WO1994015969A1 - Recombinant anti-hiv antibody and preparation thereof - Google Patents

Recombinant anti-hiv antibody and preparation thereof Download PDF

Info

Publication number
WO1994015969A1
WO1994015969A1 PCT/JP1993/000039 JP9300039W WO9415969A1 WO 1994015969 A1 WO1994015969 A1 WO 1994015969A1 JP 9300039 W JP9300039 W JP 9300039W WO 9415969 A1 WO9415969 A1 WO 9415969A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
amino acid
acid sequence
hiv
ser
Prior art date
Application number
PCT/JP1993/000039
Other languages
English (en)
French (fr)
Inventor
Hiroaki Maeda
Kazuhiko Kimachi
Yasuyuki Eda
Kouichi Shiosaki
Kiyoshi Osatomi
Sachio Tokiyoshi
Original Assignee
Juridical Foundation The Chemo-Sero-Therapeutic Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juridical Foundation The Chemo-Sero-Therapeutic Research Institute filed Critical Juridical Foundation The Chemo-Sero-Therapeutic Research Institute
Priority to ES93901547T priority Critical patent/ES2229206T3/es
Priority to DE69333627T priority patent/DE69333627T2/de
Priority to AU32671/93A priority patent/AU671608B2/en
Priority to PT93901547T priority patent/PT678523E/pt
Priority to CA002153165A priority patent/CA2153165C/en
Priority to KR1019950702908A priority patent/KR100266554B1/ko
Priority to EP93901547A priority patent/EP0678523B1/en
Priority to DK93901547T priority patent/DK0678523T3/da
Priority to AT93901547T priority patent/ATE276276T1/de
Priority to US08/491,845 priority patent/US5773247A/en
Priority to PCT/JP1993/000039 priority patent/WO1994015969A1/ja
Publication of WO1994015969A1 publication Critical patent/WO1994015969A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1036Retroviridae, e.g. leukemia viruses
    • C07K16/1045Lentiviridae, e.g. HIV, FIV, SIV
    • C07K16/1063Lentiviridae, e.g. HIV, FIV, SIV env, e.g. gp41, gp110/120, gp160, V3, PND, CD4 binding site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a novel recombinant anti-HIV antibody that can be expected to be used for treatment and prevention of AIDS caused by human immunodeficiency virus (HIV). More specifically, recombinant anti-HIV antibodies (modified antibodies and chimeric antibodies) having neutralizing activity against HIV, expressed by genetic recombination technology from mouse immunoglobulin gene and human immunoglobulin gene, and The present invention relates to a novel preparation method. Further, the present invention relates to a DNA fragment encoding a variable region of an H chain and an L chain effective for expression of such a useful recombinant antibody.
  • HIV human immunodeficiency virus
  • AIDS Acquired immune deficiency syndrome
  • HAV human immunodeficiency virus
  • This chimeric monoclonal antibody is composed of a V gene cloned from a mouse hybridoma that produces a mouse monoclonal antibody that is a source of the variable (V) region, and a human antibody producing cell that is a source of the constant (C) region.
  • a mouse (V) -human (C) chimeric antibody gene linked to a C gene cloned from a cell is expressed in animal cells or microbial cells, and is obtained in the culture supernatant.
  • the immunoglobulin gene is formed by a variable region (V region) gene, which is a binding site with the antigen, and a constant region (C region) gene having physiological activities involved in the interaction with complement and specific cells. Is well known. Furthermore, one V gene is selected from a number of V gene fragment groups, D gene fragment groups (not yet found in the L chain), and J gene fragment groups, and they are linked in this order. It is formed by this. In addition, the linked gene fragments (V region genes) undergo minor modifications and changes due to somatic mutations.
  • the specificity of the antibody is determined by the combination of each gene fragment in the V region genes of the H chain and the L chain and by somatic mutation [Susumu Tonegawa, Nature, 307, p575 (1983); See Josuke, Annual E ev. Immunol. 1, P 499 (1983)]. Therefore, it is considered that there is a combination of a specific H chain VDJ gene fragment and a specific L chain VJ gene fragment and a specific somatic mutation for a specific antigen. Moreover, it is very difficult to infer the combination of these gene fragments and their nucleobase or amino acid sequences from the antigen-side structure, nucleobase or amino acid sequence, etc. It cannot be determined without isolating the antibody gene or antibody protein from the cells. Thus, the amino acid sequence of the variable region of an antibody molecule differs for each antigenic determinant, and the variable region itself has a completely different amino acid sequence for each antigen.
  • the present inventors have already announced a 0.5 / 3 recombinant antibody as an anti-HIV neutralizing recombinant antibody [Japanese Unexamined Patent Publication No. -2352], however, the recombinant antibody was capable of specifically neutralizing HTLV-HT, but was unable to neutralize HTLV- ⁇ , which is considered epidemiologically common.
  • finding a gene encoding the amino acid sequence of the variable region of an antibody molecule capable of binding to a target antigen is a very important factor.
  • the present inventors have isolated a gene encoding the variable region of HIV (HTLV-IIIMN) from cells producing a monoclonal antibody having neutralizing activity against HIV (HTLV-IIIMN) (hypridoma).
  • HTLV-IIIMN monoclonal antibody having neutralizing activity against HIV
  • HTLV-IIIMN a monoclonal antibody having neutralizing activity against HIV
  • the present invention provides a gene encoding a variable region of an anti-HIV neutralizing antibody, which has not been reported at all, and provides a recombinant anti-HIV antibody expressed in transformed cells using the gene.
  • the aim is to enable the development of AIDS diagnostics, therapeutics and prophylactics with low side effects, consisting of this novel anti-HIV recombinant antibody.
  • FIG. 1 shows the nucleic acid sequence and amino acid sequence of the DNA fragment of the present invention that encodes the variable region of the H chain neutralizing antibody of anti-HIV neutralizing antibody shown in Example (3).
  • FIG. 2 shows the nucleic acid sequence and the amino acid sequence of the DNA fragment of the present invention that encodes the variable region of the anti-HIV neutralizing antibody //39.1 L chain shown in Example (3).
  • FIG. 3 shows the nucleic acid sequence and amino acid sequence of the DNA fragment of the present invention encoding the H chain variable region of the anti-HIV neutralizing antibody //5.5 shown in Example (3).
  • FIG. 4 shows the nucleic acid sequence and amino acid sequence of the DNA fragment of the present invention encoding the variable region of the light chain of the anti-HIV neutralizing antibody 5.5 shown in Example (3).
  • FIG. 5 shows the structures of the anti-HIV chimeric antibody H chain expression plasmids CH / 39.1 and CH5.5 constructed in Example (4).
  • FIG. 6 shows the structures of the anti-HIV chimeric antibody L chain expression plasmids CL 39.1 and CL / 5.5 constructed in Example (4).
  • FIG. 7 shows the anti-HIV activity of the anti-HIV chimeric antibody //39.1 measured in Example (5) and the anti-HIV modified antibody / z39.1 measured in Example (7).
  • FIG. 8 shows the anti-HIV activity of the anti-HIV chimeric antibody Z5.5 measured in Example (5) and the anti-HIV modified antibody //5.5 measured in Example (7).
  • FIG. 9 shows the nucleic acid sequence and amino acid sequence of the DNA fragment encoding the variable region of the anti-HIV modified antibody 39.1 H chain prepared in Example (6) (the underlined sequence shows the amino acid sequence derived from the mouse antibody) .
  • FIG. 10 shows the nucleic acid sequence and the amino acid sequence of the DNA fragment encoding the variable region of the anti-HIV modified antibody / z39.1 L chain prepared in Example (6) (the underlined portion indicates the amino acid sequence derived from the mouse antibody). Shown).
  • FIG. 11 shows the nucleic acid sequence and amino acid sequence of the DNA fragment encoding the variable region of the anti-HIV modified antibody // 5.5 H chain prepared in Example (6) (the underlined sequence indicates the amino acid sequence derived from the mouse antibody). Shown).
  • FIG. 12 shows the nucleic acid sequence and the amino acid sequence of the DNA fragment encoding the variable region of the anti-HIV modified antibody // 5.5 L chain prepared in Example (6) (the underlined sequence indicates the amino acid sequence derived from the mouse antibody). Shown).
  • mice can be treated with various suitable immunogens, for example, virus particles obtained from HIV (HTLV-IIIMN) -producing cells, or purified envelope glycoprotein gpl20, or recombinant peptides prepared using genetic recombination techniques, Preferably, a recombinant peptide corresponding to the amino acid sequence 247-370 of gpl20, or a suitable synthetic peptide prepared based on the amino acid sequence of the viral protein, preferably the amino acid sequence 303-325 of gpl20
  • the obtained spleen cells are fused with mouse myeloma cells, etc., and purified outer membrane glycoprotein gpl20, or the recombinant peptide, or the above-described recombinant peptide, from the obtained hybridoma.
  • It can be prepared by selecting cells that react with the synthetic peptide and culturing the cells. Further, from the anti-HIV mouse monoclonal antibody-producing cells thus obtained, cells producing a monoclonal antibody having a neutralizing activity against HIV are selected. In the case of HIV, it is not easy to obtain a monoclonal antibody having such a neutralizing activity due to its unique properties.However, as such a cell line, the present inventors have responded to HIV (HTLV-IIIMN). We have succeeded in establishing a hybridoma // 39.1 or 5.5 cell producing an antibody having neutralizing activity [Japanese Patent Application No. 2-188300], and these are the most preferred cell lines used in the present invention. can give.
  • the gene fragment encoding the variable region of the present invention was isolated from such an anti-HIV neutralizing monoclonal antibody-producing cell, and the analyzed gene sequence was c.
  • numerous V region-constituting genes (For example, the V gene group of the VH chain that determines the specificity of mouse antibodies has at least 100 or more different genes, 11 or more as D gene group, and 4 as J gene group Similarly, the V / c chain has more than 300 genes as the V gene group and 4 genes as the J gene group. It is necessary to isolate the gene encoding the V region specific for the anti-HIV antibody of interest.
  • V region genes can be isolated by conventional genetic engineering techniques.
  • a method of cloning the V region gene from chromosome 7 DNA of the cell according to a conventional method [see, for example, T. Maniatis “Molecular Cloning” Cold Spring Harbor Lab. (1982)], or using the mRNA of the cell as a material
  • a cDNA is synthesized by a conventional method [for example, “DNA cloning Vol. I” edited by DM Glover, IRL press (1985)], and the V region gene is cloned.
  • the nucleic acid base sequence of the mouse immunoglobulin gene already reported [for example, Sakano et al., Nature, 286, p676, (1980); EE Ma et al., J. Biol. Chem., 256, p5116, (1981)] can be used.
  • Cloning using PCR is also possible [E. Orlandi, et al., Proc. Natl. Acad. Sci. USA, 86, 3833 (1989); WD Huse, et al. Science, 246, 1275 (1989)].
  • the gene thus cloned was subjected to gene analysis by various methods such as a method for producing a chimeric antibody [Japanese Patent Laid-Open No. 2-2352] and a method for producing a modified antibody [Japanese Patent Application Laid-Open No. 62-296890].
  • a method for producing a chimeric antibody Japanese Patent Laid-Open No. 2-2352
  • a method for producing a modified antibody Japanese Patent Application Laid-Open No. 62-296890.
  • the gene fragment of the present invention encoding the anti-HIV antibody V region has a specific gene sequence
  • the three types of amino acid sequences contained in each of the above H chain and L chain are considered to be important amino acid sequences that determine the binding ability of the antibody molecule.
  • the amino acid sequence was found to be the sequence of the complementarity determining regions (CDR1 to CDR3) of the variable regions that determine the antibody activity of the anti-HIV antibody of the present invention.
  • Genes encoding the variable regions of such antibody molecules having anti-HIV neutralizing activity include genes encoding the amino acid sequences of FIG. 1, FIG. 3, FIG. 2, or FIG. Fragments are mentioned as a preferred example.
  • a recombinant antibody having a neutralizing activity against HIV that is, as a gene encoding the variable region of such a recombinant antibody, as a DNA fragment encoding the complementarity-determining region, a synthetic DNA or the like is prepared to encode the amino acid sequence shown above, respectively.
  • a desired recombinant anti-HIV antibody ie, an anti-HIV chimeric antibody or an anti-HIV modified antibody can be prepared.
  • the thus prepared recombinant anti-HIV antibody of the present invention is characterized by having the following sequences (CDR1 to CDR3) as a complementarity determining region of the variable region of its H chain.
  • CDR2 Trp-Lys-Asn-Thr-Asn-Thr-Gly-Glu-Ser-Thr-His-Val-Glu-Glu- Phe-Lys-Gly
  • CDR2 Gly-Ile-Asn-Pro-Asn-Asn-Gly-Asp-Thr-Ser-Tyr-Thr-Gln-Lys-Phe-Lys-Gly
  • CDR1 to CDR3 are characterized by having the following sequences (CDR1 to CDR3) as a complementarity determining region of the variable region of the L chain.
  • CDR1 Lys-Ala-Ser-Gln-Asp-Val-Gly-Ala-Asp-Val-Ala
  • CDR1 Lys- Ala- Ser-Gln- Ser- Val- Asp- Tyr- Asp- Gly-Asp- Ser-Tyr-Met-Asn
  • the present inventors when preparing the modified antibody, as described so far, the complementarity-determining region is more recombined than recombining only the above-described complementarity-determining region with an amino acid sequence derived from a mouse. It has been found that by recombining a part of the frame (FR) region adjacent to a mouse with a sequence derived from a mouse, it is possible to obtain a recombinant antibody having more original antibody activity.
  • FR frame
  • H-chain variable region gene when the above-described (H—A) complementarity-determining region sequence is used as the H-chain variable region gene, one C-terminal amino acid of FE1 adjacent to the complementarity-determining region CDR1 of the variable region is converted to threonine ( Thr), the amino acid sequence at the C-terminal 4 of FE2 adjacent to CDR2 is Lys-Trp-Met-Gly, and the amino acid sequence at the N-terminal 5 of FR3 adjacent to CDK2 is Arg-Val- An anti-HIV-modified antibody that has an excellent effect by preparing an H chain variable region gene that is Thr-Met-Ser and one amino acid at the C-terminal side of FR3 adjacent to CDE 3 is arginine (Arg) Can be prepared.
  • H-B complementarity-determining region sequence
  • one C-terminal amino acid of FE1 adjacent to the complementarity-determining region CDR1 of the variable region is used. It is threonine (Thr).
  • the two C-terminal amino acid sequences of FR2 adjacent to CDK2 are lie-Gly, and the six amino acid sequences of N-terminal of FR3 adjacent to CDE2 are Lys-Ala- Thr- Anti-HIV with excellent effect by preparing an H chain variable region gene that is Met-Thr-Val and one amino acid at the C-terminal side of FE3 adjacent to CDR3 is threonine (Thr) Modified antibodies can be prepared.
  • L-A complementarity determining region sequence When using the above-described (L-A) complementarity determining region sequence as the L chain variable region gene, one amino acid at the C-terminal side of FE2 adjacent to the complementarity determining region CDR2 of the variable region is used. It is preferred to prepare an L chain variable region gene that is serine (Ser).
  • nucleic acid sequence and the amino acid sequence of the gene encoding the H chain variable region of the anti-HIV modified antibody of the present invention thus prepared include the sequences shown in FIG. 9 or FIG. (In the figure, the region of the amino acid sequence derived from the mouse is underlined.)
  • preferred examples of the nucleic acid sequence and amino acid sequence of the gene encoding the L chain variable region of the anti-HIV modified antibody of the present invention include the sequences shown in FIG. 10 or FIG. 12 ( In the figure, the region of the amino acid sequence derived from mouse is underlined)
  • nucleic acid sequence and amino acid sequence of the gene encoding the H chain variable region are used as the nucleic acid sequence and amino acid sequence of the gene encoding the H chain variable region. A preferred example is given.
  • nucleic acid sequence and the amino acid sequence of the gene encoding the L region variable region the sequences shown in FIG. 2 or FIG. 4 are mentioned.
  • the constant region (C) gene of the human immunoglobulin H chain gene and the L chain gene used for producing anti-HIV recombinant antibody can be isolated from human antibody-producing cells by the same method, for example. .
  • the C region gene is not rearranged in the gene, it is not necessary to use human antibody-producing cells to isolate the human C region gene. Isolation can be performed in the same manner as in the case of the above-described mouse V region gene isolation.
  • the type of C region gene is not particularly limited to the ⁇ 1 chain and the chain, but is not limited to the / chain, the spike chain, the 72 chain, the a3 chain, the a4 chain, the ⁇ chain, and the S chain. Genes are also possible. However, if the ability to activate complement and the antibody-dependent cytotoxic activity are expected, the first chain is preferable.
  • Anti-HIV recombinant antibody genes are constructed by basically combining the above two gene fragments ( ⁇ ⁇ region gene and C region gene), both the ⁇ chain gene and the L chain gene.
  • ⁇ ⁇ region gene and C region gene both the ⁇ chain gene and the L chain gene.
  • Watanabe et al. Wanganabe et al., Cancer Research, 47, p999-1005, (1987)
  • M. Bruggeraann [ffaldmann H (ed) Monoclonal Antibody Therapy. Prog Allergy. Basel, Karger, 1988 , vol 45, pp91] and SL Morrison [Advances in Immunology, 44, 65, (1 989)].
  • the vector system varies depending on the host to be expressed, such as an animal cell expression system, an Escherichia coli expression system, and a yeast cell expression system, but expression is possible in any case. Furthermore, a gene amplification system such as DHFR can be used.
  • the thus obtained recombinant antibody of the present invention was confirmed to have an activity of neutralizing HIV, and the present invention makes it possible to prepare a novel anti-HIV recombinant antibody by the present invention. It has become possible.
  • Such an anti-HIV recombinant antibody can be a practically effective therapeutic agent for AIDS in the clinical practice of AIDS.
  • the gene fragment encoding the anti-HIV antibody variable region provided by the present invention discloses a specific amino acid sequence or nucleobase sequence of the variable region of an antibody molecule having neutralizing activity against HIV. In the future, it will be possible to develop better anti-HIV recombinant antibody molecules by modifying or partially substituting target antibody molecules by applying advanced genetic recombination technology.
  • the method for producing a hybridoma producing an anti-HIV mouse monoclonal antibody is as follows.
  • an immunizing antigen a synthetic peptide (SP-1: YN KRKRIHIGPGRAFYTTKNIIG) and a synthetic peptide corresponding to amino acid sequence 303 to 325 of HTLV- ⁇ strain outer membrane glycoprotein gpl20 and a synthetic peptide to KLH (keyhole linker) are used as immunizing antigens.
  • HTLV-II producing cells H9 / HTLV-II virus particles obtained by sucrose gradient centrifugation from the culture supernatant, or H9 / HTLV-IIB1N culture solution After lysing the cells obtained with 1% Triton X-100, gpl20 obtained by affinity purification using ConA-Sepharose 4B column and HIV antibody (IgG) -Sepharose 4B column, and H9 / HTLV_IIIMN cells HTLV- from high molecular weight DNA (genomic DNA) A DNA fragment encoding the III N gpl20 V 3 domain (amino acids 247-370) was amplified and isolated by the PCR method [GI LaEosa et al., Science Vol.
  • HTLV-III Ngpl20 V3 domain (amino acids 247-370) / 5-galactosidase fusion protein expressed in Escherichia coli was used in combination.
  • spleen cells were collected and cloned by cell fusion using P3X63Ag8-U1X63 mouse myeloma cells [ATCC CRL 1597] and polyethylene glycol (Sigma).
  • the binding activity of the antibody in the culture supernatant of the obtained clones to the above-mentioned immunogen was measured by the enzyme-linked immunosorbent assay, and clones deemed to be positive were subjected to Western blotting and indirect fluorescence. And established a hybridoma producing an anti-HIV monoclonal antibody, 39.1 or //5.5 [Japanese Patent Application No. 2-188300, accession number; 5.5 (Shenzhen Article No. 3402)].
  • These antibodies bind to the SP-1 peptide and suppress syncytium formation between HIV-infected cells and uninfected CD4-positive cells.
  • neutralizing activity has been confirmed in a virus neutralization test in which these antibodies are mixed with the HIV virus to infect cells (H9).
  • the mouse immunoglobulin variable (V) region gene was isolated as follows.
  • PCR was performed according to the Cetus protocol. That is, 100 pmol of each of these primers was used, and a kit of CETUS was used as a PCR reagent. PCR conditions were performed at 94 ° C for 1 minute, 55 ° C for 1 minute, and 72 ° C for 1 minute for 25 cycles. After PCR, the obtained DNA fragment was subcloned into the Hindi site of pUC18 (manufactured by Takara Shuzo; hereinafter, the reagents used in this example were manufactured by Takara Shuzo or Toyobo unless otherwise specified).
  • the V region gene integrated into pUC18 was sequenced using Toyobo's Sequenase Ver.2 kit.
  • the resulting nucleobase sequences of 39.1 and 5.5 are shown in FIGS. 1 to 4. 1 to 4 also show the amino acid sequence obtained from the nucleic acid base sequence. Both the 39.1 and 5.5 nucleobase sequences had rearrangements unique to the V region gene, and had an open reading frame (ORF) that could be expressed.
  • ORF open reading frame
  • a mouse-human chimeric antibody was produced to confirm whether the /39.1, 5.5 V region gene was indeed a gene encoding a V region responsible for anti-HIV activity.
  • HCMV- ⁇ 1 was used respectively.
  • HCMV- / c has a human / chain constant region gene and HCMV- ⁇ 1 has a human 1-chain constant region gene. The 39.
  • IV region prepared in (2) above was digested with Hindlll and BamHI restriction enzymes, and the VH and VL fragments were incorporated into the HCMV- ⁇ 1 and HCMV- / C Hindlll-BamHI sites, respectively.
  • the structures of the /39.1 chimeric antibody gene expression vectors ( ⁇ 1 ⁇ 39.1, CL / 39.1, respectively) are shown in Figs.
  • the 5.5 VH and VL region genes were also incorporated into HCMV- ⁇ 1 and HCMV- / C, respectively, in the same manner as in 39.1 (CH / 5.5, 5; see FIGS. 5 and 6, respectively).
  • the antibody activity of the chimeric 39.1 or 5.5 chimeric antibody gene constructed as described above was examined in a transient expression system using C0S7 cells [ATCC CEL 1651].
  • a mixture of CH 39.1 and CL / 39.1 plasmid DM or a mixture of CH; u5.5 and CL 5.5 plasmid DNA was applied to the Boi-Bad protocol using a Bio-Rad Electroporation device. Therefore, the cells were introduced into C0S7 cells and cultured in DMEM medium (GIBC0) containing 10% fetal bovine serum.
  • DMEM medium GIBC0
  • each CDR (complementarity determination) region was transplanted to a human V region.
  • the method was in accordance with the method for preparing a modified antibody [JP-A-62-296890].
  • ⁇ CDR region of VH region of 39.1 and 5.5 is transplanted to VH region with FR (framework) region of human subgroup I [SGI: donated by Dr. Bendig of MEC Collabrative Center, UK] (Figs. 8 and 10)
  • the CDR region of the VL region at /39.1 and //5.5 is the VL region with the FR region of the human chain [REI: W.
  • the modified antibody was a combination of Amersham's kit (Oligonucleotide-directed in vitoro mutagenesis system version 2 code RPN.1523) and PCE [Saiki, RG et al., Science, 239, 487 (1988)].
  • Amersham-PCR was performed. Long-chain nucleotides encoding the 39.1 or // 5.5 VH or VL region transfer site were annealed to M13 DNA incorporating the V region gene of SGI or REI, and then extended in a solution containing dCTPaS.
  • type I M13 DNA was digested with Neil and type III DNA was digested with Exonuclease III to obtain a mutated M13 DNA-only strand (up to this point was performed according to Amersham's kit protocol. ).
  • Exonuclease III digestion product is converted to type II using a universal primer (UP: has a sequence complementary to the 5 'side of M13mpl8) and a reverse primer (ESP: has the same sequence as the 3' side of M13mpl8).
  • UP has a sequence complementary to the 5 'side of M13mpl8
  • ESP reverse primer
  • PC R was performed.
  • PCR The conditions of PCR were 25 cycles at 94 ° C for 1 minute, 55 ° C for 1 minute, and 72 ° C for 1 minute.
  • the product was digested with BamHI / Hindlll, incorporated into the BamHI-Hinddlll site of PUC18, transformed into DH5H (BRL), and used as a primary screen for the CDR primer used for mutation. Colony hybridizer according to the Amersham kit protocol. Then, clones that had successfully mutated the CDRs were selected.
  • modified V region fragments were digested with Hindlll and BamHI restriction enzymes in the same manner as in the preparation of the chimeric antibody in (4), and the VH and VL fragments were digested with HCP- ⁇ 1 and Hindlll-BamHI fragments of HCMV- / C, respectively.
  • 39.1 modified antibody gene expression vectors RH / 39.1, RL ⁇ 39.l, respectively
  • /5.5 modified antibody gene expression vectors RH / 5.5, RL5.5, respectively
  • the antibody activity obtained by this modified n39.1, 5.5 antibody gene was examined using the above-mentioned transient expression system in COS7 cells.
  • the culture supernatant of the transfected cells was collected in the same manner as in (5), and the activity of the antibody present in the culture supernatant was measured by ELISA using anti-human IgG or SP-1 peptide.
  • Fig. 7 both the expression product of the mixture of RH // 39.1 and RL / 39.1 plasmid DNAs or the expression product of the mixture of RH / 5.5 and RL ⁇ 5.5 plasmid DNAs were converted to SP-1 peptide. Joined.
  • Sequence type nucleic acid
  • GCA AGA GAA TAT GAT TAC GAC GGG GGC TTT TCT TAC TGG GGC CAA GGG 336
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic nucleic acids)
  • Organism name mouse and human
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic nucleic acids)
  • Organism name mouse and human
  • Sequence type nucleic acid
  • Sequence type Other nucleic acids (synthetic nucleic acids)
  • Organism name mouse and human

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • AIDS & HIV (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

明細書
組換え抗 H I V抗体ならびにその製法
技術分野
本発明はヒ ト免疫不全ウィルス (H I V) に起因するエイズ (A I D S ) の治療および予防に用いることが期待できる新規な組換え抗 H I V抗体に 関する。 さらに詳細には、 マウス免疫グロブリン遺伝子とヒ ト免疫グロブ リン遺伝子から遺伝子組換え技術を用いて発現された、 H I Vに対して中 和活性を有する組換え抗 H I V抗体 (改変抗体およびキメラ抗体) ならび にその新規調製方法に関する。 さらには、 このような有用な組換え抗体の 発現に有効な H鎖及び L鎖の可変領域をコードする D N A断片に関する。
背景技術
後天性免疫不全症候 (acquired immunedeficiency syndrome: AIDS) は、 レトロウィルスに属するヒ ト免疫不全ウィルス (H I V) に起因する ウィルス性疾患である。 この疾患は 1981年にァメリカで発見されて以来急 速に世界中に広がりをみせているが、 有効なワクチンや治療法はまだ提供 されていない。
このような状況の中で、 輸血によって H I V陽性となったサラセミァの 患者グループと小児の A I D S及び A R C (A I D S関連症候群) のグル ープにおいて、 その臨床と中和抗体の関連についての報告がある [R. Guro ffら, J. Immunol., 138, p3731, (1987) ; R. Guroff ら, Pediatric Res earch, inpress] 。 いずれの場合でも中和抗体の検出できる症例において は臨床症状も軽く良好であるが、 中和抗体が検出できない症例においては 臨床症状が悪化していることが報告されており、 in vivo おける中和抗体 の有効性を示唆している。 このように抗 H I V中和抗体は in vivo におけ る感染の拡大防止や感染細胞の排除に役立つ可能性があり、 現在臨床で用 いられている抗ウィルス剤等との併用により更に高い効果が期待される。 上記のような抗 H I V中和抗体を A I D Sの患者から直接採取 ·調製す るやり方もあるが、 この方法は、 倫理的な問題や原材料入手、 バイオハザ ードの問題など数多い困難が予想される。 そこで、 このような高力価血清 の代替品として H I Vウィルス中和活性を有するモノクローナル抗体の使 用が考えられる。 モノクローナル抗体作製に関する基本的な技術はすでに マウス型モノクローナル抗体において確立されているが、 マウス抗体は副 作用 (マウスモノクローナル抗体をヒ 卜に使用した場合、 異種タンパクと してアナフィラキシーショックゃ血清病などの副作用を起こすことが考え られる) 等の点からその臨床応用が難しく、 最終的にはヒ トモノクローナ ル抗体の使用が望ましい。
しかしながら、 ヒ トモノクローナル抗体の調製においては、 目的の特異 性を有する抗体を調製する点において克服する問題が多く、 マウス型モノ クロ一ナル抗体の調製と比べて現実的には非常に困難を伴う。 このような 問題を克服すべく、 抗体の特異性を特徴づける可変領域はマウス抗体由来 のァミノ酸配列を有し、 定常領域のァミノ酸配列をヒ ト抗体由来のものに した、 遺伝子組換え技術を応用したキメラモノクローナル抗体の調製手法 が最近報告されている。
このキメラモノクローナル抗体は、 可変 (V) 領域の原料となるマウス モノクローナル抗体を産生するマウスハイブリ ドーマからクローニングし た V遺伝子と、 定常 (C ) 領域の原料となるヒ ト抗体産生細胞等のヒ ト細 胞からクローニングした C遺伝子とを結合させたマウス (V) —ヒ ト (C ) キメラ抗体遺伝子を動物細胞あるいは微生物細胞等で発現させ、 その培養 上清中に得られるものである。 キメラ抗体に関するいくつかの報告がすで に見受けられ [特開昭 60- 155132、 特開昭 61- 47500] 、 本発明者らも既に キメラ抗体の作製に成功している [特開平 2-2352] 。 さらに、 このキメラ 抗体の考え方を一層進めた改変抗体の作製も報告 [特開昭 62- 296890] さ れている。
免疫グロプリン遺伝子についての解析は、 最近の遺伝子操作技術の急速 な発展に伴って急速に進みつつある。 免疫グロプリン遺伝子は抗原との結 合部位である可変領域 (V領域) 遺伝子と補体や特定の細胞と相互作用等 に関与した生理活性を持つ定常領域 (C領域) 遺伝子により形成されてい ることがよく知られている。 さらに、 V領域遺伝子は、 数ある V遺伝子断 片群、 D遺伝子断片群 (L鎖ではまだ見つかっていない) 及び J遺伝子断 片群の中からそれぞれ 1個が選ばれこの順序で並んで結合することによつ て形成される。 さらに、 結合した 遺伝子断片 (V領域遺伝子) は体細胞 突然変異によって細かな修飾を受け変化する。 即ち、 抗体の特異性は H鎖 と L鎖の V領域遺伝子の中の各遺伝子断片の組合せと体細胞突然変異によつ て決定される [利根川進, Nature, 307, p575 (1983) ; 本庶佑, Annual E ev. Immunol. 1, P499 (1983) 参照] 。 従って、 ある特定の抗原に対して は、 特定の H鎖 V D J遺伝子断片と特定の L鎖の V J遺伝子断片の組合せ さらには特定の体細胞突然変異があると考えられる。 しかも、 これらの遺 伝子断片の組合せやその核酸塩基あるいはァミノ酸配列を抗原側の構造、 核酸塩基あるいはァミノ酸配列等から類推することは非常に困難であり、 実際に抗体を産生している細胞から抗体遺伝子あるいは抗体蛋白質を単離 しなくては決定できない。 このように、 抗体分子の可変領域のアミノ酸配 列は抗原決定基毎に異なり、 可変領域そのものは抗原ごとに全く異なるァ ミノ酸配列を有する。
本発明の対象となる組換え抗 H I V抗体については、 既に本発明者等が 抗 H I V中和組換え抗体として 0. 5 /3組換え抗体を発表している [特開平 2 -2352] が、 該組換え抗体は HTLV-ΠΙΒを特異的に中和することはできる力、 疫学上多いとされる HTLV- ΠΙΜΝを中和することはできなかった。 前述のよ うに、 組換え抗体の作製には、 目的の抗原と結合能を持つ抗体分子の可変 領域のアミノ酸配列をコードする遺伝子を見いだすことが非常に重要な要 素となっており、 本発明の対象となる H I V、 特に HTLV-IIIMNに対して中 和活性を持つ抗体の可変領域のァミノ酸配列をコードする遺伝子を見いだ すことが困難であったために、 これまでこの HTLV- IIIMNに結合しこれを実 質的に中和する組換え抗体が得られたという報告はない。
発明の目的
このような状況において、 本発明者らは H I V (HTLV-IIIMN) に対して 中和活性を有するモノクローナル抗体を産生する細胞 (ハイプリ ドーマ) から、 該抗体の可変領域をコードする遺伝子を分離することに成功し、 さ らにこれを用いてマウス一ヒ ト組換え抗体の発現を試みた結果、 H I V (H TLV-IIIMN) に対して中和活性を有する組換え抗 H I V抗体の作製に成功 し、 本発明を完成するに至った。 すなわち本発明は、 これまでに一切報告 されていない抗 H I V中和抗体の可変領域をコードする遺伝子を提供し、 これを用いて形質転換細胞内で発現される組換え抗 H I V抗体を提供する ものであり、 この新規抗 H I V組換え抗体からなる副作用の少ない A I D S診断薬 ·治療薬 ·予防薬の開発を可能にすることを目的とするものであ る。
図面の簡単な説明
図 1は実施例(3)で示した抗 H I V中和抗体/ / 39. 1の H鎖可変領域をコ 一ドする本発明の D N A断片の核酸配列およびァミノ酸配列を示す。
図 2は実施例(3)で示した抗 H I V中和抗体/ / 39. 1の L鎖可変領域をコ 一ドする本発明の D N A断片の核酸配列およびァミノ酸配列を示す。 図 3は実施例(3)で示した抗 H I V中和抗体/ / 5.5の H鎖可変領域をコー ドする本発明の DN A断片の核酸配列およびァミノ酸配列を示す。
図 4は実施例(3)で示した抗 H I V中和抗体 5.5の L鎖可変領域をコー ドする本発明の DNA断片の核酸配列およびァミノ酸配列を示す。
図 5は実施例(4)で構築した抗 H I Vキメラ抗体 H鎖発現プラスミ ド C H /39.1および C H 5.5の構造を示す。
図 6は実施例(4)で構築した抗 H I Vキメラ抗体 L鎖発現プラスミ ド C L 39.1および C L /5.5の構造を示す。
図 7は実施例(5)で測定した抗 H I Vキメラ抗体/ / 39.1および実施例(7) で測定した抗 H I V改変抗体/ z39.1の抗 H I V活性を示す。
図 8は実施例(5)で測定した抗 H I Vキメラ抗体 Z 5.5および実施例(7) で測定した抗 H I V改変抗体/ / 5.5の抗 H I V活性を示す。
図 9は実施例(6)で調製した抗 H I V改変抗体 39.1H鎖の可変領域を コードする DNA断片の核酸配列およびァミノ酸配列を示す (下線部分の 配列がマウス抗体由来のアミノ酸配列を示す) 。
図 10は実施例(6)で調製した抗 H I V改変抗体/ z 39.1L鎖の可変領域 をコードする DNA断片の核酸配列およびァミノ酸配列を示す (下線部分 の配列がマウス抗体由来のアミノ酸配列を示す) 。
図 11は実施例(6)で調製した抗 H I V改変抗体/ /5.5H鎖の可変領域を コードする DNA断片の核酸配列およびァミノ酸配列を示す (下線部分の 配列がマウス抗体由来のアミノ酸配列を示す) 。
図 12は実施例(6)で調製した抗 H I V改変抗体/ /5.5L鎖の可変領域を コードする DNA断片の核酸配列およびァミノ酸配列を示す (下線部分の 配列がマウス抗体由来のアミノ酸配列を示す) 。
-D- 発明の開示
本発明に用いる抗 H I V (HTLV-IIIM ) マウスモノクローナル抗体産生 細胞は、 これまでに確立されているマウスモノクローナル抗体の作製技術 を用いて作製される。 例えば、 マウスを種々の適当な免疫原、 例えば H I V (HTLV-IIIMN) 産生細胞から得られるウィルス粒子、 もしくは精製外皮 膜糖蛋白質 gpl20、 もしくは遺伝子組換え技術を用いて調製される組換え ぺプチド、 好ましくは gpl20のアミノ酸配列第 247- 370に対応する組換えべ プチド、 もしくは該ウィルス蛋白のァミノ酸配列に基づいて調製される好 適な合成べプチド、 好ましくは gpl20のァミノ酸配列第 303- 325に対応する 合成べプチド等で免疫し、 得られた脾臓細胞をマウスのミエローマ細胞と 融合させ、 得られたハイプリ ドーマから、 精製外皮膜糖蛋白質 gpl20、 も しくは前記組換えべプチド、 もしくは前記合成べプチドに反応する細胞を 選択し、 該細胞を培養することによって調製することができる。 更に、 こ のようにして得られた抗 H I Vマウスモノクロ一ナル抗体産生細胞の中か ら H I Vに対して中和活性を有するモノクローナル抗体を産生している細 胞を選択する。 H I Vの場合その特有の性質からこのような中和活性を有 するモノクローナル抗体を得ることは容易なことではないが、 そのような 細胞株として本発明者等は H I V (HTLV-IIIMN) に対して中和活性を有す る抗体を産生するハイプリ ドーマ/ / 39. 1あるいは 5. 5細胞の確立に成功 しており [特願平 2- 188300] 、 これらが本発明に用いる最も好ましい細胞 株としてあげられる。
本発明の可変領域をコードする遺伝子断片は、 このような抗 H I V中和 モノクローナル抗体産生細胞より分離され、 解析された遺伝子配列である c しかしながら前にも述べたように、 このような細胞は目的の抗 H I V抗体 に特異的な V領域をコードする遺伝子の他に、 数多い V領域構成遺伝子群 を有している (例えば、 マウス抗体の特異性を決定する V H鎖の V遺伝子 群だけでも少なくとも 100種以上異なる遺伝子を持ち、 D遺伝子群として 1 1種以上、 J遺伝子群として 4種の遺伝子を持っている。 同様に V /c鎖 の V遺伝子群としては約 300種以上の遺伝子、 J遺伝子群としては 4種の 遺伝子を保有している) ため、 細胞の持つ染色体遺伝子の中から、 目的の 抗 H I V抗体に特異的な V領域をコードしている遺伝子を分離することが 必要である。 V領域遺伝子は通常の遺伝子操作技術により単離することが できる。 例えば、 その細胞の染色体 7 D N Aから常法 [例えば、 T. Maniati s "Molecular Cloning" Cold Spring Harbor Lab. (1982)参照]に従って V 領域遺伝子をクローニングする方法、 あるいは、 その細胞の mRNAを材料と して常法 [例えば、 D. M. Glover編集 " DNA cloning Vol. I" IRL press (1 985)] により c D N Aを合成し V領域遺 子をクローニングする方法であ る。 いずれの方法も、 V領域遺伝子クローニングの為のプローブとして、 すでに報告されているマウス免疫グロプリン遺伝子の核酸塩基配列 [例え ば、 坂野ら、 Nature, 286, p676, (1980) ; E. E. Ma ら、 J. Biol. Chem., 25 6, p5116, (1981)] を参照して合成した D N Aプローブ等を利用することが 出来る。 また、 P C R (ポリメレ一ス連鎖反応) を利用したクローニング も可能である [E. Orlandi, et al., Proc. Natl. Acad. Sci. USA, 86, 3833 (1989) ; W. D. Huse, et al., Science, 246, 1275 (1989)] 。
このようにしてクローニングされた V領域遺伝子をキメラ抗体作製法 [特 開平 2- 2352] や改変抗体作製法 [特開昭 62-296890] のような種々方法に より遺伝子解析を行なった。 その結果、 抗 H I V抗体 V領域をコードする 本発明の遺伝子断片は、 その特異的な遺伝子配列として、 H鎖をコードす る遺伝子に、
( H - a ) (a) Lys-Tyr-Gly-Met-Asn
(b) Trp- Lys-Asn- Thr-Asn-Thr-Gly- Glu_Ser-Thr-His-Val- Glu- Glu- Phe - し ys - Gly
(c) Glu - Tyr - Asp - Tyr - Asp - Gly - Gly - Phe - Ser - Tyr
または、
(H - b )
(a) Glu- Tyr- Thr-Met- His
(b) Gly-Ile-Asn-Pro-Asn-Asn- Gly- Asp- Thr-Ser- Tyr-Thr-Gln-Lys- Phe- Lys-Gly
(c) Pro - Tyr - Tyr - Ala- Tyr - Ala - lie - Asp - Ser
のァミノ酸配列をコ一ドする遺伝子をその一部に含み、 また L鎖をコード する JSI 子に、
( L - a )
(a) Lys-Ala-Ser-Gln-Asp-Val-Gly-Ala-Asp-Val-Ala
(b) Trp- Ala-Ser- Thr-Arg-His- Thr
(c) Gin- Gin- Tyr-Ser- Ser-Phe- Pro- Leu- Thr
または
( L - b )
aゾ し ys— Ala— Ser— Gin— Ser— Val— Asp— Tyr— Asp— Gly— Asp— Ser— Tyr— Met— Asn
(b) Ala - Ala - Ser - Asn - Leu - Glu - Ser
c; Gin - Gin - Ser - Asn - Glu - Asp - Pro - Trp - Thr
のァミノ酸配列をコードする遺伝子配列をその一部に有することを特徴と することが見い出された。 このような上記の H鎖、 L鎖に含まれるそれぞ れ 3種のァミノ酸配列は、 抗体分子の結合能を決定する重要なァミノ酸配 列と考えられ、 このようなアミノ酸配列が、 H I Vに対する中和活性を有 する抗体分子の機能と密接に関連しているものと考えられた。 すなわち、 Kabatらにより報告されている抗体遺伝子の一般的解析 [Sequences of Pr oteins of Immunological Interest, 4th. ed. U. S. Department of Heal th and Human Services (1987)] の結果を参照することにより、 上記のァ ミノ酸配列は、 本発明の抗 H I V抗体の抗体活性を決定する可変領域の相 補性決定領域 (CDR1〜CDR3) の配列であることが見いだされた。 このよう な抗 H I V中和活性を有する抗体分子の可変領域をコードする遺伝子とし て、 H鎖、 L鎖それぞれ図 1、 または図 3、 図 2または図 4のアミノ酸配 列をコ一ドする遺伝子断片がその好ましい一例として挙げられる。 また、 そのような遺伝子の具体的核酸塩基配列の一例としては、 H鎖、 L鎖それ ぞれ図 1または図 3、 図 2または図 4に示された核酸塩基配列が挙げられ る 0
このように本発明により提供される上記の核酸配列をもとに、 H I Vに 対して中和活性を有する組換え抗体を調製することが可能となる。 すなわ ち、 このような組換え抗体の可変領域をコードする遺伝子として、 その相 補性決定領域をコードする D N A断片として、 上記に示したアミノ酸配列 をコードするよう合成 D N A等をそれぞれ調製し、 これをヒ ト免疫グロブ リンをコ一ドする遺伝子と融合させることにより、 目的の組換え抗 H I V 抗体、 すなわち、 抗 H I Vキメラ抗体または抗 H I V改変抗体を調製する ことが可能となる。 このようにして調製される本発明の組換え抗 H I V抗 体は、 その H鎖可変領域の相補性決定領域として下記の配列 (CDR1〜CDR3) を有することを特徴とする。
(H - A )
CDR1: Lys-Tyr-Gly-Met-Asn
CDR2: Trp-Lys-Asn-Thr-Asn-Thr-Gly-Glu-Ser-Thr-His-Val-Glu-Glu- Phe-Lys-Gly
CDR3: Glu-Tyr-Asp-Tyr-Asp-Gly-Gly-Phe-Ser-Tyr
または
(H - B )
CDR1: Glu-Tyr-Thr- Met-His
CDR2: Gly - Ile-Asn- Pro- Asn-Asn- Gly- Asp- Thr-Ser-Tyr-Thr-Gln-Lys - Phe-Lys-Gly
CDR3: Pro-Tyr-Tyr-Ala-Tyr-Ala-Ile-Asp-Ser
また、 L鎖鎖可変領域の相補性決定領域として下記の配列 (CDR1〜CDR3) を有することを特徴とする。
( L - A )
CDR1: Lys-Ala-Ser-Gln-Asp-Val-Gly-Ala-Asp-Val-Ala
CDR2: Trp-Ala-Ser-Thr-Arg-His-Thr
CDR3: Gln-Gln-Tyr-Ser-Ser-Phe-Pro-Leu-Thr
または、
( L - B )
CDR1: Lys- Ala- Ser-Gln- Ser- Val- Asp- Tyr- Asp- Gly-Asp- Ser-Tyr-Met - Asn
CDR2: Ala-Ala- Ser- Asn- Leu-Glu-Ser
CDR3: Gln-Gln-Ser-Asn-Glu-Asp-Pro-Trp-Thr
さらに、 本発明者らは、 改変抗体を調製する際には、 これまで報告され ているように、 上記の相補性決定領域のみマウス由来のァミノ酸配列に組 換えるよりも、 さらに相補性決定領域に隣接するフレーム (F R ) 領域の 一部についてもマウス由来の配列に組換えることで、 より本来の抗体活性 を維持した組換え抗体が得られることを見いだした。 すなわち、 H鎖可変領域遺伝子として上記 (H— A ) の相補性決定領域 配列を利用する際には、 可変領域の相補性決定領域 CDR1に隣接する FE1の C末側 1個のアミノ酸がスレオニン (Thr) であり、 CDR2に隣接する FE2の C末側 4個のアミノ酸配列が Lys-Trp-Met-Glyであり、 CDK2に隣接する FR 3の N末側 5個のアミノ酸配列が Arg-Val- Thr-Met- Serであり、 さらに CDE 3に隣接する FR3の C末側 1個のアミノ酸がアルギニン (Arg) である H鎖 可変領域遺伝子を調製することにより優れた効果を有する抗 H I V改変抗 体を調製することができる。 同様に、 H鎖可変領域遺伝子として上記 (H 一 B ) の相補性決定領域配列を利用する際には、 可変領域の相補性決定領 域 CDR1に隣接する FE1の C末側 1個のアミノ酸がスレオニン (Thr) であり、 CDK2に隣接する FR2の C末側 2個のアミノ酸配列が lie- Glyであり、 CDE2 に隣接する FR3の N末側 6個のァミノ酸配列が Lys- Ala- Thr-Met- Thr- Val であり、 さらに CDR3に隣接する FE3の C末側 1個のァミノ酸がスレオニン (Thr) であるような H鎖可変領域遺伝子を調製することにより優れた効 果を有する抗 H I V改変抗体を調製することができる。 また、 L鎖可変領 域遺伝子として上記 (L一 A ) の相補性決定領域配列を利用する際には、 可変領域の相補性決定領域 CDR2に隣接する FE2の C末側 1個のァミノ酸が セリン (Ser) である L鎖可変領域遺伝子を調製することが好ましい。
このようにして調製される、 本発明の抗 H I V改変抗体の H鎖可変領域 をコードする遺伝子の核酸配列およびァミノ酸配列の好ましい例としては、 図 9または図 1 1に示された配列を挙げることが出来る (図中、 マウス由 来のアミノ酸配列の領域を下線にて示す) 。 また、 一方、 本発明の抗 H I V改変抗体の L鎖可変領域をコードする遺伝子の核酸配列およびアミノ酸 配列の好ましい例としては、 図 1 0または図 1 2に示された配列を挙げる ことが出来る (図中、 マウス由来のアミノ酸配列の領域を下線にて示す) —方、 本発明に従い、 抗 H I Vキメラ抗体を調製する際には、 H鎖可変 領域をコ一ドする遺伝子の核酸配列およびァミノ酸配列として、 図 1また は図 3に示された配列がその好ましい一例として挙げられる。 また、 L鎮 可変領域をコードする遺伝子の核酸配列およびァミノ酸配列としては、 図 2または図 4に示された配列がその好ましい一例として挙げられる。
一方、 抗 H I V組換え抗体作製に用いられるヒ ト免疫グロプリン H鎖遺 伝子並びに L鎖遺伝子の定常領域 (C ) 遺伝子は、 例えば ヒ ト抗体産生 細胞から同様の方法により単離することが出来る。 また、 C領域遺伝子は その遺伝子内で再配列を行わないので特にヒ ト C領域遺伝子を単離するた めにヒ ト抗体産生細胞を使う必要はない。 単離する方法としては、 前述の マウス V領域遺伝子の単離の場合と同様にして行なうことができる。 また、 C領域遺伝子の種類としては、 特にァ1 鎖、 鎖に限ったものではなく、 / 鎖、 ひ鎖、 7 2鎖、 ァ 3鎖、 ァ 4鎖、 ε鎮、 ス鎖の各鎖の遺伝子でも可能 である。 しかし、 補体活性化能、 抗体依存性細胞傷害活性を期待するなら ば、 ァ 1鎖が望ましい。
抗 H I V組換え抗体遺伝子は、 Η鎖遺伝子も L鎖遺伝子も、 基本的に上 記 2種の遺伝子断片 (λ^領域遺伝子と C領域遺伝子) を結合させることに より構築される。 例えば、 渡辺らによって既に示された方法 [渡辺ら、 Can cer Research, 47, p999-1005, (1987) ] や M. Bruggeraann [ffaldmann H (e d) Monoclonal Antibody Therapy. Prog Allergy. Basel, Karger, 1988, vol 45, pp91 ]や S. L. Morrison [Advances in Immunology, 44, 65, (1 989) ] 等の総説に紹介されている方法に準じて行うことが出来る。 また、 発現させる宿主によって動物細胞発現系、 大腸菌発現系、 酵母細胞発現系 などベクター系が異なるが、 いずれの場合でも発現可能である。 更に、 D H F R等の遺伝子増幅系を使うことも可能である。 このようにして得られる本発明の組換え抗体は、 H I Vに対して中和活 性を有していることが確認され、 本発明によりこれまでになかった抗 H I V組換え抗体を調製することが可能となった。 このような抗 H I V組換え 抗体は、 A I D Sの臨床において、 これまでになつかた実質的に有効な A I D S治療剤となりうるものである。 さらに、 本発明により提供される抗 H I V抗体可変領域をコードする遺伝子断片は、 H I Vに対して中和活性 を有する抗体分子の可変領域の特異的ァミノ酸配列もしくは核酸塩基配列 を開示するものであり、 今後、 さらに進んだ遺伝子組換え技術を応用して 目的の抗体分子を修飾、 または一部置換等することにより、 より優れた抗 H I V組換え抗体分子の開発を可能にするものである。
発明を実施するための最良の形態
次に、 実施例に従い、 本発明をさらに詳細に説明するが、 これにより本 発明が限定されるものではない。
実施例
(1) 抗 H I Vマウスモノクロ一ナル抗体産生細胞の作製
抗 H I Vマウスモノクローナル抗体を産生するハイプリ ドーマの作製方 法は以下に示す通りである。 免疫抗原として、 HTLV- ΠΙΜΝ株外皮膜糖蛋白 質 gpl20のアミノ酸配列第 303〜325番目に対応する合成べプチド (SP- 1 : YN KRKRIHIGPGRAFYTTKNIIG) 及び合成ペプチドを K L H (キーホールリンぺッ 卜へモシァニン) と結合させたペプチド- K L Hコンジュゲート、 あるい は HTLV- ΙΠΜΝ産生細胞 (H9/HTLV- ΠΙΜΝ) 培養上清よりショ糖密度勾配遠 心により得たウィルス粒子、 あるいは H9/HTLV-IIB1N培養液より得た細胞 を 1 %トリ トン X- 100にて溶解後 ConA-セファロース 4Bカラムと H I V抗体 (IgG)-セファロース 4 Bカラムにてァフィ二ティ一精製して得た gpl20、 さらに H9/HTLV_IIIMN細胞の高分子量 D N A (genomic D N A ) より HTLV- III N gpl20 V 3 ドメイン (アミノ酸 247-370) をコードする DN A断片 を PC R法で増幅単離 [G.I. LaEosaら、 Science Vol.249 p932 (1990)] し、 pUEX2 (アマシャム製) 発現ベクター用いて大腸菌で発現させた HTLV - III Ngpl20 V3 ドメイン(アミノ酸 247- 370) /5-ガラク トシダーゼ融合蛋 白、 等を組み合わせて使用した。 これらの免疫原で BALB/cマウスを 4回免 疫後、 脾細胞を採取し、 P3X63Ag8- U1X63マウスミエローマ細胞 [ATCC CRL 1597] とポリエチレングリコール (シグマ社) を用いて細胞融合を行い クローニングした。 得られたクローンの培養上清中の抗体の前述の免疫原 への結合活性を酵素抗体法にて測定し、 反応が陽性と思われるクローンに ついて、 さらに、 ウェスタンブロッ ト法及び間接蛍光法を用いて確認し、 抗 H I Vモノクローナル抗体、 39.1あるいは/ /5.5を産生するハイプリ ドーマを確立した [特願平 2- 188300、 寄託番号; //39.1 (微ェ研菌寄第 11 472号) 、 /5.5 (微ェ研条寄第 3402号) ] 。 これらの抗体は SP- 1ペプチド に結合し、 H I V感染細胞と非感染 CD4 陽性細胞間の合胞体形成 (syncyt ium formation) を抑制する。 さらに、 これらの抗体と H I Vウィルスを 混和し細胞 (H9) へ感染させるウィルス中和試験においても中和活性を確 認している。
以下に述べる本発明の抗 H I V組換え抗体の V領域遺伝子の調製には、 該中和活性を有するこれらの抗 H I Vマウスモノクローナル抗体を産生す る細胞 (//39.1、 5.5細胞) を使用した。
(2) 抗 H I V抗体マウス V領域遺伝子の単離
マウス免疫グロプリ ン可変 (V) 領域遺伝子の単離については以下のよ うに行った。
〃39.1、 5.5細胞から常法 [D. M. Glover編集 " DNA cloning Vol. I" I RL press (1985)] に従って全 R N Aを抽出し、 c DNA合成システム ' プラス (アマシャム) を用いて 1本鎖 cDNAを合成した。 この 1本鎖 cDN A¾r铸型に、 kabatら [Sequences of Proteins of Immunological Interes t 4th ed., Public Health Service, NIH, Washington DC, 1987]の分類 した V領域と J領域の核酸塩基配列をもとにして合成した DNAプライマ 一を用いてポリメレース連鎖反応 (PCR) を行なった。 V領域プライマ —と J領域プライマーにはそれぞれ Hindlllと BamHIサイ 卜が付加されてい る。 P CRはシータス社のプロ トコールに従って行なった。 すなわち 、 これらのプライマーはともに 100 pmol 使い、 P CRの試薬は CETUS社の キッ トを使用した。 PCRの条件は、 94°C1分、 55°C1分、 72°C1分で 25 サイクル行なった。 PCR後、 得られた DNA断片を pUC18(宝酒造製; 以下 本実施例で使用した試薬は特に断りのない限り宝酒造製あるいは東洋紡製 を使用した)の Hindiサイ 卜へサブクローニングした。
(3) 抗 H I V抗体マウス V領域遺伝子の核酸塩基配列
東洋紡社のシークナーゼ Ver.2キッ トを用いて、 pUC18に組み込まれた V 領域遺伝子をシークェンスした。 その結果得られた/ / 39.1、 5.5の核酸 塩基配列を図 1から図 4に示す。 また、 その核酸塩基配列から得られるァ ミノ酸配列についても同様に図 1から図 4に示す。 /39.1、 5.5い ずれ の核酸塩基配列も V領域遺伝子特有の再配列を起こしており、 しかも発現 可能なォー プンリーディングフレーム (ORF) をとつていた。
(4) 抗 H I Vキメラ抗体の作製
(2)で単離された; /39.1、 5.5 V領域遺伝子が本当に抗 H I V活性を 担う V領域をコードする遺伝子であるかどうかを確認するために、 マウス ーヒ トキメラ抗体が作製された。 キメラ抗体の発現のためにヒ トサイ トメ ガロウィルス (HCMV) のェンハンサ一、 プロモータ一 [ N. Whittle, et al., Protein Engineering, 1, 499 (1987)] を持った発現ベクター HCMV - c.HCMV-ァ 1 がそれぞれ使われた。 HCMV - /c, はヒ ト / 鎖定常領域遺伝 子を持ち HCMV-ァ 1 はヒ トァ 1鎖定常領域遺伝子を持つ。 前述の(2)で調 製された 39. IV領域を Hindlllと BamHI制限酵素で消化し、 VH、 VL断 片をそれぞれ HCMV-ァ 1、 HCMV-/Cの Hindlll- BamHI サイ 卜に組み込んだ。 /39.1キメラ抗体遺伝子発現ベクター (それぞれ《1^39.1、 CL /39.1) の 構造を図 5、 図 6に示す。 また、 5.5 VH、 VL領域遺伝子も、 39.1 の場合と同様にして、 HCMV-ァ 1、 HCMV-/Cにそれぞれ組み込んだ(それぞ れ CH /5.5、 5;図 5、 図 6参照)。
(5) 抗 H I Vキメラ抗体の発現
上記のように構築した〃 39.1あるいは 5.5キメラ抗体遺伝子の持つ抗 体活性を C0S7細胞 [ATCC CEL 1651]を用いた一時的発現系で検討した。 CH 39.1及び CL /39.1プラスミ ド DMの混合物、 あるいは CH;u5.5及び CL /5. 5プラスミ ド DNAの混合物を Bio- Rad社製の Electroporation 装置を用い て、 Boi-Bad社のプロ トコールにしたがって C0S7細胞に導入し、 10 %牛 胎児血清を含む DMEM培地 (GIBC0社) で培養した。 3曰後その培養上清を 回収し、 抗ヒ ト IgG あるいは SP-1抗原ペプチドを用いた ELISA 法によりそ の培養上清に存在する抗体の活性を測定した。 その結果図 7に示すように、 CH 39.1及び CL; 39.1プラスミ ド DNAの混合物、 あるいは 5.5及び CL 5.5プラスミ ド DNAの混合物のいずれの発現産物も SP- 1ぺプチドに結合した c 従って(2)で単離した 39.1、 z5.5 V領域遺伝子は間違いなく抗 H I V 活性を持った抗体の V領域をコードしている遺伝子であることが確認され た。
(6) 抗 H I V改変抗体の作製
クローニングした/ /39.1、 〃5.5の VH、 VL領域の中で、 どの領域が 抗原結合に関して重要であるかどうかを調べるために、 39.1及び/ 5.5 の CDR (相補性決定) 領域をそれぞれヒ ト V領域へ移植した。 方法は、 改 変抗体作製方法 [特開昭 62- 296890] にしたがった。 ^39.1及び 5.5の V H領域の CD R領域はヒ トサブグループ Iの FR (フレームワーク) 領域 を持った VH領域 [SGI:英国 MEC Collabrative Center の Dr. Bendigよ り分与されたもの]へ移植し (図 8、 図 10) 、 /39.1及び/ /5.5の VL領 域の CDR領域はヒ ト 鎖の FR領域を持った VL領域 [ REI: W. Palm and N. Hilscmann Z.Physiol. Chem. , 356, 167 (1975)] に移植した (図 9、 図 1 1) 。 具体的には、 改変抗体はアマシャムのキッ ト(Oligonucleo tide-directed in vitoro mutagenesis system version 2 code RPN.1523) と PCE[Saiki, R. G. et al. , Science, 239, 487 (1988)]を組み合わせ たアマシャム- P CR法により行なった。 ; 39.1あるいは/ /5.5の VH、 V L領域の移植部位をコードする長鎖ヌクレオチドを、 SG Iあるいは RE Iの V領域遺伝子を組み込んだ M13DNAにァニーリングさせた後に dCTPaS を含む溶液中で DNAの伸長 ·結合を行い、 Neilで铸型 M13DNAを切断、 Ex onuclease IIIによる铸型 D N Aの消化を行なって突然変異した M13DNAの みのストランドを得た (ここまではアマシャムのキッ 卜のプロ トコールに したがって行なった) 。 さらに、 Exonuclease III消化産物を鋅型にュニ バーサルプライマー (UP:M13mpl8 の 5'側に相補的な配列を持つ) とリバ ースプライマー (ESP:M13mpl8の 3'側と同じ配列を持つ) を用いて PC R を行なった。 これらのプライマーはともに 20 pniol 使い、 P CRの試薬は CETUS 社のものを使用した。 P CRの条件は、 94°C1分、 55°C1分、 72°C 1分で 25サイクル行なった。 P CR終了後、 産物を BamHI/Hindlll で消化 し PUC18 の BamHI- Hindlllサイ トに組み込み、 DH5 ひ(BRL社) に形質転換 し、 1次スクリーニングとして、 突然変異に使用した CD Rプライマ一を 用いてアマシャムキッ 卜のプロ トコールにしたがってコロニーハイブリダ ィゼ一ションを行ない、 CDRの突然変異に成功しているクローンを選ん だ。 さらに、 2次スクリーニングとして、 1次スクリーニングで得られた クローンよりプラスミ ドを調製しシークナーゼキッ ト (東洋紡) を用いて シークェンスを行ない、 正確に CD R移植が出来ていることを確認した。 このようにして改変された/ z39.1、 /5.5の V領域 (それぞれ RH 39.1 、 RL 39.1、 EH^5.5. RL//5.5:図 8〜図 11参照) を得た。 これらの改変 V領域断片 を(4)のキメラ抗体の作製と同様にして Hindlllと BamHI制限酵 素で消化し、 VH、 VL断片をそれぞれ HCP-ァ 1、 HCMV- /Cの Hindlll-B amHI サイ 卜に組み込んだ。 このようにして 39.1改変抗体遺伝子発現べ クタ一(それぞれ RH /39.1 、 RL^39. l) 及び/ 5.5改変抗体遺伝子発現べ クタ一(それぞれ RH /5.5、 RL 5.5)が調製された。
(7) 抗 H I V改変抗体の発現
この改変 n 39.1、 5.5抗体遺伝子によつて得られる抗体活性を前述の C 0S7細胞における一時的発現系で検討した。 (5)の場合と同様にして遺伝子 導入細胞の培養上清を回収、 抗ヒ ト IgG あるいは SP-1ペプチドを用いた EL ISA 法によりその培養上清に存在する抗体の活性を測定した。 その結果図 7に示すように、 RH//39.1及び RL /39.1プラスミ ド DNAの混合物、 あるい は RH /5.5及び RL〃5.5プラスミ ド DNAの混合物の発現産物のいずれもが SP- 1 ペプチドに結合した。 従って図 9〜図 12で示された 39.1、 5.5の ァミノ酸配列の中で移植 CD R領域は抗 H I V活性を担う重要な領域であ ることが確認された。 この結果から、 これらの領域をコードする遺伝子は 組換え抗 H I V抗体を作製するにあたり、 極めて有用な遺伝子であること が確認された。 配列表 配列番号: 1
配列の長さ : 3 5 7
配列の型:核酸
鎖の数:二本鎖
トポロジー :直鎖状
配列の種類: c D N A to genomic R N A
配列の特徵
起源
生物名 : マウス
配列
CAG ATC CAG ATG GTG CAG TCT GGA CCT GAG TTG AAG AAG CCT GGA GAG 48 Gin lie Gin Met Val Gin Ser Gly Pro Glu Leu lys lys Pro Gly Glu 1 5 10 15
ACA GTC AAG ATC TCC TGC AAG GCT TCT GGG TAT ACC TTC ACA AAA TAT 96 Thr Val Lys lie Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Lys Tyr
20 25 30
GGA ATG AAC TGG GTG AAA CAG ACT CCA GGA AAG GGT TTA AAG TGG ATG 144 Gly Met Asn Trp Val Lys Gin Thr Pro Gly Lys Gly Leu Lys Trp Met
35 40 45
GGC TGG AAA AAC ACC AAT ACT GGA GAG TCA ACA CAT GTT GAA GAG TTC 192 Gly Trp Lys Asn Thr Asn Thr Gly Glu Ser Thr His Val Glu Glu Phe
50 55 60
AAG GGA CGG TTT GCC TTC TCT TTG GAA ACC TCT GCC AGT ACT GCC TAT 240 Lys Gly Arg Phe Ala Phe Ser し eu Glu Thr Ser Ala Ser Thr Ala Tyr 65 70 75 80 TTG CAG ATC AAC AAC CTC AAA AAT GAG GAC ACG GCT ACA TAT TTC TGT 288
Leu Gin lie Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys
85 90 95
GCA AGA GAA TAT GAT TAC GAC GGG GGC TTT TCT TAC TGG GGC CAA GGG 336
Ala Arg Glu Tyr Asp Tyr Asp Gly Gly Phe Ser Tyr Trp Gly Gin Gly
100 105 110
ACT CTG GTC ACT GTC TCT GCA 357
Thr Leu Val Thr Val Ser Ala
115 配列番号: 2
配列の長さ : 3 2 1
配列の型:核酸
鎖の数:二本鎖
トポロジー :直鎖状
配列の種類: c D N A to genomic R N A
配列の特徴
起源
生物名 : マウス
配列
GAC ATT GTG ATG ACC CAG TCT CAC AAA TTC ATG TCC ACA TCA GTA GGA 48 Asp He Val Met Thr Gin Ser His Lys Phe Met Ser Thr Ser Val Gly
1 5 10 15
GAC AGG GTC AGC ATC ACC TGC AAG GCC AGT CAG GAT GTG GGT GCT GAT 96 Asp Arg Val Ser lie Thr Cys Lys Ala Ser Gin Asp Val Gly Ala Asp
20 25 30 - -
½2i ^ ζι : 呦^
篛本ニ:凝 ©篛
SOT 001
η 9 n9q sAq ^丄 Ϊ3 j Ai 3qd i¾
VOV 913 011 3VV 33V 393 13V IDO Oil 03V 06
naq OJJ gqj -iaS s ユ^ L uif) UT3 S Q gqa j dsy dsy nて J)
33V 33V m 3V3 I3X OIL IVl 1V0 V33 911 0V0 WO
08 OA Q9 ュ 3S ui9 Ι¾Λ an Jtq丄 nsi ^RI dsy Jqi ^TO ュ 3S
I3X DVO OLD IVV 33V XXV 33V 010 13V 3X1 VOV 393 101
09 95 05 o sly J S-CH 3JV ュ ¾ 丄
26ΐ 339 VOV Oil 303 IVO 133 310 V00 I3V 3V3 903 D3V 301 no 33丄 )丄
0 28
an n9l uif) ュ 9s ui9 ^TO OIJ sAq UT3 ui3 HIV Ι^Λ ηι IIV 913 VV3 VVV 130 131 VV3 vdo V03 vvv DV3 VV xvi 330 V13 6df/XDd 696SI/f6 OM GAG GTC CAG CTG CAA CAG TCT GGG CCT GAC CTG GTG AAG CCT GGG GCT 48 Glu Val Gin leu Gin Gin Ser Gly Pro Asp leu Val lys Pro Gly Ala 1 δ 10 15
TCA GTG AAG ATA TCC TGC AAG ACT TCT GGA TAC ACA TTC ACT GAA TAC 96 Ser Val Lys lie Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Glu Tyr
20 25 30
ACC ATG CAC TGG GTG AAG CAG AGC CAT GGA AGG AGC CTT GAG TGG ATT 144 Thr Met His Trp Val Lys Gin Ser His Gly Arg Ser Leu Glu Trp lie
35 40 45
GGA GGT ATT AAT CCT AAC AAT GGT GAT ACT AGC TAC ACC CAG AAG TTC 192 Gly Gly lie Asn Pro Asn Asn Gly Asp Thr Ser Tyr Thr Gin Lys Phe
50 55 60
AAG GGC AAG GCC ACA TTG ACT GTA GAC AAG TCC TCC AGC ACA GCC TAC 240 Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80
ATG GAG CTC CGC AGC CTG ACA TCT GAG GAT TCT GCA GTC TAT TAC TGT 288
3 Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 5
4 85 90 95
GCA ACA CCC TAC TAT GCC TAT GCT ATT GAC TCC TGG GGT CAA GGA ACC 336 Ala Thr Pro Tyr Tyr Ala Tyr Ala lie Asp Ser Trp Gly Gin Gly Thr
100 105 110
TCA GTC ACC GTC TCC TCA
Ser Val Thr Val Ser Ser
115 配列番号: 4
配列の長さ : 3 3 3
配列の型:核酸
鎖の数:二本鎖
トポロジー :直鎖状
配列の種類: c D N A to genomic R N A
配列の特徴
起源
生物名 :マウス
配列
GAC ATT GTG CTG ACC CAA TCT CCA GCT TCT TTG GCT GTG TCT CTA GGG 48 Asp lie Val Leu Thr Gin Ser Pro Ala Ser Leu Ala Val Ser Leu Gly 1 5 10 15
CAG AGG GCC ACC ATC TCC TGC AAG GCC AGC CAA AGT GTT GAT TAT GAT 96 Gin Arg Ala Thr lie Ser Cys Lys Ala Ser Gin Ser Val Asp Tyr Asp
20 25 30
GGT GAT AGT TAT ATG AAC TGG TAC CAA CAG AAA CCA GGA CAG CCA CCC 144 Gly Asp Ser Tyr Met Asn Trp Tyr Gin Gin lys Pro Gly Gin Pro Pro
35 40 45
AAA CTC CTC ATC TAT GCT GCA TCC AAT CTA GAA TCT GGG ATC CCA GCC 192 Lys Leu Leu He Tyr Ala Ala Ser Asn Leu Glu Ser Gly lie Pro Ala
50 55 60
AGG TTT AGT GGC AGT GGG TCT GGG ACA GAC TTC ACC CTC AAC ATC CAT 240 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn lie His 65 70 75 80 CCT GTG GAG GAG GAG GAT GGT GCA ACC TAT TAC TGT CAG CAA AGT AAT 288
Pro Val Glu Glu Glu Asp Gly Ala Thr Tyr Tyr Cys Gin Gin Ser Asn
85 90 95
GAG GAT CCG TGG ACG TTC GGT GGA GGC ACC AAG CTG GAA ATC AAA 333
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu lie Lys
100 105 110 配列番号: 5
配列の長さ : 3 5 7
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:その他の核酸 (合成核酸)
配列の特徴
起源
生物名:マウスおよびヒ ト
配列
CAG GTG CAA CTA GTG CAG TCC GGC GCC GAA GTG AAG AAA CCC GGT GCT 48 Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 δ 10 15
TCC GTG AAG GTG AGC TGT AAA GCT AGC GGT TAT ACC TTC ACA AAA TAT 96 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Lys Tyr
20 25 30
GGA ATG AAC TGG GTT AGA CAG GCC CCA GGC CAA GGG CTC AAG TGG ATG 144 Gly Met Asn Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Lys Trp Met
35 40 45 c- urn
凝 ¾o a
(翊 ¾¾¾^) ^ ^: i coi^ m : 一 α、 4 篛本ニ: m
- -
9 :
9Π ュ 9S ュ 3S ΙΒΛ ュ Ι^Λ n iqi VOX I0V 013 つつ V 3ID 丄丄 0 33V on 50T 00ΐ
^T3 "19 Λτο dユエ ュ s aqa dsy -ΐ dsy •ΐΛ丄 ηχ3 gjy ^TV
9εε LOO 9V3 m 391 IVI つ 33 090 3V3 3VI IV3 IV! VV3 VOV 03
06
s o J.AI lAi "ID ュ as §jy -i3S ■SS nai Wf)
882 03丄 OVI 3VI 113 V39 I3V OVO 3V3 331 393 9X3 30V 331 013 OIV
08 Oi 99 ュ A丄 BTV usy ュ ュ 3S JMX dsy na ュ 3S i¾ I V ^ΐθ sA o V丄 )ί) 03V OVV V3V 1 丄 V OV9 Oil 331 01V つつ V 丄丄 3 93V 330 3VV
09 ce 09 sqd πΐθ "TO ュ as ュ usy ュ usv sAq
III 3V3 3V0 113 IV3 VOV VOX 3V9 V93 I3V IVV 03V OVV VVV 001 039 6<If/I3J 696SI/f6 O GAC ATC CAG ATG ACC CAG AGC CCA AGC AGC CTG AGC GCC AGC GTG GGT 48 Asp lie Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 δ 10 15
GAC AGA GTG ACC ATC ACC TGT AAA GCC AGC CAG GAT GTG GGT GCT GAT 96 Asp Arg Val Thr lie Thr Cys Lys Ala Ser Gin Asp Val Gly Ala Asp
20 25 30
GTA GCT TGG TAC CAG CAG AAG CCA GGT AAG GCT CCA AAG CTG CTG ATC 144 Val Ala Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu He
35 40 45
TCC TGG GCA TCC ACC CGG CAC ACT GGT GTG CCA AGC AGA TTC AGC GGT 192 Ser Trp Ala Ser Thr Arg His Thr Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
AGC GGT AGC GGT ACC GAC TTC ACC TTC ACC ATC AGC AGC CTC CAG CCA 240 Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr lie Ser Ser Leu Gin Pro 65 70 75 80
GAG GAC ATC GCC ACA TAC TAC TGC CAA CAA TAT AGC AGC TTT CCA CTC 288 Glu Asp lie Ala Thr Tyr Tyr Cys Gin Gin Tyr Ser Ser Phe Pro Leu
85 90 95
ACG TTC GGC CAA GGG ACC AAG GTG GAA ATC AAA 321 Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys
100 105
配列番号: 7
配列の長さ : 3 5 4
配列の型:核酸
鎖の数:二本鎖
トポロジー :直鎖状
配列の種類: その他の核酸 (合成核酸)
配列の特徴
生物名 : マウスおよびヒ ト
配列
CAG GTG CAA CTA GTG CAG TCC GGC GCC GAA GTG AAG AAA CCC GGT GCT 48 Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys lys Pro Gly Ala 1 5 10 15
TCC GTG AAG GTG AGC TGT AAA GCT AGC GGT TAT ACC TTC ACT GAA TAC 96 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Glu Tyr
20 25 30
ACC ATG CAT TGG GTT AGA CAG GCC CCA GGC CAA GGG CTC GAG TGG ATT 144 Thr Met His Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp He
35 40 45
GGC GGT ATT AAC CCT AAC AAT GGC GAT ACA AGC TAT ACC CAG AAG TTT 192 Gly Gly He Asn Pro Asn Asn Gly Asp Thr Ser Tyr Thr Gin Lys Phe
50 55 60
AAG GGC AAG GCT ACC ATG ACC GTA GAC ACC TCT ACA AAC ACC GCC TAC 240 Lys Gly Lys Ala Thr Met Thr Val Asp Thr Ser Thr Asn Thr Ala Tyr 65 70 75 80 ATG GAA CTG TCC AGC CTG CGC TCC GAG GAC ACT GCA GTT TAC TAC TGC 288 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
GCC ACA CCC TAC TAC GCC TAC GCT ATT GAC TCC TGG GGA CAG GGT ACC 336 Ala Thr Pro Tyr Tyr Ala Tyr Ala lie Asp Ser Trp Gly Gin Gly Thr
100 105 110
CTT GTC ACC GTC AGT TCA 354 Leu Val Thr Val Ser Ser
115 配列番号: 8
配列の長さ : 3 3 3
配列の型:核酸
鎖の数:ニ本鎮
トポロジー:直鎖状
配列の種類:その他の核酸 (合成核酸)
配列の特徵
起源
生物名 :マウスおよびヒ ト
配列
GAC ATC CAG ATG ACC CAG AGC CCA AGC AGC CTG AGC GCC AGC GTG GGT 48 Asp lie Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15
GAC AGA GTG ACC ATC ACC TGT AAG GCC AGC CAA AGT GTT GAT TAT GAT 96 Asp Arg Val Thr lie Thr Cys Lys Ala Ser Gin Ser Val Asp Tyr Asp
20 25 30 GGT GAT AGT TAT ATG AAC TGG TAC CAG CAG AAG CCA GGT AAG GCT CCA 144 Gly Asp Ser Tyr Met Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro
35 40 45
AAG CTG CTG ATC TAC GCT GCA TCC AAT CTA GAA TCT GGT GTG CCA AGC 192 Lys Leu Leu lie Tyr Ala Ala Ser Asn Leu Glu Ser Gly Val Pro Ser
50 55 60
AGA TTC AGC GGT AGC GGT AGC GGT ACC GAC TTC ACC TTC ACC ATC AGC 240 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr lie Ser 65 70 75 80
AGC CTC CAG CCA GAG GAC ATC GCC ACC TAC TAC TGC CAG CAA AGT AAT 288 Ser leu Gin Pro Glu Asp lie Ala Thr Tyr Tyr Cys Gin Gin Ser Asn
85 90 95
GAG GAC CCA TGG ACG TTC GGC CAA GGG ACC AAG GTG GAA ATC AAA 333 Glu Asp Pro Trp Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys
100 105 110

Claims

請求の範囲
1 . マウス抗体由来のァミノ酸配列とヒ ト抗体由来のァミノ酸配列か らなる遺伝子組換え抗体 H鎖であって、 可変領域の相補性決定領域 (CDE1 〜CDR3) のアミノ酸配列が下記の配列であることを特徵とし、 ヒ ト免疫不 全ウィルス (H I V ) に対する中和活性を有する組換え抗 H I V抗体 H鎖 c
CDR1: Lys-Tyr-Gly- et-Asn
CDR2: Trp-Lys-Asn-Thr-Asn-Thr-Gly-Glu-Ser-Thr-His-Val-Glu-Glu- Phe-Lys-Gly
CDR3: Glu-Tyr-Asp-Tyr-Asp-Gly-Gly-Phe-Ser-Tyr
2 . 可変領域の相補性決定領域 CDE1に隣接する FBIの C末側 1個のァ ミノ酸がスレオニン (Thr) であり、 CDE2に隣接する FE2の C末側 4個のァ ミノ酸配列が Lys- Trp- Met- Glyであり、 CDR2に隣接する FR3の N末側 5個 のアミノ酸配列が Arg- Val-Thr- Met-Serであり、 さらに CDR3に隣接する FK 3の C末側 1個のアミノ酸がアルギニン (Arg) である請求の範囲第 1項の 組換え抗 H I V抗体 H鎖。
3 . 該組換え抗 H I V抗体 H鎖が改変抗体であって、 可変領域の全ァ ミノ酸配列が、 配列表:配列番号 5に記載のァミノ酸順位 1から 1 1 9の ァミノ酸配列である請求の範囲第 1項の組換え抗 H I V抗体 H鎖。
4 . 該組換え抗 H I V抗体 H鎖がキメラ抗体であって、 可変領域の全 ァミノ酸配列が、 配列表:配列番号 1に記載のァミノ酸順位 1から 1 1 9 のァミノ酸配列である請求の範囲第 1項の組換え抗 H I V抗体 H鎖。
5 . マウス抗体由来のァミノ酸配列とヒ ト抗体由来のァミノ酸配列か らなる遺伝子組換え抗体 L鎖であって、 可変領域の相補性決定領域 (CDR1 -CDR3) のアミノ酸配列が下記の配列であることを特徵とし、 ヒ ト免疫不 全ウィルス (H I V ) に対する中和活性を有する組換え抗 H I 抗体 L鎖。 CDR1 : Lys- Ala- Ser-Gln- Asp- Val-Gly-Ala-Asp-Val-Ala
CDR2 : Trp- Ala- Ser-Thr-Arg-His- Thr
CDR3 : Gin- Gin- Tyr-Ser-Ser- Phe- Pro-し eu-Thr
6 . 該組換え抗 H I V抗体 L鎖が改変抗体であって、 可変領域の全ァ ミノ酸配列が、 配列表:配列番号 6に記載のァミノ酸順位 1から 1 0 7の ァミノ酸配列である請求の範囲第 5項の組換え抗 H I V抗体 L鎖。
7. 該組換え抗 H I V抗体 L鎖がキメラ抗体であって、 可変領域の全 了ミノ酸配列が、 配列表:配列番号 2に記載のァミノ酸順位 1から 1 0 7 のァミノ酸配列である請求の範囲第 5項の組換え抗 H I V抗体 L鎖。
8. 前記請求の範囲第 1項の組換え抗 H I V抗体 H鎖と前記請求の範 囲第 5項の組換え抗 H I V抗体 L鎖とからなる組換え抗 H I V抗体。
9. マウス抗体由来のァミノ酸配列とヒ ト抗体由来のァミノ酸配列か らなる遺伝子組換え抗体 H鎖であって、 可変領域の相補性決定領域 (CDR1 -CDR3) のアミノ酸配列が下記の配列であることを特徴とし、 ヒ ト免疫不 全ウィルス (H I V) に対する中和活性を有する組換え抗 H I V抗体 11鎖£
CDR1 : Glu-Tyr-Thr-Met-His
CDR2 : Gly-Ile-Asn-Pro-Asn-Asn-Gly-Asp-Thr-Ser-Tyr-Thr-Gln-Lys- Phe -し ys - Gly
CDR3 : Pro- Tyr- Tyr- Ala- Tyr-Ala-Ile- Asp-Ser
1 0. 可変領域の相補性決定領域 CDE1に隣接する FElの C末側 1個の アミノ酸がスレオニン (Thr) であり、 CDE2に隣接する FR2の C末側 2個の アミノ酸配列が Ile-Glyであり、 CM2に隣接する ΡΈ3の N末側 6個のアミ ノ酸配列が Lys- Ala- Thr-Met- Thr- Valであり、 さらに CDR3に隣接する FR3 の C末側 1個のアミノ酸がスレオニン (Thr) である請求の範囲第 9項の 組換え抗 H I V抗体 H鎖。
1 1 . 該組換え抗 H I V抗体 H鎖が改変抗体であって、 可変領域の全 ァミノ酸配列が、 配列表:配列番号 7に記載のァミノ酸順位 1から 1 1 8 のァミノ酸配列である請求の範囲第 9項の組換え抗 H I V抗体 H鎖。
1 2. 該組換え抗 H I V抗体 H鎖がキメラ抗体であって、 可変領域の 全ァミノ酸配列が、 配列表:配列番号 3に記載のァミノ酸順位 1から 1 1 8のァミノ酸配列である請求の範囲第 9項の組換え抗 H I V抗体 H鎖。
1 3 . マウス抗体由来のァミノ酸配列とヒ ト抗体由来のァミノ酸配列 からなる遺伝子組換え抗体 L鎖であって、 可変領域の相補性決定領域 (CD R1〜CDE3) のアミノ酸配列が下記の配列であることを特徴とし、 ヒ ト免疫 不全ウィルス (H I V) に対する中和活性を有する組換え抗 H I V抗体 L 鎖。
CDR1 : Lys- Ala- Ser-Gln- Ser- Val-Asp- Tyr-Asp- Gly-Asp- Ser- Tyr- Met- Asn
CDR2: Ala-Ala-Ser-Asn-Leu-Glu-Ser
CDR3: Gin- Gin- Ser-Asn-Glu- Asp-Pro- Trp-Thr
1 4 . 該組換え抗 H I V抗体 L鎖が改変抗体であって、 可変領域の全 ァミノ酸配列が、 配列表:配列番号 8に記載のァミノ酸順位 1から 1 1 1 のァミノ酸配列である請求の範囲第 1 3項の組換え抗 H I V抗体 L鎖。
1 5 . 該組換え抗 H I V抗体 L鎖がキメラ抗体であって、 可変領域の 全ァミノ酸配列が、 配列表:配列番号 4に記載のァミノ酸順位 1から 1 1 1のアミノ酸配列である請求の範囲第 1 3項の組換え抗 H I V抗体 L鎖。
1 6 . 前記請求の範囲第 9項の組換え抗 H I 抗体 H鎖と前記請求の 範囲第 1 3項の組換え抗 H I V抗体 L鎖とからなる組換え抗 H I V抗体。
1 7 . ヒ ト免疫不全ウィルス (H I V) に対する中和活性を有する抗 体の Η鎖可変領域もしくはその一部をコードする D N Α断片であって、 そ の核酸配列が、 配列表:配列番号 1に記載の核酸順位 1から 357の核酸 配列またはその一部の核酸配列である DN A断片。
18. ヒ ト免疫不全ウィルス (H I V) に対する中和活性を有する抗 体の L鎖可変領域もしくはその一部をコードする DNA断片であって、 そ の核酸配列が、 配列表:配列番号 2に記載の核酸順位 1から 321の核酸 配列またはその一部の核酸配列である DN A断片。
19. ヒ ト免疫不全ウィルス (H I V) に対する中和活性を有する抗 体の H鎖可変領域もしくはその一部をコードする DNA断片であって、 そ の核酸配列が、 配列表:配列番号 3に記載の核酸順位 1から 354の核酸 配列またはその一部の核酸配列である DN A断片。
20. ヒ ト免疫不全ウィルス (H I V) に対する中和活性を有する抗 体の L鎖可変領域もしくはその一部をコードする DNA断片であって、 そ の核酸配列が、 配列表:配列番号 4に記載の核酸順位 1から 333の核酸 配列またはその一部の核酸配列である D N A断片。
21. 請求の範囲第 17項の DNA断片と請求の範囲第 18項の DN A断片を用い、 さらにヒ ト免疫グロプリンをコ一ドする DN A断片を用い て、 少なくとも相補性決定領域がマウス抗体由来のアミノ酸配列である組 換え抗体を発現可能な発現べクタ一を構築し、 これを動物細胞内で発現さ せ、 該抗体を回収することを特徴とする組換え抗 H I V抗体の調製方法。
22. 請求の範囲第 19項の DNA断片と請求の範囲第 20項の DN A断片を用い、.さらにヒ ト免疫グロプリンをコ一ドする DNA断片を用い て、 少なくとも相補性決定領域がマウス抗体由来のアミノ酸配列である組 換え抗体を発現可能な発現べクタ一を構築し、 これを動物細胞内で発現さ せ、 該抗体を回収することを特徴とする組換え抗 H I V抗体の調製方法。
PCT/JP1993/000039 1993-01-14 1993-01-14 Recombinant anti-hiv antibody and preparation thereof WO1994015969A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES93901547T ES2229206T3 (es) 1993-01-14 1993-01-14 Anticuerpo anti-vih recombinante y su preparacion.
DE69333627T DE69333627T2 (de) 1993-01-14 1993-01-14 Rekombinanter anti-hiv antikörper und seine herstellung
AU32671/93A AU671608B2 (en) 1993-01-14 1993-01-14 Recombinant anti-HIV antibody and preparation thereof
PT93901547T PT678523E (pt) 1993-01-14 1993-01-14 Anticorpos recombinantes anti-vih e sua preparacao
CA002153165A CA2153165C (en) 1993-01-14 1993-01-14 Recombinant anti-hiv antibody and process for preparing the same
KR1019950702908A KR100266554B1 (ko) 1993-01-14 1993-01-14 재조합항-hiv항체및그의제조방법
EP93901547A EP0678523B1 (en) 1993-01-14 1993-01-14 Recombinant anti-hiv antibody and preparation thereof
DK93901547T DK0678523T3 (da) 1993-01-14 1993-01-14 Rekombinant anti-HIV antistof og fremstilling deraf
AT93901547T ATE276276T1 (de) 1993-01-14 1993-01-14 Rekombinanter anti-hiv antikörper und seine herstellung
US08/491,845 US5773247A (en) 1993-01-14 1993-01-14 Recombinant anti-HIV antibody and process for preparing the same
PCT/JP1993/000039 WO1994015969A1 (en) 1993-01-14 1993-01-14 Recombinant anti-hiv antibody and preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002153165A CA2153165C (en) 1993-01-14 1993-01-14 Recombinant anti-hiv antibody and process for preparing the same
PCT/JP1993/000039 WO1994015969A1 (en) 1993-01-14 1993-01-14 Recombinant anti-hiv antibody and preparation thereof

Publications (1)

Publication Number Publication Date
WO1994015969A1 true WO1994015969A1 (en) 1994-07-21

Family

ID=25678063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000039 WO1994015969A1 (en) 1993-01-14 1993-01-14 Recombinant anti-hiv antibody and preparation thereof

Country Status (10)

Country Link
US (1) US5773247A (ja)
EP (1) EP0678523B1 (ja)
AT (1) ATE276276T1 (ja)
AU (1) AU671608B2 (ja)
CA (1) CA2153165C (ja)
DE (1) DE69333627T2 (ja)
DK (1) DK0678523T3 (ja)
ES (1) ES2229206T3 (ja)
PT (1) PT678523E (ja)
WO (1) WO1994015969A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399067B1 (en) * 2000-04-28 2002-06-04 Thymon L.L.C. Methods and compositions for impairing multiplication of HIV-1
US7090843B1 (en) 2000-11-28 2006-08-15 Seattle Genetics, Inc. Recombinant anti-CD30 antibodies and uses thereof
ATE524196T1 (de) * 2001-10-16 2011-09-15 Macrogenics West Inc An das krebsassoziierte antigen cd46 bindende antikörper und verwendungsverfahren dafür
CA2505633A1 (en) * 2002-11-13 2004-05-27 Raven Biotechnologies, Inc. Antigen pipa and antibodies that bind thereto
EP1851247A2 (en) 2005-02-15 2007-11-07 Thymon L.L.C. Methods and compositions for impairing multiplication of hiv-1
US8496938B2 (en) * 2009-05-08 2013-07-30 Vaccinex, Inc. Anti-CD100 neutralizing neutralizing antibodies and methods of using the same
EP3187585A1 (en) 2010-03-25 2017-07-05 Oregon Health&Science University Cmv glycoproteins and recombinant vectors
CN102190726B (zh) * 2011-03-30 2013-03-27 中国医学科学院病原生物学研究所 一种人源HIV抗体的Fab片段及其编码基因与应用
CN102212133B (zh) * 2011-03-30 2013-01-16 中国医学科学院病原生物学研究所 人源HIV抗体的Fab片段及其编码基因与应用
DK2691530T3 (en) 2011-06-10 2018-05-22 Univ Oregon Health & Science CMV GLYCOPROTEIN AND RECOMBINANT VECTORS
EP2568289A3 (en) 2011-09-12 2013-04-03 International AIDS Vaccine Initiative Immunoselection of recombinant vesicular stomatitis virus expressing hiv-1 proteins by broadly neutralizing antibodies
EP2586461A1 (en) 2011-10-27 2013-05-01 Christopher L. Parks Viral particles derived from an enveloped virus
EP2679596B1 (en) 2012-06-27 2017-04-12 International Aids Vaccine Initiative HIV-1 env glycoprotein variant
EP2848937A1 (en) 2013-09-05 2015-03-18 International Aids Vaccine Initiative Methods of identifying novel HIV-1 immunogens
EP2873423B1 (en) 2013-10-07 2017-05-31 International Aids Vaccine Initiative Soluble hiv-1 envelope glycoprotein trimers
US10174292B2 (en) 2015-03-20 2019-01-08 International Aids Vaccine Initiative Soluble HIV-1 envelope glycoprotein trimers
EP3072901A1 (en) 2015-03-23 2016-09-28 International Aids Vaccine Initiative Soluble hiv-1 envelope glycoprotein trimers
US9925258B2 (en) 2015-10-02 2018-03-27 International Aids Vaccine Initiative Replication-competent VSV-HIV Env vaccines

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296890A (ja) * 1986-03-27 1987-12-24 メディカル リサーチ カウンスル 組換えdna生産物及び製造法
JPH022352A (ja) * 1988-01-30 1990-01-08 Chemo Sero Therapeut Res Inst 抗hiv抗体可変領域をコードする遺伝子断片およびこれらを用いて発現された抗hivキメラ抗体ならびにその製法
JPH04152893A (ja) * 1990-07-02 1992-05-26 Chemo Sero Therapeut Res Inst モノクローナル抗体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
JPS6147500A (ja) * 1984-08-15 1986-03-07 Res Dev Corp Of Japan キメラモノクロ−ナル抗体及びその製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296890A (ja) * 1986-03-27 1987-12-24 メディカル リサーチ カウンスル 組換えdna生産物及び製造法
JPH022352A (ja) * 1988-01-30 1990-01-08 Chemo Sero Therapeut Res Inst 抗hiv抗体可変領域をコードする遺伝子断片およびこれらを用いて発現された抗hivキメラ抗体ならびにその製法
JPH04152893A (ja) * 1990-07-02 1992-05-26 Chemo Sero Therapeut Res Inst モノクローナル抗体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Journal of Biological Chemistry, Vol. 266, No. 22, (1991), R. ATTANASIO et al., "Structural Characterization of a Cross-reactive Idiotype Shared by Monoclonal Antibodies Specific for the Human CD4 Molecule", p. 14611-14619. *

Also Published As

Publication number Publication date
AU3267193A (en) 1994-08-15
ES2229206T3 (es) 2005-04-16
US5773247A (en) 1998-06-30
AU671608B2 (en) 1996-09-05
DE69333627D1 (de) 2004-10-21
CA2153165C (en) 2003-05-06
EP0678523A1 (en) 1995-10-25
ATE276276T1 (de) 2004-10-15
DK0678523T3 (da) 2005-01-10
DE69333627T2 (de) 2005-09-22
CA2153165A1 (en) 1994-07-21
EP0678523B1 (en) 2004-09-15
PT678523E (pt) 2004-12-31
EP0678523A4 (en) 1998-08-05

Similar Documents

Publication Publication Date Title
KR100337069B1 (ko) 항-hiv모노클로날항체
WO1994015969A1 (en) Recombinant anti-hiv antibody and preparation thereof
Gorman et al. Reshaping a therapeutic CD4 antibody.
US6818748B2 (en) Cloning, expression, sequencing, and functional enhancement of monoclonal ScFv antibody against Venezuelan equine encephalitis virus (VEE)
CN113354729B (zh) 一种抗新型冠状病毒的单克隆抗体及其应用
US20120269821A1 (en) Hiv-1 antibodies
JPH08503121A (ja) 中和反応性ヒト抗−gp120組換え抗体、それをコードするdnaおよびその使用
EP0894135A1 (en) Multivalent and multispecific antigen-binding protein
CN110317267B (zh) 针对狂犬病病毒的双特异性抗体及其用途
US6768004B2 (en) Nucleotide sequences encoding variable regions of heavy and light chains of monoclonal antibody 1F7, an anti-idiotypic antibody reactive with anti-HIV antibodies
KR20160010466A (ko) Icosl에 대한 치료학적 표적 특이적 vnar 도메인의 단리
CN113354730B (zh) 一种抗新型冠状病毒的单克隆抗体及其应用
AU685397B2 (en) Recombinant humanized anti-human immunodeficiency virus antibody
KR20100014495A (ko) 신규한 인간 항-r7v 항체 및 그들의 용도
JPH04141095A (ja) 組換え抗hiv改変抗体および改変抗体の調製方法
JP4819285B2 (ja) 狂犬病ウイルス特異的ヒトモノクローナル中和抗体及び核酸及び関連する方法
EP0327000B1 (en) Gene fragments coding for the variable region of an anti-hiv antibody, chimeric anti-hiv antibodies expressed using the same, and process for their preparation
WO1994028933A1 (en) Bispecific human monoclonal antibodies specific for human immunodeficiency virus
JPH06141885A (ja) モノクローナル抗体
US6291208B1 (en) Chimeric antibodies for delivery of antigens to selected cells of the immune system
JPH06125783A (ja) 組換え抗hiv抗体およびその調製方法
US20220227845A1 (en) Multispecific Anti-HIV Antibodies
Kasai et al. Molecular cloning of murine monoclonal anti-idiotypic Fab
KR100266554B1 (ko) 재조합항-hiv항체및그의제조방법
CN114751988A (zh) 中和冠状病毒的多特异性抗体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2153165

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993901547

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08491845

Country of ref document: US

Ref document number: 1019950702908

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1993901547

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993901547

Country of ref document: EP