WO1993001143A1 - Materiau de renforcement fibreux pour le genie civil et le batiment, procede de fabrication dudit materiau, et materiau pour le genie civil et le batiment renfermant le materiau precite - Google Patents

Materiau de renforcement fibreux pour le genie civil et le batiment, procede de fabrication dudit materiau, et materiau pour le genie civil et le batiment renfermant le materiau precite Download PDF

Info

Publication number
WO1993001143A1
WO1993001143A1 PCT/JP1992/000879 JP9200879W WO9301143A1 WO 1993001143 A1 WO1993001143 A1 WO 1993001143A1 JP 9200879 W JP9200879 W JP 9200879W WO 9301143 A1 WO9301143 A1 WO 9301143A1
Authority
WO
WIPO (PCT)
Prior art keywords
civil engineering
reinforcing material
fibrous reinforcing
fibrous
metal
Prior art date
Application number
PCT/JP1992/000879
Other languages
English (en)
French (fr)
Inventor
Kazuo Yoshikawa
Tadatoshi Kurozumi
Shoji Kashiwagi
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to KR1019930700705A priority Critical patent/KR970005874B1/ko
Priority to DE69224720T priority patent/DE69224720T2/de
Priority to JP50215793A priority patent/JP3386807B2/ja
Priority to EP92914760A priority patent/EP0548371B1/en
Priority to US07/983,844 priority patent/US5424124A/en
Publication of WO1993001143A1 publication Critical patent/WO1993001143A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1066Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/34Metals, e.g. ferro-silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/12Absence of mineral fibres, e.g. asbestos
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • Y10T428/2907Staple length fiber with coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments

Definitions

  • Fibrous reinforcing material for civil engineering manufacturing method of the same, civil engineering building materials including the same Technology
  • the present invention relates to a fibrous reinforcing material for civil engineering and construction as an alternative to aspect, a method for producing the same, and a material for civil engineering and construction containing the same.
  • Asbestos was widely used in the construction field. Asbestos has excellent weather resistance and heat resistance, and also has moldability, and it is easy to manufacture various molded products according to its use.
  • Fibers such as vinylon, acryl, nylon, polymethylpentene, polypropylene, polyethylene, carbon, aramide, rayon, and phenol.
  • Whisker such as glass wool, rock wool, stainless steel fiber, steel fiber, gypsum, and calcium titanate
  • ceramic fiber such as alumina, alumina silica, and silica.
  • Natural mineral fibers such as last knight, sepiolite, and attapulgite.
  • a material that improves the moldability of building materials is provided.
  • Natural materials such as cellulose, pulp, rayon, hemp, etc. Fibrillated.
  • Japanese Unexamined Patent Publication No. 3-14343 discloses a combination composition of carbonaceous materials (carbon, silicon carbide, silicon nitride, alumina, potassium titanate, etc.) and an aggregate having an average particle size of not more than twice the diameter of the whiskers. Is disclosed.
  • Japanese Patent Application Laid-Open No. 3-114802 discloses that a piece of caisson clay is flaked, granulated to a diameter of 6 mm or less, or roll-rolled to a thickness of 4 mm or less, and is made of portland cement and / or lime. It is disclosed that a fiber and an extrusion aid are mixed, water content is adjusted, and this is molded.
  • fibers inorganic substances such as asbestos, glass fiber, carbon fiber, and wollastonite, pulp, polypropylene, and polyvinyl alcohol are used. , Kepler, polyethylene fibers and the like are disclosed.
  • JP-A-3-141140 discloses a composition containing a polyvinyl alcohol fiber or a polyamide fiber and a synthetic pulp, and examining the amount and ratio of the composition to the composition. Compositions having improved filtration in a water test are disclosed. In addition, additives (mica, wollastonite, slag, silica, bentonite, palmite, etc.) are indicated.
  • Japanese Patent Application Laid-Open No. 60-54949 discloses a method in which fine irregularities are previously formed on the surface of a fiber, and electroless plating is performed on the surface to perform Au, Ag, Cu, Ni, Co, P It is disclosed that a metal such as d and Sn is adhered and used as a cement-based reinforcing material. In this case, the treated material is expensive, and both the unevenness providing step and the ecchi process are required.
  • Japanese Patent Application Laid-Open No. 2-69205 discloses a composition consisting of cement and silica, in which 8 to 13% of natural fibers of wollastonite or zeolite are added, and necessary additives other than asbestos are mixed with this. It is disclosed to be used.
  • vinylon has a hydroxyl group in the molecule and therefore has a high hydrophilicity and disperses well when kneaded with cement.
  • it since it is chemically active, it is required to be stable.
  • Polyethylene, polypropylene, etc. do not have good hydrophilicity because they do not have hydrophilic groups.
  • use of a surfactant may be considered, but this is not practical. Therefore, the fact is that no material that can be substituted for asbestos has been developed.
  • An object of the present invention is to provide a material which can be used as it is as a substitute for Aspect, and is particularly suitable for civil engineering and construction. Disclosure of invention
  • a fibrous material in which a metal oxide, a metal hydroxide, or a metal hydroxide is fixed to a fibrous substance such as polyolefin or the like matches the above-mentioned purpose, and the material is at least used.
  • the present invention was completed after confirming that it would be a material for use.
  • a metal salt and a solvent are mixed.
  • water is the most practical solvent, but a polar solvent such as ethyl alcohol may be used.
  • the metal that forms a metal salt when mixed with water is a transition metal of the third period or higher, has an electron orbital of d configuration or higher, and is particularly a metal that can take a stable state and a metastable state. preferable. That is, in this case, it is preferable that the metal ions take both forms of high-order ions and low-order ions in the solution (that is, take multiple charges).
  • At least one of S i, T i, V, C r, M n, F e, C o, N i, C u is selected, and A, £, etc. are also used. .
  • Fe is preferable.
  • metal oxides, hydroxides, and hydroxides Fe is divalent or trivalent.
  • Chlorine is most suitable because it has a high Clark number and is inexpensive as a salt, and because it is present in large quantities in nature as a component in seawater.
  • inorganic ions such as sulfate ion, sulfite ion, nitrate ion, nitrite, phosphite ion, phosphite ion, hypophosphite ion, oxalic acid, tartaric acid, etc.
  • Organic ions such as citrate can also be used.
  • Heating that supplies energy by convection heat transfer as physical energy irradiation method of heat rays such as infrared rays that supply energy by radiation, short-wave energy waves that induce electric field magnetic field (ultra-short wave, ultra-short
  • an excitation method for supplying a factor such as an ultraviolet electron beam that activates an ion in a substrate or a solution can be used.
  • metal ions In order to fix metal oxides, metal hydroxides, and metal hydroxides by immersing fibrous substances in a solution, metal ions must be present in the solution, and fine suspended precipitates (colloids) must be present.
  • chemical methods such as precipitating colloid by adjusting the pH, precipitating metal components using a reducing agent, and activating metal ions in a highly oxidized state. Physical energy addition and chemical energy addition can perform one or more of these.
  • metal component may be used.
  • a metal salt such as a combination of iron chloride ( ⁇ ) and iron chloride ( ⁇ ), a combination of iron chloride (m) and aluminum chloride, and a combination of iron chloride ( ⁇ ) and calcium chloride
  • inorganic and organic substances such as iron chloride (m) and emulsion.
  • One kind of the base component may be used, but a plurality of base components such as iron chloride (m) and iron sulfate (m), iron chloride (m) and iron hydroxide may be present.
  • the material (substrate) to which the metal compound component is attached is basically not limited, but it is necessary that the reaction conditions (temperature, pH) do not cause phenomena such as alteration, dissolution, and elution.
  • polypropylene refers to not only its homopolymer but also, for example, a copolymer of propylene with at least one of ethylene, butene, pentene and 4-methylpentene-11, or polypropylene as maleic anhydride. (Including all polyolefin fibers such as polypropylene fibers mentioned above).
  • base materials include not only single materials, but also those based on them, their reactants, and mixtures.
  • polyolefin fibers are selected, and among them, polypropylene fibers are particularly preferable.
  • the method of the present invention comprises, as described above, a step of mixing a metal salt and a solvent, a step of immersing a fibrous substance in the mixture, a step of adding energy to the mixture and / or a step of adjusting PH, and a step of dehydration.
  • the order of the forces is as described above, and there may be addition of energy and / or adjustment of PH before the dipping step as described above.
  • a component having a buffering action can be added to control the pH of the mixture. Also, by using a component that forms a complex ion in combination, the metal salt solution can be kept in a stable dissolved state.
  • a hydrophilic group such as a surfactant may be previously attached to the fiber to be treated.
  • the weight ratio of the fibrous substance to the metal oxide, hydroxide, and hydroxide of the fibrous reinforcing material for civil engineering construction produced by the method of the present invention is practically 1: 0.0001 to 0.
  • the range is 2. If the amount is out of this range, the effect is not sufficiently exerted when the amount of the adhered substance is too small.
  • hydrophilic fibers such as vinylon fibers, the improvement effect on papermaking workability is sufficient. Disappears.
  • the organic fibers to be treated may be those having a diameter of about 0.1 ⁇ to 5 ⁇ , which are called ultra-fine fibers, and those having a thickness of about 5 to 35 which are generally used for construction materials. It may be as thick as about 35 ⁇ m to about 100 ⁇ m, which is called extra-thin fiber.
  • the fixing may be performed by a batch method or a continuous method.
  • the fibrous reinforcing material for civil engineering and construction according to the present invention has the following features.
  • a fibrous reinforcing material for civil engineering and construction is mixed as a component in the inorganic heat-resistant substance @ component.
  • the amount of the material for civil engineering and construction according to the present invention varies depending on the type of the material to be treated.
  • a cement-based material will be described as an example.
  • the amount of the component to be mixed is indicated by% by weight based on the @ component.
  • organic synthetic fiber When organic synthetic fiber is used, about 0.5% to 3% is used, and when natural fiber such as pulp is used, about 2.5% to 10% is generally used. When inorganic fibers are used, about 5 to 20% is used.
  • the amount to be added is almost the same for hydraulic substances other than cement, caustic materials, and clayey materials, and the amount to be added is more than 0.01% and up to 40%. Is the range in which the treatment material for civil engineering and construction of the present invention has an effect.
  • the length of the component is not particularly limited, but when mixed with cement or the like, a length of 1 mm to 50 mm is generally used.
  • Iron chloride ( ⁇ , anhydrous) was dissolved in water to produce a 10 g / aqueous solution.
  • 50 g of polypropylene fiber (diameter 18 ⁇ m, length 1 m) was immersed in the aqueous solution, and the immersion liquid was heated at 80 ° C. for 10 minutes. The pH of this solution was 1.8.
  • the fibrous material was removed from the immersion liquid, and then dried.
  • This fibrous material was the fibrous reinforcing material of the present invention formed from a mixture of polypropylene fibers and iron oxide and iron hydroxide and iron hydroxide oxide covering the surface thereof.
  • 1.0 to 1.1 g of the iron compound was fixed to 100 g of the polypropylene fiber.
  • the film thickness was 0.01 w, and iron forming the iron compound was mainly trivalent.
  • the mixture was analyzed by an atomic absorption method.
  • Example 2 The same treatment as in Example 1 was carried out except that iron chloride ( ⁇ , anhydrous) was used instead of iron chloride (m, anhydrous), and the mixture was taken out after 60 minutes. A fibrous reinforcing material of the present invention substantially similar to that of Example 1 was obtained. At this time, the PH was 3.7, and it was confirmed that the deposition rate was rapidly improved by setting the PH to around 2.0 and adding hydrogen peroxide.
  • Example 2 The same treatment as in Example 1 was conducted, except that the heating was performed not on the immersion liquid but on the aqueous solution of iron chloride before immersion. As a result, a fibrous reinforcing material of the present invention substantially similar to that of Example 1 was obtained.
  • Example 1 the heating temperature was 60. C, except that the heating time was 30 minutes, all treatments were the same as in Example 1. As a result, a fibrous reinforcing material of the present invention substantially identical to that of Example 1 was obtained.
  • Example 2 Example 2 was repeated except that the electromagnetic wave of 255 OMHHz was irradiated as an energy wave at 1200 WZ hr instead of heating the immersion liquid.
  • Example 1 dissolution of iron chloride ( ⁇ ) in water, polypropylene Fiber immersion and standing after immersion were all performed at room temperature. The following results were obtained by changing the immersion time.
  • the amount of fixation of the iron compound greatly correlates with the degree of coloring, and the amount of fixation can be determined based on the degree of coloring.
  • the processing was performed in the same manner as in Example 1 except that the fibrillated polyethylene fiber (length: 2 mm) was used instead of the polypropylene fiber.
  • a fibrous reinforcing material of the present invention was formed, which was formed of a mixture of polyethylene fibers and iron oxide covering the surface thereof and iron hydroxide and iron hydroxide oxide.
  • the weight ratio between the polyethylene fiber and the iron compound coating was 100: 0.5.
  • the film thickness was 0.005 x, and the coating-forming iron compound was mainly trivalent.
  • Example 2 The same treatment as in Example 1 was carried out using the various fibers shown in Table 1 in place of the polypropylene fiber of Example 1 to obtain substantially the same fibrous reinforcing material of the present invention except for the type of fiber. Obtained. Fiber name s mm m Diameter 1 m
  • a fiber of the present invention which was substantially the same as that obtained in Example 4 was treated in the same manner as in Example 4 except that the following energy wave was used instead of heating in Example 4 A reinforcing material was obtained.
  • the fibrous reinforcing material of the present invention produced in the above Examples 1 to 12 has excellent coloring, coloring stability, repetition stability under heat and cold, freeze-thawing stability, chemical stability, and water dispersibility. I was
  • the coloring of the material was visually confirmed to be uniform.
  • the object was washed with water and immersed in 1% soap water at room temperature for 10 days. After taking out, the change in coloring was confirmed not to be decolorized as compared with that immersed in water under the same conditions.
  • Example 13 The same treatment as in Example 13 was performed using only the cationic emulsion. Emulsion was not found to adhere to polypropylene fibers. When the fiber treated with the liquid was taken out and dried, the emulsion formed a film on the fiber surface, and each fiber could not become an independent fiber. '
  • Example 13 the treated fiber was taken out and dried, and it was confirmed that the fiber was easily separated into individual fibers and that the fiber had good dispersibility.
  • Iron chloride ( ⁇ , anhydrous) was dissolved in ethyl alcohol at a ratio of 1 g, and added to the ethyl keylate at a ratio of 0.5. This is 70
  • the substrate was irradiated with a microwave of 2450 MHz at 600 W ZHr for 10 minutes to be processed. This confirmed that the iron compound and the silicon compound adhered to the surface in each case.
  • Solution A and Solution B are mixed in equal amounts, and polypropylene fiber is added to a mixture heated to 60 ° C at a ratio of 100 gZ £, and kept in this state for 10 minutes. Irradiation was performed at 200 W / Hr for 10 minutes. As a result, it was confirmed that iron and nickel compounds adhered to the polypropylene fiber side.
  • a polypropylene fiber was treated by the method described in Example 1. After cutting the light fibrous reinforcing material to a length of 5 mm, various amounts of the material were mixed with cement and sand, and slurried by adding water. This was hardened to obtain the material for civil engineering and construction of the present invention, and its performance was measured. In addition, the wall was painted with a plastering iron, and the painting workability and surface aesthetics were observed. Table 3 shows their mixed compositions and results.
  • a cured product was obtained in the same manner as in Example 16, except that untreated polypropylene fiber was used in place of the fibrous reinforcing material of the present invention.
  • Table 3 shows the mixture composition and the measurement results as in Example 16.
  • Example 16 the same treatment as in Example 16 18 was performed except that polypropylene fibers in which 0.9% of polyoxyethylene alkylphenyl ether was sprayed were used instead of the fibrous reinforcing material of the present invention. Then, the cured product was obtained.
  • Table 3 shows the mixture composition and the measurement results as in Example 16. (Unless otherwise specified, ⁇ indicates good, ⁇ indicates normal, and X indicates poor.)
  • Fibers (parts by weight) 0.5 1.0 2.0 1.0 1.0 2.0 1.0 Cement (parts by weight) 100 100 100 100 100 100 100 Sand (parts by weight) 150 150 150 150 150 150 Methyl cellulose (Ga) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Water to cement ratio 46 52 73 52 73 52 Fiber dispersion in water ⁇ ⁇ ⁇ XX ⁇ Fiber dispersion in slurry ⁇ ⁇ ⁇ XX ⁇ Properties
  • the material for civil engineering and construction according to the present invention has better dispersion in water, better dispersion in slurry, is easier to apply, and has a better surface appearance than materials that do not adhere metal oxides and the like. It has been confirmed that the cured product has high cementability and the cement-capturing property of the cured product increases.
  • Example 1 the polypropylene fiber was immersed in the solution, and held for 30 minutes to take out the fiber. This fiber was treated exactly as in Example 16. The performance of the material obtained by this treatment was measured in the same manner as in Example 19. Table 4 shows the mixture composition and the results.
  • a cured product was obtained in the same manner as in Example 19 except that untreated polypropylene fiber was used instead of the fibrous reinforcing material of the present invention.
  • Table 4 shows the mixture composition and the measurement results as in Example 19.
  • the method of adding energy is not specified, and it was confirmed that the same effect can be obtained by changing the heating method or the energy wave applying method. It was also confirmed that long-term processing time was required when processing at low temperatures.
  • Example 16 After cutting the fibrous reinforcing material of the present invention treated with polypropylene fibers by the method shown in Examples 1, 11, 13, 13, 14, and 15 to a length of 5 mm, exactly the same as in Example 16 The material for civil engineering and construction of the present invention was obtained, and its performance was measured in the same manner as in Example 16.
  • Table 5 shows the mixture composition and the results.
  • Example 24 was treated in the same manner as in Example 24 except that untreated polypropylene fibers were used instead of the fibrous reinforcing material of the present invention.
  • Table 5 shows the mixture composition and the measurement results.
  • the metal species of the metal oxide, hydroxide, and hydroxide of the material to be fixed is not limited to iron, and may be a single component composition or a composite composition. In addition, it was confirmed that a metal simple substance may be fixed.
  • the fibrous reinforcing material of the present invention obtained by treating polymethylpentene fiber was cut into a length of 5 mm, mixed with various powders, kneaded with water, and mixed with (powder).
  • (Body + fiber + pulp): water 5: 100 slurry was adjusted.
  • Further Fixer 1 0 PP m was added to the slurries, and papermaking in the papermaking machine (manufactured by Kumagai Riki Kogyo (Co.)), 2 0 kg / cm 2 by then pressurized ⁇ water, 2 0 e C 6 5% relative After drying at the temperature, the dried product was checked for cracks.
  • Table 6 shows the composition and the results of the performance measurement.
  • Example 6 shows the composition and performance measurement results for the dried, cultivated, and fired products.
  • Table 7 shows the composition and the results of the performance measurement.
  • Comparative Example 11 L 3 Except that untreated polypropylene fiber, vinylon fiber, and asbestos were used, the treatment was performed in the same manner as in Example 32, and the composition and performance measured in the same manner are shown in Table 7.
  • a plate-like molded body was obtained in the same manner as in Example 35, except that various untreated fibers were used.
  • Table 8 shows the composition and various properties.
  • Examples 35 and 36 are superior in all respects to the comparative example. Further, Examples 37 and 38 are also superior to Comparative Examples except for the dispersibility of the fibers during papermaking. Comparative Example 18 was asbestos, and it was confirmed that the civil engineering building material of the present invention was of the same quality as asbestos.
  • the fibrous reinforcing material of the present invention was obtained in the same manner as in Example 1 except that other fibers were used instead of the polypropylene fibers. Using these materials, various fibers were substituted for pulp by the method of Example 29. The material for civil engineering and construction of the present invention was used to form a plate-like molded body. Table 9 shows the composition and various properties.
  • Example 39 Except for using untreated fibers in Example 39, all were treated in the same manner as in Examples to obtain plate-like molded bodies. Table 9 shows the composition and various properties.
  • the examples and comparative examples show that by treating fibers both organic and inorganic, the bending strength of the molded body is increased and various performances are improved.
  • the bent specimen is immersed in a 10% hydrochloric acid aqueous solution at a depth of about 5 mm for one week, with a part of the fractured surface entering the liquid, that is, the casting surface entering the liquid, and washed with water. After that, the dispersion state and cut state of the fiber are visually observed. Painted surface appearance
  • the surface was visually observed, and the following three levels were evaluated.
  • X is an intermediate filtration rate
  • a 100: 5 slurry with a water: solids ratio of 100: 5 was filtered through a 100 mesh wire mesh.
  • the filtrate filtered was sampled, the state of the filtrate was visually observed, and the following three stages were evaluated.
  • the paper-molded board was cured once and immersed in 5% hydrochloric acid for 1 week to elute the cement component. After that, the fragile part affected by the acid was removed, and the dispersion state of the fiber was observed and evaluated in the following three steps.
  • the paper-molded board was cured for one day and immersed in 5% hydrochloric acid for one week to elute the cement component. After that, the fragile part affected by the acid was removed, and the dispersion of the pulp was observed.
  • ⁇ Pulp is sufficiently dispersed and exists uniformly.
  • X Pulp is concentrated in the upper layer and re-separated.
  • the papermaking speed at which the fibers were not largely oriented was expressed as a ratio to the papermaking speed of the asbestos-containing composition.
  • the fibrous reinforcing material for civil engineering in which at least one of metal oxides, metal hydroxides, and metal hydroxides adheres to the fibrous material of the present invention is easy to manufacture. It is useful for manufacturing materials. That is, the building-like material of the present invention is composed of the fibrous reinforcing material of the present invention and a material such as a hydraulic material, a siliceous inorganic material, and clay. And, for example, it can be used as a molded plate for a ceiling wall or the like. This is nonflammable and has excellent weather resistance, and can be used in the same manner as various asbestos-containing molded plates. From the above Examples and Comparative Examples, it is clear that the fibrous reinforcing material for civil engineering and construction of the present invention and the material for civil engineering and construction including the material of the present invention have excellent properties. Industrial applicability
  • the fibrous reinforcing material for civil engineering and construction according to the present invention can be replaced with Aspect. And civil engineering and building materials in which this fibrous reinforcing material is mixed in an inorganic heat-resistant substance can be used in almost the same way as Asbestos and mixed products, and therefore have very high practical value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

曰月 糸田 »
土木建築用繊維状補強材料、 同材料の製造方法、 同材料を含む 土木建築用材料 技 術 分 野
本発明はアスペスト代替用土木建築用繊維状補強材料、 同材料の 製造方法及び同材料を含む土木建築用材料に関する。 背 景 技 術
建築分野には広くアスベストが使用されていた。 アスベストは耐 候性、 耐熱性に優れ、 又成型性もあり、 その用途に応じて各種の'成 型体の製造も容易である。
然し、 アスペス 卜は健康障害の要因となることが明らかとなり実 質的にその使用が制限されることとなった。
そのため、 アスベストと同様の性質を有する代替品が廉価で供給 されることが強く要求されている。
石綿代替材料として次のものが知られている。
建 の補強効果を求める材料
①ビニロン、 アク リル、 ナイロン、 ポリメチルペンテン、 ポリプロ ピレン、 ポリエチレン、 カーボン、 ァラミ ド、 レーヨン、 フエノー ル等の繊維。
②ガラスウール、 ロックウール、 ステンレス繊維、 スチール繊維、 石膏、 チタン酸カ リ ウム等のウイスカー、 アルミナ、 アルミナシリ 力、 シリカ等のセラミックスフアイバー。
③ヮラストナイ ト、 セピオライ ト、 ァタパルジャィ ト等の天然鉱物 繊維。
④マイカに代表される天然板状材料。
建材の成型性を向上させる材料。
①セルロース、 パルプ、 レーヨ ン、 麻等の天然素材及びそれらを フイブリル化したもの。
②ポリエチレン、 ボリブ口ピレン等の合成繊維をフィブリル化した もの。
建材の強度向上を求める材料
微粉シリカ、 シリカヒューム、 超微粉セメント等。
増量を求める材料
ケィ砂、 炭酸カルシウム等。
これらに関しての代表的な公開公報を示す。
特開平 3 - 1 7434 3号にはゥイス力一 (カーボン、 炭化ケィ 素、 窒化ケィ素、 アルミナ、 チタン酸カリウムなど) と平均粒径が ゥィスカー直径の 2倍以下である骨材との組合せ組成が開示されて いる。
特開平 3— 1 1 48 0 2号には、 ケィソゥ土塊をリ ン片状とし、 直径 6 mm以下に造粒し、 又は厚さ 4 mm以下にロール圧延し、 ポ ルトランドセメント及び又は石灰と繊維と押出し助剤を混合し、 水 分調整を行い、 これを成型することが開示され、 更に繊維として石 綿、 ガラス繊維、 カーボン繊維、 ワラストナイ 卜等の無機物、 パル プ、 ポリプロピレン、 ポリ ビニルアルコール、 ケプラー、 ポリェチ レン繊維などが開示されている。
特開平 3 - 1 4 1 1 40号には、 ポリ ビニルアルコール系繊維又 はポリアミ ド繊維と合成パルプを含有した組成物であって、 これの 組成物に対する量及び比率を検討することにより、 濾水度試験にお ける瀘水を向上させた組成物が開示されている。 更に、 添加剤 (マ イカ、 ワラストナイ 卜、 スラグ、 シリカ、 ベン トナイ ト、 パ一ライ ト等) が示されている。
特開昭 6 0— 5 4 9 5 0には、 繊維表面に予め微細な凹凸をつ け、 これに無電解メ ツキを行って A u、 A g、 C u、 N i、 C o、 P d、 S n等の金属を付着させ、 これをセメント系補強用材料に用 いることが開示されている。 この場合、 処理されたものは高価な.ものとなり、 又凹凸付与工程 とメ ッキエ程の両方が必要となる。
特開平 2— 7 4 5 4 6号にはセメ ン ト、 シリカ質原料及び押出し 成型助剤を配合した無石綿、 押出し成型配合で S i 0 2 - M g 0 - C a 0 - A £ 2 0 3 系の鉱物繊維で繊維長さが 1 m m以下とされた
-材料が開示されている。
特開平 2— 6 9 2 0 5号にはセメント、 シリカよりなる組成物に ワラストナイ ト、 又はゼォライ トの天然繊維を 8〜 1 3 %添加し、 これに石綿以外の必要な添加物を混合し、 使用することが開示され ている。
以上種々の公知方法について述べたが現在ではアスペス 卜 と同程 度で且つアスペストと同様に廉価に取得し得る材料は開発されてい ない。
例えばビニロンは分子内に水酸基を有するため親水性が高く、 セ メントと混練するとよく分散するが、 化学的に活性であるため、 安 定性にかける。 又ポリエチレン、 ポリプロピレン等は親水基がない ため水に対する分散性が良くない。 これらの欠点を解決するために は例えば界面活性剤の使用等が考えられるが、 実用的ではない。 従ってアスベストにそのま 、置換し得る材料は開発されていない のが実情である。
本発明の目的はアスペストの代替品としてそのま 、使用できる、 特に土木建築用として好適な材料を提供することにある。 発明 の 開示
本発明者らはポリオレフィ ン等の繊維状物質に金属酸化物、 金属 水酸化物又は金属水酸化酸化物を固着させた繊維状材料が前記の目 的に合致すること、 そして該材料は少なく とも一種の金属塩と溶媒 とを混合する工程、 前記工程で得られた混合液に対して繊維状物質 を浸漬する工程、 更には混合液に対するエネルギーの付加及び又は p Hの調整工程、 脱水工程、 の各工程、 又は浸漬工程より、 繊維状 物質を取り出しエネルギーを付加することにより製造し得ること、 そして更にそれら材料が混入した無機耐熱性物質は優れた土木建築 用材料となることを確認し、 本発明を完成した。 発明を実施するための最良の形態
以下本発明を詳しく説明する。
最初に本発明の土木建築用繊維状補強材料の製造法について説明 する。 先ず金属塩と溶媒とを混合する。 この場合溶媒は水が最も実 用的であるが、 エチルアルコール等の極性溶媒を用いてもよい。 水と混合して金属塩を形成する金属は、 第三周期以上の遷移金属 であり、 d配位以上の電子軌道を有し、 これが安定状態及び準安定 状態をとり得る金属であることが特に好ましい。 即ちこの場合、 金 属によるィォンは高次ィオン、 低次イオンの両方の形を溶液内で取 る (即ち複数電荷を取る) ものが好ましい。
これらの金属と しては S i 、 T i 、 V、 C r 、 M n、 F e 、 C o、 N i 、 C u中の少なく とも一種が選択され、 更に A ·£等も用 いられる。 そして実用的には F eが好ましい。 そして金属酸化物、 水酸化物、 水酸化酸化物中では F eは 2価又は 3価である。
又塩としてクラーク数が高く安価である事、 海水中の成分として 自然界に大量に存在する事より特に塩素が最適である。 尚更に塩基 成分と して硫酸イオン、 亜硫酸イオン、 硝酸イオン、 亜硝酸ィォ ン、 リ ン酸イオン、 亜リ ン酸イオン、 次亜リ ン酸イオン等の無機ィ オン、 シユウ酸、 酒石酸、 クェン酸等の有機イオン等も使用可能で ある。
次に付加されるエネルギーについて述べる。
物理エネルギーとして対流伝熱などにより、 エネルギーを供給す る加熱、 輻射によ りエネルギーを供給する赤外線等の熱線照射方 式、 電界磁界を誘導する短波長のエネルギー波 (超短波、 極超短 波、 マイクロ波、'ミ リ波などの電磁波) によるエネルギー波方式、 紫外線電子線など基材又は溶液内のィォンを活性化する因子を供給 する励起方式などを用いる事ができる。
繊維状物質を溶液に浸漬して金属酸化物、 金属水酸化物、 金属水 酸化酸化物を固着させるためには溶液内で金属イオンを存在させる 事、 微小浮遊沈殿 (コロイ ド) を存在させる事、 P Hを調整するこ とにより、 コロイ ドを析出させる事、 還元剤を用い、 金属成分を析 出させる事、 更に高酸化状態で金属イオンを活性にする事などの化 学的方法がある。 物理エネルギー付加、 化学エネルギー付加はこれ らのうち一種又は複数を行うことができる。
金属成分については 1種類でも良いが、 例えば塩化鉄 (ΠΙ ) と塩 化鉄 ( π ) の組合せ、 塩化鉄 (m ) と塩化アルミニウムの組合せ、 塩化鉄 (ΠΙ ) と塩化カルシウムの組合せ等金属塩の組合せや、 塩化 鉄 (m ) とェマルジヨ ン等無機物と有機物の組合せも用いられる。
塩基成分についても一種類でもよいが、 例えば塩化鉄 (m ) と硫 酸鉄 (m ) 、 塩化鉄 (m ) と水酸化鉄等複数存在してもよい。
金属化合物成分を付着される材料 (基材) は基本的には制限はな いが反応条件 (温度、 P H ) で変質、 溶解、 溶出等の現象を生じな いことが必要である。
次に具体的に例示する。
ポリオレフイ ン ポリエチレン ポリプロピレン ポリブテン ポリメチルペンテン
その他合成繊維 ポリ ビュルアルコール ポリアクリロニト リル
6ナイロン 6 6ナイロン ポリエステル ボリ塩化ビュル ポリアミ ド
半人造繊維 レーヨン アセテート
天然有機物 パルプ 木綿 セルロース 羊毛 種子皮繊維 麻 ラミー マニラ麻 亜麻 サイザル麻 モヘア カシミア 人造鉱物 スラグウール ロックウール ガラス繊維 カーボ ン繊維 金属繊維 アルミナ シリカアルミナ . シリカ等のセラミ ックスフアイバー 石膏 チタン 酸力リ ゥム等のゥィスカー
天然鉱物 雲母 ワラストナイ ト ゼォライ ト ァタパルジャ ィ 卜
尚、 上記の記載において、 例えばポリプロピレンとはそのホモポ リマーのみならず、 例えばプロピレンとエチレン、 ブテン、 ペンテ ン、 4ーメチルペンテン一 1等中の少なく とも一種との共重合物、 或いはポリプロピレンを無水マレイン酸等の酸無水物で変成した変 成ポリプロピレン等 (以後ポリプロピレン繊維などのポリオレフィ ン繊維はすべて上記の内容をいう) を含む。
その他の基材についても単独物のみならず、 それを主成分とする ものや、 それらの反応物、 混合物等をも含む。
そして実用的にはポリオレフィ ン繊維が選択され、 その中でも特 にポリプロピレン繊維が好ましい。
本発明の方法は前述のように金属塩と溶媒とを混合する工程、 前 記混合液に繊維状物質を浸漬する工程更には混合液に対するェネル ギ一の付加及び又は P Hの調整工程、 脱水工程を実質的工程とする 力 その順番は前記の通りの外に浸漬工程の前にエネルギーの付加 及び又は P Hの調整の存在する事もある。
混合液の P Hをコントロールするために緩衝作用のある成分を加 えるこ とができる。 又錯イオンを形成する成分を併用する事によ り、 金属塩溶解液を安定した溶解状態に保つことができる。 又処理 される繊維に界面活性剤等の親水基を予め付着させてもよい。
本発明の方法により製造された土木建築用繊維状補強材料の繊維 状物質と金属酸化物、 水酸化物、 水酸化酸化物との重量比は実用的 に 1 : 0 . 0 0 0 1〜0 . 2の範囲である。 この範囲外では固着物 が少な過ぎる場合効果を十分には発揮しない。 ビニロン繊維の様な 親水性繊維を処理する場合抄造作業性に対しての改善効果が十分で なくなる。
疎水性繊維に対しては十分な量を固着させる事によつて親水性、 抄造作業性を改善することができる。
しかしながら表面全体に固着させればこれ以上親水性が増大しな い事よりこの範囲外では効果が飽和する。
処理するべき有機繊維は超極細繊維と言われる直径 0 . 1 μ〜 5 μ程度の太さのものでも良く、 又一般的に建材用途に使用されて いる 5〜3 5 程度の太さのものでも良く、 又、 極太繊維と言われ る 3 5 μ〜 1 0 0 μ程度の太いものであっても良い。
尚固着はバッチ方式でも連続方式でも良い。
本発明の土木建築用繊維状補強材料は次の特色を有する。
①水で練られたセメント、 フライアッシュ、 スラグ、 石膏、 シリカ 等の組合せによる水硬性材料、 ケィ酸質無機材料、 粘土等の材料に 対して優れた捕捉性を有する。 又、 成型補助材料であるパルプ、 セ ルロース、 鉱物繊維等に対しても優れた捕捉性を有する。
②従って前記物質と組合せる事により優れた性質を有する土木建築 用材料を容易に製造できる。 そして抄造製造法が適用できる。
③この製造に際しては必要により焼成、 水熱養生、 水密養生 (ォー トクレーブ) 等各種の公知手段が適用できる。
④本発明の土木建築用材料に対しては必要により各種の添加剤を加 えることができる。
次に土木建築用材料について述べる。
土木建築用材料は @成分である無機耐熱性物質中に、 ®成分とし て土木建築用繊維状補強材料が混入している。
本発明による土木建築用材料は処理される材料の種類によって混 入される量が変化する。 セメント系材料を例として示す。 尚混入さ れる ®成分の量は @成分に対する重量%で示される。
①壁面に塗る材料として有機繊維を使用した場合、 セメン卜に対し て 0 . 0 1 %〜 1 %が使用される。 繊維径が 0 . 1 μ〜 ΐ 程度の 極細繊維の場合では 0. 0 1 %〜0. 2 %程度で効果を奏させるこ とが出来るが、 現在知られている極細繊維であっても 0. 0 1 %以 下の使用量では混入量が少な過ぎ、 効果を発揮し得ない。
②押出成型板、 抄造成型板、 プレス成型板等の成型板の成型に対し て次のように説明される。
有機合成繊維を用いる場合 0. 5 %〜3 %程度が、 パルプ等天然 繊維を用いる場合 2. 5 %〜 1 0 %程度が、 一般的に使用される。 又、 無機繊維を用いる場合 5〜2 0 %程度が使用される。
更に無機板状材料を用いる場合 1 0〜40 %程度が使用される。
③セメントに対して 4 0 %を越える量を使用すると、 成型性、 物性 が飽和され、 又製造コストが上昇するため、 使用する効果はない。 セメン ト以外の水硬性物質、 ケィ酸質材料、 粘土質材料である場 合についても添加されるべき量はほ 同等であり、 添加される量は 0. 0 1 %以上であり、 40 %までの範囲が本発明の土木建築用処 理材料が効果を有する範囲である。
®成分の長さについては特に限定はないがセメン ト等に混入され る場合 1 mm長さ〜 5 0 m m長さが一般的に用いられる。
1 mm以下では繊維がランダムに存在し易く なるという点では優 れているが、 切断する必要がある等コストが高くなるという点で好 ましくない。
5 O mm以上では混練時にファイバ一ボールをつく り易くなる等 好ましくない。
尚、 長網式抄造機、 押出し成形機、 流し込み成型機、 プレス成型 機等により、 厚物の生マツ トを得、 原板としてもよい。
次に本発明を実施例、 比較例により説明する。
実施例 1
塩化鉄 (ΙΠ、 無水) を水に溶解して、 1 0 g/ の水溶液を製造 した。 次に該水溶液にポリプロピレン繊維 (直径 1 8 μ、 長さ 1 m) 5 0 gを浸漬した後、 該浸漬液を 80 °Cで 1 0分間加熱した。 この液の p Hは 1 . 8であった。 次に浸漬液より繊維状物質を取り 出し、 次いで乾燥した。 この繊維状物質はポリプロピレン繊維とそ の表面を覆っている酸化鉄及び水酸化鉄の及び水酸化酸化鉄の混合 物より形成されている本発明の繊維状補強材料であった。 尚ポリブ ロピレン繊維 1 0 0 gに対して鉄化合物が 1 . 0〜 1 . 1 g固着し ていることを確認した。 そして膜厚は 0 . 0 1 wであり、 鉄化合物 を形成する鉄は 3価が主体であった。 尚、 前記の混合物の分析は 原子吸光法により行った。
実施例 2
塩化鉄 (m、 無水) の代わりに塩化鉄 ( π、 無水) を用いた以 外、 実施例 1 と同様に処理し 6 0分後に取り出した。 実質的に実施 例 1 と同様の本発明の繊維状補強材料を得た。 この時 P Hは 3 . 7 であり、 P Hを 2 . 0付近にする事及び過酸化水素を加える事によ り付着速度が急速に向上する事が確認された。
実施例 3
加熱を浸漬液ではなく 、 浸漬する前の塩化鉄水溶液に行った以 外、 実施例 1 と同様に処理した。 その結果実質的に実施例 1 と同様 の本発明の繊維状補強材料を得た。
実施例 4
実施例 1 において加熱温度を 6 0。C、 加熱時間を 3 0分とした以 外、 すべて実施例 1 と同様に処理した。 その結果実施例 1 と実質的 に同一である本発明の繊維状補強材料を得た。
実施例 5
実施例 1 において、 浸漬液を加熱する代わりにエネルギー波とし て 2 4 5 O M H zの電磁波を 1 2 0 0 W Z h r照射した以外実施例
1 と全く同様に処理した。 その結果実施例 1 と実質的に同一の本発 明の繊維状補強材料を得た。
実施例 6
実施例 1 において、 塩化鉄 (ΠΙ ) の水への溶解、 ポリプロピレン 繊維の浸漬、 浸漬後の放置を全て常温で行った。 浸漬時間を変える 事によって次の結果を得た。
1 1時間 ほとんど着色しない (0.01g/100g以下固着)
2 1 日 " (0.01g/100g以下固着)
3 1週 わずかに着色 (0.06g/100g固着)
4 2週 1週浸漬のものより濃い色となる(0.3g/100g固着)
5 4週 実施例 1 と同程度に着色 ( l g/100g固着)
即ち反応時間は長くなるが常温での反応も可能である。
鉄化合物の固着量は着色の程度と相関が大きく、 着色の程度によ り固着量は判断できる。
実施例 7
実施例 1においてポリプロピレン繊維の代わりにフイブリル化し たポリエチレン繊維 (長さ 2 mm) を用いた以外実施例 1 と同様に 処理した。 その結果ポリエチレン繊維とその表面を覆っている酸化 鉄及び水酸化鉄及び水酸化酸化鉄の混合物より形成されている本発 明の繊維状補強材料を得た。 そしてポリエチレン繊維と鉄化合物被 覆との重量比は 1 0 0 : 0. 5であった。 又膜厚は 0. 0 0 5 xで あり、 被覆形成鉄化合鉄は 3価が主体であった。
実施例 8
実施例 1のポリプロピレン繊維の代わりに表 1 に示す各種繊維を 用いて実施例 1 と同様に処理して、 繊維の種類が異なる以外、 すべ て実質的に同一の本発明の繊維状補強材料を得た。 繊 維 名 s m m 直径 1 m
1 ポリメチル 5 1 8
ペンテン
2 ビニロン 5 1 6
3 アクリル 5 1 6
4 ガラス 1 2 1 0
5 スラグ 3 3
ウール 実施例 9
実施例 4において加熱の代りにエネルギー波として次のものを使 用した以外すベて実施例 4と同様に処理して、 実施例 4と得られた ものと実質的に同一の本発明の繊維状補強材料を得た。
電磁波の種類 照射条件
A 950MH z電磁波 1 200 W/h r B 紫 外 線 600 W/ h r 実施例 1 0
実施例 1において塩化鉄の代りに、 F e 2 ( S 04 ) 3 ,
F e (N 03 ) 3 を用い、 表 2に示す条件で実施例 1に用いたのと 同様のポリプロピレン繊維を実施例 1 と同様に処理した。
表 2
Figure imgf000013_0001
以上の処理により水酸化酸化鉄を主体とする固着物を有する本発 明の繊維状補強材料を得た。
実施例 1 1
C u C £ 2 を用い、 次の処理により本発明の繊維状補強材料を得 た。
1 0 gZ^塩化銅 (pH = 4. 5) を p H = 2に塩酸で p H調整 し、 この後過酸化水素を加え、 80°Cに加熱した。 この後 50 gノ £の割合で、 ポリプロピレン繊維を浸漬した後 80°Cで 30分間保 持し、 次いで液より繊維を取り出し乾燥させて本発明の繊維状補強 材料を得た。
実施例 1 2
C u C £ 2 の代わりに N i C ·β 2 を用いた以外は実施例 1 1 とほ ^同様の処理して本発明による繊維状補強材料を得た。
前記実施例 1〜 1 2において製造された本発明の繊維状補強材料 は、 着色、 着色安定性、 温冷繰返安定性、 凍結溶解安定性、 薬品安 定性、 水の分散性のいずれも優れていた。
尚前記各試験は次の方法により行った。
着色試験
材料を目視により着色が均一である事を確認した。
着色安定性試験
対象物を水洗し、 1 %の石けん水中に 1 0日間常温で浸漬した。 取り出した後着色の変化を同一条件の水に浸漬したものと比較して 脱色されない事を確認した。
温冷繰り返し安定性試験
2 0 °C 1時間と 8 0。C 1時間を 1セッ トとして 1 0サイクル繰り 返した。 この後、 肉眼観察により、 色の変化のない事を確認した。 凍結溶解安定性試験
- 2 0 。C 1時間と 1 0 0。C 1時間を 1セッ トとして 5サイクル繰 り返した後に肉眼観察を行い、 色の変化のない事を確認した。
薬品安定性試験
5 0。Cにおいて 3 %塩酸液、 又は 3 %水酸化ナト リ ゥム液に 1時 間浸漬し、 色の変化がない事を確認した。
水分散性試験
水 1 0 0に対して繊維 1 . 0を加え、 攪拌した後、 繊維の分散状 態を目視により繊維が良く分散していることを確認した。
実施例 1 3
塩化鉄 (m、 無水) 1 にァク リル酸エステル樹脂よりなる カチオン性ェマルジヨ ン 0 · 5 g Z £を加え、 これを 8 0 °Cに加熱 し、 ボリプロピレン繊維を 1 0 の割合で加え、 この状態で
1 0分間保持した。 この後 2 4 5 0 M H zのマイクロ波を 1 2 0 0 W Z H rで 5分間照射し、 処理を行った。 これにより鉄化合物及び ェマルジヨ ンがポリプロピレン繊維に固着することを確認した。 比較例 1
カチオンエマルジョ ンのみで実施例 1 3と同一の処理を行った。 ェマルジヨ ンはポリプロピレン繊維に固着することは見られなかつ た。 そして、 液よ り処理した繊維を取り出し乾燥した場合エマル ジョ ンが繊維表面で造膜し、 各繊維が独立した 1本 1本の繊維には なり得なかった。 '
—方実施例 1 3の方法では処理した繊維を取り出し、 これを乾燥 したところ、 繊維は 1本 1本の単位に容易に分かれること及び分散 性の良いことを確認した。
実施例 1 4
塩化鉄 (ΙΠ、 無水) を 1 g の割合でエチルアルコールに溶解 し、 これにケィ酸ェチル 0. 5 の割合で加えた。 これを 70
。cに加熱し、 ポリプロピレン繊維を 1 00 gZ>eの割合で浸漬し、
1 0分間保持した。 この後 2450MH zのマイクロ波を 600W ZH rで 1 0分間照射し処理した。 これによりいずれの場合も鉄化 合物及びケィ素化合物が表面に固着する事を確認した。
実施例 1 5
塩化二ヅケル ( Π ) を 1 0 g/ の割合で水に溶解し、 これに次 亜塩素酸を加え、 加熱した (A液) 。
又塩化第二鉄 (無水) を 1 0 の割合で水に溶解した (B 液) 。
A液、 B液を等量に混合し、 60°Cに加熱したものにポリプロピ レン繊維を 1 0 0 gZ£の割合で加え、 この状態で 1 0分間保持 し、 2450MH zのマイクロ波を 1 200W/H rで 1 0分間照 射した。 これによりポリプロピレン繊維側に鉄及びニッケル化合物 が固着した事を確認した。
実施例 1 6〜: L 8
実施例 1に示す方法により、 ポリプロピレン繊維を処理した本発 明の繊維状補強材料を 5 m m長さに切断した後、 各種の量の該材料 をセメント、 砂と共に混合し、 水を加えスラリー化した。 これを硬 化させ、 本発明の土木建築用材料を得、 その性能を測定した。 又、 壁面に左官コテで塗りつけ、 塗付作業性、 表面の美観を観察した。 それらの混合組成及び結果を表 3に示す。
比較例 2 3
実施例 1 6に於て、 本発明の繊維状補強材料の代わりに未処理の ポリプロピレン繊維を用いた以外、 実施例 1 6 1 8 と同様に処理 し、 その硬化物を得た。 実施例 1 6 と同様に混合組成及び測定結果 を表 3に示す。
比較例 4
実施例 1 6に於て、 本発明の繊維状補強材料の代わりにポリオキ シエチレンアルキルフエニルエーテルを 0 . 9 %散布したポリプロ ピレン繊維を用いた以外、 実施例 1 6 1 8と同様に処理し、 その 硬化物を得た。 実施例 1 6 と同様に混合組成及び測定結果を表 3に 示す。 (以下性能について、 特に説明がない限り〇は良好、 △は普 通、 Xは不良を示す。 )
表 3
¾施 袤施 ¾較 ¾較 較 繊維 (重量部) 0. 5 1 . 0 2. 0 1. 0 2. 0 1. 0 組 セメント (重量部) 100 100 100 100 100 100 砂 (重量部) 150 150 150 150 150 150 成 メチルセルロ-ス (ガ) 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 対セメント水比 46 52 73 52 73 52 繊維の水中での分散 〇 〇 〇 X X 〇 繊維のスラリ-での 分散 〇 〇 〇 X X 〇 性
塗付作業性 〇 〇 〇 X X 〇 能 塗付面美装性 〇 〇 〇 X X 〇 曲げた時の繊維の挙動 切断 切断 切断 抜け 抜け 抜け 本発明の土木建築用材料は、 金属酸化物等を固着しない材料に比 ベ、 水中での分散が良い事、 スラリー中での分散が良い事、 塗付が 容易であり、 又表面の美装性が高い事、 硬化体のセメ ン ト捕捉性が 上昇することが確認された。
実施例 1 9〜 2 3
実施例 1の方法で得た本発明の繊維状補強材料を、 実施例中の金 属酸化物等の固着手段 (エネルギー付加手段等) を変えた以外、 す ベて同様に処理して得た繊維状補強材料を用いて、 実施例 1 6 と全 く同様に処理して本発明の土木建築用材料を得、 その性能を実施例 1 6 と同様に測定した。 その混合組成及び結果を表 4に示す。
比較例 5
実施例 1 においてポリプロピレン繊維を溶液に浸漬した後、 3 0 分間保持して、 繊維を取り出した。 この繊維について実施例 1 6 と 全く同様に処理した。 この処理により得られた材料の性能を実施例 1 9 と同様に測定した。 その混合組成及び結果を表 4に示す。
比較例 6
実施例 1 9において本 明の繊維状補強材料の代わりに未処理の ポリプロピレン繊維を用いた以外、 実施例 1 9 と同様に処理し、 硬 化物を得た。 実施例 1 9 と同様に混合組成及び測定結果を表 4に示 す。
表 4
Figure imgf000018_0001
エネルギー付加方法は特定されるものでなく、 加熱方式を変更す ること、 エネルギー波付与方式を変更する事によっても同様な効果 を有することが確認された。 又、 低温で処理する場合は長時間の処 理時間を要することが確認された。
実施例 2 4〜2 9
実施例 1, 1 1, 1 3, 1 4, 1 5に示す方法によりポリプロピ レン繊維を処理した本発明の繊維状補強材料を 5 m m長さに切断し た後、 実施例 1 6 と全く同様に処理して本発明の土木建築用材料を 得、 その性能を実施例 1 6と同様に測定した。
その混合組成及び結果を表 5に示す。
比較例 7
実施例 2 4において本発明の繊維状補強材料の代わりに未処理の ポロプロピレン繊維を用いた以外実施例 2 4と同様に処理した。 そ の混合組成及び測定結果を表 5に示す。 表 5
Figure imgf000019_0001
固着させるべき材料の金属酸化物、 水酸化物、 水酸化酸化物の金 属種は鉄のみに限るものではなく、 単成分組成、 複合組成であって も良い。 又、 金属単体を固着させても良い事が確認された。
実施例 2 9 〜 3 1
実施例 3に示す方法により、 ポリメチルペンテン繊維を処理して 得た本発明の繊維状補強材料を 5 m m長さに切断した後、 各種の粉 体と混合し、 水で混練し、 (粉体 +繊維 +パルプ) : 水 = 5 : 1 0 0のスラ リーを調整した。 更にこのスラ リーに定着剤 1 0 P P mを加え、 抄造機 (熊谷理機工業 (株) 製) で抄造し、 2 0 k g / c m 2 で加圧脱水し、 2 0 eC 6 5 %相対温度で乾燥させた 後、 乾燥物の亀裂の発生の有無を確認した。
更に 1 8 0でで 4時間のォートクレーブ養生後の曲げ強度を測定 した。
配合組成及び前記の性能測定結果を表 6に示す。
比較例 8〜: L 0
未処理のポリメチルペンテン繊維を用いた以外、 実施例 2 9 と同 様に処理し、 乾燥物、 養生物、 焼成物について同様に測定した配合 組成及び性能測定結果を表 6に示す。
表 6
Figure imgf000020_0001
実施例 3 2〜3 4
実施例 3による方法によりポリプロピレン繊維を処理して得た本 発明の繊維状補強材料を 5 mmに切断した後、 スラグ石膏系組成 物と共に混練し、 固体 (粉体 +繊維 +パルプ +骨材) : 水 = 5 : 1 0 0のスラリ一を調整した。
このスラリーに定着剤としてサンフロック A H 3 3 0 P {三洋化 成 (株) } を 1 0 p p mの濃度で加え、 湿式丸網抄造機で抄造し た。 これを 3 5 °C 〉 8 0 %相対湿度で 3日間前養生を行った後、 6 0 > 8 0 %相対湿度で 1 0時間本養生した。 この後 2 6で 6 5 %相対温度で 7日間養生を行った。
配合組成及び前記の性能測定結果を表 7に示す。
比較例 1 1〜: L 3 未処理のポリプロピレン繊維及びビニロ ン繊維及び石綿を用いた 以外実施例 3 2 と同様に処理し、 同様に測定した配合組成及び性能 測定結果を表 7に示す。
表 7
Figure imgf000021_0001
実施例 3 5〜3 8
実施例 4の方法により各種の繊維を処理して、 本発明の繊維状補 強材料を製造し、 これを長さ 5 m mに切断し、 セメ ン ト及び高叩解 パルプと混合し、 実施例 2 9の方法により抄造し、 板状成型体を得 た。 配合組成及び諸性能を表 8に示す。 比較例 1 4〜; I 8
各種の未処理の繊維を用いた以外、 実施例 3 5 と同様にして板状 成型体を得た。
配合組成及び諸性能を表 8に示す。
表 8
Figure imgf000022_0001
実施例 3 5, 3 6はすべての点で比較例に比し優れている。 又、 実施例 3 7 , 3 8も又抄造時の繊維の分散性以外比較例に比し優れ ている。 比較例 1 8は石綿であり、 本発明の土木建築用材料はほ 石綿と同質であることが確認された。
実施例 3 9〜4 2
実施例 1においてボリプロピレン繊維の代わりに他の繊維を用い た以外すベて同様に処理して本発明繊維状補強材料を得た。 これら の材料を用いて実施例 2 9の方法によりパルプに代えて各種繊維を 用い本発明の土木建築用材料を抄造し、 板状成型体を得た。 配合組 成及び諸性能を表 9に示す。
比較例 1 9〜2 2
実施例 3 9において未処理の繊維を用いた以外、 すべて実施例と 同様に処理して板状成型体を得た。 配合組成及び諸性能を表 9に示 す。
表 9
Figure imgf000023_0001
実施例と比較例より繊維は有機、 無機のいずれの場合も処理する こ とによ り、 成型体の曲げ強度は増加し、 又各種の性能が改良され ることが示されている。
前記実施例、 比較例における性能評価測定方法の主なものを次に 示す。
繊維の水中への分散性試験
水 1 0 0に対して繊維 1 . 0を加え、 攪拌した後、 繊維の分散状 態を目視により次の 3段階で評価した。
〇 繊維が良く分散している。
Δ 繊維が表面に集まるが、 表面は湿った状態である。
X 繊維が十分に分散していない。 塗付作業性
こてで壁面 (コンク リート面) に塗り付ける際容易に可能か否か で判断した。 次の一水準で評価した。
〇 容易である。
X 容易でない。
曲げた時の繊維の挙動
曲げ供試体を 1 0 %塩酸水溶液に破断面の一部が液内に入る形で 即ち打設面が液中に入る形で、 約 5 m mの深さで 1週間浸漬し、 こ れを水洗した後、 繊維の分散状態、 切断状態を肉眼で観察する。 塗付面美装性
表面を肉眼観察し、 次の三水準評価を行った。
〇 表面が均一であり層分離が見られない。
△ 表面は均一であるが、 縦方向 (抄造時において濾過 水が移動する方向) に層分離が見られる。
X 表面が不均一なもの。
濾水性試験
水 : 固型分の比が 1 0 0 : 5のスラ リーを 1 0 0メ ッシュ金網で 濾過した時の濾過速さを示す。 試験単位の中での相対早さで次の 3 段階で評価した。
〇 比較的濾過終了までの時間が速い。
Δ 〇, Xの中間的な濾過速度である。
X 濾過終了までの時間が遅い。
瀘液透明性試験
水 : 固型分の比を 1 0 0 : 5のスラリー 1 0 £を 1 0 0メッシュ 金網で濾過した。
瀘板が約 5 ·6得られた段階で濾過されている濾液をサンプリ ング し、 瀘液の状態を肉眼観測し、 次の 3段階の評価を行った。
〇 J I S 5 A濾紙で再度濾過した場合、 固型分が目 立たない。 Δ J I S 5 A濾紙で再度濾過した場合、 固型分が目 立つが、 濾液は透明に近い。
X 濾液に固型分が存在していることがわかる。
繊維分散性
抄造成型した板を 1 回硬化させ、 これを 5 %塩酸に 1週間浸漬 し、 セメント成分を溶出させた。 この後、 酸に侵された脆弱部分を 取り除き、 繊維の分散状態を観察し次の 3段階で評価した。
〇 繊維が配向していない。 又、 分散の程度が十分である。 △ 繊維の配向が見られる。 又、 繊維が再分離し、 分散が十 分でない。
X 繊維が再分離し、 分離が不十分である。
パルプの分散性
抄造成型した板を 1 日硬化させ、 これを 5 %塩酸に 1週間浸漬 し、 セメント成分を溶出させた。 この後、 酸に侵された脆弱部分を 取り除きパルプの分散状態を観察し、 次の 3段階で評価した。
〇 パルプの分散が十分であり、 均一に存在する。
△ 板表面にパルプの集中が僅かに見られる。
X パルプが上層に集中しており、 再分離している。
抄造速度比
繊維が大きくは配向しない程度の抄造速度を石綿入り組成物の抄 造速度との比で表わした。
本発明の繊維状物質に、 金属酸化物、 金属水酸化物、 金属水酸化 酸化物中の少なく とも一種が固着している土木建築用繊維状補強材 料は製造が容易であり、 更に土木建築用材料製造用として有用であ る。 即ち、 本発明の建築様材料は本発明の繊維状補強材料と水硬性 材料、 ケィ酸質無機材料、 粘土等の材料とより構成される。 そして 例えば成型板として天井壁等に用いることができる。 このものは不 燃性であり、 又耐候性に優れ、 アスベス ト含有各種成型板と同様に 用いることができる。 以上の実施例、 比較例により本発明の土木建築用繊維状補強材料 及び該材料を含む本発明の土木建築用材料は優れた性質をもつ事が 明らかである。 産業上の利用可能性
本発明の土木建築用繊維状補強材料はアスペストに代替し得るも のである。 そしてこの繊維状補強材料が無機耐熱性物質中に混入し た土木建築用材料はアスペストと混入品とほ 同様に使用できるの で実用上の価値は非常に高い。

Claims

請 求 の 範 囲
1. 繊維状物質に金属酸化物、 金属水酸化物及び金属水酸化酸化物 のうち少なく とも一種を固着させた土木建築用繊維状補強材料。
2. 繊維状物質はポリオレフィ ンを実質的主成分とする繊維である 請求の範囲第 1項の土木建築用繊維状補強材料。
3. ポリオレフィ ン繊維はポリプロピ'レン繊維である請求の範囲第 2項の土木建築用繊維状補強材料。
4. 金属酸化物、 金属水酸化物及び金属水酸化酸化物の金属は S i、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 C u、 Α·β中の 少なく とも一種である請求の範囲第 1項の土木建築用繊維状補強材 料。
5. 金属酸化物、 金属水酸化物及び金属水酸化酸化物中の金属は 2又は 3価の F eである請求の範囲第 1項の土木建築用繊維状補強 材料。
6. 繊維状物質の直径は 0. 1〜 1 00ミクロンの範囲である請求 の範囲第 1項の土木建築用繊維状補強材料。
7. 繊維状物質と金属酸化物、 金属水酸化物及び金属水酸化酸化物 との重量比は 1 : 0. 000 1〜 0. 2の範囲である請求の範囲第 1項の土木建築用繊維状補強材料。
8. 少なく とも一種の金属塩と溶媒とを混合する工程、 前記工程で 得られた混合液に対して繊維状物質を浸漬する工程、 さらには混合 液に対するエネルギーの付加及び又は P Hの調整工程、 脱水工程の 各工程よりなる繊維状物質に金属酸化物、 金属水酸化物、 金属水酸 化酸化物の少なく とも一種を固着させた土木建築用繊維状補強材料 の製造方法。
9. 浸漬工程に続いて、 エネルギーの付加及び又は P Hの調整工程 が設けられている請求の範囲第 8項の土木建築用繊維状補強材料の 製造方法。
10. エネルギーの付加及び又は P Hの調整工程に続いて、 浸漬ェ 程が設けられている請求の範囲第 8項の土木建築用繊維状補強材料 の製造方法。
11. 少なく とも一種の金属塩と溶媒とを混合する工程、 前記工程で 得られた混合液に対して繊維状物質を浸漬する工程、 更には混合液 から繊維状物質を取出した後、 エネルギーを付加する工程の各工程 よりなる繊維状物質に金属酸化物、 金属水酸化物、 金属水酸化酸化 物の少なく とも一種を固着させた土木建築用繊維状補強材料の製造 方法。
12. 金属塩の金属は S i 、 T i 、 V、 C r 、 M n、 F e 、 C o 、 N i 、 C u、 A 中の少なく とも一種である請求の範囲第 8項の土 木建築用繊維状補強材料の製造方法。
13. 金属塩の金属は 2又は 3価の F eである請求の範囲第 8項の土 木建築用繊維状補強材料の製造方法。
14. 金属塩は塩化物である請求の範囲第 8項の土木建築用繊維状補 強材料の製造方法。
15. 付加されるエネルギーはエネルギー波である請求の範囲第 8項 の土木建築用繊維状補強材料の製造方法。
16. エネルギー波は超短波、 紫外線、 ミ リ波、 マイクロ波中の少な く とも一種である請求の範囲第 15項の土木建築用繊維状補強材料の 製造方法。
17. 付加されるエネルギーは加熱である請求の範囲第 8項の土木建 築用繊維状補強材料の製造方法。
18. 加熱は対流、 伝熱、 輻射、 赤外線加熱中の少なく とも一種であ る請求の範囲第 17項の土木建築用繊維状補強材料の製造方法。
19. 繊維状物質はポリオレフィ ンを実質的主成分とする繊維である 請求の範囲第 8項の土木建築用繊維状補強材料の製造方法。
20. ポリオレフィ ン繊維はポリプロピレン繊維である請求の範囲第 19項の土木建築用繊維状補強材料の製造方法。
21. 繊維状物質の直径は 0 . 1〜 1 0 0ミクロンの範囲である請求 の範囲第 8項の土木建築用繊維状補強材料の製造方法。
22. @成分である無機耐熱性物質中に、 ®である請求の範囲第 1項 の土木建築用繊維状補強材料が混入している土木建築用材料。
23. @成分はセメン ト、 フライアッシュ、 スラグ、 石膏、 シリカ中 の少なく とも一種の水硬性材料である請求の範囲第 22項の土木建築 用材料。
24. @成分は主成分がケィ酸質無機化合物である請求の範囲第 22項 の土木建築用材料。
25. @成分は粘土である請求の範囲第 22項の土木建築用材料。
2 6 . ®成分は酸化鉄、 水酸化鉄及び金属水酸化酸化物の少なく と も一種を固着したポリプロピレン繊維である請求の範囲第 22項の建 築用材料。
27. @ : ®成分が重量比で 1 0 0 : 0 . 0 1〜4 0である請求の範 囲第 22項の土木建築用材料。
PCT/JP1992/000879 1991-07-09 1992-07-08 Materiau de renforcement fibreux pour le genie civil et le batiment, procede de fabrication dudit materiau, et materiau pour le genie civil et le batiment renfermant le materiau precite WO1993001143A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019930700705A KR970005874B1 (ko) 1991-07-09 1992-07-08 토목건축용 섬유상 보강재료, 이러한 재료의 제조방법 및 이러한 재료를 포함하는 토목건축용 재료
DE69224720T DE69224720T2 (de) 1991-07-09 1992-07-08 Verfahren zur herstellung eines faserförmigen bewehrungsmaterials für den hoch- und tiefbau
JP50215793A JP3386807B2 (ja) 1991-07-09 1992-07-08 土木建築用繊維状補強材
EP92914760A EP0548371B1 (en) 1991-07-09 1992-07-08 Process for producing a fibrous reinforcing material for civil engineering and construction work
US07/983,844 US5424124A (en) 1991-07-09 1992-07-08 Civil engineering and construction grade fibrous reinforcing material, method for production thereof, and civil engineering and construction material containing the reinforcing material

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP3/193547 1991-07-09
JP3/193548 1991-07-09
JP19354891 1991-07-09
JP19355091 1991-07-09
JP19354791 1991-07-09
JP3/193550 1991-07-09
JP3/246540 1991-09-02
JP24654091 1991-09-02

Publications (1)

Publication Number Publication Date
WO1993001143A1 true WO1993001143A1 (fr) 1993-01-21

Family

ID=27475657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000879 WO1993001143A1 (fr) 1991-07-09 1992-07-08 Materiau de renforcement fibreux pour le genie civil et le batiment, procede de fabrication dudit materiau, et materiau pour le genie civil et le batiment renfermant le materiau precite

Country Status (7)

Country Link
US (1) US5424124A (ja)
EP (1) EP0548371B1 (ja)
JP (1) JP3386807B2 (ja)
KR (1) KR970005874B1 (ja)
CA (1) CA2090874C (ja)
DE (1) DE69224720T2 (ja)
WO (1) WO1993001143A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418310A1 (de) * 1994-05-26 1995-11-30 Ahg Baustoffhandelsgesellschaf Verfahren zur Herstellung von Porenbetonkörpern

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782970A (en) * 1995-01-03 1998-07-21 Composite Industries Of America, Inc. Lightweight, waterproof, insulating, cementitious composition
US6030572A (en) * 1997-11-26 2000-02-29 Environmentally Engineered Concrete Products, Inc. Method for making a plastic aggregate
DE19915149A1 (de) * 1999-03-26 2000-10-05 Hunger Hans Dieter Leichtbaustoffe und Verfahren zu ihrer Herstellung
DE19933297C2 (de) * 1999-07-15 2001-10-04 Ytong Holding Gmbh Faserarmierter Porenbeton sowie Verfahren zu seiner Herstellung
DE19933298C2 (de) * 1999-07-15 2001-10-04 Ytong Holding Gmbh Faserverstärkter Schaumbeton sowie Verfahren zu seiner Herstellung
US6942726B2 (en) 2002-08-23 2005-09-13 Bki Holding Corporation Cementitious material reinforced with chemically treated cellulose fiber
CA2493355C (en) * 2002-08-23 2011-05-10 Bki Holding Corporation Cementitious material reinforced with chemically treated cellulose fiber
WO2005021458A1 (en) 2003-08-29 2005-03-10 Bki Holding Corporation System for delivery of fibers into concrete
WO2005030671A1 (en) * 2003-09-29 2005-04-07 Jun-Han Choi Incombustible composition, incombustible construction product using incombustible composition, and method of producing incombustible construction product
KR20050079438A (ko) * 2004-02-05 2005-08-10 최준한 방화문(벽)용 불연성 조성물, 이를 이용한 불연성방화문(벽) 및 이의 제조방법
WO2006133150A1 (en) * 2005-06-08 2006-12-14 Mousseau Nicholas M Process of fabricating fiber reinforced concrete masonry units, and products made by said process
KR100922836B1 (ko) * 2007-12-18 2009-10-20 극동엔지니어링(주) 섬유보강 피씨 침목
KR20150057555A (ko) * 2013-11-20 2015-05-28 광주과학기술원 전자파 차폐재의 제조방법
DE102018113587B8 (de) 2018-06-07 2024-02-29 Reinhard Koch Faserprofile zum Einsatz als Bewehrung in Betonbauten für hohe brandschutztechnische Anforderungen und Verfahren zu ihrer Herstellung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051645A (ja) * 1983-09-01 1985-03-23 帝人株式会社 セメント補強用繊維の製造方法
JPS60260449A (ja) * 1984-06-08 1985-12-23 帝人株式会社 セメント成型品
JPH03185179A (ja) * 1989-11-20 1991-08-13 General Electric Co <Ge> 被覆された強化用繊維および酸化物バリヤーコーティングを設ける方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1533770A (fr) * 1967-08-08 1968-07-19 Foseco Trading Ag Produits en forme à action calorifuge et réfractaire
FI67072C (fi) * 1979-02-09 1985-01-10 Amiantus Ag Foerfarande foer framstaellning av fiberfoerstaerkt hydrauliskt bindande material
DE3226678A1 (de) * 1982-07-16 1984-01-19 Diethelm Dipl.-Chem. Dr.rer.nat. 7450 Hechingen Bitzer Verfahren zum modifizieren von synthetischen polymerisaten
DE3247351A1 (de) * 1982-12-22 1984-06-28 Bayer Ag, 5090 Leverkusen Formkoerper und ihre herstellung
JPS6054950A (ja) * 1983-09-05 1985-03-29 帝人株式会社 セメント補強用繊維
JPH0269205A (ja) * 1988-09-02 1990-03-08 Kubota Ltd 繊維補強セメント板の製造方法
JPH0274546A (ja) * 1988-09-09 1990-03-14 Kubota Ltd 無機質製品の押出成形方法
JPH0659643B2 (ja) * 1989-09-29 1994-08-10 イソライト工業株式会社 珪藻土建材の製造方法
JP2721563B2 (ja) * 1989-10-26 1998-03-04 株式会社クラレ 水硬性成形用組成物
JPH03174343A (ja) * 1989-11-30 1991-07-29 Nkk Corp ウィスカー強化モルタル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051645A (ja) * 1983-09-01 1985-03-23 帝人株式会社 セメント補強用繊維の製造方法
JPS60260449A (ja) * 1984-06-08 1985-12-23 帝人株式会社 セメント成型品
JPH03185179A (ja) * 1989-11-20 1991-08-13 General Electric Co <Ge> 被覆された強化用繊維および酸化物バリヤーコーティングを設ける方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0548371A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418310A1 (de) * 1994-05-26 1995-11-30 Ahg Baustoffhandelsgesellschaf Verfahren zur Herstellung von Porenbetonkörpern

Also Published As

Publication number Publication date
CA2090874C (en) 1997-06-03
US5424124A (en) 1995-06-13
DE69224720T2 (de) 1998-11-12
JP3386807B2 (ja) 2003-03-17
KR970005874B1 (ko) 1997-04-21
KR930702243A (ko) 1993-09-08
EP0548371A1 (en) 1993-06-30
DE69224720D1 (de) 1998-04-16
EP0548371A4 (en) 1994-12-07
EP0548371B1 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JP3386807B2 (ja) 土木建築用繊維状補強材
DE2808101A1 (de) Gips-zubereitung
DE10341171A1 (de) Material zur Beschichtung von Bauelementen in chemisch aggressiver Umgebung und Verfahren zu seiner Herstellung
EP1955986A1 (en) Light weight aggregate
EP1113050B1 (en) Paint material for constructional finishing and panel for constructional finishing and method of preparing these
EP0000402B1 (de) Verfahren zur Herstellung von Isolierbauplatten
JPS63144153A (ja) 炭素繊維強化セメント複合材料およびその製造法
DE19933297C2 (de) Faserarmierter Porenbeton sowie Verfahren zu seiner Herstellung
KR100378564B1 (ko) 건축 구조물 성형을 위한 몰딩재
JPH082954A (ja) 木質補強材の処理方法および無機質板の製造方法
KR100423130B1 (ko) 황토미분말을 적용한 포러스콘크리트 조성물 및 그 제조방법
JP3245470B2 (ja) 土木建築用材料及び土木建築用材
JP2006188398A (ja) セメント組成物
JP3324929B2 (ja) 無機質板の製造方法
JP2933969B2 (ja) 水硬性固化組成物
JPH10330146A (ja) 水硬性無機質成形体の製造方法
JP7095837B2 (ja) 水硬性材料硬化体の乾燥収縮低減剤、水硬性材料硬化体の収縮低減方法及び低収縮性水硬性材料硬化体
JPS6096554A (ja) セメント系複合体の製造方法
JP3406803B2 (ja) 研ぎ出し調意匠を有する化粧層の製造方法
DE69819531T2 (de) Zementzusammensetzungen und ihre verwendung als korrosionsschutz
KR900000035B1 (ko) 내화 피복재 제조법
JP2002012465A (ja) 押出成形体及びその製造方法
KR890003925B1 (ko) 무수석고 초조판 및 그 제조방법
JP2003129577A (ja) マイナスイオン発生機能を有する吸放湿性防火建材
JP2001032197A (ja) 複合硬化体および複合建築材料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 2090874

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992914760

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992914760

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992914760

Country of ref document: EP