WO1995016637A1 - Particule de dioxyde de titane a base de rutile contenant du fer ultra-fin et procede pour sa production - Google Patents

Particule de dioxyde de titane a base de rutile contenant du fer ultra-fin et procede pour sa production Download PDF

Info

Publication number
WO1995016637A1
WO1995016637A1 PCT/JP1993/001802 JP9301802W WO9516637A1 WO 1995016637 A1 WO1995016637 A1 WO 1995016637A1 JP 9301802 W JP9301802 W JP 9301802W WO 9516637 A1 WO9516637 A1 WO 9516637A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
iron
rutile
ultrafine
weight
Prior art date
Application number
PCT/JP1993/001802
Other languages
English (en)
French (fr)
Inventor
Haruo Okuda
Hideo Futamata
Akihito Sakai
Masakazu Hattori
Original Assignee
Ishihara Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha, Ltd. filed Critical Ishihara Sangyo Kaisha, Ltd.
Priority to US08/501,053 priority Critical patent/US5714260A/en
Priority to PCT/JP1993/001802 priority patent/WO1995016637A1/ja
Priority to CA002155957A priority patent/CA2155957C/en
Priority to AT94902110T priority patent/ATE275096T1/de
Priority to EP94902110A priority patent/EP0684208B1/en
Priority to ES94902110T priority patent/ES2224104T3/es
Priority to DE69333612T priority patent/DE69333612T2/de
Priority to AU56592/94A priority patent/AU675477B2/en
Publication of WO1995016637A1 publication Critical patent/WO1995016637A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates to an ultrafine iron dioxide containing iron, a method for producing the same, and a UV-shielding cosmetic or pharmaceutical using the same.
  • the present invention relates to a composition or a UV shielding paint.
  • Ultrafine titanium dioxide having a primary particle size of about 0.1 m or less shows transparency because it transmits visible light when it is incorporated into a resin film or molded product, while it blocks ultraviolet light and prevents ultraviolet light. It is well known that pigmentary grade titanium dioxide with a primary particle size of 0.15 to 0.5 m exhibits properties different from those of pigmentary titanium dioxide, which protects substances that discolor or change in quality. For this reason, its use as a UV-shielding cosmetic that makes use of natural skin color and prevents sunburn due to UV-light has attracted particular attention recently.
  • ultrafine titanium dioxide that has been conventionally marketed has a strong cohesive force and it is difficult to completely disperse the primary particles in a water-based or oil-based medium, for example, ultrafine titanium dioxide is distributed.
  • the combined UV-shielding cosmetics are applied to the skin, they often cause strong bluish scattering, imparting a bluish hue, which has the disadvantage of making the skin look unhealthy.
  • conventional particulate titanium dioxide emits light in the wavelength range of ultraviolet B (wavelength 280 to 290 nm) is sufficiently shielded, but the light of wavelengths in the UV A region (wavelength 380 to 320 nm) is insufficiently shielded. Skin disorders are a problem, and it is the fact that organic ultraviolet absorbers are used in combination.
  • a UV-shielding cosmetic which has an excellent UV-shielding effect and does not give a bluish color
  • a cosmetic composition comprising fine-particle titanium oxide and fine-particle iron oxide (Japanese Patent Laid-Open No. 62-670) No. 14) has been proposed.
  • titanium dioxide and iron oxide in this way, due to differences in the dispersibility of the two, may cause color separation in the cosmetics, or cause ultraviolet rays A
  • problems such as insufficient shielding of light of the wavelength in the region.
  • several methods have been proposed for converting titanium dioxide and iron oxide into a single pigment in order to prevent the color separation.
  • titanium dioxide particles having an average particle size of 0.01 to l; zm are treated with iron oxide hydroxide or the like, and are not dried or fired (Japanese Patent Publication No. 4-501), 2) A basic higher fatty acid iron salt is applied to titanium dioxide having a maximum particle size of 0.1 m (Japanese Patent Application Laid-Open No. 61-264003). 3) Dioxide with a maximum particle size of 0.1 m or less.
  • the surface of titanium particles is treated with an oxide or hydroxide of aluminum, gay element, or iron (Japanese Patent Application Laid-Open No. 2-204432).
  • these methods use titanium dioxide fine particles, treat iron hydroxide or oxide on the surface thereof, and dry or calcine them.
  • the present invention provides an ultrafine iron-containing rutile-type dioxide, which is most suitable for cosmetics, pharmaceutical compositions or anti-ultraviolet paints, which have a greatly improved ability to shield the ultraviolet A region and do not impart a bluish hue. It is to get titanium.
  • the present inventors have conducted various studies in order to obtain ultrafine titanium dioxide having an excellent ultraviolet ray A shielding ability and not giving a bluish color tone.
  • a fine titania sol having a rutile nucleus is used as a base material, and a water-soluble salt of iron is neutralized in the presence of the sol to precipitate and coat the surface of the titania with iron oxide-containing iron.
  • the average single particle diameter force is from 0.01 to 0.1 ⁇ m, and the iron component is solidified inside the crystal. It has been found that dissolved rutile-type titanium dioxide ultrafine particles can be obtained.
  • the thus obtained iron-containing ultrafine particles of rutile-type titanium dioxide of the present invention have excellent shielding ability in the ultraviolet A region, and exhibit a very bluish color tone even when a cosmetic or the like containing the same is applied to the skin. It is few. That is, the present invention is a rutile-type crystal titanium dioxide having an average single particle diameter of 0.1 to 0.1 ⁇ m, and the iron component is Fe inside the crystal to be Ti 0 2 . And iron-containing ultrafine rutile type titanium dioxide characterized by containing 1 to 15% by weight.
  • fine titania sol having rutile nuclei is used as the base particles, and the surface thereof is coated with hydrated iron oxide, and then fired, so that the coated iron oxide or hydrated iron oxide is fired.
  • the average particle size of the ultrafine iron-containing particles of the present invention, rutile-type titanium dioxide is from 0.01 to 0.1 lm, preferably from 0.02 to 0. 0 8 m.
  • the amount of iron component dissolved in the rutile-type titanium dioxide crystal is 1 to 15% by weight, preferably 2 to 10% by weight, based on titanium dioxide, in terms of Fe. If the amount of the iron component is more than the above range, the amount of the iron component that does not form a solid solution in the crystal increases, and the coloring due to the iron component becomes too strong, and the heat resistance of titanium dioxide becomes high. This may cause problems such as impaired properties and chemical resistance. If the amount is less than the above range, it becomes difficult to obtain sufficient blueness reduction ability, ultraviolet A region shielding ability, and the like.
  • the iron-containing ultrafine-particle rutile-type titanium dioxide of the present invention may be made of aluminum, zinc, sodium, potassium, magnesium, magnesium, and lithium as necessary. At least one kind of metal element such as a metal may be contained in the crystal in a small amount. This makes it possible to control the particle size of the obtained ultrafine particles of iron-containing rutile-type titanium dioxide and improve the durability. Further, the ultrafine titanium dioxide of the present invention has at least one kind of oxide or hydroxide of a metal such as aluminum, gayne, titanium, zirconium, tin, and antimony on the surface thereof.
  • it may be coated with at least one kind of organic substance such as carboxylic acid, polyol, amide, siloxane, and the like, in which case, dispersibility in cosmetics and paint, and durability of the coating film. Performance can be further improved.
  • organic substance such as carboxylic acid, polyol, amide, siloxane, and the like
  • a fine titania sol having a rutile nucleus is used as the base particles, and an iron oxide or a hydrated oxide is first precipitated on the surface of the titania.
  • the microtitania sol having rutile nuclei used herein is a sol of microhydrated titanium oxide showing rutile-type crystal peaks as measured by X-ray diffraction, and its average crystallite diameter is It is usually 50 to 120 A. This is used, for example, as a seed crystal in the hydrolysis of a titanium sulfate solution for the purpose of promoting rutile conversion of titanium dioxide and adjusting the particle size in the production of a titanium dioxide pigment by a sulfuric acid method.
  • the crystal structure From the viewpoint of surface activity, such fine titania sols as those which are different from general titanium hydroxide such as amorphous methyl titanate and ortho titanate are, for example, used. , 1) T i ⁇ 2 to 1 5 0 ⁇ 2 2 0 g Z ⁇ of tetrachloride Ji data down solution is heated at boiling point 2 to 1 0 hours hydrolyzing, 2) and T i ⁇ 2 And hold an aqueous solution of titanium sulfate or titanium tetrachloride at 150 to 220 g / ⁇ with an aqueous solution such as sodium hydroxide while keeping the aqueous solution at 5 to 30%.
  • Amorphous hydrous titanate such as methyl titanate or ortho titanate is placed in an aqueous sodium hydroxide solution, and the mixture is heated at 80 ° C to boiling point for 1 to 10 hours. After heat treatment, filtration, Kiyoshi was obtained in a method such as 1 to 0 hours of heat treatment at 8 0 ° Celsius to boiling then hydrochloric acid solution.
  • the above-mentioned fine titanium sol is preferably used at 40 to 90 ° C, preferably 60 to 8 ° C. 0. While heating to C, the water-soluble iron is added therein so as to be 1 to 15% by weight, and preferably 2 to 10% by weight, based on titanium dioxide, in terms of Fe. This can be achieved by adding salt and then neutralizing by adding an alkaline aqueous solution such as caustic soda or ammonia water.
  • the titania sol used should be adjusted to a titania (Ti02) concentration of 50 to 30 OgZ ⁇ as necessary.
  • Ferrous chloride as the water-soluble salt to be added Ferrous sulfate, ferrous nitrate, ferric chloride, ferric sulfate, ferric nitrate and the like can be mentioned.
  • the neutralization reaction is carried out while adjusting the pH of the system to 8-10.
  • the product obtained in the above step is separated, washed, dried, or, without drying, calcined at a temperature of 300 to 850 ° C and pulverized.
  • Iron-containing particulate rutile-type titanium dioxide having a particle size of 0.01 to 0.1 ⁇ m. Grinding is performed by wet milling with sand mill, pebble mill, disc mill, etc., fluid energy storage, non-oil mill, edge mill mill, etc. It can be performed by dry pulverization or the like.
  • a titania sol having a rutile nucleus is used as the base particles, so that the iron component easily dissolves in the titanium dioxide crystal even when calcined at a relatively low temperature, In addition, stable ultrafine titanium dioxide of rutile crystal can be easily obtained.
  • ultrafine iron-containing rutile-type titanium dioxide particles obtained by the above method are coated on the surface of aluminum silicon, titanium, zirconium, tin, and aluminum.
  • the hydrated oxide of a metal such as titanium may be precipitated and coated.
  • a slurry is prepared by dispersing iron-containing rutile-type titanium dioxide obtained by firing and pulverizing in water. After being wet-milled and classified as required, it is selected from the group of water-soluble salts of aluminum, gay, titanium, zirconium, tin and antimony. At least one of them is 1 to 30 weight in terms of oxide based on titanium dioxide.
  • the water-soluble salt shows an alkaline property in the slurry, use an acidic solution such as sulfuric acid or hydrochloric acid. If the water-soluble salt shows an acidity in the slurry, use a caustic solution. Neutralized with an alkaline solution such as water, ammonia water, etc. to precipitate and coat the surface of the titanium dioxide particles, which are then separated, dried and pulverized. It can be carried out. By this coating treatment, the dispersibility and durability of the iron-containing ultrafine particle rutile-type titanium dioxide dispersion medium can be improved.
  • the iron-containing ultrafine rutile type titanium dioxide of the present invention is useful for various ultraviolet shielding cosmetics and pharmaceutical compositions and ultraviolet shielding coatings. It is also suitable for UV-shielding wood coatings, which are being developed.
  • the iron-containing ultrafine-particle rutile-type titanium dioxide of the present invention may be used as it is in various media media for application, but may be used in the presence of various dispersants.
  • the dispersion may be an aqueous dispersion or an oil dispersion dispersed in a liquid medium, and the liquid dispersion may be mixed with a medium for application.
  • the aqueous or oily dispersions described above can be prepared by various methods.
  • the aqueous dispersion is composed of a medium mainly composed of water and a dispersant, for example, a condensed phosphoric acid compound, a polycarboxylic acid compound, an amino acid compound, a polyoxyethylene alkyl ether, or an alkyl ether.
  • a dispersant for example, a condensed phosphoric acid compound, a polycarboxylic acid compound, an amino acid compound, a polyoxyethylene alkyl ether, or an alkyl ether.
  • Minor alcohols and oily dispersions include oily media such as vegetable oils, animal oils, mineral oils, and silicones and dispersants, such as polyoxyethylene alkyl ethers and solvitan. Fatty acid esters, polyoxyethylene Polyurethane esters, fatty acid alcohol amides, polyester-modified silicone oils, silicone resins, etc.
  • Such as sandmill, pebblemill, disc It can be prepared by mixing and pulverizing ultrafine iron-containing rutile-type titanium dioxide into a pulverizer such as a mill. These solids have a concentration of about 20 to 70% by weight, preferably about 40 to 60% by weight.
  • This slurry was heated to 70 ° C and stirred well.
  • et al. was added over a period of 3 0 min T i ⁇ 2 to a pair Shi F e to 7 wt% of an aqueous solution of ferrous sulfate (F e concentration 5 0 g / £) in this water
  • the sodium oxide solution was added over a period of 40 minutes to adjust the pH to 9, and the surface of the titanium oxide particles was precipitated with iron oxide hydroxide and coated. After aging for 60 minutes, the mixture was filtered and washed.
  • the obtained washed cake is baked at 600 ° C for 3 hours, dispersed in water, and wet-milled with sand mill to obtain a slurry of ultrafine titanium dioxide. -70. Heat to C and stir well, then add 2.0 weight of A1203 to Ti02. A 30% aqueous solution of aluminum sulfate was added over 30 minutes, and then a sodium hydroxide solution was added, and the pH was adjusted to 7.0 to precipitate and cover the aqueous aluminum. .
  • the mixture was aged for 60 minutes, filtered, washed, dried, pulverized with a fluid energy mill, and ultrafine titanium dioxide (A) having an average single particle size of 0.04 / m as determined by electron microscopy. ).
  • Example 2 50 parts by weight of the ultrafine iron-containing rutile type titanium dioxide obtained in Example 1 was added to 49 parts by weight of purified water, and 1 part by weight of sodium hexametharate was added. After mixing, the zirconia beads were mixed and ground with sandmill as a grinding medium to obtain an aqueous dispersion (B) (viscosity 95 cP, pH 8.2) o
  • Ultrafine titanium dioxide (C) was obtained in the same manner as in Example 1 except that the aqueous ferrous sulfate solution was not added. Comparative Example 2
  • the ultrafine titanium dioxide (D) of Comparative Example 2 was calcined at 600 ° C. for 3 hours and pulverized with a fluid energy mill. Ultrafine titanium dioxide (E) was obtained.
  • Ultrafine titanium dioxide (A) and (C) to (G) were used as sunscreen creams with the following formulas, respectively. Further, the aqueous dispersion of the sample (B) was mixed with 3.0 parts by weight of titanium dioxide based on the weight of titanium dioxide and the following formulation (provided that 51.1 parts by weight of purified water) was used as the sunscreen cream. did.
  • Each of the above-mentioned creams was applied on a quartz glass so as to have a film thickness of 25 m, and the transmittance of 75 to 300 nm was measured with a spectrophotometer.
  • Table 1 shows the above evaluation results.
  • the iron-containing ultrafine particles of rutile-type titanium dioxide obtained by the present invention have a solid solution of iron component in the crystal of titanium dioxide.
  • 1) cosmetics, pharmaceutical compositions or paints under strong dispersion conditions 2) No color separation between iron component and titanium dioxide even when blended in 2) UV-shielding cosmetics, when applied to pharmaceutical compositions, UV-A shielding ability is significantly improved, 3) Cosmetics When applied to a pharmaceutical composition, even when applied to the skin, it does not cause strong bluish scattering and shows a remarkably excellent effect such as making the skin look healthy.
  • an ultraviolet shielding wood paint it can provide an excellent ultraviolet shielding effect and a favorable color tone.
  • the aqueous dispersion or oil dispersion of the iron-containing ultrafine particles does not cause dust generation during compounding in various application application systems, and the mixing and pulverizing step at the time of compounding. Can be simplified.
  • a highly dispersible combination composition can be easily obtained, and the ultraviolet ray shielding effect is increased, and in particular, the cosmetic composition is more favorable in terms of use stability and stability in a pharmaceutical composition system. It can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

明 細 書 鉄含有超微粒子ルチル型二酸化チタ ン及びその製造方法 本発明は、 鉄を含有する超微粒子二酸化チタ ン、 その 製造方法およびこれを用いた、 紫外線遮蔽性の化粧料も し く は医薬組成物、 も し く は紫外線遮蔽性塗料に関する ものである。
従来の技術
一次粒子径約 0 . 1 m以下の超微粒子二酸化チタ ン は、 樹脂の膜或いは成形物に配合 した場合に可視光線を 透過させるので透明性を示 し、 一方、 紫外線を遮蔽 して 紫外線によ り変色、 変質する物質を保護する といつたよ う に、 一次粒子径 0 . 1 5 〜 0 . 5 mの顔料級二酸化 チタ ン とは異な った性質を示すこ とは良 く 知られている このために自然な肌色を生かし、 かつ紫外線によ る 日焼 け防止するための紫外線遮蔽性の化粧料と しての利用が 最近特に注目 されている。 しかしながら、 従来よ り市販 されている超微粒子二酸化チタ ンは凝集力が強 く 、 水系 油性系の媒体において一次粒子まで完全に分散させる こ とが難しいために、 例えば、 超微粒子二酸化チタ ンを配 合 した紫外線遮蔽性の化粧料を肌に塗布 した場合、 しば しば青みの強い散乱を起こ して、 青みの色調を与え、 そ のために肌を不健康に見せる欠点がある。 また、 従来の 微粒子二酸化チタ ンは紫外線 B領域の波長の光線 (波長 3 2 0 〜 2 9 0 n m ) は十分に遮蔽する ものの紫外線 A 領域の波長の光線 (波長 3 8 0 〜 3 2 0 n m ) の遮蔽は 不十分であ り、 近年、 A領域の紫外線によ る皮膚障害が 問題とな り、 こ のため有機紫外線吸収剤等を併用 してい るのが実情である。
紫外線遮蔽効果に優れ、 青み色調を与えない紫外線遮 蔽性の化粧料と して、 例えば、 微粒子酸化チタ ン と微粒 子酸化鉄を配合 した化粧料組成物 (特開昭 6 2 - 6 7 0 1 4 号) が提案されている。 しかしな力、'ら、 こ の よ う に ただ単に二酸化チタ ン と酸化鉄とを配合 しただけでは、 両者の分散性の違いによ り、 化粧料中で色分かれを起こ した り、 紫外線 A領域の波長の光線の遮蔽が不十分であ るな どの問題がある。 最近、 前記色分かれを防止するた め、 二酸化チタ ン と酸化鉄とを単一顔料化しよ う とする 方法がい く つか提案されている。 例えば、 1 ) 平均粒径 0 . 0 1 〜 l ;z mの二酸化チタ ン粒子に含水酸化鉄等の 処理を施 し、 乾燥ない し焼成する (特公平 4 一 5 0 0 1 号) 、 2 ) 最大粒径が 0 . 1 mの二酸化チタ ンに塩基 性高級脂肪酸鉄塩を施す (特開昭 6 1 - 2 6 4 0 6 3 号) 、 3 ) 最大粒径が 0 . 1 m以下の二酸化チタ ン粒 子表面にアル ミ ニウ ム、 ゲイ素、 鉄の酸化物ま たは水酸 化物の処理を施す (特開平 2 - 2 0 4 3 2 6 号) 等が挙 げられる。 し力、 しながら、 これらはいずれも二酸化チタ ン微粒子を用い、 その表面上に鉄の水酸化物または酸化 物を処理 し、 乾燥ま たは焼成する方法であるが、 これ ら によ る場合はいわゆる青み低減や紫外線 A領域の遮蔽効 果が十分でない。 また、 F e 2 0 3 Z T i ◦ 2 (重量 比) 力 0 . 0 5 〜 5 0 である酸化チタ ン · 酸化鉄複合ゾ ル (特開平 2 — 1 7 8 2 1 9 号) が提案されている。 こ れはチタ ンゾルでは不充分な、 紫外線 A領域の遮蔽能力 向上を目的 と した ものであるが、 ゾルの形態であるため に、 化粧料、 医薬組成物及び塗料への配合に制約があ り 耐久性や長期安定性の点でも問題を残している。
発明の要約
本発明は、 紫外線 A領域の遮蔽能力が大き く 改善され 青みの色調を与えない紫外線遮蔽性の化粧料、 医薬組成 物ま たは紫外線防止塗料な どに最適の鉄含有超微粒子ル チル型二酸化チタ ンを得る こ とである。
本発明者等は、 紫外線 A領域の遮蔽能力に優れ、 青み の色調を与えない超微粒子二酸化チタ ンを得るべ く 種々 検討を行っ た。 その結果、 基体物質と してルチル核を有 する微小チタニア ゾルを用い、 こ の ものの存在下に鉄の 水溶性塩を中和 して該チタニアの表面に含水酸化鉄を沈 殿、 被覆させ、 しかる後 3 0 0 〜 8 5 0 °Cで焼成する こ とによ り、 平均単一粒子径力、' 0 . 0 1 〜 0 . 1 〃 mであ り、 その結晶内部に鉄成分を固溶 したルチル型二酸化チ 夕 ン超微粒子が得られる こ とを見出 した ものである。
こ う して得られた本発明の鉄含有超微粒子ルチル型二 酸化チタ ンは、 紫外線 A領域の遮蔽能力に優れ、 これを 配合 した化粧料等を肌に塗布 して も青みの色調が極めて 少ない ものである。 即ち、 本発明は平均単一粒子径が 0 0 1 〜 0 . 1 〃 mのルチル型結晶の二酸化チ タ ンであ り その結晶内部に鉄成分を F e と して T i 02 に対 し、 1 〜 1 5 重量%含有 している こ とを特徴とする鉄含有超微 粒子ルチル型二酸化チタ ンである。
本発明においては、 ルチル核を有する微小チタニア ゾ ルを基体粒子と して用い、 その表面に含水酸化鉄を被覆 した後焼成するために、 被覆物である酸化鉄または含水 酸化鉄が焼成によ り二酸化チタ ン 'の結晶内部に固溶し、 1 ) 強い分散条件で化粧料、 医薬組成物または塗料に配 合 して も、 鉄成分と二酸化チ タ ンの色分かれが生じる こ とな く 、 2 ) 紫外線 A領域の遮蔽能力が著し く 向上し、 3 ) 青みの色調を示 しに く い等、 従来技術に見られない 顕著に優れた効果を発現する。 本発明の鉄含有超微粒子 ルチル型二酸化チタ ンの平均粒子径は電子顕微鏡写真に よ る平均単一粒子径と して 0 . 0 1 〜 0 . l m望ま し く は 0 . 0 2 〜 0 . 0 8 〃 mの ものであ る。 ルチル型二 酸化チタ ン結晶中に固溶する鉄成分の量は、 F e 換算で 二酸化チタ ンに対 して 1 〜 1 5 重量%、 好ま し く は 2 〜 1 0 重量%である。 該鉄成分の量が前記範囲よ り多き に 過ぎる と、 結晶内部に固溶 しない鉄成分が多 く な り、 そ の鉄分によ る着色が強 く な りすぎた り、 二酸化チタ ンの 耐熱性、 耐薬品性等が損なわれる等の問題が生 じる。 ま た、 前記範囲よ り少なき に過ぎる と、 充分な青み低減能 力、 紫外線 A領域遮蔽能力等が得られ難 く なる。 本発明の鉄含有超微粒子ルチル型二酸化チタ ンは、 前 記鉄成分と と も に、 必要に応 じアル ミ ニウム、 亜鉛、 ナ ト リ ウ ム、 カ リ ウ ム、 マ グネ シウ ム、 リ ン等の金属元素 の少な く と も一種をその結晶内に少量含有して も良い。 こ の こ と に よ り 、 得られる鉄含有超微粒子ルチル型二酸 化チ タ ンの粒子径を制御 した り、 耐久性を向上させた り する こ とができ る。 更に、 本発明の超微粒子二酸化チタ ンは、 その表面がアル ミ ニウム、 ゲイ素、 チタ ン、 ジル コニゥム、 スズ、 ア ンチモ ン等の金属の酸化物または水 酸化物の少な く と も一種、 またはカルボン酸、 ポ リ オ一 ル、 ァ ミ ン、 シ ロキサ ン等の有機物の少な く と も一種で 被覆されて も良 く 、 その場合、 化粧料、 塗料への分散性 及び塗膜の耐久性を一層向上させる こ とができ る。
次に本発明の鉄含有超微粒子ルチル型二酸化チタ ンの 製造方法について説明する。
本発明においては、 特に基体粒子と して、 ルチル核を 有する微小チタニア ゾルを用い、 まずこ のチタニアの表 面に鉄の酸化物ま たは含水酸化物を沈殿させる。 こ こで 用いるルチル核を有する微小チタニア ゾルとは、 X線回 折法によ る測定でルチル型結晶の ピー ク を示す微小水和 酸化チタ ンのゾルであ り、 その平均結晶子径は普通 5 0 〜 1 2 0 Aの ものである。 こ の ものは例えば、 硫酸法二 酸化チタ ン顔料の製造において、 二酸化チタ ンのルチル 化促進及び粒径の調節を目的に硫酸チタ ン溶液の加水分 解の際に種晶 と して用い られる ものであ り、 結晶構造、 表面活性の面か ら一般の水酸化チタ ン例えば非晶質の メ 夕 チ タ ン酸、 オル ト チタ ン酸な ど と は異な る も のであ る こ の よ う な微小チ タニア ゾルは例えば、 1 ) T i 〇 2 と して 1 5 0 〜 2 2 0 g Z ^ の四塩化チ タ ン水溶液を沸 点で 2 〜 1 0 時間加熱 して加水分解する、 2 ) T i 〇 2 と して 1 5 0 〜 2 2 0 g / ^ の硫酸チタ ン水溶液或いは 四塩化チ タ ン水溶液を 5 〜 3 0 てに保持 しなが ら水酸化 ナ ト リ ゥ ムな どのアル力 リ 溶液で中和 して コ ロ イ ド状の 非晶質水酸化チ タ ンを析出 させ、 こ の コ ロ イ ド状水酸化 チ タ ンを 6 0 〜 8 0 °Cで 1 〜 1 0 時間熟成する、 3 ) メ 夕 チ タ ン酸或いはオル ト チ夕 ン酸な どの非晶質含水酸化 チ タ ンを水酸化ナ ト リ ウ ム水溶液に入れ、 8 0 °C〜沸点 で 1 〜 1 0 時間加熱処理 した後濾過、 洗浄 し、 その後塩 酸溶液中で 8 0 °C〜沸点で 1 〜 1 0 時間加熱処理する等 の方法で得 られる。
本発明の方法において、 該チ タニアの表面に鉄の酸化 物、 含水酸化物を沈殿させる には、 例えば前記微小チ 夕 二ァ ゾルを 4 0 〜 9 0 °C望ま し く は 6 0 〜 8 0 。Cに加熱 しなが ら、 こ の中に F e 換算で、 二酸化チタ ンに対 して 1 〜 1 5 重量%、 好ま し く は 2 〜 1 0 重量% とな る よ う に水溶性鉄塩を添加 し、 次に苛性ソ ー ダ、 ア ンモニア水 等のアル力 リ 性水溶液を添加 して中和する こ と に よ り 、 行う こ とができ る。 使用する チタニア ゾルは必要に応 じ てチ タ ニア ( T i 0 2 ) 濃度を 5 0 〜 3 0 O g Z ^ に調 整するのがよい。 添加する水溶性塩と しては塩化第一鉄 硫酸第一鉄、 硝酸第一鉄、 塩化第二鉄、 硫酸第二鉄、 硝 酸第二鉄等を挙げる こ とができ る。 なお、 中和反応は系 の p Hを 8 〜 1 0 に調整しな力 ら行う の力 よい。
次に前記の工程で得られた生成物を分別、 洗浄 した後 乾燥 し、 ま たは乾燥せずに 3 0 0 〜 8 5 0 °Cの温度で焼 成し、 粉砕する こ とによ り、 0 . 0 1 〜 0 . l 〃 mの鉄 含有微粒子ルチル型二酸化チタ ン とする。 粉砕はサ ン ド ミ ル、 ぺブル ミ ル、 ディ ス ク ミ ル等によ る湿式粉砕、 流 体エ ネ ノレギ一 ミ ノレ、 ノヽ ン マ ー ミ ノレ、 エ ッ ジ ラ ン ナ ー ミ ル 等によ る乾式粉砕等によ り行う こ とができ る。
本発明の方法においては、 基体粒子と してルチル核を 有するチタニア ゾルを用いるので、 比較的低い温度で焼 成して も鉄成分の二酸化チタ ン結晶中への固溶が容易に 進行し、 かつ安定したルチル型結晶の超微粒子二酸化チ タ ンを容易に得る こ とができ る。
本発明方法においては、 前記方法で得られた鉄含有超 微粒子ルチル型二酸化チタ ン粒子の表面にアル ミ ニゥ厶 ケ ィ素、 チ タ ニ ウ ム、 ジル コ ニ ウ ム、 ス ズ、 ア ン チ モ ン な どの金属の含水酸化物を沈殿させ、 被覆させて も よい こ の方法は例えば、 焼成、 粉砕して得られた鉄含有ルチ ル型ニ酸化チタ ンを水に分散させてスラ リ ー と し、 必要 に応じて湿式粉砕、 分級処理した後、 こ の中にアル ミ 二 ゥム、 ゲイ素、 チタニウム、 ジルコニウム、 スズ及びァ ン チ モ ン の各水溶性塩の群から選ばれた少な く と も一種 を二酸化チ タ ン に対 して酸化物換算総量で 1 〜 3 0 重量 %添加後、 該水溶性塩がス ラ リ 一中でアル力 リ 性を示す 場合は硫酸、 塩酸等の酸性溶液で、 該水溶性塩がス ラ リ —中で酸性を示す場合は苛性ソ ー ダ、 ァ ンモニァ水等の アル力 リ 性溶液で中和 して該ニ酸化チ タ ン粒子の表面に 沈殿、 被覆させ、 こ の も のを分別後、 乾燥、 粉砕する こ と に よ り 行 う こ とができ る。 こ の被覆処理に よ り 鉄含有 超微粒子ルチル型二酸化チ タ ンの分散媒体における、 分 散性、 耐久性な どを向上させる こ とができ る。
本発明の鉄含有超微粒子ルチル型二酸化チ タ ン は、 前 記 した如 く 、 種々 の紫外線遮蔽性の化粧料、 医薬組成物 紫外線遮蔽性塗料に有用な も のであるが、 最近注目 さ れ 普及 しつつあ る紫外線遮蔽性木材用塗料に も好適な も の であ る。 本発明の鉄含有超微粒子ルチル型二酸化チ タ ン は、 種々 の適用用途媒体系にその ま ま配合 して使甩 して も よ いが、 種々 の分散剤の存在下に水性媒液ゃ油性媒液 に分散さ せた水性分散体 も し く は油性分散体 と し、 こ の も のを適用用途媒体系に配合する こ と もでき る。 前記の 水性も し く は油性分散体は、 種々 の方法に よ っ て調製す る こ とができ る。 即ち、 水性分散体は、 水を主体 とする 媒液 と、 分散剤、 例えば縮合 リ ン酸化合物、 ポ リ 力 ルボ ン酸化合物、 ア ミ ノ 酸化合物、 ポ リ オキ シエチ レ ンアル キルエーテル、 ァ ミ ノ アル コ ール等を、 ま た油性分散体 は、 植物油、 動物油、 鉱油、 シ リ コ ー ン等の油性媒液 と 分散剤、 例えばポ リ オキ シエチ レ ンアルキルェ一テル、 ソ ル ビタ ン脂肪酸エステル、 ポ リ オキ シエチ レ ンア ルキ ル リ ン酸エステル、 脂肪酸アル力 ノ ールア ミ ド、 ポ リ ェ 一テル変性シ リ コ — ン油、 シ リ コ ー ン樹脂等を、 例えば サ ン ド ミ ル、 ぺブル ミ ル、 ディ ス ク ミ ル等の粉砕機に入 れ、 鉄含有超微粒子ルチル型二酸化チタ ンを混合粉砕す る こ と によ って、 調製する こ とができ る。 こ れ らの固形 分濃度は 、 2 0 〜 7 0 重量%、 好ま し く は 4 0 〜 6 0 重 量%程度である。
実施例 1
T i 0 2 と して 2 0 0 g / £ の濃度の四塩化チ タ ン水 溶液を室温に保持しなが ら、 水酸化ナ 卜 リ ウム水溶液を 添加 し、 p Hを 7 . 0 に調整してコ ロィ ド状の非晶質含 水酸化チ夕 ンを析出させ、 引き続き熟成してルチル型の チタニアゾルを得た。 こ のゾルをよ く 洗浄した後、
T i 0 2 と して 2 Q 0 g / £ の濃度の含水酸化チタ ン水 性ス ラ リ 一 と した o こ のス ラ リ ーを 7 0 °Cに加熱し、 よ く 攪拌しなが ら、 こ の中に T i 〇 2 に対 し F e と して 7 重量%の硫酸第一鉄水溶液 ( F e 濃度 5 0 g / £ ) を 3 0 分を要して添加 した後、 水酸化ナ ト リ ウム溶液を 4 0 分間を要して添加 して p H 9 に調整して含水酸化チタ ン 粒子表面に含水酸化鉄を沈殿、 被覆させた。 その後 6 0 分間熟成 し、 濾過、 洗浄した。 得 られた洗浄ケーキを 6 0 0 °cで 3 時間焼成し、 水中に分散させ、 サ ン ド ミ ルで 湿式粉砕して、 超微粒子二酸化チ タ ンのス ラ リ ー と した こ のスラ リ ーを 7 0 。Cに加熱し、 よ く 攪拌 しな ら、 こ の中に T i 0 2 に対 して A 1 2 0 3 と して 2 . 0 重量 %の硫酸アル ミ ニゥ厶水溶液を 3 0 分間を要 して添加 し 引き続き水酸化ナ ト リ ウム溶液を添加 し、 p Hを 7 . 0 に調整 して含水アル ミ ナを沈殿、 被覆させた。
その後、 6 0 分間熟成 し、 濾過、 洗浄し、 乾燥した後 流体エネルギー ミ ルで粉砕 して電子顕微鏡写真法によ る 平均単一粒子径 0 . 0 4 / mの超微粒子二酸化チタ ン ( A ) を得た。
実施例 2
実施例 1 で得られた鉄含有超微粒子ルチル型二酸化チ タ ン 5 0 重量部を、 精製水 4 9 重量部に投入 し、 へキサ メ タ リ ン酸ナ ト リ ウム 1 重量部を添加 し、 混合 した後ジ ルコニア ビ一ズを粉砕媒体と してサン ド ミ ルで混合、 粉 砕して、 水性分散体 ( B ) を得た (粘度 9 5 c P、 p H 8 . 2 ) o
比較例 1
硫酸第一鉄水溶液を添加 しないこ と以外は、 実施例 1 と同様に して、 超微粒子二酸化チタ ン ( C ) を得た。 比較例 2
A 1 2 0 3 と して 2 . 0 重量%の硫酸アル ミ ニウム水 溶液を 3 0 分閭を要 して添加する代わ り に F e と して 7 重量%の硫酸第一鉄水溶液を添加 したこ と以外は比較例 1 と同様に して、 超微粒子二酸化チタ ン ( D ) を得た。 比較例 3
比較例 2 の超微粒子二酸化チタ ン ( D ) を 6 0 0 °Cに おいて、 3 時間焼成し、 流体ェネルギー ミ ルで粉砕して 超微粒子二酸化チタ ン ( E ) を得た。
比較例 4
市販の超微粒子酸化鉄 (粒子径約 0 . 0 4 〃 m ) を比 較例 1 の超微粒子二酸化チ タ ン ( C ) に対して F e と し て 7 重量 9 となる よ う に混合 して混合粉末 ( F ) を得た 比較例 5
市販の顔料用酸化鉄 (粒子径約 0 . 2 H m ) を比較例 1 の超微粒子二酸化チタ ン ( C ) に対 して F e と して 7 重量% となる よ う に混合 して混合粉末 ( G ) を得た。
試験例
超微粒子二酸化チタ ン ( A ) 、 ( C ) 〜 ( G ) をそれ ぞれ下記の処方で日焼け止めク リ 一ム と した。 また試料 ( B ) の水性分散体を、 二酸化チタ ン重量基準で 3 . 0 重量部を用いて、 下記の処方 (但し、 精製水は 5 1 . 1 重量部) で日焼け止めク リ ーム と した。
立立立 ¾立立立^口立立 E口口立口口^口口
( 1 ) ス テア リ ン酸 2 5 重
( 2 ) サ ラ シ ミ ツ ロ ウ 3 5 重
( 3 ) セ 夕 ノ ー ル 3 5 重
( 4 ) ス ク ヮ ラ ン 1 7 0 重
( 5 ) モ ノ ス テア リ ン酸 グ リ セ リ ン 3 0 重
( 6 ) 超微粒子二酸化チ タ ン 3 0 重
( 7 ) メ チ ルノ、。 ラ ベ ン 0 1 重
( 8 ) グ リ セ リ ン 1 2 0 重
( 9 ) ト リ エ タ ノ ー ルァ ミ ン 1 0 重
( 10) 精製水 5 4 1 重 ( 11 ) 香料 0 . 3 重量部 成分 ( 1 ) 〜 ( 6 ) を 8 0 °Cで加熱混合 した も のを、 成分 ( 7 ) 〜 ( 10) を 8 0 °Cで加熱混合 した も のに加え ホモ ミ キサーでよ く 混合 し、 強 く 攪拌する。 4 5 °C付近 で ( 11 ) を添加 し 日焼け止めク リ ームを調製 した。
評価方法 1
上記各 ク リ ー厶を石英ガラス上に 2 5 mの膜厚とな る よ う に塗布し、 分光光度計にて 7 5 0 〜 3 0 0 n mの 透過率を測定した。
評価方法 2
上記各ク リ ームを 2 0 〜 5 2 歳の女性 1 0 名に通常に 使用 して も らい、 肌上でののびの良さの使用感と、 青白 さ に関 して相互に目視評価して も ら つた。
以上の評価結果を表 1 に示した。
表 1
Figure imgf000015_0001
(注) 使用感及び青み感を 1 0段階で評価。 数値が大きい程のびが良く 、 また青みが顕著な こ とを示す。
本発明で得られる鉄含有超微粒子ルチル型二酸化チタ ン はニ酸化チタ ンの結晶内部に鉄成分が固溶 しているた め、 1 ) 強い分散条件で化粧料、 医薬組成物ま たは塗料 に配合 して も、 鉄成分と二酸化チタ ンの色分かれがない 2 ) 紫外線遮蔽性の化粧料、 医薬組成物に適用 した場合 紫外線 A領域の遮蔽能力が著し く 向上する、 3 ) 化粧料 医薬組成物に適用 した場合、 肌に塗布して も、 青みの強 い散乱を起こすこ とはな く 肌を健康的に見せる等、 顕著 に優れた効果を発現する。 また紫外線遮蔽性木材用塗料 に適用 した場合、 優れた紫外線遮蔽効果と好ま しい色調 を付与する こ とができ る。 さ らに、 前記鉄含有超微粒子 の水性分散体も し く は油性分散体は、 種々 の適用用途系 での配合時に粉塵の発生を惹起する こ とな く 、 かつ配合 時の混合粉砕工程が簡略化し得る。 また、 高分散性の配 合組成物が得られ易 く 、 紫外線遮蔽効果が増大する と と も に、 と り わけ化粧料が医薬組成物系での使用感ゃ安定 性等が一層良好な もの とする こ とができ る。

Claims

求 の 範 囲
1 . 平均単一粒子径が 0 . 0 1 〜 0 . 1 mのルチル 型結晶の二酸化チタ ンであ り、 その結晶内部に鉄成分を F e 換算で、 該ニ酸化チタ ンに対 して 1 〜 1 5 重量%の 割合で含有する鉄含有超微粒子ルチル型二酸化チタ ン。
2. その粒子表面にアル ミ ニウム、 ケィ素、 チタニゥ ム、 ジルコニウム、 スズ及びア ンチモ ンの群から選ばれ る少な く と も一種の元素の含水酸化物または酸化物の被 覆を有 し、 その被覆量が二酸化チタ ン粒子に対して、 各 元素の酸化物換算総量で 1 〜 3 0 重量%である請求の範 囲 1 の鉄含有超微粒子ルチル型二酸化チタ ン。
3. ルチル核を有する微小チタニア ブルの存在下に鉄 の水溶性塩を中和 して該チタニアの表面に含水酸化鉄を F e 換算で、 二酸化チタ ンに対して 1 〜 1 5 重量 にな る よ う に沈殿させる第一工程、 第一工程の生成物を分別 し、 3 0 0 〜 8 5 0 °Cの温度で焼成する第二工程からな る鉄含有超微粒子ルチル型二酸化チタ ンの製造方法。
4. 請求の範囲 3 の方法で得られた鉄含有超微粒子ル チル型二酸化チタ ンをスラ リ ー と し、 アル ミ ニウム、 ケ ィ素、 チタニウム、 ジルコニウム、 スズ及びア ンチモ ン の各水溶性塩の群から選ばれた少な く と も一種を酸化物 換算総量で、 二酸化チタ ンに対 して 1 〜 3 0 重量 9 添加 後、 中和 し、 該元素の含水酸化物を二酸化チタ ン粒子表 面に被覆させる こ と よ り なる鉄含有超微粒子ルチル型二 酸化チタ ンの製造方法。
5. 請求の範囲 1 ま たは 2 に記載の鉄含有超微粒子ル チル型二酸化チタ ンを含有する水性分散体。
6 . 請求の範囲 1 または 2 に記載の鉄含有超微粒子ル チル型二酸化チタ ンを含有する油性分散体。
7. 請求の範囲 1 または 2 に記載の鉄含有超微粒子ル チル型二酸化チタ ン または請求の範囲 5 に記載の水性分 散体も し く は請求の範囲 6 に記載の油性分散体を含有す る紫外線遮蔽性の化粧料も し く は医薬組成物。
8. 請求の範囲 1 または 2 に記載の鉄含有超微粒子ル チル型二酸化チタ ン または請求の範囲 5 に記載の水性分 散体も し く は請求の範囲 6 に記載の油性分散体を含有す る紫外線遮蔽性塗料。
PCT/JP1993/001802 1993-12-13 1993-12-13 Particule de dioxyde de titane a base de rutile contenant du fer ultra-fin et procede pour sa production WO1995016637A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US08/501,053 US5714260A (en) 1993-12-13 1993-12-13 Ultrafine iron-containing rutile titanium oxide and process for producing the same
PCT/JP1993/001802 WO1995016637A1 (fr) 1993-12-13 1993-12-13 Particule de dioxyde de titane a base de rutile contenant du fer ultra-fin et procede pour sa production
CA002155957A CA2155957C (en) 1993-12-13 1993-12-13 Ultrafine iron-containing rutile titanium oxide and process for producing the same
AT94902110T ATE275096T1 (de) 1993-12-13 1993-12-13 Sehr feine eisen, enthaltende rutil-titanoxid- teilchen und verfahren zu seiner herstellung
EP94902110A EP0684208B1 (en) 1993-12-13 1993-12-13 Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
ES94902110T ES2224104T3 (es) 1993-12-13 1993-12-13 Particulas ultrafinas de dioxido de titanio tipo rutilo que contiene hierro y procedimiento para su preparacion.
DE69333612T DE69333612T2 (de) 1993-12-13 1993-12-13 Ultrafeine eisenhaltige Teilchen von Titandioxid des Rutiltyps und Verfahren zur Herstellung derselben
AU56592/94A AU675477B2 (en) 1993-12-13 1993-12-13 Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/001802 WO1995016637A1 (fr) 1993-12-13 1993-12-13 Particule de dioxyde de titane a base de rutile contenant du fer ultra-fin et procede pour sa production

Publications (1)

Publication Number Publication Date
WO1995016637A1 true WO1995016637A1 (fr) 1995-06-22

Family

ID=14070709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001802 WO1995016637A1 (fr) 1993-12-13 1993-12-13 Particule de dioxyde de titane a base de rutile contenant du fer ultra-fin et procede pour sa production

Country Status (8)

Country Link
US (1) US5714260A (ja)
EP (1) EP0684208B1 (ja)
AT (1) ATE275096T1 (ja)
AU (1) AU675477B2 (ja)
CA (1) CA2155957C (ja)
DE (1) DE69333612T2 (ja)
ES (1) ES2224104T3 (ja)
WO (1) WO1995016637A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271986C (zh) * 1996-05-30 2006-08-30 花王株式会社 防紫外线微粒及其制备方法和化妆品
JP4018770B2 (ja) * 1997-02-28 2007-12-05 チタン工業株式会社 扇状酸化チタン、及び扇状又は盤状酸化チタンの製造方法、並びにその用途
US6036999A (en) * 1997-07-03 2000-03-14 Zhao; Qian Qiu Method of preparing grinding media consisting essentially of sintered TiO2 particles
US6548039B1 (en) * 1999-06-24 2003-04-15 Altair Nanomaterials Inc. Processing aqueous titanium solutions to titanium dioxide pigment
US6440383B1 (en) * 1999-06-24 2002-08-27 Altair Nanomaterials Inc. Processing aqueous titanium chloride solutions to ultrafine titanium dioxide
EP1331995B1 (en) 2000-10-17 2005-03-09 Altair Nanomaterials Inc. Method for producing catalyst structures
JP4073868B2 (ja) * 2001-07-20 2008-04-09 アルテアナノ インコーポレイテッド チタン酸リチウムの製造方法
EP1282180A1 (en) * 2001-07-31 2003-02-05 Xoliox SA Process for producing Li4Ti5O12 and electrode materials
US6982073B2 (en) 2001-11-02 2006-01-03 Altair Nanomaterials Inc. Process for making nano-sized stabilized zirconia
US6962946B2 (en) * 2001-11-21 2005-11-08 3M Innovative Properties Company Nanoparticles having a rutile-like crystalline phase and method of preparing same
US6881393B2 (en) * 2002-03-08 2005-04-19 Altair Nanomaterials Inc. Process for making nano-sized and sub-micron-sized lithium-transition metal oxides
AU2003262549A1 (en) * 2002-08-13 2004-03-03 Agfa-Gevaert Porous metal oxide semiconductor spectrally sensitized with metal oxide
US7482304B2 (en) * 2003-12-10 2009-01-27 Altair Nanomaterials Inc. Method for producing structures
TWI285566B (en) * 2004-05-06 2007-08-21 Sustainable Titania Technology Method for protecting substrate
KR20070042176A (ko) * 2004-07-13 2007-04-20 알타이어나노 인코포레이티드 약물 전용의 방지를 위한 세라믹 구조체
TW200631660A (en) * 2005-01-18 2006-09-16 Nippon Catalytic Chem Ind Visible light responsive photocatalyst composition and method for manufacturing the same
AU2006283170A1 (en) * 2005-08-23 2007-03-01 Altairnano, Inc. Highly photocatalytic phosphorus-doped anatase-TiO2 composition and related manufacturing methods
US20070092798A1 (en) * 2005-10-21 2007-04-26 Spitler Timothy M Lithium ion batteries
EP1779855A1 (en) 2005-10-28 2007-05-02 Abdula Kurkayev Nanoparticles of a heterocrystal mineral for use as a medicament and method of producing the same
EP1779891A1 (en) * 2005-10-28 2007-05-02 Abdula Kurkayev Method of activating a photosensitizer
US20080020175A1 (en) * 2006-03-02 2008-01-24 Fred Ratel Nanostructured Indium-Doped Iron Oxide
WO2007103812A1 (en) * 2006-03-02 2007-09-13 Altairnano, Inc. Method for low temperature production of nano-structured iron oxide coatings
US20080008843A1 (en) * 2006-03-02 2008-01-10 Fred Ratel Method for Production of Metal Oxide Coatings
KR20090129500A (ko) * 2007-03-30 2009-12-16 알타이어나노 인코포레이티드 리튬 이온 전지의 제조방법
US20080254258A1 (en) * 2007-04-12 2008-10-16 Altairnano, Inc. Teflon® replacements and related production methods
ES2359184T3 (es) * 2008-07-01 2011-05-19 THE PROCTER & GAMBLE COMPANY Procedimiento para reducir el aspecto pálido o ceniciento de la piel.
US20240254343A1 (en) * 2021-05-11 2024-08-01 Jgc Catalysts And Chemicals Ltd. Rutile titanium oxide particles, dispersion, coating solution for film formation, and substrate with coating film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867196A (ja) * 1971-12-18 1973-09-13
JPS6283305A (ja) * 1985-10-08 1987-04-16 Okamura Seiyu Kk 透明性金属酸化物の製造方法
JPH02204326A (ja) * 1989-01-30 1990-08-14 Teika Corp ルチル型着色微粒子二酸化チタン組成物及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998009A (ja) * 1982-11-29 1984-06-06 Kanebo Ltd 皮膚化粧料
IT1183382B (it) * 1985-02-20 1987-10-22 Montedison Spa Partecelle sferiche a distribuzione granulometrica ristretta di biossi do di titanio ricoperto da uno strato uniforme di ossidi di ferro e processo per la loro preparazione
JPS61264063A (ja) * 1985-05-16 1986-11-21 Teikoku Kako Kk 塩基性脂肪酸鉄塩被覆微粒子二酸化チタン
JPH0621057B2 (ja) * 1985-09-18 1994-03-23 サンスタ−株式会社 化粧料組成物
JP2577465B2 (ja) * 1988-12-28 1997-01-29 触媒化成工業株式会社 酸化チタン・酸化鉄複合系ゾルの製造方法およびそのゾルを配合した化粧料
FI85871C (fi) * 1989-06-26 1992-06-10 Kemira Oy Foerfarande foer belaeggning av titandioxidpigment.
JPH045001A (ja) * 1990-04-24 1992-01-09 Matsushita Electric Works Ltd 木質合板床材
DE4207723A1 (de) * 1992-03-11 1993-09-16 Merck Patent Gmbh Oberflaechenmodifizierte pigmente

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867196A (ja) * 1971-12-18 1973-09-13
JPS6283305A (ja) * 1985-10-08 1987-04-16 Okamura Seiyu Kk 透明性金属酸化物の製造方法
JPH02204326A (ja) * 1989-01-30 1990-08-14 Teika Corp ルチル型着色微粒子二酸化チタン組成物及びその製造方法

Also Published As

Publication number Publication date
ATE275096T1 (de) 2004-09-15
EP0684208B1 (en) 2004-09-01
DE69333612T2 (de) 2005-09-29
DE69333612D1 (de) 2004-10-07
AU5659294A (en) 1995-07-03
US5714260A (en) 1998-02-03
ES2224104T3 (es) 2005-03-01
CA2155957A1 (en) 1995-06-22
CA2155957C (en) 2004-06-01
EP0684208A1 (en) 1995-11-29
EP0684208A4 (en) 1996-10-16
AU675477B2 (en) 1997-02-06

Similar Documents

Publication Publication Date Title
WO1995016637A1 (fr) Particule de dioxyde de titane a base de rutile contenant du fer ultra-fin et procede pour sa production
DE3941543B4 (de) Dispersionen
JP3725181B2 (ja) 日焼け止めの製造方法
AU599229B2 (en) Dispersions
JP2852487B2 (ja) 二酸化チタン水性分散体
JP4105971B2 (ja) 多孔質酸化チタン粉体及びその製造方法
JP3224750B2 (ja) 微粒子二酸化チタンシリコ−ン分散体
KR100831820B1 (ko) 금속산화물/실리카복합체와 이를 함유한 화장료
JP3894597B2 (ja) 超微粒子酸化チタンおよびその製造方法
JP3020408B2 (ja) 高濃度二酸化チタン水性分散体
US5837050A (en) Ultrafine iron-containing rutile titanium oxide and process for producing the same
JP2717904B2 (ja) 鉄含有超微粒子ルチル型二酸化チタン及びその製造方法
JP2010163369A (ja) 粉体化粧料
JP4201880B2 (ja) バタフライ状ルチル型酸化チタン及びその製造方法、並びにその用途
JP3427195B2 (ja) 紫外線遮断作用を有する複合マイカ粉体
JP3115760B2 (ja) 鉄含有超微粒子二酸化チタン分散体
JP2852482B2 (ja) 鉄含有二酸化チタン及びその製造方法
JPH0587545B2 (ja)
JP5010183B2 (ja) 崩壊性酸化亜鉛粉体の製造方法
JP2931180B2 (ja) 鉄含有超微粒子二酸化チタンの製造方法
JPH0566923B2 (ja)
JP3375462B2 (ja) 化粧料
JPH08239223A (ja) 酸化チタン・酸化鉄複合系ゾルおよびそのゾルを配合した化粧料
JP2001200179A (ja) 表面被覆処理粉体及びその製造方法、並びにそれを含有する皮膚外用剤
JPH0672821A (ja) 化粧料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2155957

Country of ref document: CA

Ref document number: 1994902110

Country of ref document: EP

Ref document number: 08501053

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994902110

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994902110

Country of ref document: EP