WO1993007258A1 - Substrat für zellkulturen - Google Patents

Substrat für zellkulturen Download PDF

Info

Publication number
WO1993007258A1
WO1993007258A1 PCT/DE1992/000815 DE9200815W WO9307258A1 WO 1993007258 A1 WO1993007258 A1 WO 1993007258A1 DE 9200815 W DE9200815 W DE 9200815W WO 9307258 A1 WO9307258 A1 WO 9307258A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cells
openings
cell
microns
Prior art date
Application number
PCT/DE1992/000815
Other languages
English (en)
French (fr)
Inventor
Karl Friedrich Weibezahn
Gudrun Knedlitschek
Hermann Dertinger
Klaus Schubert
Wilhelm Bier
Thomas Schaller
Original Assignee
Kernforschungszentrum Karlsruhe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe Gmbh filed Critical Kernforschungszentrum Karlsruhe Gmbh
Priority to DE59207961T priority Critical patent/DE59207961D1/de
Priority to EP92919901A priority patent/EP0605527B1/de
Priority to JP5506530A priority patent/JP2511247B2/ja
Publication of WO1993007258A1 publication Critical patent/WO1993007258A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography
    • C12N2535/10Patterned coating

Definitions

  • the invention relates to a substrate for cell cultures consisting of a) a plate-shaped body with grid-like openings which are separated from one another by webs, and b) a soil which is permeable to liquids but not to cells and which closes the openings on one side.
  • Such a substrate is known from DE 29 02 026 AI.
  • This substrate consists of a wall body and a floor which is detachably connected to the wall body.
  • the wall body consists of a plate made of plastic, which has a plurality of openings (chambers) separated from one another by webs. From the figures it can be seen that the clear width of the openings is approximately 10 mm (10000 ⁇ m).
  • a two-dimensional substrate for cell cultures and a two-dimensional cell culture are known from IG Noske's publication "Morphological investigations on rabbit egg epithelial cells: primary cultures on polycarbonate membranes" in TECNOMARA NEWS IV / 90, Laboratory information leaflet.
  • the substrate consists of a membrane which has pores of different sizes. Some of these pores penetrate the membrane. The cells show a tendency to anchor pores. Essentially, the cell culture forms a monolayer that covers the top and bottom of the membrane.
  • Such substrates have the advantage that nutrient solution can be supplied to the cells unhindered and metabolic products can be easily removed. Furthermore, there is also the possibility of optically checking cells adhering to such substrates under the microscope.
  • the conclusion of the publication states that the shape of the cells changes depending on the substrate offered. They often grow extremely flat on a glass or plastic base, so that the polarity that is so important for their function is not guaranteed.
  • this substrate appears to be less suitable for the establishment and investigation of cell cultures.
  • the metabolic gradient is not clearly defined due to the irregular geometry.
  • the diffusion of products is dependent on the construction of the different capillaries. of the material used is always restricted to certain molecular weights.
  • the known substrate cannot be designed in such a way that microscopic control of the cells is possible during cultivation.
  • This substrate is a composite of pearl-like particles with a diameter of approximately 50 to 300 ⁇ m, in the spaces between which a three-dimensional cell culture can form.
  • the pearl-like particles have macropores on their surface, the diameter of which is less than 10 ⁇ m and is preferably in the range between 0.1 and 3 ⁇ m.
  • the macropores form a capillary system into which the cells cannot grow, since the cell diameter of the cells used here is approximately 20 ⁇ m. This capillary system provides the cells with nutrient medium and the removal of metabolic products.
  • This substrate appears to have similar disadvantages as the capillary tube substrate mentioned above.
  • the object of the invention is to remedy the disadvantages of the known cell substrates mentioned.
  • the advantages of membrane-like substrates are to be combined with the possibility of being able to form three-dimensional cell structures.
  • the clear width of the openings is in the range between 50 ⁇ m and 1000 ⁇ m.
  • the openings can take any shape. They preferably have a rectangular or hexagonal shape because such shapes can be realized with webs of constant width. In others, e.g. B. also irregular shapes, the clear width should be in any direction in the specified range.
  • the clear width of the breakthroughs need not be constant.
  • the breakthroughs can, for example, also take the form of rectangular or hexagonal truncated pyramids which taper in the direction of the floor, the values given here for the clear width in each surface parallel to the floor also being maintained here.
  • the substrate according to the invention has essentially the same outer shape as that from DE 29 02 026 A1 cited at the outset, the choice of other dimensions alone results in considerable differences in the effect of the substrate.
  • the dimensions of the substrate according to the invention are selected in such a way that introduced cells do not grow on the floor (as in the known substrate described at the beginning), but anchor themselves on the side walls and connect a large number of connections to one another in a horizontal as well as special manner record in the vertical direction. This creates a compact three-dimensional cell structure, the size of which is determined by the size of the individual opening. Because of the size selected according to the invention, the supply of the cell structure is guaranteed at the same time.
  • the essential basic idea when choosing the dimensions according to the invention is to offer the individual cells as little as possible a flat floor surface when the culture is being laid out. It has been shown that a three-dimensional structure of a tissue structure can no longer be achieved if, as in the substrate described at the beginning, a plurality of cells attach to the bottom to form a two-dimensional layer.
  • a substrate in which the clear width of the openings is in the range between 150 ⁇ m and 400 ⁇ m is particularly preferred. Breakthroughs with these dimensions are especially tailored to cells with a diameter of 20 ⁇ m.
  • the depth of the openings depends on the intended use of the substrate according to the invention. It is limited by the fact that a good one under physiological conditions. Nutrient supply to the central tissue zone in the individual breakthrough (compartment) must be ensured. From this point of view, a depth of the openings in the range between 50 and 300 ⁇ m appears most suitable. A depth in the range between 300 and 1000 ⁇ m appears more suitable for special, non-physiological applications. Such applications are, for example, studies on tumor models in which a central necrotic zone is deliberately created.
  • substrates whose openings have the shape of a truncated pyramid tapering towards the bottom. Such substrates can be produced particularly easily using the methods of mechanical microfabrication.
  • the width of the webs on the free side of the plate-shaped body By a suitable choice of the width of the webs on the free side of the plate-shaped body, which is not covered by the floor, a defined tissue layer can be produced in the smallest space. In the process, the cells grow out of the openings and combine to form a tissue structure covering the entire substrate, which itself no longer contains any disruptive support structures. From this point of view, the width of the webs should be in the range between 15 and 115 ⁇ m.
  • the soil per se is only required when the cell culture is being applied. Since the cells anchor themselves on the walls of the openings due to the choice of dimensions according to the invention, it can be particularly advantageous for microscopic control of the cell culture be when the bottom is removable. In contrast to the substrate described at the beginning, it is not the soil that supports the cell culture, but the plate-shaped body with the openings.
  • a microporous plate such as a ceramic frit, or a corresponding plastic membrane, which is permeable only for liquids, but not for individual cells, can be used as the bottom.
  • a grid-like base plate with defined openings separated by walls is preferred. The openings can be chosen so that individual cells are retained.
  • the bottom is preferably designed so that the cells introduced can in principle only insignificantly or better not attach at all.
  • the floor not having a free, flat surface which corresponds to the size of the individual cell. If, for example, a ceramic frit is used as the base, the porosity of the frit should be selected accordingly.
  • the base can consist of a plate or foil which consists of a material which is unsuitable for the attachment of cells.
  • the sizes of the free areas between the pores are generally within a certain range.
  • a more uniform floor consists of a regular lattice with openings separated by walls.
  • Such a grating can also be produced using the methods of microfabrication (mechanical microfabrication, X-ray depth lithography, other lithography processes, etc.).
  • the walls of the grating that is preferably used are selected to be a maximum of 20 ⁇ m, approximately 1 to 20 ⁇ m thick, and the clear width of the openings to a maximum of 5 ⁇ m, approximately 1 to 5 ⁇ m.
  • the lower limit of the dimensions of such a grid will usually be limited by the manufacturing process.
  • the surface area of the openings in the floor is larger than the surface area of the webs.
  • the substrate according to the invention is made of a transparent material.
  • Polymethyl methacrylate (PMMA) is particularly suitable as the transparent material.
  • substrates made of PMMA can be easily produced using the methods of micro production; on the other hand, PMMA has tissue-friendly properties.
  • the inside walls of the openings and the free surfaces of the floor can be coated in such a way that cells do not stick.
  • the substrate according to the invention is suitable not only for the formation of defined tissue layers but also for the production of multicellular spheroids of a defined and very uniform size.
  • a coating suitable for this is produced, for example, by siliconization. With such a substrate there is a free aggregation of the introduced cells in the individual breakthroughs (compartments). The clear width of the compartments then determines the diameter of the spheroids formed in this way.
  • the substrate according to the invention represents, for example, a plate-like body which, in the manner of a lattice structure, contains square depressions which are arranged closely next to one another and taper downwards in the form of a truncated pyramid. Further, substantially smaller pyramid-shaped depressions are provided on the base areas of the depressions, the tips of the smaller pyramidal depressions piercing the plate-shaped body.
  • the plate-shaped body and the bottom are connected in one component.
  • a further embodiment of the substrate according to the invention consists in that a perforated plate-shaped body is placed on a microporous, in particular a grid-shaped base plate.
  • cell differentiation takes place in addition to the substrate contacts via cell-to-cell interactions.
  • series thin sections of the substrate filled with cells can be made, a key advantage for the use of histological and histochemical methods.
  • the substrate according to the invention can be integrated into a slide as well as into a medium circulation system.
  • the substrate constitutes a type of tissue filter, as a result of which two physiological half-spaces are defined above and below it. Due to different medium loading in the circulation system, vertically directed metabolic gradients are formed in the culture, which are also supported by an additional coating. device of the lattice elements (eg with components of the extracellular matrix in the course of cell-specific applications) are not blocked or hindered.
  • the substrate according to the invention represents a stable support structure for cells and enables the production of defined layers from different cell types.
  • the heterotypic cell interactions occurring here can lead to further differentiation processes.
  • cell-specific transport processes can be studied, for example.
  • the conditions of the skin organ system, which are difficult to reconstitute in vitro could be examined in more detail by flowing air through a half space instead of medium.
  • Such an "organ-like" culture technique based on the substrate according to the invention can be applied to a large number of different cell types. It can be used for questions from numerous biomedical fields, in which a high degree of cell differentiation is required:
  • organ systems e.g. liver or skin.
  • 1 shows an embodiment with cuboid depressions 1, which are separated from one another by vertical webs 2 and are closed at the bottom by a porous base plate 3.
  • FIG. 2 shows the embodiment according to FIG. 1 and a modified embodiment with V-shaped webs in cross section.
  • 3 to 5 show different processing steps of a mold insert with which an embodiment of the substrate according to the invention can be molded.
  • Fig. 3 shows the pre-processed mold insert.
  • Fig. 5 shows the finely structured mold insert.
  • FIG. 6 shows bars made of PMMA molded with the roughly structured mold insert.
  • Fig. 7 shows with the finely structured mold insert molded webs with small depressions at the bottom of the openings separated by the webs, from which the openings are made.
  • FIG. 9 shows the top of the substrate shown in FIG. 8.
  • FIG. 10 shows a microscope slide in which the substrate is integrated.
  • example 11 shows a further microscope slide with an integrated substrate.
  • the substrates according to the invention can be produced by X-ray lithography processes or by molding processes.
  • a molding process is described below with reference to FIGS. 3 to 8, with which a large number of the substrates according to the invention can be produced in series in a simple manner.
  • a mold insert is required into which the positive structures of the openings and openings in the microstructured substrate are introduced.
  • FIG. 3 shows a pre-machined mold insert with four raised plateaus of 10 mm ⁇ 10 mm in the areas 1 to 4.
  • the height of the plateaus is 1 mm.
  • cross-wise grooves are made with a wedge-shaped diamond in such a way that 400 ⁇ m square networks of 280 ⁇ m deep trenches with a triangular cross section are formed in a grid dimension.
  • truncated pyramids with a surface area of 300 ⁇ m x 300 ⁇ m remain.
  • This roughly structured form of the mold insert is shown in FIG. 4.
  • each truncated pyramid is structured in a 40 ⁇ m grid by 8 8 truncated micro pyramids.
  • the height of the truncated micro pyramids is 80 ⁇ m, the top surfaces measure a few 10 ⁇ m 2 .
  • the result of this processing step is shown in FIG. 5.
  • the mold insert processed in this way is molded with the aid of an injection molding machine.
  • 6 and 7 show the rough and fine structure of the tool molded in PMMA.
  • the material located under the molded structures is removed; this step exposes the openings at the bottom of the substrate.
  • the substrate is fixed on a vacuum clamping device and material is removed from the underside of the substrate until the openings or pores of the base are exposed.
  • the thickness of the base part and the minimum pore diameter can be controlled via the amount of removal.
  • FIGS. 8 (underside of the substrate) and 9 top side of the substrate. If the bottom of the substrate is completely removed, a plastic grid can be produced from webs 100 ⁇ m wide with mesh sizes of 300 ⁇ m, which can serve as a plate-shaped body.
  • a substrate 2 produced according to Example 1 with a usable area of 10 mm ⁇ 10 mm is, as shown in FIG. 10, with two glass object carrier plates 1, adjusting disks 3 and intermediate disks 4, which contain thermostatic and nutrient solution channels 5 , combined into a slide.
  • the outer channels are used for thermostatting; Nutrient solution is fed in and out via the middle channels.
  • the microscope slide consists of two almost identical washers 10, 11, between which a substrate 2 produced according to Example 1 can be clamped in a liquid-tight manner.
  • the upper 10 and lower 11 intermediate washers are identical except for the difference that the upper four bores 12 on the side and the lower four at the corresponding points winch (not shown) contains, by means of screws, the intermediate substrate 2 is clamped.
  • the intermediate washers are made of brass and finished on the surface by a galvanically applied layer of rhodium for the tissue culture.
  • the respective outer surface is provided with a rectangular milling of the width so that it can accommodate a commercially available microscope slide 14, which is locked by two plastic screws located in the short outer edges (in the holes 15).
  • the intermediate disks are provided with a central bore 16 through which an optical observation of the cells in the substrate is possible.
  • Two outer continuous tubes 17 (inner diameter 3 mm, outer diameter 4 mm) can be flowed through with warm water for temperature control via the connection to an external water bath.
  • Middle tubes 18, 19 protrude into the central bore 16 from opposite sides.
  • Fresh nutrient medium is guided through this through the cavity, which is delimited on the middle surface by the substrate 2 and on the outer surface by the respective slide plate 14. This creates two cavities in the assembled state, which can be flowed through by different nutrient media.
  • the entire system is structured symmetrically from top to bottom by the following components:
  • Object slide plate 14 screwed to the upper intermediate plate 10, screwed with the intermediate layer of the substrate to the lower intermediate plate 11, to which a further object slide plate 14 'is screwed.
  • biological experiments were carried out with the substrates produced according to Example 1 in order to demonstrate the cultivation of three-dimensional cell cultures.
  • the substrates were sterilized by co-gamma irradiation at about 100 Gy and transferred to a dry petri dish. 300 to a maximum of 400 ⁇ l of a concentrated suspension of cells or spheroids (cell aggregates) were applied to the 1 cm 2 grid area. The capillary action rapidly penetrated the wells of the substrate within approximately one minute, taking the cells or spheroids with them completely. After approximately 15 minutes in the incubator at 37 ° C., the petri dish was carefully filled with medium, two variants being tried out. The grid structure was underlaid once so that it floated on the medium film. Alternatively, it was overlaid.
  • both variants have proven to be equivalent with regard to the further cultivation of the cells in the incubator.
  • the loading of the substrate is overall problem-free, with an additional careful centrifugation to improve the penetration of the cells or spheroids can generally be dispensed with.
  • Another test objective was to examine the tissue friendliness of the substrate material.
  • the criterion here was the formation of microscopically visible contacts with the Walls. It was found that within a few hours the cells attach to the walls of the wells in the substrate. Together with vitality tests and further details of the cell interaction with the lattice walls, the tissue compatibility of the PMMA substrate material and the geometry of the substrate structure are demonstrated.
  • the observed high affinity of the cells for the material may be favored by the pre-radiation for sterilization.
  • the surface changes occurring here (change in the charge pattern) can facilitate the formation of cell contacts.
  • the aim of the test was, on the one hand, to identify possible cell-damaging effects in the long-term culture in the substrate.
  • the interaction pattern of the cells with the grid walls and their morphological differentiation should be examined.
  • cells and spheroids in the lattice structures were cultivated for more than 2 weeks. The nutrients were supplied every 2 to 3 days by changing the medium. During this time the culture remained sterile, the cells viable and capable of division.
  • all cells were still vital (detection by trypan blue exclusion test) and capable of division (clonogenicity test). The culture system does not have any cell-damaging effects, even with long-term culture.
  • the production and culture of multi-layer cell layers in the depressions of the substrate one can start from single cells or already finished spheroids.
  • the choice is made in practice according to the properties of the cell types used, e.g. B. after their proliferative capacity.
  • the walls of the depressions are initially attached, mostly selectively approximately in the middle of the walls, ie halfway up the wall. Colonization of the porous bottom of the depressions takes place only to a small extent. Starting from the walls, the cells multiply towards the center of the depressions without mechanical support. A multi-layer, dense cell mesh is created. This behavior depends to a certain extent on the type of cells used and was particularly pronounced in the L fibroblasts.
  • the depressions were loaded with SV40-3T3 spheroids with an average diameter of 200 ⁇ m. They were thus smaller than the wells so that their growth behavior could be followed. At first, they were attached to one wall of the wells. The increase in the number of lines led to an increase in the volume of the spheroids, so that after a few days they filled the depressions to the edge. The contact formation of the outer spheroid cells with the substrate walls and thus the formation of a multilayer tissue-like cell structure could be microscopically detected and followed.
  • the cells anchored in the wells can be removed with the help of an enzymatic treatment with trypsin and further analyzed.
  • the light microscopic inspection shows that the cells are removed quantitatively from the wells.
  • a one-week incubation of the emptied substrate with fresh culture medium also showed that no cells remained in the wells.
  • the maintenance of sterility could be documented. In this way "cleaned" substrates can be used repeatedly.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die Erfindung betrifft ein Substrat für Zellkulturen, bestehend aus einem mikrostrukturierten plattenförmigen Körper, der zur Aufnahme von Zellen oder Zellaggregaten eine Vielzahl von durch Stege voneinander getrennte Vertiefungen enthält, deren größter Durchmesser und deren Tiefe jeweils ein Mehrfaches des Durchmessers der Zellen oder Zellaggregate beträgt und die an ihrem Grund jeweils mindestens eine Öffnung aufweisen, die kleiner ist als die kleinste der von den Vertiefungen aufzunehmenden Zellen oder Zellaggregaten sowie eine mit diesem Substrat angelegte Zellkultur. Der Erfindung liegt die Aufgabe zugrunde, ein Substrat vorzuschlagen, mit dessen Hilfe eine dreidimensionale Zellkultur angelegt werden kann.

Description

Substrat für Zellkulturen
Die Erfindung betrifft ein Substrat für Zellkulturen bestehend aus a) einem plattenför igen Körper mit gitterartig angeordneten, gegeneinander durch Stege getrennten Durchbrüchen und b) einem für Flüssigkeiten, nicht jedoch für Zellen durchläs¬ sigen Boden, der die Durchbrüche einseitig verschließt.
Ein solches Substrat ist aus der DE 29 02 026 AI bekannt. Die¬ ses Substrat besteht aus einem Wandkörper und einem Boden, der mit dem Wandkörper lösbar verbunden ist. Der Wandkörper be¬ steht aus einer Platte aus einem Kunststoff, die mehrere, durch Stege voneinander getrennte Durchbrüche (Kammern) auf¬ weist. Aus den Figuren geht hervor, daß die lichte Weite der Durchbrüche etwa 10 mm (10000 μm) beträgt.
Als Boden werden Glas- oder vorzugsweise Kunststoffplatten bzw. Kunststoffolien eingesetzt. Bei diesem Substrat wachsen die Zellen auf dem Boden auf, weshalb sich mit diesem Substrat im wesentlichen zweidimensionale Zellkulturen ergeben. Es ist weiterhin angegeben, daß der Boden mit der Zellkultur einen mikroskopischen Objektträger bilden oder zusätzlich auf einen Glasobjektträger aufgebracht werden kann. Auch hierbei wird davon ausgegangen, daß die Zellen praktisch nur am Boden an¬ wachsen und hier eine im wesentlichen zweidimensionale Schicht ausbilden.
Aus der Veröffentlichung "Morphologische Untersuchungen an Ei¬ leiterepithelzellen des Kaninchens: Primärkulturen auf Poly- carbonatmembranen" von I. G. Noske in TECNOMARA NEWS IV/90, Labortechnische Informationsschrift ist ein zweidimensionales Substrat für Zellkulturen und eine zweidimensionale Zellkultur bekannt. Das Substrat besteht aus einer Membran, die Poren un¬ terschiedlicher Größe aufweist. Einige dieser Poren durchdrin¬ gen die Membran. Die Zellen zeigen eine Tendenz, sich in die- sen Poren zu verankern. Im wesentlichen bildet die Zellkultur eine Monoschicht, die die Oberseite und die Unterseite der Membran bedeckt.
Solche Substrate haben den Vorteil, daß Nährlösung den Zellen ungehindert zugeführt und Stoffwechselprodukte leicht abtrans¬ portiert werden können. Ferner besteht ebenfalls die Möglich¬ keit, auf solchen Substraten haftende Zellen optisch unter dem Mikroskop zu kontrollieren. Als Fazit der Veröffentlichung ist jedoch angeführt, daß die Zellen sich in Abhängigkeit vom an¬ gebotenen Substrat in ihrer Form verändern. So wachsen sie auf Glas- oder Plastikunterlage oft extrem flach, so daß die für ihre Funktion so wichtige Polarität nicht gewährleistet ist.
Aus den Veröffentlichungen "Solid tissue masses formed in vitro from cells cultured on artificial capillaries" von Richard A. Knazek, Federation Proceedings Vol. 33, No. 8 (Au¬ gust 1974) und einem Firmenprospekt der Firma «dünn Labortech¬ nik GmbH» in Asbach, DE, mit dem Titel "Cellmax™ 100 - Hollow Fiber Bioreactor System for Mammalian and Insect Cell Culture", der auf die Veröffentlichung Knazek bezug nimmt, ist ein Zellsubstrat bekannt, das aus einer Vielzahl parallel ver¬ laufender Kapillaren besteht, die im Abstand voneinander ange¬ ordnet sind. Die Kapillaren sind an ihren Enden durch jeweils ein Abschlußstück zusammengefasst, mit dem Nährlösung durch die Kapillaren geleitet werden kann. Die Zellen wachsen an der Außenseite der Kapillaren in dem Zwischenraum, den sie unter¬ einander bilden, auf. Die Nährlösung diffundiert aus dem In¬ nern der Kapillaren durch die Kapillarwand in den Zwischenraum und versorgt hier die Zellen. Auf diese Weise kann eine drei¬ dimensionale Zellstruktur erzeugt werden.
Dieses Substrat erscheint aus verschiedenen Gründen zur Anlage und Untersuchung von Zellkulturen weniger geeignet. Der Stoff¬ wechselgradient ist wegen der unregelmäßigen Geometrie nicht eindeutig definiert. Ferner wird die Diffusion von Produkten durch die Konstruktion der verschiedenen Kapillaren in Abhän- gigkeit vom verwendeten Material immer auf bestimmte Moleku¬ largewichte eingeschränkt. Für manche Anwendungen ist eine Be¬ schichtung des Substrats notwendig; eine solche Beschichtung kann bei diesem Zellsubstrat als Diffusionssperrschicht wirken und damit einen Gradienten zusammenbrechen lassen. Schließlich kann das bekannte Substrat nicht so ausgebildet werden, daß eine mikroskopische Kontrolle der Zellen während der Kultivie¬ rung möglich ist.
Ein weiteres Substrat für die Kultivierung von menschlichen und/oder tierischen Zellen ist aus der EP 0 205 790 Bl be¬ kannt. Bei diesem Substrat handelt es sich um einen Verbund von perlenartigen Teilchen mit einem Durchmesser von etwa 50 bis 300 μm, in deren Zwischenräumen sich eine dreidimensionale Zellkultur ausbilden kann. Die perlenartigen Teilchen besitzen auf ihrer Oberfläche Makroporen, deren Durchmesser geringer als 10 μm ist und vorzugsweise im Bereich zwischen 0,1 und 3 μm liegt. Die Makroporen bilden ein Kapillarsystem, in welches die Zellen nicht hineinwachsen können, da der Zelldurchmesser der hierbei eingesetzten Zellen ca. 20 μm beträgt. Durch die¬ ses Kapillarsystem erfolgt die Versorgung der Zellen mit Nähr¬ medium und der Abtransport von StoffWechselprodukten.
Dieses Substrat scheint mit ähnlichen Nachteilen behaftet zu sein wie das oben erwähnte Kapillarrohr-Substrat.
Der Erfindung liegt die Aufgabe zugrunde, den genannten Nach¬ teilen der bekannten Zellsubstrate abzuhelfen. Insbesondere sollen die Vorteile von membranartigen Substraten mit der Mög¬ lichkeit, dreidimensionale ZeilStrukturen ausbilden zu können, kombiniert werden.
Die Aufgabe wird bei dem eingangs genannten Substrat für Zell¬ kulturen dadurch gelöst, daß die lichte Weite der Durchbrüche im Bereich zwischen 50 μm und 1000 μm liegt. Die abhängigen Ansprüche geben besonders vorteilhafte Ausführungsformen des Substrats an. Die Durchbrüche können im Prinzip jede beliebige Form anneh¬ men. Vorzugsweise besitzen sie eine Rechteck- oder Sechseck¬ form, weil sich solche Formen mit Stegen von konstanter Breite realisieren lassen. Bei anderen, z. B. auch unregelmäßigen Formen soll die lichte Weite in jeder Richtung im angegebenen Bereich liegen. Die lichte Weite der Durchbrüche braucht nicht konstant zu sein. Die Durchbrüche können beispielsweise auch die Form von Rechteck- oder Sechseck-Pyramidenstümpfen, die sich in Richtung auf den Boden verjüngen, annehmen, wobei auch hier die angegebenen Werte für die lichte Weite in jeder Flä¬ che parallel zum Boden eingehalten werden sollen.
Obwohl das erfindungsgemäße Substrat im wesentlichen die selbe äußere Form aufweist wie das aus der eingangs zitierten DE 29 02 026 AI, ergeben sich allein aus der Wahl anderer Ab¬ messungen beträchtliche Unterschiede in der Wirkung des Sub¬ strats. Die Abmessungen des erfindungsgemäßen Substrats sind in der Weise gewählt, daß eingebrachte Zellen nicht (wie in dem bekannten, eingangs beschriebenen Substrat) am Boden an¬ wachsen, sondern sich an den seitlichen Wänden verankern und untereinander eine große Zahl von Verbindungen in horizontaler als auch besonders in vertikaler Richtung aufnehmen. Damit wird ein kompakter dreidimensionaler Zellverband aufgebaut, dessen Größe durch die Abmessung des einzelnen Durchbruchs vorgegeben ist. Aufgrund der erfindungsgemäß gewählten Größe wird zugleich die Versorgung des Zellverbands gewährleistet.
Der wesentliche Grundgedanke bei der Wahl der erfindungsge¬ mäßen Abmessungen besteht darin, den einzelnen Zellen bereits bei der Anlage der Kultur möglichst wenig ebene Bodenfläche anzubieten. Es hat sich gezeigt, daß ein dreidimensionaler Aufbau einer Gewebestruktur nicht mehr erreicht werden kann, wenn sich wie beim eingangs beschriebenen Substrat mehrere Zellen unter Ausbildung einer zweidimensionalen Schicht am Bo¬ den anheften. Besonders bevorzugt wird ein Substrat, bei dem die lichte Weite der Durchbrüche im Bereich zwischen 150 μm und 400 μm liegt. Durchbrüche mit diesen Abmessungen sind insbesondere auf Zellen mit einem Durchmesser von 20 μm abgestimmt.
Die Tiefe der Durchbrüche hängt vom vorgesehenen Einsatzzweck des erfindungsgemäßen Substrats ab. Sie wird dadurch begrenzt, daß unter physiologischen Bedingungen eine gute. Nähr¬ stoffversorgung der zentralen Gewebszone im einzelnen Durch¬ bruch (Kompartiment) gewährleistet sein muß. Unter diesem Ge¬ sichtspunkt erscheint eine Tiefe der Durchbrüche im Bereich zwischen 50 und 300 μm am besten geeignet. Für spezielle, un¬ physiologische Anwendungen erscheint eine Tiefe im Bereich zwischen 300 und 1000 μm besser geeignet. Solche Anwendungen sind beispielsweise Untersuchungen an Tumormodellen, bei denen eine zentrale nekrotische Zone bewußt erzeugt wird.
Besonders bevorzugt sind Substrate, deren Durchbrüche die Form eines sich in Richtung auf den Boden verjüngenden Pyra¬ midenstumpfs aufweisen. Solche Substrate lassen sich mit den Methoden der mechanischen Mikrofertigung besonders einfach herstellen.
Durch eine geeignete Wahl der Breite der Stege auf der freien, nicht durch den Boden abgedeckten Seite des plattenförmigen Körpers läßt sich eine definierte Gewebsschicht auf kleinstem Raum herstellen. Hierbei wachsen die Zellen aus den Durchbrü¬ chen heraus und verbinden sich zu einem das ganze Substrat überdeckenden Gewebeverband, der selbst keine störenden Stütz- Strukturen mehr enthält. Unter diesem Gesichtspunkt soll die Breite der Stege im Bereich zwischen 15 und 115 μm liegen.
Beim erfindungsgemäßen Substrat ist der Boden an sich nur wäh¬ rend der Anlage der Zellkultur erforderlich. Da sich die Zel¬ len, bedingt durch die erfindungsgemäße Wahl der Abmessungen, an den Wänden der Durchbrüche verankern, kann es insbesondere für eine mikroskopische Kontrolle der Zellkultur vorteilhaft sein, wenn der Boden abnehmbar ist. Im Gegensatz zum eingangs beschriebenen Substrat trägt hierbei nicht der Boden, sondern der plattenför ige, mit den Durchbrüchen versehene Körper die Zellkultur.
Als Boden kann eine mikroporöse, nur für Flüssigkeiten, nicht dagegen für einzelne Zellen durchlässige Platte, etwa eine ke¬ ramische Fritte, oder eine eine entsprechende Kunststoff- membran eingesetzt werden. Eine gitterartige Bodenplatte mit definierten, durch Wände abgetrennte Öffnungen wird jedoch be¬ vorzugt. Die Öffnungen können dabei so gewählt werden, daß einzelne Zellen zurückgehalten werden.
In jedem Fall wird der Boden vorzugsweise so ausgelegt, daß die eingebrachten Zellen prinzipiell nur unwesentlich oder besser überhaupt nicht anheften können.
Dies kann beispielsweise dadurch erreicht werden, daß der Bo¬ den keine freie, ebene Fläche aufweist, die der Größe der ein¬ zelnen Zelle entspricht. Wird beispielsweise eine keramische Fritte als Boden eingesetzt, soll die Porosität der Fritte entsprechend gewählt werden. Weiterhin kann der Boden aus ei¬ ner Platte oder Folie bestehen, die aus einem solchen Material besteht, das für die Anheftung von Zellen ungeeignet ist.
Bei den bekannten, als Boden für Zellsubstrate einsetzbaren Platten oder Folien liegen die Größen der freien Flächen zwi¬ schen den Poren im allgemeinen innerhalb einer bestimmten Bandbreite. Ein gleichmäßigerer Boden besteht aus einem re¬ gelmäßigen Gitter mit durch Wände voneinander getrennten Öff¬ nungen. Ein solches Gitter läßt sich ebenfalls mit den Metho¬ den der Mikrofertigung (mechanische Mikrofertigung, Röntgen¬ tiefenlithographie, andere Lithographieverfahren etc.) her¬ stellen.
Besonders bevorzugt sind solche gitterartigen Bodenplatten, die den Zellen bei der Anlage der Zellkultur prinzipiell keine ausreichende Fläche zum Verankern bieten. Deshalb werden die Wände des vorzugsweise eingesetzten Gitters maximal 20 μm, etwa 1 bis 20 μm dick und die lichte Weite der Öffnungen maxi¬ mal 5 μm, etwa 1 bis 5 μm groß gewählt. Die untere Grenze der Abmessungen eines solchen Gitters wird meist durch das Her¬ stellungsverfahren begrenzt sein. Vorzugsweise ist im Inte¬ resse der ungehinderten Zufuhr von Nährlösung und des un¬ gehinderten Abtransports von Stoffwechselprodukten der Flä¬ chenanteil der Öffnungen in dem Boden größer als der Flächen¬ anteil der Stege.
Es ist vorteilhaft, wenn das erfindungsgemäße Substrat aus einem durchsichtigen Material gefertigt ist. Als durchsichti¬ ges Material ist insbesondere Polymethylmethacrylat (PMMA) ge¬ eignet. Substrate aus PMMA können mit den Methoden der Mi¬ krofertigung einerseits einfach hergestellt werden; anderer¬ seits besitzt PMMA gewebefreundliche Eigenschaften.
Mikroskopische Untersuchungen können vereinfacht werden, wenn die Bodenplatte nach der Anlage der Zellkultur vom Gitter ge¬ löst werden kann. Für den Fall, daß das Substrat aus dem plat- tenförmigen Körper und einem lösbaren Boden aufgebaut ist, reicht es für mikroskopische Beobachtungen aus, wenn nur der plattenformige Körper aus einem durchsichtigen Material gefer¬ tigt ist.
Für manche Anwendungen können die Innenwände der Durchbrüche und die freien Flächen des Bodens in der Weise beschichtet werden, daß Zellen nicht anheften. In diesem Fall eignet sich das erfindungsgemäße Substrat außer zur Bildung definierter Gewebsschichten auch zur Erzeugung multizellulärer Sphäroide von definierter und sehr einheitlicher Größe. Eine hierfür ge¬ eignete Beschichtung wird beispielsweise durch eine Siliko- nisierung hergestellt. Bei einem solchen Substrat kommt es zu einer freien Aggregation der eingebrachten Zellen in den ein- zelnen Durchbrüchen (Kompartimenten) . Die lichte Weite der Kompartimente bestimmt dann den Durchmesser der so gebildeten Sphäroide.
Das erfindungsgemäße Substrat stellt beispielsweise einen plattenförmigen Körper dar, der in der Art einer GitterStruk¬ tur quadratische Vertiefungen enthält, die dicht nebeneinander angeordnet sind und sich in Form eines Pyramidenstumpfs nach unten verjüngen. Auf den Grundflächen der Vertiefungen sind weitere, wesentlich kleinere pyramidenförmige Vertiefungen an¬ gebracht, wobei die Spitzen der kleineren pyramidenförmigen Vertiefungen den plattenförmigen Körper durchstoßen. Bei die¬ ser Ausführungsform sind der plattenformige Körper und der Bo¬ den in einem Bauteil verbunden.
Eine weitere Ausführungsform des erfindungsgemäßen Substrats besteht darin, daß ein durchbrochener plattenförmiger Körper auf eine mikroporöse, insbesondere eine gitterförmige Boden¬ platte aufgesetzt ist.
Durch dreidimensionale Kultivierung der Zellen im erfindungs- gemäßen Substrat erfolgt Zelldifferenzierung zusätzlich zu den Substratkontakten über Zell-zu-Zell-Interaktionen. Neben der mikroskopischen Beobachtung können Serien-Dünnschnitte des mit Zellen gefüllten Substrates angefertigt werden, ein für die Anwendung histologischer und histochemischer Methoden ent¬ scheidender Vorzug.
Das erfindungsgemäße Substrat kann in einen Objektträger ebenso wie in ein Medium-Zirkulationssystem integriert werden. Bei mehrlagiger randdichter Ausfüllung mit Zellen stellt das Substrat eine Art Gewebefilter dar, wodurch zwei physiologi¬ sche Halbräume oberhalb und unterhalb desselben definiert wer¬ den. Durch unterschiedliche Mediumbeschickung im Zirkulations¬ system bilden sich vertikal gerichtete Stoffwechselgradienten in der Kultur aus, die auch durch eine zusätzliche Beschich- tung der Gitterelemente (z. B. mit Komponenten der Extrazellu¬ larmatrix im Zuge zellspezifischer Anwendungen) nicht blockiert oder behindert werden.
Das erfindungsgemäße Substrat stellt eine stabile Stützstruk¬ tur für Zellen dar und ermöglicht die Herstellung von defi¬ nierten Schichten aus verschiedenen Zelltypen. Durch die hier¬ bei auftretenden heterotypischen Zellinteraktionen kann es zu weiteren Differenzierungssvorgängen kommen. Mit solchen Syste¬ men können beispielsweise zellspezifische Transportprozesse studiert werden. Speziell könnten die in vitro nur schwer re- stituierbaren Bedingungen des Organsystems Haut näher unter¬ sucht werden, indem ein Halbraum von Luft anstelle von Medium durchströmt wird.
Eine solche "organnahe" Kulturtechnik auf der Basis des erfin¬ dungsgemäßen Substrates ist auf eine große Zahl verschieden¬ artiger Zelltypen anwendbar. Sie kann für Fragestellungen aus zahlreichen biomedizinischen Gebieten eingesetzt werden, bei denen ein Höchstmaß an Zelldifferenzierung erforderlich ist:
Für toxikologische Untersuchungen zur Erzielung wirklich¬ keitsnaher Ergebnisse.
Bei der Entwicklung von Arzneimitteln: Wirkungs- und Abbau¬ tests.
In der Grundlagenforschung.
- Als Alternative zum Tierexperiment, vor allem bei der Un¬ tersuchung komplizierter Organsysteme (z. B. Leber oder Haut) .
Die Erfindung wird im folgenden anhand von Figuren und Ausfüh- rungsbeispielen näher erläutert. Fig. 1 zeigt eine Ausführungsform mit quaderförmigen Vertie¬ fungen 1, die durch senkrechte Stege 2 voneinander getrennt und nach unten durch eine poröse Bodenplatte 3 abgeschlossen sind.
Fig. 2 zeigt die Ausführungsform gemäß Fig. 1 und eine abge¬ wandelte Ausführungsform mit V-förmigen Stegen im Querschnitt.
Die Fig. 3 bis 5 zeigen verschiedene Bearbeitungsschritte ei¬ nes Formeinsatzes, mit dem eine Ausführungsform des erfin¬ dungsgemäßen Substrats abgeformt werden kann.
Fig. 3 stellt den vorbearbeiteten Formeinsatz dar.
In Fig 4 ist der grobstrukturierte Formeinsatz dargestellt.
Fig. 5 zeigt den feinstrukturierten Formeinsatz.
Fig. 6 zeigt mit dem grobstrukturierten Formeinsatz abgeformte Stege aus PMMA.
Fig. 7 zeigt mit dem feinstrukturierten Formeinsatz abgeformte Stege mit kleinen Einsenkungen am Grund der durch die Stege getrennten Durchbrüche, aus denen die Öffnungen hergestellt werden.
Fig. 8 zeigt die durch Fräsen bearbeitete Unterseite des Sub¬ strats mit den Öffnungen.
Fig. 9 stellt die Oberseite des in Fig. 8 gezeigten Substrats dar.
Fig. 10 zeigt einen Mikroskop-Objektträger, in den das Sub¬ strat integriert ist.
Fig. 11 zeigt einen weiteren Mikroskop-Objektträger mit inte¬ griertem Substrat. Beispiel 1
Herstellung einer Ausführungsform des erfindungsgemäßen Sub¬ strats
Die erfindungsgemäßen Substrate können durch Röntgenlithogra¬ phie-Verfahren oder durch Abformverfahren hergestellt werden. Im folgenden wird anhand der Fig. 3 bis 8 ein Abformverfahren beschrieben, mit dem auf einfache Weise eine Vielzahl der er¬ findungsgemäßen Substrate in Serie hergestellt werden können.
Zur Abformung eines Substrats aus Kunststoff wird ein Formein¬ satz benötigt, in den die Positiv-Strukturen der Durchbrüche und Öffnungen des mikrostrukturierten Substrats eingebracht sind.
Fig. 3 zeigt einen vorbearbeiteten Formeinsatz mit vier erha¬ benen Plateaus von 10 mm x 10 mm in den Bereichen 1 bis 4. Die Höhe der Plateaus beträgt 1 mm. In jedes Plateau werden mit einem keilförmig profilierten Diamanten kreuzweise Nuten der¬ art eingebracht, daß im Rastermaß 400 μm quadratische Netze aus 280 μm tiefen Gräben mit dreieckigem Querschnitt entste¬ hen. Dadurch bleiben Pyramidenstümpfe mit Deckflächen von 300 μm x 300 μm stehen. Diese grobstrukturierte Form des Formein¬ satzes ist in Fig. 4 dargestellt.
Danach werden in den Bereichen 1 bis 4 in die Pyramidenstümpfe durch erneute kreuzweise Bearbeitung mit feineren Diamanten eine Substruktur eingebracht: Die Deckfläche eines jeden Pyra¬ midenstumpfs wird im Raster 40 μm durch 8 8 Mikropyramiden¬ stümpfe strukturiert. Die Höhe der Mikropyramidenstümpfe liegt bei 80 μm, die Deckflächen messen einige 10 μm2. Das Ergebnis dieses Bearbeitungsschritts ist in Fig. 5 dargestellt.
Der auf diese Weise bearbeitete Formeinsatz wird mit Hilfe ei¬ ner Spritzgießmaschine abgeformt. Fig. 6 und 7 zeigen Grob- und Feinstruktur des in PMMA abgeformten Werkzeugs. In einem abschließenden Bearbeitungsschritt wird das unter den abgeformten Strukturen befindliche Material entfernt; durch diesen Schritt werden die Öffnungen am Boden des Substrats freigelegt. Hierzu wird das Substrat auf einer Vakuumspannvor¬ richtung fixiert und solange Material von der Unterseite des Substrats entfernt, bis die Öffnungen bzw. Poren des Bodens offen zutage treten. Über das Maß des Abtrags läßt sich die Dicke des Bodenteils und der minimale Porendurchmesser steu¬ ern. Das Ergebnis dieses Verfahrensschritts ist in den Fig. 8 (Unterseite des Substrats) und 9 (Oberseite des Substrats) dargestellt. Wird der Boden des Substrats vollständig ent¬ fernt, läßt sich ein Kunststoffgitter aus 100 μm breiten Ste¬ gen mit Maschenweiten von 300 μm herstellen, das als platten- förmiger Körper dienen kann.
Beispiel 2
Herstellung eines Mikroskop-Objektträgers
Ein gemäß Beispiel 1 hergestelltes Substrat 2 mit einer be¬ nutzbaren Fläche von 10 mm x 10 mm wird, wie in Fig. 10 ge¬ zeigt, mit zwei Glasobjekttragerplattchen 1, Justierscheiben 3 und Zwischenscheiben 4, die Thermostatisierungs- und Nähr¬ lösungskanäle 5 enthalten, zu einem Objektträger vereinigt.
Die äußeren Kanäle dienen der Thermostatisierung; über die mittleren Kanäle wird Nährlösung zu- und abgeleitet.
Beispiel 3
Herstellung eines weiteren Mikroskop-Objektträgers
Der Mikroskop-Objektträger besteht aus zwei nahezu identischen Zwischenscheiben 10, 11, zwischen denen ein gemäß Beispiel l hergestelltes Substrat 2 flüssigkeitsdicht eingespannt werden kann. Die obere 10 und untere 11 Zwischenscheibe sind bis auf den Unterschied identisch, daß die obere seitlich vier Bohrun¬ gen 12 und die untere an den entsprechenden Stellen vier Ge- winde (nicht dargestellt) enthält, durch die mittels Schrauben das dazwischenliegende Substrat 2 eingeklemmt wird. Die Zwi¬ schenscheiben sind aus Messing gefertigt und oberflächlich durch eine galvanisch aufgebrachte Schicht aus Rhodium für die Gewebekultur veredelt. Die jeweilige Außenfläche ist mit einer rechteckigen Einfräsung der Breite versehen, daß Sie ein han¬ delsübliches Mikroskop-Objekttragerplattchen 14 aufnehmen kann, das durch jeweils zwei an den kurzen Außenkanten befind¬ liche Kunststoffschrauben (in den Bohrungen 15) arretiert wird. Die Zwischenscheiben sind mit einer zentralen Bohrung 16 versehen, durch die eine optische Beobachtung der Zellen im Substrat möglich ist.
Auf der Innenseite befindet sich eine kreisförmige Einfräsung 20, die der paßgenauen Aufnahme des Substrats dient.
Zwei äußere durchgehende Rohre 17 (Innendurchmesser 3 mm, Außendurchmesser 4 mm) können über den Anschluß an ein exter¬ nes Wasserbad mit Warmwasser zur Temperierung durchströmt wer¬ den. Mittlere Rohre 18, 19 ragen von gegenüberliegenden Seiten in die zentrale Bohrung 16 hinein. Durch diese wird frisches Nährmedium durch den Hohlraum geleitet, der an der mittleren Fläche durch das Substrat 2 und an der äußeren Fläche durch das jeweilige Objekttragerplattchen 14 begrenzt ist. Dadurch entstehen im zusammengebauten Zustand zwei Hohlräume, die von unterschiedlichen Nährmedien durchströmt werden können.
Das gesamte System ist somit von oben nach unten symmetrisch durch die folgenden Komponenten aufgebaut:
Objekttragerplattchen 14, verschraubt an die obere Zwischen¬ scheibe 10, verschraubt unter Zwischenlage des Substrats mit der unteren Zwischenscheibe 11, an der ein weiteres Objekttra¬ gerplattchen 14' verschraubt ist. Mit den gemäß Beispiel 1 hergestellten Substraten wurden im folgenden biologische Versuche durchgeführt, um die Kultivie¬ rung dreidimensionaler Zellkulturen zu demonstrieren.
Beispiel 4
Beschickung des Substrats mit Zellen
Die Experimente wurden mit zwei permanenten Zellinien der Maus durchgeführt: L- und SV40-3T3-Zellen. Es kamen durchweg Stan¬ dard-Kulturmedien zum Einsatz.
Zunächst wurden die Substrate durch Co-Gammabestrahlung mit ca. 100 Gy sterilisiert und in eine trockene Petrischale über¬ führt. Auf die 1 cm2 große Gitterfläche wurden 300 bis maximal 400 μl einer konzentrierten Suspension von Zellen bzw. Sphä- roiden (Zellaggregate) aufgetragen. Durch die Kapillarwirkung kam es zu einem raschen Eindringen in die Vertiefungen des Substrats innerhalb von ca. einer Minute unter vollständiger Mitnahme der Zellen oder Sphäroide. Nach ca. 15 Minuten im Brutschrank bei 37 "C wurde die Petrischale vorsichtig mit Me¬ dium gefüllt, wobei zwei Varianten erprobt wurden. Einmal wurde die Gitterstruktur unterschichtet, so daß sie auf dem Mediumfilm schwamm. Alternativ wurde sie überschichtet. In beiden Fällen etablierte sich ein vollständiger Kontakt des Mediums mit den Zellen im Substrat; beide Varianten erwiesen sich als gleichwertig in Bezug auf die weitere Kultivierung der Zellen im Brutschrank. Die Beschickung des Substrats ist insgesamt problemlos; auf eine zusätzliche vorsichtige Zentri- fugierung zur Verbesserung des Eindringens der Zellen bzw. Sphäroide kann im allgemeinen verzichtet werden.
Beispiel 5
Zur Gewebefreundlichkeit des verwendeten Kunststoffs PMMA
Ein weiteres Testziel bestand in der Untersuchung der Gewebe¬ freundlichkeit des Substratmaterials. Als Kriterium wurde hier die Ausbildung von mikroskopisch sichtbaren Kontakten mit den Wänden herangezogen. Es zeigte sich, daß es innerhalb weniger Stunden zur Anheftung der Zellen an den Wänden der Vertiefun¬ gen des Substrats kommt. Zusammen mit Vitalitätstests und wei¬ teren Details der Zellwechselwirkung mit den Gitterwänden wird damit die Gewebeverträglichkeit des Substratmaterials PMMA und der Geometrie der Substratstruktur demonstriert. Die beobach¬ tete hohe Affinität der Zellen zum Material wird möglicher¬ weise durch die Vorbestrahlung zur Sterilisierung begünstigt. Die hierbei auftretenden Oberflächenveränderungen (Veränderung des Ladungsmusters) können die Ausbildung von Zellkontakten erleichtern.
Beispiel 6
Vitalität und Waσhstumsverhalten der Zellen
Das Testziel bestand zum einen darin, etwaige zellschädigende Wirkungen bei der Langzeitkultur im Substrat zu identifizie¬ ren. Zum andern sollte das Wechselwirkungsmuster der Zellen mit den Gitterwänden und ihre morphologische Differenzierung untersucht werden. Um zeilschädigende Wirkungen zu identifi¬ zieren, wurden Zellen und Sphäroide in den Gitterstrukturen über mehr als 2 Wochen kultiviert. Die NährstoffVersorgung er¬ folgte durch Mediumwechsel alle 2 bis 3 Tage. Während dieser Zeit blieb die Kultur steril, die Zellen lebens- und teilungs¬ fähig. Beim Abbruch der Versuchsreihen waren noch alle Zellen vital (Nachweis durch Trypanblau-Ausschlußtest) und teilungs¬ fähig (Klonogenitätstest) . Von dem Kultursystem gehen damit, selbst bei Langzeitkultur, keinerlei zellschädigende Wirkungen aus.
Zur Herstellung und Kultur mehrlagiger Zellschichten in den Vertiefungen des Substrats kann man von Einzelzellen oder be¬ reits fertigen Sphäroiden ausgehen. Die Wahl wird in der Pra¬ xis nach den Eigenschaften der verwendeten Zellarten, z. B. nach ihrer proliferativen Kapazität, getroffen. Bei der Einbringung von Einzelzellen kommt es zunächst zur An¬ heftung an die Wände der Vertiefungen und zwar meist selektiv etwa in der Mitte der Wände, d. h. auf halber Wandhöhe. Eine Besiedlung des porösen Bodens der Vertiefungen findet nur in geringem Umfang statt. Von den Wänden ausgehend vermehren sich die Zellen ohne mechanische Unterstützung zur Mitte der Ver¬ tiefungen hin. Es entsteht ein mehrlagiges dichtes Zellge¬ flecht. Dieses Verhalten hängt in gewissem Umfang vom Typus der eingesetzten Zellen ab und war bei den L-Fibroblasten be¬ sonders ausgeprägt.
Zur Untersuchung des Verhaltens von Sphäroiden wurden die Ver¬ tiefungen mit SV40-3T3-Sphäroiden mit einem mittleren Durch¬ messer von 200 μm beschickt. Sie waren damit kleiner als die Vertiefungen, so daß ihr Wachstumsverhalten verfolgt werden konnte. Sie lagerten sich zunächst jeweils an eine Wand der Vertiefungen an. Die ZeilVermehrung führte zu einer Volumenzu¬ nahme der Sphäroide, so daß diese nach wenigen Tagen die Ver¬ tiefungen randdicht ausfüllten. Die Kontaktbildung der äußeren Spharoidzellen mit den Substratwänden und damit die Ausbildung eines mehrschichtigen gewebeartigen Zellverbands konnte mi¬ kroskopisch nachgewiesen und verfolgt werden.
Beispiel 7
Ablösung der Zellen zur Analyse; Wiederverwendbarkeit der Sub¬ strate
Die in den Vertiefungen verankerten Zellen können mit Hilfe einer enzymatischen Behandlung mit Trypsin herausgelöst und weiter analysiert werden. Die lichtmikroskopische Inspektion zeigt, daß die Zellen dabei quantitativ aus den Vertiefungen entfernt werden. Auch eine einwöchige Inkubation des geleerten Substrats mit frischem Kulturmedium ergab, daß keine Zellen in den Vertiefungen verblieben. Gleichzeitig konnte damit die Aufrechterhaltung der Sterilität dokumentiert werden. Auf diese Art "gereinigte" Substrate sind wiederholt einsetzbar.

Claims

Patentansprüche:
1. Substrat für Zellkulturen bestehend aus a) einem plattenförmigen Körper mit gitterartig angeordne¬ ten, gegeneinander durch Stege getrennten Durchbrüchen und b) einem für Flüssigkeiten, nicht jedoch für Zellen durch¬ lässigen Boden, der die Durchbrüche einseitig ver¬ schließt, dadurch gekennzeichnet, daß c) die lichte Weite der Durchbrüche im Bereich zwischen 50 μm und 1000 μm liegt.
2. Substrat nach Anspruch 1, dadurch gekennzeichnet, daß die lichte Weite der Durchbrüche im Bereich zwischen 150 μm und 400 μm liegt.
3. Substrat nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Tiefe der Durchbrüche für physiologische Zellkulturen im Bereich zwischen 50 μm und 300 μm liegt.
4. Substrat nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Tiefe der Durchbrüche für unphysiologische Zellkulturen im Bereich zwischen 300 μm und 1000 μm liegt.
5. Substrat nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, daß die Breite der Stege auf der freien, nicht durch den Boden abgedeckten Seite des plattenförmigen Körpers im Bereich zwischen 15 μm und 115 μm liegt.
6. Substrat nach einem der Ansprüche 1 bis 5, dadurch gekenn¬ zeichnet, daß der Boden ein Gitter mit durch Wände voneinander getrennten Öffnungen darstellt.
7. Substrat nach Anspruch 6, dadurch gekennzeichnet, daß die Wände des Gitters maximal 20 μm dick sind und die Öff¬ nungen eine lichte Weite von maximal 5μm aufweisen.
8. Substrat nach einem der Ansprüche 1 bis 7, dadurch gekenn¬ zeichnet, daß als Werkstoff ein durchsichtiges Material eingesetzt wird.
9. Substrat nach Anspruch 8, dadurch gekennzeichnet, daß das Substrat in einen Mikroskop-Objektträger integriert ist.
PCT/DE1992/000815 1991-09-28 1992-09-23 Substrat für zellkulturen WO1993007258A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59207961T DE59207961D1 (de) 1991-09-28 1992-09-23 Substrat für zellkulturen
EP92919901A EP0605527B1 (de) 1991-09-28 1992-09-23 Substrat für zellkulturen
JP5506530A JP2511247B2 (ja) 1991-09-28 1992-09-23 細胞培養のための支持体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4132379A DE4132379A1 (de) 1991-09-28 1991-09-28 Substrat fuer zellkulturen und kultur von zellen oder zellaggregaten
DEP4132379.3 1991-09-28

Publications (1)

Publication Number Publication Date
WO1993007258A1 true WO1993007258A1 (de) 1993-04-15

Family

ID=6441717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000815 WO1993007258A1 (de) 1991-09-28 1992-09-23 Substrat für zellkulturen

Country Status (6)

Country Link
US (1) US5792653A (de)
EP (1) EP0605527B1 (de)
JP (1) JP2511247B2 (de)
AT (1) ATE148161T1 (de)
DE (2) DE4132379A1 (de)
WO (1) WO1993007258A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060053A1 (fr) * 1999-04-02 2000-10-12 Viktor Veniaminovich Tets Procede de production de recombinants de microbes (mutualisation ou procede de tets)
GB2357262A (en) * 1999-12-18 2001-06-20 Gardeners Digital Ltd Image bearing metal panels
DE102008017765A1 (de) 2008-04-03 2009-10-15 Technische Universität Ilmenau Mikrobioreaktor sowie CellChip-Mikrotiter-Platte
DE102008019691A1 (de) 2008-04-15 2009-10-29 Technische Universität Ilmenau Teilaktives mikrofluidisches System für die 3D-Zellkultivierung sowie Verfahren zu dessen Perfusion
CN102803960A (zh) * 2009-11-09 2012-11-28 亥姆霍兹-中心盖斯塔赫中心材料海岸研究有限公司 测试各种所选材料和/或表面结构用于细胞培养的方法和试剂盒
US9587213B2 (en) 2006-01-24 2017-03-07 Brown University Methods and devices for encapsulating cells
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
US11976263B2 (en) 2014-10-29 2024-05-07 Corning Incorporated Cell culture insert

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024464A1 (en) * 1994-03-11 1995-09-14 Baxter International Inc. Flow-through bioreactor with grooves for cell retention
DE4426315C1 (de) * 1994-07-25 1996-03-21 Gore W L & Ass Gmbh Membran zur Regeneration von Körpergeweben und Verwendung der Membran als Wundabdeckung und Hautersatz
DE19537033C2 (de) * 1995-02-16 1999-03-04 Forschungszentrum Juelich Gmbh Verfahren zur Bestimmung von Pharmakokinetik bzw. Toxikokinetik von Testsubstanzen mit Hilfe von in-vitro-Zellkultursystemen und dafür geeignete Vorrichtungen
GB9515327D0 (en) * 1995-07-26 1995-09-20 Univ London Site-directed bone formation
GB9517717D0 (en) * 1995-08-31 1995-11-01 Ashby Scient Ltd Means for the growth of cells & micro-organisms
AU6828696A (en) * 1995-08-31 1997-03-19 Ashby Scientific Ltd Apparatus and methods for culturing biological material
GB9613499D0 (en) * 1996-06-27 1996-08-28 Perkin Elmer Ltd Reflectance sampler
JP3878709B2 (ja) * 1997-03-31 2007-02-07 ミクロクローニング シーシーシーデー エイビー 生物試料を培養するための配列、その製法及びそれによる測定方法
CH692583A5 (de) 1998-03-03 2002-08-15 Weidmann H Ag Kulturgefäss.
EP1013756A1 (de) * 1998-12-21 2000-06-28 Corning Incorporated Vorrichtung Zur Vermehrung von zellen die die Zellenverbindungdurch das Wachstumsprozes ermöglicht und Verfahren zur ihre Herstellung
DE19952139C1 (de) * 1999-10-28 2000-12-21 Sibyll Weiner Transparenter Objektträger für die optische Mikroskopie
JP4639558B2 (ja) * 2001-09-07 2011-02-23 株式会社島津製作所 マイクロウエルチップ
DE10210908A1 (de) * 2002-03-05 2003-12-04 Alfred Nordheim Vorrichtung zum Aufbringen von flüssigen Medien und Verfahren dazu
EP1587624B1 (de) 2003-01-17 2011-12-14 Greiner Bio-One GmbH Probengefäss für analysen
DE10321042B4 (de) * 2003-01-17 2006-09-21 Greiner Bio-One Gmbh Biochip-Träger
US9005549B2 (en) 2003-01-17 2015-04-14 Greiner Bio-One Gmbh High throughput polymer-based microarray slide
US9200245B2 (en) 2003-06-26 2015-12-01 Seng Enterprises Ltd. Multiwell plate
WO2004113492A1 (en) * 2003-06-26 2004-12-29 Molecular Cytomics Ltd. Improved materials for constructing cell-chips, cell-chip covers, cell-chip coats, processed cell-chips and uses thereof
US7888110B2 (en) 2003-06-26 2011-02-15 Seng Enterprises Ltd. Pico liter well holding device and method of making the same
US8597597B2 (en) 2003-06-26 2013-12-03 Seng Enterprises Ltd. Picoliter well holding device and method of making the same
DE102004035267B3 (de) * 2004-07-21 2006-02-09 Forschungszentrum Karlsruhe Gmbh Formkörper, Verfahren zu seiner Herstellung und seine Verwendung
ES2352344T3 (es) 2005-01-25 2011-02-17 Seng Enterprises Limited Dispositivo de microfluido para estudio de células.
WO2007052245A1 (en) 2005-11-03 2007-05-10 Seng Enterprises Ltd. Method and device for studying floating, living cells
US7727759B2 (en) * 2006-02-21 2010-06-01 Scivax Corporation Structure for cell culture, cell culture vessel, structure with spheroid, vessel with spheroid, and manufacturing methods thereof
US8980625B2 (en) * 2006-02-24 2015-03-17 National Food Research Institute Cell culture plate and method of manufacturing the same
DE102006011828A1 (de) * 2006-03-13 2007-09-20 Gesellschaft für Schwerionenforschung mbH Bestrahlungsverifikationsvorrichtung für Strahlentherapieanlagen und Verfahren zur Handhabung derselben
WO2007138568A2 (en) * 2006-05-25 2007-12-06 Yeda Research And Development Co. Ltd. A device for microscopy flow-through experiments on non-adherent live cells
US8887938B2 (en) * 2006-07-06 2014-11-18 Pioneer Hi-Bred International, Inc. Buckling clamshell container for automated aliquot and dispersal processes
DE102007007718A1 (de) 2007-02-16 2008-08-21 Forschungszentrum Karlsruhe Gmbh Bioreaktor, Anordnung aus Bioreaktoren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102007028423A1 (de) * 2007-06-20 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Bildung von Aggregaten biologischer Zellen
US9145540B1 (en) 2007-11-15 2015-09-29 Seng Enterprises Ltd. Device for the study of living cells
EP2237887A2 (de) 2007-12-26 2010-10-13 Seng Enterprises Ltd. Vorrichtung zur untersuchung von lebenden zellen
HUE037881T2 (hu) * 2008-06-20 2018-09-28 Univ Maastricht Önrendezõdõ szövetmodulok
EP2358860A1 (de) * 2008-11-21 2011-08-24 Corning Incorporated Substrate und vorrichtungen mit beabstandeten vorsprüngen für die zellkultur
US20110004304A1 (en) * 2009-03-20 2011-01-06 Tao Sarah L Culturing retinal cells and tissues
US8501476B2 (en) 2009-10-07 2013-08-06 Brown University Assays and methods for fusing cell aggregates to form proto-tissues
US8481303B2 (en) 2009-10-12 2013-07-09 Corning Incorporated Microfluidic device for cell culture
US20110159577A1 (en) * 2009-12-30 2011-06-30 E. I. Du Pont De Nemours And Company Divider for use with biolistic bombardment device
WO2013042360A1 (ja) * 2011-09-20 2013-03-28 株式会社クラレ 接着性細胞の培養方法
US9243278B2 (en) 2011-09-22 2016-01-26 Brown University Mechanotransduction by the synergistic action of heterotypic cell interactions
US9468680B2 (en) 2011-09-22 2016-10-18 Brown University Differential effects of drugs on transport in a multi-layer 3D spheroid model
DE102012103256A1 (de) 2012-04-16 2013-10-17 Karlsruher Institut für Technologie Mikrostrukturapparat mit optischer Oberflächengüte sowie Verfahren zur Herstellung desselben

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0014007A1 (de) * 1979-01-19 1980-08-06 J. Hinrich Dr. Peters Biologisches Gefäss
FR2522014A1 (fr) * 1982-02-25 1983-08-26 Pasteur Institut Support pour cultures cellulaires, ensemble de culture comportant un tel support et procede pour cultiver des cellules en presence de ce support
EP0170210A2 (de) * 1984-08-01 1986-02-05 Ppg Industries, Inc. Filtermatte
EP0205790A2 (de) * 1985-06-18 1986-12-30 Anawa München Aktiengesellschaft Biologische Laboratorien Träger für die Kultivierung von menschlichen und/oder tierischen Zellen in einem Fermenter
DE3938632C1 (en) * 1989-11-21 1991-03-14 Adelbert Prof. Dr.Dr. 8046 Garching De Bacher Culturing living animal cells - using natural or synthetic polymer substrate vacuum deposition coated with e.g. nitride of Gp=III element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422270A (en) * 1987-05-19 1995-06-06 The United States Of America As Represented By The Department Of Health And Human Services One-step tray test for release of soluble mediators and apparatus therefore
US5108704A (en) * 1988-09-16 1992-04-28 W. R. Grace & Co.-Conn. Microfiltration apparatus with radially spaced nozzles
US5139946A (en) * 1988-11-02 1992-08-18 Du Pont Merck Pharmaceutical Company Dot matrix membrane cell expansion
US5554536A (en) * 1995-01-05 1996-09-10 Millipore Investment Holdings Limited Biological analysis device having improved contamination prevention

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0014007A1 (de) * 1979-01-19 1980-08-06 J. Hinrich Dr. Peters Biologisches Gefäss
FR2522014A1 (fr) * 1982-02-25 1983-08-26 Pasteur Institut Support pour cultures cellulaires, ensemble de culture comportant un tel support et procede pour cultiver des cellules en presence de ce support
EP0170210A2 (de) * 1984-08-01 1986-02-05 Ppg Industries, Inc. Filtermatte
EP0205790A2 (de) * 1985-06-18 1986-12-30 Anawa München Aktiengesellschaft Biologische Laboratorien Träger für die Kultivierung von menschlichen und/oder tierischen Zellen in einem Fermenter
DE3938632C1 (en) * 1989-11-21 1991-03-14 Adelbert Prof. Dr.Dr. 8046 Garching De Bacher Culturing living animal cells - using natural or synthetic polymer substrate vacuum deposition coated with e.g. nitride of Gp=III element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMERICAN JOURNAL OF PHYSIOLOGY. Bd. 251, Nr. 1, 1986, USA Seiten C136 - C139 R.E. STEELE ET AL. 'Porous-bottom dishes for culture of polarized cells.' *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060053A1 (fr) * 1999-04-02 2000-10-12 Viktor Veniaminovich Tets Procede de production de recombinants de microbes (mutualisation ou procede de tets)
GB2357262A (en) * 1999-12-18 2001-06-20 Gardeners Digital Ltd Image bearing metal panels
US9587213B2 (en) 2006-01-24 2017-03-07 Brown University Methods and devices for encapsulating cells
DE102008017765A1 (de) 2008-04-03 2009-10-15 Technische Universität Ilmenau Mikrobioreaktor sowie CellChip-Mikrotiter-Platte
DE102008019691A1 (de) 2008-04-15 2009-10-29 Technische Universität Ilmenau Teilaktives mikrofluidisches System für die 3D-Zellkultivierung sowie Verfahren zu dessen Perfusion
WO2009127647A3 (de) * 2008-04-15 2012-01-19 Technische Universität Ilmenau Teilaktives mikrofluidisches system für die 3d-zellkultivierung sowie verfahren zu dessen perfusion
CN102803960A (zh) * 2009-11-09 2012-11-28 亥姆霍兹-中心盖斯塔赫中心材料海岸研究有限公司 测试各种所选材料和/或表面结构用于细胞培养的方法和试剂盒
CN102803960B (zh) * 2009-11-09 2015-06-17 亥姆霍兹-中心盖斯塔赫中心材料海岸研究有限公司 测试各种所选材料和/或表面结构用于细胞培养的方法和试剂盒
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US11667874B2 (en) 2014-10-29 2023-06-06 Corning Incorporated Perfusion bioreactor platform
US11976263B2 (en) 2014-10-29 2024-05-07 Corning Incorporated Cell culture insert
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11970682B2 (en) 2017-07-14 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface

Also Published As

Publication number Publication date
EP0605527B1 (de) 1997-01-22
US5792653A (en) 1998-08-11
JPH06507076A (ja) 1994-08-11
ATE148161T1 (de) 1997-02-15
DE59207961D1 (de) 1997-03-06
EP0605527A1 (de) 1994-07-13
DE4132379A1 (de) 1993-04-08
JP2511247B2 (ja) 1996-06-26
DE4132379C2 (de) 1993-07-15

Similar Documents

Publication Publication Date Title
EP0605527B1 (de) Substrat für zellkulturen
EP0853659B1 (de) Kompaktzellkulturscheibe
DE2902026C3 (de) Biologisches Gefäß
EP0629237B1 (de) Vorrichtung zur behandlung von zellkulturen
EP2269735B1 (de) Verfahren zur Erzeugung diffusiv aufgebauter Gradienten
EP1718409B1 (de) Vorrichtung für mikrofluiduntersuchungen
EP2192984B1 (de) Teilaktives mikrofluidisches system für die 3d-zellkultivierung sowie verfahren zu dessen perfusion
DE69535324T2 (de) Mediumdurchdringender Zellkulturträger und seine Verwendungen in eine Kulturmethode und einem Apparat
DE3317550C2 (de) Verfahren zum Züchten einer lückenlosen Zellschicht und Vorrichtung zur Durchführung dieses Verfahrens
DE102012105540A1 (de) Gefäßmodell, Verfahren zu seiner Herstellung und seine Verwendung
DE202016007488U1 (de) Zellkulturplattform und Zellkultursystem
EP0727482A2 (de) Verfahren für die Kultivierung von Zellen auf einem Träger, Vorrichtung zur Durchführung des Verfahrens und Verwendung der Vorrichtung
DE4443902C1 (de) Kammer zur Kultivierung von Zellen, insbesondere Mikroskopkammer
DE102020107599B3 (de) Verfahren zur Kultivierung von Zellen
DE10326744B4 (de) Modul zur Züchtung und zur Nutzung der Stoffwechselleistung und/oder zum Erhalt von Mikroorganismen, Verfahren zu dessen Herstellung und Verwendung
DE10023505A1 (de) Reaktormodul mit Kapillarmembranen
EP3874021B1 (de) Fluidikvorrichtung, fluidiksystem und verfahren zum entwickeln dreidimensionaler zellulärer gebilde
DE102005014691B4 (de) Mikroarray-Vorrichtung und Verfahren zum Präparieren eines Probenträgers
EP1171572A2 (de) Modulare zellträgersysteme für dreidimensionales zellwachstum
DE19919241A1 (de) 3D Zellträgersystem für Zell-, Gewebe- und Organkulturen
DE10117723A1 (de) Probenträger, insbesondere für biochemische Reaktionen
DE102013012467A1 (de) Verkapselungseinrichtung und -verfahren zur Verkapselung einer Probe in einer Polymerkapsel
EP2251668B1 (de) Verfahren zum Positionieren einer organischen, biologischen und/oder medizinischen Probe
EP3724316B1 (de) Zellkulturträger
DE10004135A1 (de) Kammer für Zellkulturen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992919901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08201183

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1992919901

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992919901

Country of ref document: EP