量性素子の駆動方法及び駆動装置
US20040246039A1 (en) * 2003-06-03 2004-12-09 Chi-Ming Hsiao Switched capacitor circuit capable of minimizing clock feedthrough effect in a voltage controlled oscillator circuit
JP4436220B2 (ja) * 2004-10-04 2010-03-24 パナソニック株式会社 電圧制御型発振器
US7693491B2 (en) * 2004-11-30 2010-04-06 Broadcom Corporation Method and system for transmitter output power compensation
KR100821578B1 (ko) * 2006-06-27 2008-04-15 주식회사 하이닉스반도체 반도체 메모리의 파워 업 신호 생성장치 및 방법
US20080068107A1 (en) * 2006-09-06 2008-03-20 Luich Thomas M High performance, flexible programmable clock circuit
US7719341B2 (en) * 2007-10-25 2010-05-18 Atmel Corporation MOS resistor with second or higher order compensation
JPWO2010032384A1 (ja) * 2008-09-17 2012-02-02 セイコーインスツル株式会社 圧電振動素子及びこれを用いた発振回路
US10193557B2 (en) 2016-03-22 2019-01-29 Asahi Kasei Microdevices Corporation Oscillation control apparatus and oscillation apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333667A (en) * 1976-09-09 1978-03-29 Seiko Epson Corp Time regulating element for electronic watches
JPS61182111U (ja) * 1985-04-30 1986-11-13
JPS62156853A (ja) * 1985-12-28 1987-07-11 Toshiba Corp Mos型可変容量回路
JPS63221704A (ja) * 1987-03-11 1988-09-14 Matsushima Kogyo Co Ltd 圧電発振回路
JPH02295302A (ja) * 1989-05-10 1990-12-06 Nec Corp 温度補償型電圧制御圧電発振器
JPH03153068A (ja) * 1989-11-10 1991-07-01 Seiko Epson Corp 半導体装置
JPH03280605A (ja) * 1990-03-29 1991-12-11 Sony Corp 可変周波数発振器
JPH0442958A (ja) * 1990-06-06 1992-02-13 Matsushita Electron Corp 半導体集積回路の製造方法
JPH04304704A (ja) * 1991-04-02 1992-10-28 Asahi Kasei Micro Syst Kk 電圧制御発振器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH616297B (de) * 1974-09-16 Centre Electron Horloger Garde-temps compense en fonction d'au moins un parametre physique d'environnement.
CH625670B (de) * 1980-01-10 Suisse Horlogerie Oszillator mit digitaler temperaturkompensation.
JPS61182111A (ja) * 1985-02-06 1986-08-14 Hitachi Kiden Kogyo Ltd 無人移動体の誘導装置
JPH0279603A (ja) * 1988-09-16 1990-03-20 Rohm Co Ltd 発振回路
JP2790007B2 (ja) * 1993-07-29 1998-08-27 日本電気株式会社 画像メモリアクセス制御方式

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333667A (en) * 1976-09-09 1978-03-29 Seiko Epson Corp Time regulating element for electronic watches
JPS61182111U (ja) * 1985-04-30 1986-11-13
JPS62156853A (ja) * 1985-12-28 1987-07-11 Toshiba Corp Mos型可変容量回路
JPS63221704A (ja) * 1987-03-11 1988-09-14 Matsushima Kogyo Co Ltd 圧電発振回路
JPH02295302A (ja) * 1989-05-10 1990-12-06 Nec Corp 温度補償型電圧制御圧電発振器
JPH03153068A (ja) * 1989-11-10 1991-07-01 Seiko Epson Corp 半導体装置
JPH03280605A (ja) * 1990-03-29 1991-12-11 Sony Corp 可変周波数発振器
JPH0442958A (ja) * 1990-06-06 1992-02-13 Matsushita Electron Corp 半導体集積回路の製造方法
JPH04304704A (ja) * 1991-04-02 1992-10-28 Asahi Kasei Micro Syst Kk 電圧制御発振器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824290A1 (en) * 1996-08-12 1998-02-18 Matsushita Electric Industrial Co., Ltd. Controllable-frequency oscillator
US5898345A (en) * 1996-08-12 1999-04-27 Matsushita Electric Industrial Co., Ltd. Oscillator circuit with first and second frequency control elements
US6052036A (en) * 1997-10-31 2000-04-18 Telefonaktiebolaget L M Ericsson Crystal oscillator with AGC and on-chip tuning
WO2005046046A1 (ja) * 2003-11-10 2005-05-19 Toyo Communication Equipment Co., Ltd. 水晶発振器
KR101241264B1 (ko) * 2005-06-07 2013-03-14 소니 가부시끼가이샤 저항 회로, 부하 회로, 차동 앰프 회로 및 통신기

Also Published As

Publication number Publication date
NO970311D0 (no) 1997-01-24
NO970311L (no) 1997-03-25
US5801596A (en) 1998-09-01

Similar Documents

Publication Publication Date Title
JP5848297B2 (ja) 電気デバイス
WO1996003799A1 (fr) Oscillateur a quartz du type a compensation de temperature
US8564378B2 (en) Voltage-controlled oscillating circuit and crystal oscillator
US20060164178A1 (en) Voltage-controlled oscillator
US20090002084A1 (en) Oscillator
EP1553636B1 (en) Mos variable capacitive device
US20050206465A1 (en) Voltage control oscillator
US6320474B1 (en) MOS-type capacitor and integrated circuit VCO using same
US6198337B1 (en) Semiconductor device for outputting a reference voltage, a crystal oscillator device comprising the same, and a method of producing the crystal oscillator device
JP4233634B2 (ja) 温度補償型水晶発振器
US4247826A (en) Semiconductor integrated amplifier
JPS60171771A (ja) 絶縁ゲ−ト半導体装置
US20070085576A1 (en) Output driver circuit with multiple gate devices
JP6395191B2 (ja) 集積mos型バリキャップおよびこれを有する電圧制御発振器、フィルター
JP4107362B2 (ja) Mos型キャパシタ及び半導体集積回路装置
JP3940063B2 (ja) 可変容量素子および可変容量素子内蔵集積回路
JP3742197B2 (ja) 可変容量回路およびこの回路を用いた水晶発振回路
JPH10229167A (ja) 基準電圧出力半導体装置、それを用いた水晶発振器及びその水晶発振器の製造方法
US4374332A (en) Cascade type CMOS semiconductor device
JP3503197B2 (ja) 半導体装置
JP2001345681A (ja) 発振装置
JP2003282724A (ja) 半導体装置
JP2003282723A (ja) 半導体装置
JP2001127253A (ja) 可変容量素子および可変容量素子内蔵集積回路
WO2002056368A1 (fr) Amplificateur de puissance haute frequence et appareil de communication radio

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): GB JP NO US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08765459

Country of ref document: US