WO1995024069A1 - Convertisseur de courant a couplage multiple et son systeme de regulation - Google Patents

Convertisseur de courant a couplage multiple et son systeme de regulation Download PDF

Info

Publication number
WO1995024069A1
WO1995024069A1 PCT/JP1995/000327 JP9500327W WO9524069A1 WO 1995024069 A1 WO1995024069 A1 WO 1995024069A1 JP 9500327 W JP9500327 W JP 9500327W WO 9524069 A1 WO9524069 A1 WO 9524069A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
vector
power converter
space
Prior art date
Application number
PCT/JP1995/000327
Other languages
English (en)
French (fr)
Inventor
Eiji Watanabe
Hiroaki Matsunaga
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to DE69521370T priority Critical patent/DE69521370T2/de
Priority to EP95910720A priority patent/EP0697763B1/en
Priority to KR1019950704806A priority patent/KR100272395B1/ko
Priority to JP52226495A priority patent/JP3385616B2/ja
Priority to US08/537,755 priority patent/US5657217A/en
Publication of WO1995024069A1 publication Critical patent/WO1995024069A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • H02M7/527Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency by pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times

Definitions

  • the present invention relates to a device and a control for reducing a harmonic component of an output compressing power and suppressing a circulating compress flow generated between PWM controlling power converting devices in a PWM control power converter (inverter) that is multiple-coupled.
  • a PWM control power converter inverter
  • conventional power conversion devices S for reducing harmonic components of output power there is a means disclosed in Japanese Patent Application Laid-Open No. 60-98875 (hereinafter referred to as "conventional example 1").
  • n voltage-type PWM control power converters (n: an integer of 2 or more) are connected in parallel, and a multi-coupled power supply having an interphase reactor between the in-phase output terminals of each power converter is provided.
  • a carrier signal which is a reference signal for generating the PWM waveform of the power generation converter, is given a phase difference of 360 degrees / n to each of the power converters connected in parallel, and the harmonic component of the output voltage is given. Has been reduced.
  • the harmonic component of the output voltage can be reduced, but there is a problem that the effect of reducing the higher harmonic is small in the voltage between Di, which is a combination of the phase voltages. For this reason, the harmonic component of the output current generated in proportion to the voltage between pulses cannot be reduced sufficiently. For example, when a motor is driven, it may cause torque ripple or speed ripple, and the motor will not rotate stably. There was.
  • harmonic components of the output phase voltage can be reduced, but a cross current occurs between the output phases of the power conversion device, and the current supplied to the motor decreases. There is a problem that the output phase reactor must be increased.
  • invention 2J there is a power converter described in Japanese Patent Application Laid-Open No. 5-212175 (hereinafter referred to as “conventional example 2J”).
  • the zero voltage that is close to the output voltage command vector based on the amplitude and phase of the output voltage command vector, and the voltage between them becomes zero Neutral point voltage where the voltage at the vector or neutral point changes
  • This is a power converter that controls the selection order so that the zero-voltage vector or the neutral voltage vector is the first.
  • Patent Application Laid-Open No. 5-56664 discloses that in a parallel operation control device of a PWM power converter, an output current detector of each packer converter is provided.
  • a circulating current calculator that calculates a circulating current of each power converter from the detected output current; and a parallel that outputs a base cutoff signal of one of the power converters when the circulating current exceeds a predetermined value.
  • a circuit provided with an operation inhibition circuit is disclosed.
  • a first object of the present invention is to reduce harmonics of the output voltage between the di voltages, It is another object of the present invention to provide a multiple-coupled power converter that reduces the harmonics of the phase voltage.
  • a second object of the present invention is to detect the output current of each power conversion device and control the on / off command of the PWM so that the difference between the phase currents, that is, the cross current, is reduced. The purpose is to reduce the size of the interphase reactor and to increase the current that can be supplied to the motor.
  • the present invention provides a DC power supply, and uses a self-extinguishing element that performs ignition / extinguishing in response to an ON / OFF command to convert a voltage from the DC power source into an AC voltage.
  • a self-extinguishing element that performs ignition / extinguishing in response to an ON / OFF command to convert a voltage from the DC power source into an AC voltage.
  • an AC output to the power converters is given to give on / off instructions to the respective power converters connected in parallel.
  • a space voltage vector calculator that selects a plurality of space voltage vectors based on the amplitude and phase of the voltage command and calculates each output time, and a generation order of the selected plurality of space voltage vectors
  • a PWM generator that generates an ON / OFF command in accordance with the output of the vector permuter. The two sets of order determined by the vector permuter are provided. Different space voltage vector The given to the P WM generator, is shall control the output voltage of the power converter o
  • control method of the multiple-coupled power converter according to the present invention is characterized in that a DC power supply is provided, and a voltage from the DC power supply is converted to an AC voltage by a self-extinguishing element that performs ignition and extinguishing in accordance with an ON / OFF command.
  • a control method of a multiple coupling power converter in which the first and second power converters g to be converted are connected in parallel via a reactor, a plurality of spatial voltages that generate an on / off command to be given to each power converter are provided.
  • the space with different output times given to the second power converter The order of the second column of the voltage vectors is shifted by an output time of one space voltage vector at the end of the first column.
  • the harmonic component of the output line voltage waveform can be greatly reduced.
  • the harmonic component of the output current which is determined by the harmonic component of the output line voltage, is reduced.
  • torque and speed ribble of the AC motor can be reduced, and the extremely smooth rotation of the AC motor can be reduced. This has the effect of enabling servo computation control and significantly contributing to the improvement of the stability of the control system.
  • the present invention provides a DC power supply, and a voltage from the DC power supply is reduced by a self-extinguishing element that performs ignition and extinguishing in accordance with an on / off command.
  • a multiplexed coupling power converter in which a power converter for converting into an AC voltage is connected in parallel via a reactor, an AC output to the power converter is given to give an on / off command to each of the parallel-connected power converters.
  • a space voltage vector calculator for selecting a plurality of voltage vectors based on the voltage amplitude and phase and calculating respective output times; and a first space voltage vector for the selected plurality of space voltage vectors.
  • the order of the second column of the plurality of space voltage vectors applied to the second power converter is referred to as the first order.
  • Space at the end of the row A vector sequencer that shifts the output vector by one output time to determine two sets of spatial voltage vector generation order, and a pulse that generates an on / off order according to the output of the vector sequencer A width modulator, and two sets of spatial pressure vector trains having different orders set by the vector permutation unit are provided to the pulse width modulator, and are multiple-coupled to control an output voltage of the power converter.
  • a current detector is provided for each output phase of the two sets of power converters, and a difference between output currents of the first power converter and the second power converter is provided for each output phase. Calculation is performed and this difference is used as the cross current.
  • the output reactor can be reduced in size, and the current supplied to the motor increases.
  • FIG. 1 is a block diagram showing a circuit configuration of an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a space voltage vector applied to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a space voltage vector sequence that determines the order of the selected space voltage vector.
  • FIG. 3 is a diagram showing an example of a PWM pulse generated in one embodiment of the present invention.
  • FIG. 5 is a diagram showing a PWM waveform generated in another embodiment of the present invention,
  • FIG. 5 is a diagram showing a PWM waveform generated in Conventional Example 1
  • FIGS. 6 and 7 are still other examples of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of an example. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a circuit configuration of an embodiment of the present invention. This embodiment shows a case in which two voltage-type three-phase PWM (pulse width modulation) power converters each using an IGBC Insulate Gate Bipolar Transistor (self-extinguishing element) are operated in parallel.
  • reference numeral 101 denotes a space voltage vector calculator which performs the following operation.
  • the switching period T c and amplitude Sashiawase V c and phase command and the (electrical angle) 0 is input to the spatial voltage base vector calculator 1 0 1.
  • the space voltage vector indicates the switching state of the power converter.For switching elements connected to the high potential side of the DC bus, 1 indicates on, 0 indicates off, and 3-phase power
  • eight spatial compressing vectors [V. , (V,), [V 2 ], [V 3 ], [V *], CV 5 , [V,], CV 7 ], in which space! V.] and is particularly referred to as spatial zero voltage vector space voltage base vector [V 7] (zero vector). these are 6 0 degrees every around the Zerobe vector as shown in FIG.
  • the command space voltage vector [V C ] has a magnitude of the amplitude command V c and is 0 with respect to the space voltage vector [V,]. It is expressed as a space voltage vector that forms the electrical angle of
  • the space voltage vector calculator 101 selects two space pressure vectors [Vi] and [Vj] according to the value of the electrical angle 0 as shown in FIG. 2 (c).
  • the spatial electric E solid torr [Vi] based on the amplitude Sashiawase V c, (the output at the time between Ti of Vj], Tj and spatial ⁇ Zerobe vector [V.], the output time of [V,] ⁇ , ⁇ is calculated from the following equation.
  • Tj (Vc-Tc ⁇ sin 0a) / ⁇ 2 ⁇ sin (60 degrees) ⁇ (2)
  • T 7 (Tc one Ti -Ti) / 2 (3)
  • 0a is A vector Sashiawase space electrostatic E [V C] is formed with respect to the spatial voltage downy transfected Le selected [Vi] It is a compressive angle and is expressed by the following formula.
  • ⁇ ha! Numerical value that changes depending on the mood angle 0, as shown in Fig. 2 (c).
  • Output time Ti output from the spatial voltage vector calculator 1 0 1, Tj, To. T 7 is input to a base vector permutation device 1 02, two spaces voltage base-vector sequence shown in FIG. 2 (d)
  • the output order is determined according to PI and P2. Further, according to the output order, each space voltage vector is output for a predetermined time.
  • the space voltage vector trains PI and P 2 are space voltage vector trains set for the first power converter 111 and the second power converter 124, respectively, and the space voltage vector Row P 2 is the last space voltage in the space voltage vector row P 1 E zero vector [V. ] Has been moved to the top.
  • the first of a plurality of space voltage vectors having different output times to be provided to the first power converter is provided.
  • the order of the second column of the plurality of space voltage vectors having different output times to be given to the second power conversion device is defined as one space voltage vector at the end of the first column.
  • the PWM generator 113 is permutated based on the space voltage vector sequence P 1 inside the vector permutator 102, and generates a PWM waveform voltage according to the output space voltage vector. It outputs a firing / extinguishing command for the element to the gate drive circuit (not shown) of the power converter 1 1 1 4 and the PWM generator 123. Generates a PWM waveform voltage based on the spatial voltage vector train P 2 and outputs a firing / extinguishing command for the element to a gate drive circuit (not shown) of the second power converter 124. It is.
  • the first power converter 111 and the second power converter 124 operate the self-extinguishing element in accordance with the PWM output signals generated by the PWM generators 113 and 123, respectively, and convert the three-phase AC voltage. Output.
  • the AC output terminals of each power converter — U 2 , V, one V 2 , W, — W 2 are respectively coupled by a three-phase reactor 105, whereby the load 106 is connected to both power converters 1.
  • AC voltage from 14, 24 is supplied.
  • the level of the PWM voltage changes in three stages of 1 PU, 0.5 PU, and 0 PU, and the difference between the output basic waveform voltage of the sinusoidal wave and the E is reduced. Therefore, the so-called high frequency component becomes smaller.
  • the PWM voltage level changes only in one step of 0 P.IJ., so the voltage difference from the sinusoidal output basic waveform voltage increases, You can see that the minutes are big. This is because, according to the present invention, the first column of a plurality of space voltage vectors having different output times to be given to the first power converter in the multi-coupled power converter is provided by the second power converter.
  • the order of the second column of the plurality of spatial voltage vectors having different output times applied to the second column is shifted by the output time of one spatial pressure vector at the end of the first column, and the PWM voltage is skillfully adjusted. It depends on how you control it.
  • the change width of the output line voltage waveform synthesized by the reactor can be reduced, so that the harmonic component of the output line voltage waveform can be greatly reduced. For this reason, the harmonic components of the output current determined by the harmonic components of the output line voltage are reduced. For example, when the AC motor is driven, the torque ripple and the speed ripple of the AC motor are reduced. This makes it possible to control the servo operation from the extremely smooth rotation of the AC motor and significantly contributes to improving the stability of the control system.
  • FIGS. 6 and 7 are block diagrams showing still another embodiment of the present invention, in which two voltage-type three-phase PWM power converters S using IGBTs as self-extinguishing elements are operated in parallel. Is shown.
  • reference numeral 101 denotes a space vector calculator, which has the same function as the embodiment of FIG.
  • the PWM generator 103 is permutated based on the vector sequence P1 inside the vector permutator 102, generates a PWM according to the output vector, and drives the gate of the first power conversion device 114. Similarly, the PWM generator 103 generates a PWM based on the vector train P2 and outputs the gate of the second power converter 124 to the circuit. It outputs a point extinguishing finger of the element to the circuit. Further outputs the PWM generator 1 0 3 Habe vector Fukutai signal, first, second gives the power converter PWM output are both Zerobe vector (V., V 7) when the state of the PWM upper signal Outputs "0" and "1" in other cases.
  • the switching switch 8 selects the "A” side when the signal output from the flip-flop 19 is “0", and selects the "B” side when the signal is "'", whereby the first power converter and the second power Swaps the PWM output provided to the converter.
  • the on-delay counter 9 has a time delay when the PWM output changes from “0" to "1" in order to prevent the power converter main circuit element IGBT from shorting up and down.
  • the gate block circuit 10 outputs the output value of the on-delay counter as it is to the first and second power converters.
  • the first power conversion device 1 14 and the second power conversion device 1 2 4 extinguish the self-extinguishing element when “0” according to the PWM output given through the given gate block, respectively.
  • the self-turn-off device is driven to output three-phase AC power ⁇
  • the AC output terminals U 1-U 2, V 1 -V 2, W 1-W 2 of each power converter are respectively coupled by a three-phase reactor 4, whereby a load 5 is connected to the load 5 from both power converters. AC power is supplied.
  • a subtracter 11 calculates a difference for each phase. An average value of the difference current and a current of a half cycle of the PWM cycle detected by the sample hold circuit 12 is obtained.
  • This difference average current is input to comparators 16 and 17.
  • the comparator 16 compares the set value of the setter 14 with the absolute value of the difference average current obtained via the absolute value circuit 20 and outputs “1” when the absolute value of the difference average current is large, If it is smaller, "0" is output.
  • the comparator 17 compares the set value of the setting unit 15 with the difference average current value, and outputs “1” when the difference average current value is large, and outputs “0” when the difference average current value is small.
  • the flip-flop 19 gives a command to the switching switch according to Table 1 from the PWM status signal and the output of the comparator 17.
  • the comparator 16 When the comparator 16 operates, the output waveforms of the first and second power converters are switched, and the cross current is attenuated without changing the phase voltage waveform applied to the load.
  • the comparator 17 When the comparator 17 operates, the output waveforms of the first and second power converters are turned off, the cross current is immediately attenuated, and the magnetic loss generated from the reactor is reduced.
  • the cross current generated between the output phases of the power converter is suppressed without changing the waveform of the line voltage, so that the magnetic loss of the output reactor increases in proportion to the cross current. Can be suppressed. As a result, the output reactor can be made smaller, and the dew flow supplied to the motor also increases.
  • the present invention can be used in a blunt system such as a steel blunt that drives a large-capacity electric motor—a chemical blunt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

明 細 書 多重結合した電力変換装置及びその制御方法 技術分野
本発明は多重結合した P WM制御電力変換装置 (インバータ) において、 出力 罨圧の高調波成分を低減し、 また、 PWM制卸電力変換装置間に生ずる循環罨流 の抑制を行う装置及びその制御方法に関する。 背景技術
従来の出力電力の高調波成分を低減する電力変換装 Sの一つとしては、 特開昭 6 0 - 9 8 8 7 5号公報 (以下 「従来例 1」 という) に開示された手段がある。 この従来例 1は、 電圧型 P WM制御電力変換装置を n個 (n : 2以上の整数) 並 列に接続し、 これら各電力変換装置の同相出力端子間に相間リアクトルを備えた 多重結合電力変換装置において、 各電力変換装置を制御するキヤリ了信号の位相 を 3 6 0度/ nずつずらせるようにしたことを特徴とする多重結合電力変換装置 の制御方法である。 すなわち、 電力発生変換装置の P WM波形を発生させる基準 信号であるキャリア信号を、 並列接続された電力変換装置のそれぞれに 3 6 0度 / nの位相差を与えて、 出力電圧の高調波成分を低減している。
ところが、 この従来例 1においては、 出力電圧の高調波成分は低減できるが、 相電圧の合成である棣間電圧では高調波の低減効果が少ない問題があった。 この ため、 棣間電圧に比例して発生する出力電流の高調波成分が充分に低弒できず、 例えば電動機を駆動した場合、 トルクリツブルや速度リツブルの原因となり、 電 動機が安定して回らない問題があつた。
また、 従来例 1に開示された従来技術では、 出力相電圧の高調波成分の低減は できるが、 電力変換装置の出力相間に横流電流が生じ、 電動機に供給される電流 が低下する問題や、 出力の相間リアクトルを大きくしなければならない問題があ つた o
また、 他の従来例として、 特開平 5— 2 1 1 7 7 5号公報 (以下 「従来例 2 J という) に記載された電力変換装置がある。 これは、 パルス幅変調制卸により出 力電圧が制御される直列多重型あるいは並列多重型電力変換装置において、 出力 電圧指令べク トルの振幅及び位相に基づいて出力電圧指令べクトルに近接し、 か っ镍間電圧が零となる零電圧べク トルもしくは中性点の電圧が変化する中性点電 Eべクトルもしくは中性点の電圧が変化する中性点鼋圧べクトルを選択すると共 に、 所定期間において 3つの電圧べクトルの選択順序が零 ¾圧べク トルもしくは 中性点電圧べクトルが第 1番目となるように制御する電力変換装置である。
この従来例 2は、 出力電圧指令の振幅が大きくなると、 出力電 Eが零となる区 間が短くなり、 正 (出力電圧: E ) または負 (出力電圧:一 E ) となる区間が長 くなるため、 出力電圧の振幅が大きくなり、 正または負の 2個の電圧を出力する 通常の 2レベル電力変換装置と比較して、 直列多重型電力変換装置の特徴である 出力電圧の高調波成分低減効果が失われるのを防ぐという手段であり、 出力 ¾圧 の振幅が小さいときの考慮はなされていない、 つまり出力電圧の振幅に拘わらず 常に高調波の低狨を行う電力変換装置ではない。
また、 特開平 5— 5 6 6 4 8号公報 (以下 「従来例 3」 という) には、 P WM 電力変換装置の並列運転制御装置において、 各罨カ変換装匱の出力電流検出器と、 この検出された出力電流より各電力変換装置の循環罨流を演算する循環電流演算 器と、 この循環茧流が所定値を超えたときに一方の電力変換装置のベース遮断信 号を出力する並列運転禁止回路とを設けたものが開示されている。
しかし、 この従来例 3に開示された従来技術では、 ベース遮断が動作すると出 力電流も減衰するため、 モータ等の負荷装置が駆動できなくなるという問題があ つた。 発明の開示
そこで、 本発明の第一の目的は、 出力 ¾圧の棣間電圧の高調波を低滅し、 併せ て相電圧の高調波も低減する多重結合した電力変換装置を提供することにある。 また、 本発明の第二の目的は、 各 力変換装置の出力 流を検出し、 その相電 流の差分、 つまり横流電流が弒少するように P WMのオン ·オフ指令を制御する ことにより、 相間リアクトルの小形化と、 髦動機に供給できる電流の増大を図る ことにある。
前記第一の目的を達成するため、 本発明は、 直流電源を設け、 オン,オフ指令 に応じて点弧 ·消弧を行う自己消弧素子により、 前記直流鼋源からの電圧を交流 鼋圧に変換する ¾力変換装置を、 リアクトルを介して並列接铳した多重結合電力 変換装置において、 前記並列接統した各電力変換装置にオン ·オフ指合を与える ため、 電力変換装置に出力させる交流電圧指令の振幅と位相に基づいて、 複数の 空間電圧べクトルを選択し、 各々の出力時間を演算する空間電圧べクトル演算器 と、 前記選択された複数個の空間電圧べク トルの発生順序を 2組決定するべクト ル順列器と、 このべクトル順列器の出力に応じてオン ·オフ指令を発生させる P WM生成器を備え、 前記べクトル順列器で決定された 2組の順序の異なる空間電 圧ベクトル列を前記 P WM生成器に与え、 前記電力変換装置の出力電圧を制御す るものである o
また本発明の多重結合した電力変換装置の制御方法は、 直流電源を設け、 オン •オフ指令に応じて点弧,消弧を行う自己消弧素子により、 前記直流電源からの 電圧を交流電圧に変換する第 1及び第 2の電力変換装 gを、 リアクトルを介して 並列接続した多重結合電力変換装置の制御方法において、 各電力変換装置に与え るオン■オフ指令を発生する複数個の空間電圧べクトルについて、 第 1の菴カ変 換装置に与える複数個の出力時間の異なる空間電圧べクトルの第 1の列に対して、 第 2の電力変換装置に与える複数個の出力時間の異なる空間電圧べクトルの第 2 の列の順序を、 前記第 1の列の最後尾にある空間電圧べクトル 1個の出力時間分 だけずらせることを特徴とするものである。
本発明によれば、 リアクトルにより合成された出力線間電圧波形の変化幅が少 なくできるため、 出力線間電圧波形の高調波成分が大きく低弒できる。 このため、 出力線間電圧の高調波成分によって決まる出力電流の高調波成分が低威され、 例 えば交流電動機を駆動した場合、 交流 ¾動機のトルクリッブル及び速度リッブル が低減でき、 交流電動機の極めて円滑な回転からサーボ演算制御が可能となると 共に、 制御系の安定度の向上に著しく寄与するという効果を奏する。
また、 前記第二の目的を達成するため、 本発明は、 直流電源を設け、 オン ·ォ フ指令に応じて点弧 ·消弧を行う自己消弧素子により、 前記直流 ¾源からの電圧 を交流電圧に変換する電力変換装置を、 リアクトルを介して並列に接棕した多重 結合電力変換装置において、 前記並列接続した各電力変換装置にオン ·オフ指令 を与えるため、 電力変換装置に出力させる交流電圧の振幅と位相に基づいて、 複 数の電圧べクトルを選択し、 各々の出力時間を演算する空間電圧べクトル演算器 と、 前記選択された複数個の空間電圧べク トルについて、 第 1の鼋カ変換装置に 与える複数個の空間電圧べクトルの第 1列の順序に対して、 第 2の電力変換装置 に与える複数個の空間電圧べクトルの第 2列の順序を、 前記第 1の列の最後尾に ある空間電圧べクトル 1個の出力時間分だけずらして空間電圧べクトルの発生順 序を 2組決定するべクトル順列器と、 前記べクトル順列器の出力に応じてオン · オフ指合を発生させるパルス幅変調器を備え、 前記べクトル順列器で設定された 2組の順序の異なる空間鼋圧べクトル列を前記パルス幅変調器に与え、 前記鼋カ 変換装置の出力電圧を制御する多重結合した電力変換装置において、 前記 2組の 電力変換装置の各出力相毎に電流検出器を設け、 各出力相毎に前記第 1の電力変 換装置と第 2の電力変換装置の出力電流の差分を演算し、 この差分を横流電流分 とするものである。
本発明によれば、 電力変換装置の出力栢間に生じる横流電流が抑制できるため、 出力リアクトルが小形にでき、 電動機に供給される電流が増加することになる。 図面の簡単な説明
第 1図は本発明の一実施例の回路構成を示すプロック図、 第 2図は本発明の一 実施例に適用される空間電圧べク トルの概念図、 選択される空間罨圧べクトルを 表す図、 選択された空間電圧べクトルの順序を決定する空間電圧べクトル列を表 す図、 第 3図は本発明の一実施例において発生される PWMパルスの一例を示す 図、 第 4図は本発明の他の実施例において発生された PWM波形を示す図、 第 5 図は従来例 1において発生された PWM波形を示す図、 第 6図及び第 7図は本発 明のさらに他の実施例の構成を示すプロック図である。 発明を実施するための最良の形態
以下、 本発明の実施例を図面に基づいて説明する。
第 1図は、 本発明の一実施例の回路構成を表すブロック図である。 この実施例 は自己消弧素子として I GBTCInsulate Gate Bipolar Transistor)を用いた電 圧形 3相 PWM (パルス幅変調) 電力変換装置を 2台並列運転する場合を示して いる。 第 1図において、 1 0 1は空間電圧べクトル演算器であり、 以下のような 動作を行う。
まず、 スイッチング周期 Tc と振幅指合 Vc 及び位相指令 (電気的角度) 0と が空間電圧べクトル演算器 1 0 1に入力される。 空間電圧べクトルとは、 電力変 換装置のスィツチング状態を示すもので、 直流母線の高電位側に接統されたスィ ツチング素子については、 1はオンを、 0はオフを表し、 3相電力変換装置の場 合、 第 2図 (a) に示すように、 8個の空間罨圧べクトル 〔V。 〕 、 (V, 〕 、 〔V2 〕 、 〔V3 〕 、 〔V* 〕 、 CV5 , 〔V, 〕 、 CV7 〕 が存在する。 こ れらの中、 空間!;圧べクトル 〔V。 〕 及び空間電圧べクトル 〔V7 ] を特に空間 零電圧ベクトル (ゼロベクトル) と呼ぶ。 これらは、 第 2図 (b) に示すように ゼロべクトルを中心とした 6 0度毎の位相差を持つ、 大きさの等しい空間電圧べ クトルとして表現される。 また、 指令空間電圧ベクトル 〔VC〕 は、 振幅指令 Vc を大きさとし、 空間電圧べクトル 〔V, 〕 に対して 0の電気的角度をなす空間電 圧ベクトルとして表される。
続いて、 空間電圧べクトル演算器 1 0 1は、 電気的角度 0の値によって第 2図 (c) のように 2つの空間鼋圧べクトル 〔Vi 〕 、 〔Vj 〕 を選択する。 次に、 振幅指合 Vc に基づいて空間電 Eベタ トル 〔Vi 〕 、 (Vj 〕 の出力時 間 Ti、 Tj 及び空間鼋圧ゼロべクトル 〔V。〕、 〔V, 〕 の出力時間 Τ。、 Ττ を次の式から算出する。
Ti = {Vc - Tc · sin(60度一 0a ) } ノ { 2 · sin(60度) } ( 1 )
Tj = (Vc - Tc · sin 0a ) / {2 · sin(60度) } (2)
To =T7 = (Tc 一 Ti -Ti ) /2 ( 3) ここで、 0aは指合空間電 Eべクトル 〔VC 〕 が、 選択された空間電圧べクト ル 〔Vi 〕 に対してなす罨気的角度であり、 次式で表される。
0a =θ- 60 · Ν (4)
Νは!:気的角度 0によって変化する数値で、 第 2図 (c) に示される。
空間電圧ベクトル演算器 1 0 1から出力された出力時間 Ti, Tj, To. T7は、 べクトル順列器 1 02に入力され、 第 2図 (d) に示す 2つの空間電圧べク トル 列 P I, P 2に従って出力順を决定される。 さらに、 この出力順に従って、 各空 間電圧ベクトルが所定の時間出力される。 空間電圧ベクトル列 P I, P 2はそれ ぞれ第 1の電力変換装置 1 1 4、 第 2の電力変換装置 1 24に対して設定された 空間電圧べク トル列であり、 空間電圧べク トル列 P 2は空間電圧べクトル列 P 1 において最後尾にある空間電 Eゼロべクトル 〔V。 〕 を先頭に移動させた構成と なっている。 すなわち、 本発明は各電力変換装置に与えるオン ·オフ指令を発生 する複数個の空間電圧べクトルについて、 第 1の電力変換装置に与える複数個の 出力時間の異なる空間電圧べクトルの第 1の列に対して、 第 2の電力変換装置に 与える複数個の出力時間の異なる空間電圧べクトルの第 2の列の順序を、 前記第 1の列の最後尾にある空間電圧べクトル 1個の出力時間分だけずらせるようにし た、 並列接続した多重電力変換装置の制御方法である。
そして、 PWM生成器 1 1 3はべクトル順列器 1 02の内部において空間電圧 べクトル列 P 1に基づいて順列され、 出力された空間電圧べクトルに応じて PW M波形電圧を生成し、 第 1の電力変換装置 1 1 4のゲート駆動回路 (図示せず) に対して素子の点弧消弧指令を出力するものであり、 同様に PWM生成器 123 は空間電圧べクトル列 P 2に基づいた PWM波形電圧を生成し、 第 2の電力変換 装置 1 24のゲート駆動回路 (図示せず) に対して素子の点弧消弧指令を出力す るものである。
第 1の電力変換装置 1 1 4及び第 2の電力変換装置 1 24は、 それぞれ PWM 生成器 1 1 3及び 1 23の生成する PWM出力信号に従って自己消弧素子を 動 し、 3相交流電圧を出力する。 各電力変換装置の交流出力端子 — U2、 V, 一 V2 、 W, — W2 は 3相リアクトル 1 0 5によって各々結合されており、 これ によって負荷 1 0 6には両電力変換装置 1 1 4, 1 24からの交流電圧が供給さ れる。
以上の過程を、 この一実施例に適用して振幅指令 Vc =0. 3 [P. U. ] 、 位相指令 0= 80度 (電気的角度) の場合について行った手順を以下に説明する。 まず、 空間電圧ベクトル演算器 1 0 1においては、 0= 8 0度であるので、 空 間電圧ベクトル 〔Vi 〕 として空間電圧ベク トル 〔V3 〕 = (0, 1, 0) が、 空間電圧ベク トル 〔Vj 〕 として空間電圧ベク トル 〔V2 〕 = ( 1 , 1 , 0) が 選択され、 式 ( 1 ), (2) , (3) より出力時間 Τ3 , Τ2 , Τ。 , Τ7 が算 出される。 この際、 第 2図 (c) より数値 Ν= 1であるので、 式 (4) より選択 された空間電圧べクトルに対してなす角度 0a = 20度として用いる。
こうして求められた出力時間 Τ3 , Τ2 , Τ。 , Τ, はベクトル順列器 1 0 2 に入力され、 空間電 Εべクトル列 Ρ 1、 Ρ 2に従って順列される。 このうち、 空 間電圧べクトル列 Ρ 1によって順列されたもの (第 3図 (a) a, ) は PWM生 成器 1 1 3へ出力されて、 3相 PWM波形を生成する。 この波形を第 3図 (a) a 2 , a3 , a* に示す。 ベクトル列 P 2によって順列されたもの (第 3図 (b) b, ) は PWM生成器 1 23へ出力され、 3相 PWM波形 (第 3図 (b) b2 , b3 , b« ) を生成する。
以上のようにして生成された PWM信号によって、 第 1の電力変換装置 1 1 4 及び第 2の電力 ¾換装置 1 24の自己消弧素子が点弧消弧されて発生する各種電 E波形を第 4図に示すが、 この第 4図は本発明の他の実施例として、 振幅指合 Vc = 0. 6 [P. U. ] とした電圧波形であり、 第 4図において 4 a 、 4b 、 4 d 、 4e は各相の相電圧であり、 これらはそれぞれ第 1図における U . U2 > V, , V2 での波形である。 また 4c 、 4f はリアク トルで結合された両電力変換装置 1 1 4, 1 24の合成相電圧であり、 第 1図においてはそれぞれ U, V点での波 形である。 4g は両電力変換装置 1 1 4, 1 2 4によって発生された出力線間電 圧の波形であり、 第 1図における U— V間での波形である。
また、 第 5図は従来方式によって第 4図に同じ振幅指令 Vc= 0. 6 [P.U.] とした各種電圧波形であり、 第 5図の 5a 〜5g はそれぞれ第 4図の 4 a 〜4g に対応する。 ところで第 4図の 4g と第 5図の 5g を比較すると、 まず第 5図の 5g においては線間電圧は零電圧モードと全電圧から構成されており、 鼋圧の変 化量が大きい。 第 4図の 4 g においては線間鼋圧は零電圧モードと中間電圧モー ドで構成されているため、 電圧の変化量が小さい。 このため本発明においては、 線間電圧の高調波成分が大幅に低減される。
すなわち、 本発明の第 4図の 4g では、 PWM電圧のレベルが 1 P.U.、 0. 5 P. U.、 0 P. U.と 3段階に変化し、 正弦波伏の出力基本波形電圧との電 E差が小さくなつて、 いわゆる高周波分が小さくなる。 これに引き換え、 従来例 1の第 5図 5g では、 PWM電圧のレベルは 0 P.IJ.の 1段階のみの変化しかし ないから、 正弦波状の出力基本波形電圧との電圧差が大きくなり、 高周波分が大き いことが分かる。 これは本発明が、 多重結合した鼋カ変換装置における第 1の電 力変換装置に与える複数個の出力時間の異なる空間電圧べクトルの第 1の列に対 して、 第 2の電力変換装置に与える複数個の出力時間の異なる空間電圧べクトル の第 2の列の順序を、 前記第 1の列の最後尾にある空間霪圧べクトル 1個の出力 時間分だけずらせて PWM電圧を巧みに制御する方法であることによっている。 本発明によれば、 リアクトルにより合成された出力線間電圧波形の変化幅が少 なくできるため、 出力線間電圧波形の高調波成分が大きく低減できる。 このため、 出力線間電圧の高調波成分によって决まる出力電流の高調波成分が低弒され、 た とえば交流電動機を駆動した場合、 交流電動機のトルクリッブル及び速度リッブ ルが低減でき、 交流電動機の極めて円滑な回転からサーボ演算制御が可能となる と共に、 制御系の安定度の向上に著しく寄与する。
第 6図及び第 7図は本発明のさらに他の実施例を示すプロック図であり、 自己 消弧素子として I GBTを用いた電圧型三相 PWM電力変換装 Sを 2台並列運転 する場合を示している。
図中 1 0 1は空間ベクトル演算器であり、 前述の第 1図の実施例と同様の働き をする。
べクトル演算器 1 0 1から出力された Ti , Tj , To , T, は、 べクトル順 列器 1 02に入力され、 前掲の第 4図に示す 2つのべクトル列 P 1, P 2にした がって出力順を決定される。 さらに、 この出力順にしたがって、 各ベクトルが所 定の時間出力される。 べク トル列 P 1, P 2はそれぞれ第一鼋カ変換装置 1 1 4、 第二電力変換装置 1 2 4に対して設定されたべクトル列であり、 P 2は P 1にお いて最後尾にあるゼロべクトル V。 を先頭に移動させた構成となっている。
PWM生成器 1 03はべクトル順列器 1 02の内部においてべク トル列 P 1に 基づいて順列され、 出力されたベクトルに応じて PWMを生成し、 第一電力変換 装置 1 1 4のゲート駆動回路に対して素子の点消弧指合を出力するものであり、 同様に PWM生成器 1 0 3はべクトル列 P 2に基づいた PWMを生成し第二電力 変換装置 1 24のゲ一ト回路に対して素子の点消弧指合を出力するものである。 さらに PWM生成器 1 0 3はべクトル伏態信号を出力し、 第一、 第二電力変換 装置に与える PWM出力が共にゼロべクトル (V。 , V7 ) 状態の時は、 PWM 上端信号を " 0" 、 この状憨以外は " 1 " を出力する。
切換スィツチ 8はフリッブフロッブ 1 9から出力される信号が " 0 " の時は "A" 側を、 " ' の時は "B" 側を選択する。 これにより、 第一電力変換装置 及び第二電力変換装置に与える PWM出力を入れ換える。
オンディレイカウンタ 9は電力変換装置主回路素子 I G B Tが上下短絡するの を防止するため、 PWM出力が "0" から " 1 " に変化する時に時間遅れを持た せている。 ゲートブロック回路 1 0は比較器 1 6の出力信号が " 0" の時はオンディレイ カウンタの出力値をそのまま第一、 第二電力変換装置に出力する。
比較器 1 6の出力信号が " 1 " の時はオンディレイカウン夕の出力に関係なく 電力変換装置に " 0" を出力する。
第一電力変換装置 1 1 4及び第二電力変換装置 1 2 4は、 それぞれ与えられる ゲートブロックを介して与えられる PWM出力にしたがって、 "0" の時は自己 消弧素子を消弧し、 " Γ' の時は自己消弧素子を駆動し、 三相交流電力を出力す ο
各電力変換装置の交流出力端子 U 1— U 2, V 1 -V2, W1 — W2は三相リ ァクトル 4によって各々結合されており、 これによつて負荷 5には両電力変換装 置からの交流電力が供給される。
電流検出器 3で検出された各出力電流は、 減算器 1 1により各相毎の差分を求 める。 この差分電流はサンブルホールド回路 1 2により検出された、 PWM周期 の半周期の電流との平均値を求める。
この差分平均電流は比較器 1 6、 1 7に入力される。
比較器 1 6は設定器 1 4の設定値と絶対値回路 2 0を介して得た差分平均電流 の絶対値を比較して、 差分平均電流の絶対値が大きい場合 " 1 " を出力し、 小さ い場合は " 0" を出力する。
比較器 1 7は設定器 1 5の設定値と差分平均電流値を比較して、 差分平均電流 値が大きい場合 " 1 " を出力し、 小さい場合は "0 " を出力する。
フリッブフロッブ 1 9は PWM状態信号と比較器 1 7の出力より、 第 1表に従 い、 切換スィッチに指令を与える。 第 1表
Figure imgf000013_0001
上記回路構成により、 以下の動作ができる。
比較器 1 6が動作すると第一、 第二電力変換装置の出力波形が入れ替わり、 負 荷に印加される相電圧波形が変わることなく、 横流電流が減衰する。
比較器 1 7が動作すると第一、 第二電力変換装置の出力波形がオフし、 横流電 流が直ちに減衰して、 リアク トルから発生する磁気損失が減袞する。
本発明によれば、 線間電圧の波形を変化させることなく、 電力変換装置の出力 相間に生じる横流電流が抑制されることで、 横流電流に比例して増加する出カリ ァク トルの磁気損失が抑制できる。 これにより、 出力リアクトルが小型にでき、 電動機に供給される露流も増加することになる。 産業上の利用の可能性
本発明は、 大容量電動機を駆動する鉄鋼ブラントゃ化学ブラント等のブラント システムにおいて利用することができる。

Claims

請 求 の 範 囲
1. 直流電源を設け、 オン,オフ指合に応じて点弧,消弧を行う自己消弧素子 により、 前記直流電源からの ¾圧を交流電圧に変換する電力変換装置を、 リアク トルを介して並列接梡した多重結合電力変換装置において、
前記並列接銃した各電力変換装置にオン ·オフ指令を与えるため、 電力変換装 置に出力させる交流電圧指令の振幅と位相に基づいて、 複数の空間電圧べクトル を選択し、 各々の出力時間を演算する空間電 Eべクトル演算器と、
前記選択された複数個の空間電圧べクトルの発生順序を 2組決定するべクトル 順列器と、
このべクトル順列器の出力に応じてオン ·オフ指令を発生させる PWM生成器 糊ん、
前記べクトル順列器で決定された 2組の順序の異なる空間電圧べクトル列を前 記 PWM生成器に与え、 前記電力変換装置の出力電圧を制御する手段を備えたこ とを特徴とする多重結合した電力変換装置。
2. 前記交流電圧指令の位相より、 0度から 360度までを 6区間に分けて、 複数個の空間電圧ベクトル 〔V0〕 、 〔Vi〕 、 〔Vj〕 、 〔V7〕 ( i = 1. 3, 5、 j =2, 4, 6) を選択し、 かつ前記交流電圧指合の振幅 Vc に基づいて空 間電圧べクトル 〔Vi〕 、 CVj) の出力時間 Ti 、 T〗 及び空間電圧ゼロべク ト ノレ 〔V。〕 、 〔V7〕 の出力時間 Τ0、 Τ7
Ti = {Vc · Tc ,sin(60度一 0a ) } / {2 · sin(60度) }
Tj = (Vc - Tc · sin 0a ) / {2 ■ sin(60度) }
Figure imgf000014_0001
0a =0- 60 - N
ここで、 Tc はスイッチング周期、 0a は前記交流電圧指令の振幅 Vc と位相 0により決まる指合空間 ¾圧べク トル 〔VC 〕 が、 選択された空間鼋圧ベタトル 〔Vi 〕 に対してなす電気的角度、 Nは位相 0の角度によって変化し、 前記 6区 間において 0度 60度を 0とし、 それから Nに順次 1を加え、 300度≤ θ < 3 6 0度を N - 5とする数値で演算した空間電圧べクトルの各出力時間を决 定する空間電圧べクトル演算器を具備したことを特徴とする請求の範囲 1記載の 多重結合した電力変換装置。
3 . 前記空間電圧べクトル演算器で選択した複数個の空間電圧べクトル 〔V。〕 〔V i〕 、 〔V j〕 、 〔V 7〕 より、 空間電圧べクトル 〔V i〕 、 〔V j〕 、 〔V 7〕 、 〔V j〕 、 〔V i〕 、 〔V。〕 の順序に並べた空間電圧べクトル P 1 と、 空間べク トル 〔V。〕 、 〔V i〕 、 CV j) 、 〔V 7〕 、 〔V j〕 、 〔V i〕 の順序に並べた空 間電圧べクトル列 P 2の 2組を出力し、 この順序に従い前記 P WM生成器にオン •オフ指令を発生させるべクトル順列器を具備したことを特徵とする請求の範囲 1記載の多重結合した電力変換装置。
4 . 直流鼋源を設け、 オン ·オフ指令に応じて点弧 ·消弧を行う自已消弧素子 により、 前記直流電源からの電圧を交流電圧に変換する第 1及び第 2の電力変換 装置を、 リアクトルを介して並列接铙した多重結合電力変換装置において、 各電力変換装置に与えるオン ·オフ指令を発生する複数個の空間電圧べクトル について、 第 1の電力変換装置に与える複数個の出力時間の異なる空間電圧べク トルの第 1の列に対して、 第 2の電力変換装置に与える復数個の出力時間の異な る空間電圧べクトルの第 2の列の順序を、 前記第 1の列の最後尾にある空間電圧 ベクトル 1個の出力時間分だけずらせることを特徴とする多重結合した電力変換 装置の制御方法。
5 . 直流電源を設け、 オン ·オフ指令に応じて点弧 ·消弧を行う自己消弧素子 により、 前記直流電源からの電圧を交流電圧に変換する電力変換装置を、 リアク トルを介して並列に接銃した多重結合電力変換装置において、
前記並列接続した各電力変換装置にオン ·オフ指令を与えるため、 電力変換装 置に出力させる交流電圧の振幅と位相に基づいて、 複数の電圧べクトルを選択し、 各々の出力時間を演算する空間電圧べクトル演算器と、
前記選択された複数個の空間電圧べクトルについて、 第 1の電力変換装置に与 える複数個の空間電圧べクトルの第 1列の順序に対して、 第 2の電力変換装置に 与える複数個の空間 ¾圧べクトルの第 2列の順序を、 前記第 1の列の最後尾にあ る空間電圧べクトル 1個の出力時間分だけずらして空間電 EEべクトルの発生順序 を 2組決定するべクトル順列器と、
前記べクトル順列器の出力に応じてオン ·オフ指令を発生させるパルス幅変調 器を備ん、
前記べクトル順列器で設定された 2組の順序の異なる空間電圧べクトル列を前 記パルス幅変調器に与え、 前記電力変換装匱の出力電圧を制御する多重結合した 電力変換装置において、
前記 2組の霪カ変換装置の各出力相毎に電流検出器を設け、 各出力相毎に前記 第 1の電力変換装置と第 2の電力変換装置の出力 ¾流の差分を演算し、 この差分 を横流電流分とする手段を備えたことを特徴とする多重結合した電力変換装 g。
6 . 2組の電力変換装置の各出力相電流を P WM周期の半周期毎にサンブルし て検出し、 各出力相毎に第 1の電力変換装置と第 2の黧カ変換装置の出力電流の 差分を演算し、 前回サンブルして演算した出力電流の差分と今回サンブルして演 算した出力電流の差分の平均値を前記横流 ¾流分とする手段を備えたことを特徵 とする請求の範囲 5記載の多重結合した電力変換装置。
7 . 前記並列に接続された 2組の電力変換装置の横流電流分を検出し、 前記横流 電流分が所定値を超えた時にオン ·オフ信号をオフにして前記電流変換装置を停 止させる手段を備えたことを特徴とする請求の範囲 5記載の多重結合した電力変 換装置。
8 . 前記並列に接铙された 2組の電力変換装置の各相の横流電流分を検出し、 前記横流電流分の極性の正負に応じて、 複数個の空間電圧べク トルの第 1列と複 数個の空間電圧べクトルの第 2列を、 第 1の電力変換装置と第 2の電力変換装置 に入れ換えて与え、 鬣力変換装匱の出力電圧を制御する手段を備えたことを特徵 とする請求の範囲 5記載の多重結合した電力変換装置。
PCT/JP1995/000327 1994-03-02 1995-03-01 Convertisseur de courant a couplage multiple et son systeme de regulation WO1995024069A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69521370T DE69521370T2 (de) 1994-03-02 1995-03-01 Mehrfach gekoppelter leistungswandler und seine steuerverfahren
EP95910720A EP0697763B1 (en) 1994-03-02 1995-03-01 Multi-coupled power converter and its controlling method
KR1019950704806A KR100272395B1 (ko) 1994-03-02 1995-03-01 다중결합된 전력변환장치 및 그 제어방법
JP52226495A JP3385616B2 (ja) 1994-03-02 1995-03-01 多重結合した電力変換装置及びその制御方法
US08/537,755 US5657217A (en) 1994-03-02 1995-03-01 Multi-coupled power conversion system and control method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5810994 1994-03-02
JP6/58109 1994-03-02

Publications (1)

Publication Number Publication Date
WO1995024069A1 true WO1995024069A1 (fr) 1995-09-08

Family

ID=13074813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000327 WO1995024069A1 (fr) 1994-03-02 1995-03-01 Convertisseur de courant a couplage multiple et son systeme de regulation

Country Status (7)

Country Link
US (1) US5657217A (ja)
EP (1) EP0697763B1 (ja)
JP (1) JP3385616B2 (ja)
KR (1) KR100272395B1 (ja)
DE (1) DE69521370T2 (ja)
TW (1) TW437149B (ja)
WO (1) WO1995024069A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088139A (ja) * 2001-09-10 2003-03-20 Nissin Electric Co Ltd 系統連系用電力変換装置及びその制御方法
WO2010001739A1 (ja) * 2008-07-01 2010-01-07 ダイキン工業株式会社 直接形変換装置及びその制御方法
JP2012531878A (ja) * 2009-07-02 2012-12-10 エービービー テクノロジー アーゲー マルチレベル電圧出力および高調波補償器を備える電力変換器

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331682A (ja) * 1996-06-12 1997-12-22 Meidensha Corp 電力変換器
US5952733A (en) * 1997-12-05 1999-09-14 Intel Corporation Power distribution system for electronic devices
US6051898A (en) 1998-01-02 2000-04-18 Japan Servo Co., Ltd. Stepping motor having external rotor and electromagnetic-combined-permanent-magnet stator
US6340851B1 (en) 1998-03-23 2002-01-22 Electric Boat Corporation Modular transformer arrangement for use with multi-level power converter
US6118932A (en) * 1998-03-23 2000-09-12 Electric Boat Corporation Method and arrangement for a high voltage single-stage variable speed drive
US6111329A (en) * 1999-03-29 2000-08-29 Graham; Gregory S. Armature for an electromotive device
US6181585B1 (en) 1999-07-12 2001-01-30 Hughes Electronics Corporation Multiple output power supply circuit for an ion engine with shared upper inverter
US6154383A (en) * 1999-07-12 2000-11-28 Hughes Electronics Corporation Power supply circuit for an ion engine sequentially operated power inverters
US6304040B1 (en) 1999-07-12 2001-10-16 Hughes Electronics Corporation Starter circuit for an ion engine
US6459602B1 (en) 2000-10-26 2002-10-01 O2 Micro International Limited DC-to-DC converter with improved transient response
US6873085B2 (en) * 2001-05-16 2005-03-29 G & G Technology, Inc. Brushless motor
JP4641124B2 (ja) * 2001-08-02 2011-03-02 本田技研工業株式会社 多重結合インバータ装置
FI113720B (fi) * 2002-06-13 2004-05-31 Abb Oy Menetelmä suuntaajasiltojen yhteydessä
US20040071003A1 (en) * 2002-09-04 2004-04-15 G & G Technology, Inc. Split phase polyphase inverter
EP1427094A3 (de) * 2002-12-06 2006-01-25 Loher GmbH Verfahren zum Betrieb mehrerer parallelgeschalteter Pulswechselrichter
US7046527B2 (en) * 2003-05-09 2006-05-16 Distributed Power, Inc. Power converter with ripple current cancellation using skewed switching techniques
JP2005086918A (ja) * 2003-09-09 2005-03-31 Fanuc Ltd モータ駆動装置
US7023171B2 (en) * 2003-11-12 2006-04-04 Ut-Battelle Llc Integrated inverter for driving multiple electric machines
ES2624929T3 (es) * 2004-08-27 2017-07-18 Mitsubishi Denki Kabushiki Kaisha Generador de señal PWM de tres fases
US20060152085A1 (en) * 2004-10-20 2006-07-13 Fred Flett Power system method and apparatus
JP2006149153A (ja) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp モータの制御装置
US7154237B2 (en) * 2005-01-26 2006-12-26 General Motors Corporation Unified power control method of double-ended inverter drive systems for hybrid vehicles
US7199535B2 (en) * 2005-01-26 2007-04-03 General Motors Corporation Doubled-ended inverter drive system topology for a hybrid vehicle
DE102006027716B3 (de) * 2006-06-15 2008-01-24 Lenze Drive Systems Gmbh Ansteuerung mit Wechselrichtern bei geringen Schaltverlusten
US7535738B2 (en) * 2006-08-23 2009-05-19 Rockwell Automation Technologies, Inc. Method and apparatus including multi-drive configurations for medium voltage loads
US7692938B2 (en) * 2006-09-06 2010-04-06 Northern Power Systems, Inc. Multiphase power converters and multiphase power converting methods
US20080258661A1 (en) * 2007-04-23 2008-10-23 Nagashima James M Inverter topology for an electric motor
GB2449427B (en) 2007-05-19 2012-09-26 Converteam Technology Ltd Control methods for the synchronisation and phase shift of the pulse width modulation (PWM) strategy of power converters
DE102007063434A1 (de) * 2007-06-29 2009-01-02 Enasys Gmbh Wechselrichtersystem und Steuerverfahren
US7847437B2 (en) * 2007-07-30 2010-12-07 Gm Global Technology Operations, Inc. Efficient operating point for double-ended inverter system
US8122985B2 (en) * 2007-07-30 2012-02-28 GM Global Technology Operations LLC Double-ended inverter drive system for a fuel cell vehicle and related operating method
US8084972B2 (en) * 2007-11-16 2011-12-27 Honeywell International Inc. Dual lane control of a permanent magnet brushless motor using non-trapezoidal commutation control
US7800331B2 (en) * 2007-11-27 2010-09-21 Gm Global Technology Operations, Inc. Method and system for operating an electric motor coupled to multiple power supplies
ATE552647T1 (de) 2009-07-02 2012-04-15 Converteam Technology Ltd STEUERUNGSVERFAHREN ZUR SYNCHRONISATION VON PARALLEL GESCHALTETEN STROMWANDLERN, DIE GEMÄß EINE PULSBREITENMODULATIONSSTRATEGIE (PWM) BETRIEBEN WERDEN
EP2477301A1 (de) * 2011-01-12 2012-07-18 VENPOWER GmbH Anordnung zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz
CN103516239B (zh) * 2012-06-29 2016-04-20 通用电气公司 改进的变流器调制系统和方法
US9030174B2 (en) 2012-09-14 2015-05-12 General Electric Company Current balance control in converter for doubly fed induction generator wind turbine system
JP5569583B2 (ja) * 2012-12-21 2014-08-13 株式会社安川電機 マトリクスコンバータ
CN103227580B (zh) * 2013-04-15 2015-01-21 中国矿业大学 一种三电平变频器控制方法
JP6302770B2 (ja) * 2014-06-30 2018-03-28 日立オートモティブシステムズ株式会社 モータ制御装置および該モータ駆動回路を用いた電動パワーステアリングシステム。
US9853570B2 (en) * 2016-02-26 2017-12-26 Deere & Company Parallel inverter scheme for separating conduction and switching losses
US20190319549A1 (en) 2016-11-16 2019-10-17 Schneider Electric Solar Inverters Usa, Inc. Interleaved parallel inverters with integrated filter inductor and interphase transformer
EP3574580B1 (en) 2017-01-30 2024-02-28 Carrier Corporation Method of controlling paralleled passive front-end rectifiers
WO2018140744A1 (en) 2017-01-30 2018-08-02 Carrier Corporation Paralleled passive front-end rectifiers with and without interleaving
US10291111B1 (en) * 2018-03-23 2019-05-14 Hamilton Sundstrand Corporation Feedback control for parallel power converter synchronization
US11368106B2 (en) * 2020-03-19 2022-06-21 Hamilton Sundstrand Corporation (HSC) Power converter PWM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124769A (ja) * 1986-11-12 1988-05-28 Mitsubishi Electric Corp 変圧器多重インバータのpwm方法
JPS63287371A (ja) * 1987-05-15 1988-11-24 Mitsubishi Electric Corp 相間リアクトル多重式pwnインバ−タ
JPH06178546A (ja) * 1992-12-09 1994-06-24 Mitsubishi Electric Corp 並列多重インバータ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815394B2 (ja) * 1983-10-31 1996-02-14 株式会社安川電機 多重結合インバータ装置の接続・制御方法
US4843534A (en) * 1987-11-13 1989-06-27 Pacific Power Source Corp. DC to AC switching converter with phased delayed parallel switchers
JP2685586B2 (ja) * 1989-06-30 1997-12-03 株式会社日立製作所 多重インバータ装置
CA2074176A1 (en) * 1990-11-19 1992-05-20 Ronald Rohner Method and device for switching inverters in parallel
JPH0556648A (ja) * 1991-08-21 1993-03-05 Mitsubishi Electric Corp Pwmインバータの並列運転制御装置
JP3232615B2 (ja) * 1992-01-30 2001-11-26 三菱電機株式会社 インバータ装置
JP3226609B2 (ja) * 1992-06-24 2001-11-05 三菱電機株式会社 電力変換器の並列運転制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124769A (ja) * 1986-11-12 1988-05-28 Mitsubishi Electric Corp 変圧器多重インバータのpwm方法
JPS63287371A (ja) * 1987-05-15 1988-11-24 Mitsubishi Electric Corp 相間リアクトル多重式pwnインバ−タ
JPH06178546A (ja) * 1992-12-09 1994-06-24 Mitsubishi Electric Corp 並列多重インバータ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0697763A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088139A (ja) * 2001-09-10 2003-03-20 Nissin Electric Co Ltd 系統連系用電力変換装置及びその制御方法
WO2010001739A1 (ja) * 2008-07-01 2010-01-07 ダイキン工業株式会社 直接形変換装置及びその制御方法
US8659917B2 (en) 2008-07-01 2014-02-25 Daikin Industries, Ltd. Direct-type converting apparatus and method for controlling the same
JP2012531878A (ja) * 2009-07-02 2012-12-10 エービービー テクノロジー アーゲー マルチレベル電圧出力および高調波補償器を備える電力変換器

Also Published As

Publication number Publication date
US5657217A (en) 1997-08-12
JP3385616B2 (ja) 2003-03-10
TW437149B (en) 2001-05-28
DE69521370T2 (de) 2001-10-11
KR960702208A (ko) 1996-03-28
KR100272395B1 (ko) 2000-11-15
EP0697763B1 (en) 2001-06-20
EP0697763A1 (en) 1996-02-21
DE69521370D1 (de) 2001-07-26
EP0697763A4 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
WO1995024069A1 (fr) Convertisseur de courant a couplage multiple et son systeme de regulation
Siami et al. Simplified finite control set-model predictive control for matrix converter-fed PMSM drives
JP5163734B2 (ja) 3レベルインバータ装置
Dabour et al. Analysis and implementation of space-vector-modulated three-phase matrix converter
Barah et al. An optimize configuration of H-bridge multilevel inverter
JP4862475B2 (ja) 交流−交流直接変換装置のスイッチングパターン生成方法
WO2016148163A1 (ja) インバータの制御装置
Hussein Multilevel level single phase inverter implementation for reduced harmonic contents
JP5364303B2 (ja) 電流制御型電力変換器及び電流制御型電力変換器の出力電流波形改善方法
JP2019047701A (ja) 電力変換装置およびその制御方法
JP3431472B2 (ja) 電力変換装置
Zhang et al. Observer-pattern modeling and slow-scale bifurcation analysis of two-stage boost inverters
JPH11252992A (ja) 電力変換装置
JPH0779570A (ja) 電力変換装置
JP6935359B2 (ja) 直列多重電力変換装置
Dabour et al. Space vector PWM technique for three-to seven-phase matrix converters
JP2021029065A (ja) 直列多重電力変換装置
Zhiqiang et al. Based on space-vector pulse-width modulated reversible rectifier
dos Santos et al. Modulated Model Predictive Control (M 2 PC) Applied to Three-Phase Dual-Converter-Based Rectifiers
Melo et al. Finite control set-model predictive control applied to dual-converter-based rectifiers
JP4600731B2 (ja) 交流交流直接変換装置の制御装置
Joshi et al. Multi-level inverter for induction motor drives: implementation using reversing voltage topology
JP2003319662A (ja) マルチレベルインバータの制御方法
Sagayaraj et al. Modeling of Nine-phase Voltage Source Inverter with Space Vector PWM Techniques
Ahmed et al. An all-digital generalized space vector control technique without any trigonometric calculations for higher-order multilevel inverters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08537755

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995910720

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019950704806

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995910720

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995910720

Country of ref document: EP