WO1990009736A1 - Antibacterial or conductive composition and applications thereof - Google Patents

Antibacterial or conductive composition and applications thereof Download PDF

Info

Publication number
WO1990009736A1
WO1990009736A1 PCT/JP1990/000243 JP9000243W WO9009736A1 WO 1990009736 A1 WO1990009736 A1 WO 1990009736A1 JP 9000243 W JP9000243 W JP 9000243W WO 9009736 A1 WO9009736 A1 WO 9009736A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
metal
silver
fine particles
composition
Prior art date
Application number
PCT/JP1990/000243
Other languages
English (en)
French (fr)
Inventor
Yoshikatsu Mizukami
Hiroshi Tamemasa
Masashi Arai
Toshihiro Yamamoto
Hidemitsu Onaka
Original Assignee
Kanebo Ltd.
Tanaka Kikinzoku Kogyo K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4541789A external-priority patent/JPH02225402A/ja
Priority claimed from JP4923789A external-priority patent/JPH02229209A/ja
Priority claimed from JP4923889A external-priority patent/JPH02229214A/ja
Priority claimed from JP8700389A external-priority patent/JPH02268105A/ja
Priority claimed from JP8700289A external-priority patent/JPH02268104A/ja
Priority claimed from JP1087001A external-priority patent/JPH02268103A/ja
Priority claimed from JP8857189A external-priority patent/JPH02269141A/ja
Priority claimed from JP18242689A external-priority patent/JPH0347850A/ja
Application filed by Kanebo Ltd., Tanaka Kikinzoku Kogyo K.K. filed Critical Kanebo Ltd.
Publication of WO1990009736A1 publication Critical patent/WO1990009736A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper

Definitions

  • the present invention basically relates to an antibacterial composition and a conductive composition, and is added in the production of textile products, films, plastic molded products, paints, etc., and imparts antibacterial and conductive properties to these products. Utilized to bring.
  • the present invention relates to a synthetic resin and a synthetic fiber having excellent antibacterial action or conductivity, and a method for producing the same.
  • Conventional antibacterial substances added to produce antibacterial products include organic substances and inorganic substances. Of these, trichlorocarba! Nitride, polyhexamethylene biguanide hydrochloride, octadecyldimethyl-3-trimethoxysilylpropylammonium chloride, etc. as main components, and copper sulfide as an inorganic substance , Copper, silver powder, copper powder, etc.
  • organic ones have volatility and are therefore easily volatilized in the manufacturing process of antibacterial products. There is a problem in that it is unstable, and when exposed to high temperatures in the manufacturing process of antibacterial products, it may react with substances that should become a matrix and interfere with its intrinsic properties.
  • an inorganic composition containing a metal compound as a main component as an antibacterial substance is blended in the production of fibers, films, and the like, and is present in a dispersed state in the final product. It is an action mechanism in which a metal having an antibacterial action is ionized from a dispersed metal compound and migrates to the product surface to exhibit antibacterial properties.
  • a method of dispersing particles in an aqueous silver salt solution treating with sodium hydroxide, and then reducing with a reducing agent, in order to attach silver to the surface of the particles serving as a carrier.
  • aqueous silver salt solution treating with sodium hydroxide, and then reducing with a reducing agent, in order to attach silver to the surface of the particles serving as a carrier.
  • BP 8432728 and 8504482 Japanese Patent Application Laid-Open Nos. 61-190,336
  • the size of the aqueous silver salt solution becomes large. It is difficult to coat the surface of the particles with silver oxide because the parts precipitate and become silver oxide fine particles, and in some cases a mixture of silver-adhered particles and silver itself fine particles is formed. I will.
  • a first object of the present invention is to uniformly deposit an antibacterial metal or metal compound on the surface of a particle serving as a carrier, thereby sufficiently avoiding the generation of fine particles of the metal or metal compound itself. And the particle size distribution of the carrier itself can be maintained in a substantially unchanged state. Further, an antimicrobial composition having a relatively low amount of metal as a whole, thus having a low specific gravity, and having sufficient antimicrobial properties. To provide.
  • a second object of the present invention is to provide a molded article containing a conductive substance, which can be freely colored, is easy to produce, has high conductivity, and is inexpensive. is there.
  • synthetic polymers are formed into fibers, films, sheets, containers, and the like, and are being used for various purposes.
  • synthetic fibers are widely used for clothing and bedding interiors.
  • the above first object is achieved by an antibacterial composition characterized in that a metal and / or a metal compound having an antibacterial action is attached to the surface of inorganic fine particles.
  • a metal and / or a metal compound having an antibacterial action is attached to the surface of inorganic fine particles.
  • the use of inorganic fine particles having a low specific gravity as a carrier reduces the overall specific gravity, thereby facilitating the handling of an antibacterial product.
  • the surface area of the antibacterial metal to be adhered is increased, thereby facilitating the ionization of the metal and improving the antibacterial property. It is.
  • the inorganic fine particles used as a carrier may be zeolite (aluminosilicate), diatomaceous earth, myriki, alumina, kaolin (clay), talc, silica gel, or a mixture thereof. However, in the case of a mixture, it is necessary to take into account the ionicity of the particles and pay attention to the composition and the like so as not to cause secondary aggregation.
  • the carrier material include titanium oxide, aluminum oxide, barium sulfate, calcium carbonate, lithopone, and lead white.
  • the average particle size of these inorganic fine particles is preferably 5 m or less.
  • the average particle size of the inorganic fine particles is not necessarily limited as described above. Not present, but the final product is fiber, film, paint, etc. In the case of such a thin product, if the average particle size of the inorganic fine particles is 5 / im or more, the maximum particle size becomes large, so that irregularities become conspicuous on the surface of the final product or molded product. This is because the value of the product will decline.
  • an inorganic fine particle having an average particle size of 0.5 ⁇ ⁇ or less is used. Is preferred. This is because if the inorganic fine particles having a maximum particle size of 10 zm or more are covered, the spinneret may be clogged. It should be noted that the smaller the average particle diameter of the inorganic fine particles as a carrier, the larger the surface area of the metal having an antibacterial action attached thereto, and the higher the antibacterial property.
  • various metals having an antibacterial action for example, silver, copper, zinc, tin, lead, bismuth, cadmium, chromium, mercury, etc. are considered. From the viewpoint of the degree of antibacterial activity, health and hygiene, it is preferable to use silver, copper, or both. These silver or copper metals may be in the form of oxides or chlorides, but are preferably insoluble in water, and the amount that can be attached is 0.1 with respect to the inorganic fine particles as a carrier. About 20 wt% or more. The lower limit in this case takes into account antimicrobial performance and application.
  • the amount of the antibacterial metal adhered to the antibacterial composition is less than 0.1 wt%, depending on its use, for example, when producing an antibacterial fiber product, it is necessary to provide the desired antibacterial performance. It is necessary to relatively increase the amount of the antibacterial composition in the spinning dope, but if the antibacterial composition is added to the spinning dope at 20% or more, yarn breakage tends to occur during spinning. This is because productivity decreases.
  • the amount of each of them is 0.5 wt% or more with respect to the inorganic fine particles. The reason for setting the lower limit in this case is the same as above.
  • the antibacterial composition according to the present invention by attaching silver or copper or both to water-insoluble inorganic fine particles as a carrier, it is necessary to use a well-known vacuum evaporation method or reduction precipitation method. Can be used.
  • the vacuum evaporation method sets inorganic fine particles in the chamber of the evaporation system, and places the evaporation source material (a piece of silver, copper or silver-copper alloy) in a tungsten basket. of was set to the chamber in one, (up to about 2 X 10 _ 4 to rr) reducing the pressure the chamber in one, then the above by heating the tungsten basket want a vibrating the above inorganic fine particles
  • the evaporation source can be implemented by evaporating the metal.
  • the reduction precipitation method involves dispersing inorganic fine particles in pure water, mixing this dispersion with a plating solution, and then adding a plating reducing solution to the mixture with stirring.
  • the vacuum evaporation method limits the irradiation direction of the evaporated metal, so it is necessary to vibrate and roll the inorganic fine particles in order to adhere the antibacterial metal uniformly to the inorganic fine particles.
  • coarse particles there is a tendency for coarse particles to be placed on top and fine particles to be placed down, so that there is a tendency for ordered classification. Therefore, if the particle diameters of the inorganic fine particles are not uniform, there will be a difference in the adhesion amount of antibacterial metal.
  • the reduction precipitation method the antimicrobial metal is deposited on the dispersed inorganic fine particles, so that uniform deposition is possible.
  • the latter method is preferable to the former method because the control of the amount of coating is easy.
  • a conductive composition characterized in that a conductive metal film is uniformly formed on the surface of inorganic fine particles by 25% by weight or more. Achieved and related issues resolved.
  • Examples of the conductive metal used include gold, silver, copper, aluminum, tin, nickel, iron, and stainless steel.
  • silver, copper, gold, aluminum, tin, nickel, iron, and stainless steel are preferred in this order, but gold and silver are expensive, so they should be formed as a superposed layer, that is, the first layer.
  • a gold or silver film can be further formed as a second layer.
  • the metal film When the metal film is under a condition easily oxidized, it is preferable to use gold or silver for the second layer, and a combination of three or more layers may be used.
  • a conductive composition according to the present invention by attaching a conductive metal to fine particles as a carrier, the above-described vacuum deposition method or reduction deposition method can be used.
  • a conductive metal film may be formed in an amount of 5% by weight or more.
  • the average particle size of the fine particles as a carrier is 2 m or less, there is no practical problem when kneading into the matrix. Also carrier Fine particles having a shape close to a sphere are easier to knead, but needles are preferred from the viewpoint of conductivity because of their orientation.
  • any material can be used as long as it does not cause modification during electroless plating, and a water-insoluble metal oxide such as titanium oxide, aluminum oxide, barium sulfate, or calcium carbonate can be used. Can be.
  • the conductive composition of the present invention can be used for various synthetic polymers (polyester, nylon, acrylic, polyethylene, polypropylene, epoxy resin, unsaturated polyester resin), fibers, films, plastic raw materials, paints, etc. It can be used in the manufacture of antistatic, electromagnetic shield, low temperature heating elements, etc.
  • the specific resistance to below 1 0 4 Q cni is properly like the above-described conductive composition usually 5 0 fold location% or more is blended 7 0 wt% or more. Therefore, such a compound is often inferior in moldability and physical properties, and is preferably used as a part of a raw material for forming a composite fiber, a composite film, etc. in order to form into various molded products. .
  • metals when used as a conductive component of conductive fibers, metals have lower abrasion properties than conventional particles coated with a metal oxide (see, for example, Japanese Patent Publication No. 1322600).
  • the conductive component can be formed in a shape or state in which the conductive component is exposed on the fiber surface. Therefore, carpets, work clothes, uniforms, and homal.
  • the mixing ratio can be reduced to 1/2 to 1/5 compared to conventional products.
  • the antibacterial molded article of the present invention is preferably made of polyamide, polyester.
  • a molded article made of polyolefin, polyolefin, polyurethane, and acrylonitrile-based synthetic resin is characterized in that it contains 0.1 to 20% by weight of inorganic fine particles having a surface coated with an antibacterial metal. are doing.
  • the first method of the present invention is to provide a method in which inorganic particles having an average particle diameter of 0.1 to 5 (an antibacterial metal is coated on a polyamide, polyester, or polyolefin in a molten state). This is carried out by blending and mixing a liquid mixture comprising a dispersion medium and then melt-molding the mixture.
  • inorganic fine particles having an average particle diameter of 0.1 to 5 ⁇ m coated with an antibacterial metal are coated with an organic solvent. This is carried out by uniformly dispersing the mixture in an aqueous solution, and then adding the solution to an organic solvent solution of an acrylonitrile copolymer, followed by wet spinning as a spinning solution.
  • Examples of the above boronamide include nylon 6, nylon 6, nylon 12, etc., polyesters such as polyethylene terephthalate and polybutylene terephthalate, and polyurethanes such as polyether and polyester.
  • Examples of the polycarbonate-type polyurethane and the polyolefin include polyethylene, polypropylene and the like, and copolymers thereof.
  • a known solvent such as dimethylformamide is used to form a fiber, film, foam or the like by a known wet molding method such as wet spinning or wet film formation.
  • a known wet molding method such as wet spinning or wet film formation.
  • Acrylic nitrile copolymers At least 40% by weight of acrylonitrile is used as a constituent monomer, and those having a fiber forming ability are preferable.
  • acrylonitrile and other vinyl monomers such as acrylic acid, methacrylic acid, or alkyl esters thereof, vinyl acetate, vinyl chloride, vinylidene chloride,
  • An appropriate combination of sodium sulfonate, sodium methylsulfonate, sodium vinylsulfonate, sodium styrenesulfonate, 2-acrylamide-2-sodium methylpropanesulfonate, etc. is used in a proportion of 60% by weight or less.
  • a polymerized product can be exemplified.
  • a copolymer of at least 80% by weight and at most 20% by weight of acrylonitrile with a copolymer of a vinyl monomer and a monomer containing a sulfonic acid group, or at least 40% by weight of acrylonitrile and chloride Copolymers having 20 to 60% by weight of vinylidene and sulfonic acid group-containing monomers are preferred.
  • the antibacterial metal used in the present invention include silver, copper, and zinc.
  • the surface is coated at 1 to 20% by weight, preferably 3 to 10% by weight, based on the inorganic fine particles.
  • the amount of metal coating is less than 1.0% by weight, sufficient antibacterial properties cannot be imparted unless the amount added to the polymer is increased, and the moldability and moldability are increased due to the excessive amount. Workability decreases. On the other hand, if the content exceeds 20% by weight, the surface coating layer becomes thick, which makes it difficult to manufacture at low cost, and furthermore, there is a problem of coloring when made into a textile product.
  • White lead [2PbC 3 ⁇ Pb (OH) 2] acid zinc, titanium oxide, Chitan'iero (T i 0 2 ⁇ N i O ⁇ S b 2 0 3) And the like, but a white one is preferred from the viewpoint of versatility.
  • the amount of the inorganic fine particles coated with the antibacterial metal depends on the type of the metal and the amount of the surface coated, but is 0.1 to 20% by weight, preferably 0.3 to 5.0% by weight based on the weight of the polymer. It is.
  • the particle size is usually 0.1 to 5 ⁇ , preferably 0.3 to 2 ⁇ m. When the particle size exceeds 5 m, the moldability and the physical properties of the obtained molded product are deteriorated.
  • Examples of the dispersion medium used in the first method described above include polyester, polyol, polyester ether, and polyester polyether block copolymer. From the viewpoint of physical properties and the like, polyesters and polyester ethers in which the terminal carboxyl group is alkylated or converted to 0H and has an acid value of 4 or less and a hydroxyl value of 30 to 50 are preferred. Further, in order to obtain a substance which is liquid even when the inorganic fine particles having an antibacterial metal coated on the surface are dispersed at a high concentration, a dispersion medium which is liquid at room temperature and has a low viscosity, for example, 20 Those with 0 voices or less are preferred.
  • the resulting liquid mixture usually comprises 5 to 50% by weight of the antibacterial inorganic fine particles and 95 to 50% by weight of the dispersion medium. It should be noted that other additives such as dyes and pigments, heat-resistant agents, anti-aging agents, and hydrophilic substances can be used in combination with the liquid mixture.
  • the liquid mixture is supplied in a fixed amount using a gear pump, a plunger pump, or the like, and is injected into the molten thermoplastic polymer to be compounded. Quantitative For injection, the liquid mixture needs to show fluidity from room temperature to the molding temperature, and if the viscosity becomes higher than 300,000 Vois at room temperature, the weighing accuracy is disturbed and it is preferable. It doesn't work.
  • the compounding is preferably carried out immediately before the spinneret or the die for each molding head of a molding apparatus used in a usual melt spinning method, melt injection molding method or melt extrusion molding method. It is more preferable to shorten the flow path to the die or the die. In order to achieve uniform mixing after blending, it is preferable to use a static kneading element that does not require a driving part, and usually 5 to 60 elements are used.
  • the antibacterial molded article according to the present invention can be produced by a method in which the above antibacterial inorganic m particles are kneaded with 10 to 80% by weight of a thermoplastic polymer and melt-molded.
  • Examples of the solvent used in the above-described second method include a known organic solvent used for spinning acryl-based synthetic fibers such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, and acetate. be able to.
  • any known wet pulverizer can be used as the dispersing device, but in order to continuously add the dispersion to the spinning dope, a flow tube type such as a sand grinder, a pearl mill, a grain mill, a dyno mill, etc. Pulverizers are preferred.
  • the dispersion concentration of the inorganic fine particles having the surface coated with the antibacterial metal in the organic solvent solution is usually 5 to 40 weight%, preferably 15 to 30 weight%.
  • concentration is less than 5% by weight, the concentration of the spinning dope decreases, depending on the amount of the inorganic fine particles added, so that the spinnability and the fiber properties deteriorate.
  • Ma If it exceeds 40% by weight, a good uniform dispersion state cannot be obtained, and it becomes difficult to easily produce from the industrial viewpoint.
  • the spinning may be performed under the same conditions as in the case of ordinary acrylic synthetic fibers. The spinning is performed by sequentially drawing, washing, drying and post-processing through several bathtubs.
  • the silver plating solution (B) is added to the above titanium oxide dispersion (A) and mixed, and the silver plating solution is recovered while stirring at a liquid temperature of 3 CTC. By adding the base solution (C) and continuing stirring, silver was completely reduced, and then stirring was continued for another hour.
  • the adhesion state of silver in the antibacterial composition was observed by EPMA, and it was found that silver was uniformly attached to the surface of the titanium oxide powder.
  • the deposited amount of silver was 16.3%.
  • titanium oxide powder Except that 130 g, 325 g, and 680 g of titanium oxide powder were used as the titanium oxide dispersion and stirring was continued for 2 hours after the complete reduction of silver, three kinds of titanium oxide powder were prepared in the same manner as in Production Example 1. An antimicrobial composition was obtained.
  • the amount of copper deposited was 11.9.
  • acrylonitrile acrylonitrile
  • AN acrylonitrile
  • MA methyl acrylate
  • MA sodium methallylsulfonate
  • DMF dimethylformamide 78 parts
  • the antibacterial composition pre-dispersion liquid is dispersed using a sand grinder for about 5 minutes, and then the spinning solution is continuously mixed with 20 parts of the acryl-based polymer (A) and 80 parts of DMF.
  • the above dispersion is added and mixed by a pipe mixer so that the antibacterial composition is 1.0, 3.0, and 5.0% by weight based on the acrylic polymer (A), and wet-spun according to a conventional method. As a result, a 3-denier antibacterial acrylic fiber was obtained.
  • An antibacterial acrylic fiber was obtained using the same composition and method as in Use Example 1 using an antibacterial composition having 18% Ag adhered thereto using titanium oxide fine particles having an average particle size as a carrier.
  • the evaluation of antibacterial properties of this fiber is shown in Table 1 below.
  • An antibacterial acrylic fiber was obtained by the same composition and method as in Use Example 1, using an antibacterial composition having titanium oxide fine particles with an average particle size of 0.5 ⁇ ⁇ as a carrier and 2% Cu attached.
  • An antibacterial acrylic fiber was obtained by the same composition and method as in Use Example 1, using an antibacterial composition having titanium oxide fine particles with an average particle size of 0.5 ⁇ ⁇ as a carrier and 2% Cu attached.
  • An antibacterial acrylic fiber was obtained with the same composition and method as in Use Example 1 using an antibacterial composition having titanium oxide fine particles having an average particle size as a carrier and 15% Cu adhered thereto.
  • An antibacterial acrylic fiber is obtained using the same composition and method as in Use Example 1 using an antibacterial composition in which titanium oxide fine particles having an average particle diameter are used as a carrier and Ag is attached to 1% and Cu is attached to 1%.
  • an antibacterial composition in which titanium oxide fine particles having an average particle diameter are used as a carrier and Ag is attached to 1% and Cu is attached to 1%.
  • Titanium oxide fine particles with an average particle size of 0.5 / m are used as a carrier, and an antibacterial composition is used with the same composition and method as in Use Example 1, using an antibacterial composition with 18% Ag and 8% Cu attached to each other. Fiber was obtained.
  • the above dispersion was added and mixed by a pipe mixer so that the antibacterial agent was 0.3% by weight with respect to the acrylic polymer (A), and wet-spun according to a conventional method to obtain 3 denier.
  • An antibacterial acrylic fiber was obtained, and the antibacterial evaluation of this fiber is shown in Table 4 below.
  • the above antibacterial fiber has good antibacterial properties against various bacteria.
  • the antimicrobial composition was treated in the same manner as in Production Example 1 except that it was treated with 300 ml of 1 N hydrochloric acid prior to washing with pure water and, after suction filtration, placed in a yellow container 8 (except that it was dried with TC). I got
  • Titanium oxide powder was treated in the same manner as in Production Example 9 except that stirring was performed for 2 hours using 241.3 g, 410.6 g, and 1257.3 g, and the adhesion amount of silver was 5.0%, 3.0%, and 1.0. % Of the antibacterial composition was obtained.
  • Production example 1 3
  • Table 5 shows the results of examining the antibacterial properties in the same manner as in Use Example 8, except that the antibacterial composition to which 5% of silver oxide was attached as silver was used. As a result, it was found that it is preferable to add 0.7% or more.
  • Table 6 shows the results of examining the antibacterial properties in the same manner as in Use Example 8, except that the antibacterial composition to which 5% of copper oxide was attached as copper was used. As a result, it was found that it was preferable to add 0.7% or more.
  • the antibacterial properties were determined in the same manner as in Use Example 8, except that the antibacterial composition to which 5% of silver chloride was used as silver and 1% of copper oxide was used as copper was used. It is shown in Table 6. As a result, it was found that it is preferable to add 0.6% or more.
  • the antibacterial properties were determined in the same manner as in Use Example 8, except that an antibacterial composition to which 3% of silver oxide was used as silver and 5% of copper oxide was used as copper was used. It is shown in Table 7. As a result, it was found that it was preferable to add 0.5% or more.
  • Table 7 shows the results of examining the antibacterial properties in the same manner as in Use Example 8, except that silver chloride was attached at 3% as silver and silver oxide at 3% as silver. As a result, it was found that it is preferable to add 0.6% or more.
  • Table 8 shows the results of examining the antibacterial properties in the same manner as in Use Example 7, except that an antibacterial composition in which 5% of silver chloride was attached as silver was used.
  • Alumina, kaolin, talc, silica gel, and diatomaceous earth were used as carriers. Each was treated in the same manner as in Production Example 17 except for using 241.3 g and stirring for 2 hours. In each case, 5.0% of the antibacterial composition was obtained.
  • zeolite, kaori, talc, silica gel and diatomaceous earth powder were used in each case of 166.lg, and the stirring time was set to 2 hours. % Of the antibacterial composition was obtained.
  • Antibacterial composition using a carrier as kaolin particles with an average particle size of 0.5 shows the results of examination of the antibacterial properties by treating in the same manner as in Use Example 15 except that the product was used. As a result, it was found that it is preferable to add 0.8% or more.
  • the antibacterial properties were measured by treating the carrier in the same manner as in Use example 15 except that the carrier was alumina with an average particle size of 0.5, and an antibacterial composition with 11.9% copper was used. Is shown in Table 10. As a result, it was found that it was preferable to add 0.5% or more. Usage example 1 8
  • the antibacterial properties were examined by treating in the same manner as in Use Example 15 except that the carrier was kaolin particles having an average particle size of 0.5 / im and an antibacterial composition to which 5% of copper was applied was used. The results are shown in Table 10. As a result, it was found that it was preferable to add 0.8% or more.
  • An antibacterial composition having a silver adhesion amount of 16.3% was obtained in the same manner as in Production Example 1, except that barium sulfate having an average particle size of 0.7 m was used as the carrier.
  • An antibacterial composition having silver adhesion amounts of 8.9%, 3.8%, and 1.9%, respectively, in the same manner as in Production Example 25 except that stirring was performed for 2 hours using 130 g, 325 g, and 680 g of barium sulfate powder. I got
  • Table 14 shows the results of examining the antibacterial properties in the same manner as in Use Example 1 except that the antibacterial composition according to Production Example 25 was used. As a result, it was found that adding 3.0% or more is preferable.
  • the antibacterial properties were determined in the same manner as in Use Example 2 except that the antibacterial composition according to Production Example 25 was used. The results are shown in Table 14. The results indicate that it is preferable to add 0.2% or more. found.
  • Table 15 shows the results of examining the antibacterial activity in the same manner as in Use Example 4 except that the antibacterial composition according to Production Example 25 was used. Also in this case, addition of 0.2% or more is preferable.
  • Table 17 shows the results of examining the antibacterial properties in the same manner as in Use Example 7 except that the antibacterial composition according to Production Example 25 was used.
  • a conductive composition was obtained in the same manner as in Production Example 33, except that aluminum oxide (average particle size: 0.5 m) was used as the carrier fine particles.
  • a conductive composition was obtained in the same manner as in Production Example 34 except that aluminum oxide was used as the carrier fine particles.
  • Barium sulfate (average particle size 1.5 m) used as carrier fine particles A conductive composition was obtained in exactly the same manner as in Production Example 34 except that the above-mentioned process was carried out.
  • a conductive composition was obtained in the same manner as in Production Example 35 except that the above-described barium sulfate was used as the carrier fine particles.
  • a conductive composition was obtained in exactly the same manner as in Production Example 34 except that calcium carbonate (average particle size: 1.5 Mm) was used as the carrier fine particles.
  • a conductive composition was obtained in exactly the same manner as in Production Example 35 except that calcium sulfate was used as the carrier fine particles.
  • a copper plating liquid ( ⁇ ') was added to the prepared dispersion liquid (A) and mixed in the same manner as in Production Example 34, and the liquid temperature was adjusted to 30 ° C.
  • the above-mentioned reducing solution for copper plating () was added with stirring, and the stirring was continued to completely reduce the copper, and then stirring was further continued for 1 hour.
  • the amount of copper sulfate dissolved in the copper plating solution was assumed to be 401.1 g, and the amount of sodium sodium tartrate (tetrahydrate) in the reducing solution for copper plating was determined.
  • a conductive composition was obtained in the same manner as in Production Example 41 except that the weight was changed to 1,100 g.
  • a conductive composition was obtained in the same manner as in Production Example 41 except that aluminum oxide was used as the carrier fine particles.
  • a conductive composition was obtained in exactly the same manner as in Production Example 42 except that aluminum oxide was used as the carrier fine particles.
  • a conductive composition was obtained in the same manner as in Production Example 41 except that barium sulfate was used as the carrier fine particles.
  • a conductive composition was obtained in the same manner as in Production Example 42 except that barium sulfate was used as the carrier fine particles.
  • a conductive composition was obtained in the same manner as in Production Example 41 except that calcium carbonate was used as the carrier fine particles.
  • a conductive composition was obtained in the same manner as in Production Example 42 except that calcium carbonate was used as the carrier fine particles.
  • Preparation Example 4 For silver plating, use the same method as in Preparation Example 33 to make silver nitrate solution 20 g silver nitrate on 113.9 g of titanium oxide fine particles adhered with 30.3 wt% of copper obtained in 1 Potassium tartrate in reducing solution When the operation was performed with 100 g of sodium 3-tetrahydrate, dark silver-gray fine particles were obtained.
  • the content of copper, silver and gold were determined by chemical analysis of the fine particles, the content was 24.3% for copper, 9.0% for silver, and 9.9% for gold.
  • titanium oxide fine particles 200 g are set in the chamber of the vapor deposition apparatus, and the vapor deposition source (aluminum section) is placed in a tungsten basket and set in the chamber. , under reduced pressure the chamber in one, (2 X 1 0- 4 Torr ), -u one
  • the above-mentioned tungsten basket was ripened while applying vibration to the above-mentioned titanium oxide fine particles, and when the above-mentioned vapor deposition source metal evaporated 50 g, the vapor-deposition treatment was completed, and gray-white fine particles were obtained.
  • the aluminum-adhered titanium oxide fine particles obtained above were collected twice in 65 g portions and dispersed in 500 parts of pure water, and one of them was made to adhere silver as in Example 49, and the other was made as in Example 51. Gold was attached in the same manner except that chloroauric acid was used in an amount of 13.3 g and hydrazine hydrat 5% aqueous solution was used for 100 hours.
  • the silver and aluminum content of the fine particles with silver deposited thereon was 16.3% for silver and 18.4% for aluminum.
  • the content of aluminum and aluminum in the fine particles to which gold was attached was 10.6% for gold and 19.7% for aluminum.
  • the specific resistance of the fine particles prepared in Production Examples 33 to 52 is 0.8 ⁇ cn! It was in the range of ⁇ 1.2 ⁇ cm.
  • Production Example 3 50% or 70% of a conductive composition having a specific resistance of 0.8 ⁇ : 1.2 ⁇ cm prepared in 3 to 52 was kneaded with Nylon 26 having a molecular weight of about 17,000 and a melting point of 215 ° C.
  • the conductive polymer prepared as above is used as the core, while the same nylon 26 polymer as the above is used as the sheath to form a composite at a composite ratio of 1:10, and extruded at 280 ° C from an orifice with a diameter of 0.3. , At a speed of 1,000 m "M.
  • the obtained nylon fiber was drawn three times using a hot pin to obtain a nylon fiber of 20 denier. Obtained filler
  • the specific resistance of ment had both have the following excellent resistivity 10 2 Q cm.
  • Production Example 33 Use example except that Nylon 26 kneaded with 70% of titanium oxide fine particles (specific resistance 5 X 10 5 ⁇ ⁇ ) with a 10% silver coating formed by the same method as 3 was used as the core.
  • the filament manufactured in the same manner as in Example 30 had a specific resistance of 10 6 ⁇ cm, which was not considered to exhibit a favorable conductivity.
  • the obtained conductive composite filament had the same level of yarn performance as ordinary nylon filament, and the specific resistance of the conductive component was 10 to: L 0 ⁇ cm. .
  • a 2600d / 140f nylon filament was added to the conductive composite filament. Then, the yarn was twisted (twice ratio 1: 5) to obtain a crimped yarn. Next, the crimped yarn was tufted every 10 threads, and a 2600d / 140f nylon crimped yarn was interposed therebetween to produce a loop pile carpet. The carpet was scoured and stained (beige), backed, and the human body potential was measured when walking on the carpet with leather shoes (25%, 20% RH). , 2,000 to 2,500 V, indicating excellent antistatic performance.
  • Tin oxide containing 10% antimony oxide is coated on the surface of titanium oxide fine particles, and the content of conductive metal oxide is about 15%, the average particle size is 0.25, and the ratio when compressed at 200 kgZcm 2 Conductive particles having a resistance of 4 ⁇ cm were produced.
  • a conductive composite filament is manufactured (specific resistance of conductive component: 50 to 500 ⁇ cm) in the same manner as in Use Example 31 except that the core-sheath composite is used, and the loop pile carpet is formed. Manufactured. As a result of measuring the human body voltage with this cartridge, the voltage was from 4,000 to 6,000 V. In order to apply the same human body voltage as that of the example of use, the conductive composite fiber should be made of two or more articles. They had to be arranged at intervals.
  • the degree of coloring was visually determined in four stages. As is evident from Table 18, it can be seen that the example product has better antibacterial performance than the comparative example product.
  • Example 3 The fibers obtained in Example 3 were circularly knitted and subjected to an antibacterial test after washing 0, 5, 10, 10 and 20 times with a household washing machine.
  • DMF dimethylformamide
  • barium sulfate (average particle size: 0.9 / im), which was coated with a metal having antibacterial properties against the acrylic copolymer in the amount indicated by No. 20 ( ⁇ ), was dispersed in DMF using a homomixer. was added to the above acrylic copolymer solution, and sufficiently stirred with a homomixer to obtain a spinning stock solution.
  • the stock solution was spun out into a 60% DMF aqueous solution at 20, and stretched and washed with a desolvating solvent, and then an oil agent was applied to dry and densify. After the crimp was applied to this fiber, a wet heat treatment was performed at 120 ° C. After cutting and spinning the obtained fiber, circular knitting was made. The knitted fabric was cut into a size of 1.5 g (about 3 to 5 cm square cloth) and subjected to an antibacterial test.
  • ANZ vinyl chloride isopropylidene (VC 2) Z Arirusuruhon sodium (SAS) - Accession Lil based copolymer polymer of DMF solution consisting 57Z40Z3 was prepared. 1.0% of barium sulfate coated with 5% silver on the acrylic copolymer is treated with a sand grinder to disperse it uniformly, and then added to the acrylic copolymer solution. The mixture was sufficiently stirred to obtain a spinning solution. The above spinning stock solution was spun into a 55% DMF aqueous solution at 25, stretched and washed with a desolvating solvent, and then an oil agent was applied to dry and densify. After the crimp was applied to this fiber, wet heat treatment was performed in step 115.
  • the obtained fiber was formed into a circular knit, and then subjected to an antibacterial test after washing 0, 5, 10, and 20 times in a home washing machine in the same manner as in Example 7.
  • a nozzle having a total of 240 discharge holes with 0.40 mm diameter discharge holes arranged at intervals of 3 mm in two rows and a total of 250 heat gas injection holes on both sides, and 20 cm below the base surface The above-mentioned liquid mixture was added to 96 parts of a polyethylene terephthalate molten polymer with an intrinsic viscosity of 0.65 using a spunbond manufacturing device equipped with a fiber screen for collecting and moving while reciprocating in the horizontal direction. Four parts were press-fitted and blended to produce a nonwoven sheet (single yarn fineness: about 1 d, width: 140 m, basis weight: lOOgZm 2 ).
  • Calcium carbonate coated with silver (coating amount: 3.0%, average particle size: 1.3 Tm) 4 parts were kneaded with 96 parts of low-density polyethylene using a Banbury type mixer according to a conventional method, and the inflation was carried out. A film with a thickness of 40 / m was manufactured by the coating method.
  • Filaments were prepared under the same conditions as in Example 1 except that titanium dioxide powder (average particle size: 1.0 / m) was used instead of barium sulfate powder as a carrier for silver or copper, which is an antibacterial metal. It was prepared and subjected to an antibacterial test.
  • Example 18 The circular knitting obtained in Example 18 was subjected to an antibacterial test in the same manner as in Example 7. The results are as shown in Table 23 and showed a good antibacterial effect even after 20 washes. ⁇ ⁇ :
  • the obtained fiber was circularly knitted and subjected to an antibacterial test in the same manner as in Example 7.
  • the results are as shown in Table 25, and showed a good antibacterial effect even after 20 times of washing.
  • Table 25 Number of washings Bacteria reduction rate (%)
  • the antibacterial or conductive composition according to the present invention is suitable for producing synthetic fibers, synthetic polymer molded articles such as synthetic polymer films, and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

明 細 書
抗菌性乃至導電性組成物及びその利用
技術分野
本発明は基本的には抗菌性組成物並びに導電性組成物に係 り 、 繊維製品、 フ ィ ルム、 プラスチッ クス成型品、 塗料等の 製造に際して添加され、 これらの製品に抗菌性並びに導電性 をもたらすために利用される。
更に本発明は、 優れた抗菌作用又は導電性を有する合成樹 脂及び合成繊維及びその製造方法に係る。
背景技術、 その課題及び発明の目的
抗菌性製品を製造するために添加される従来の抗菌性物質 と しては有機系のものと、 無機系のものとがあ り 、 これらの 内で有機系物質と してはト リクロロカルバニド、 ポリへキサ メチレンビグアニドハイ ドロクロ リ ド、 ォク タデシルジメチ ル- 3 -ト リ メ トキシシリルプロピルアンモニゥムクロリ ド等 を主成分とする ものであり 、 又無機系物質と しては硫化銅、 銅、 銀粉、 銅粉等であつた。
従来用いられて来た抗菌性物質の内で有機系のものは揮発 性を有しており 、 従って抗菌性製品の製造過程で揮散し易い ため.に製品となされた場合に抗菌性の発現が不安定である点 及び抗菌性製品の製造工程で高温下に曝される場合に、 マト リ クスとなるべき物質と反応してその本来の性質を阻害する 場合のある点に課題がある。
一方、 抗菌性物質と して金属化合物を主成分とする無機系 組成物は繊維、 フ ィルム等の製造に際して配合され、 最終製 品中においては分散された状態を呈しており 、 この場合に分 散状態にある金属化合物から抗菌作用を有する金属がィオン 化し製品表面に移行して抗菌性を発現する作用機構となって いる。
その一例と して、 ァク リル綿又は糸に染色工程で硫化銅又 は銅を含有せしめる方法があるが、 この方法を実施する場合 には工程数が大となるのみならず、 反応時間が長時間となる ためにコス ト高となる点に課題があった。
更に、 銀粉や銅粉等を用いる場合には比重が高いために抗 菌性製品を製造する迄にこれら金属粉の沈降を生じ易く 、 従 つて取扱いが不便であるのみならず、 大量配合の必要性をも たらすと云う実用面からのコス ト的な課題があった。
本発明に鬨連する先行技術と して、 担体となる粒子の表面 に銀を付着させるため、 銀塩水溶液に粒子を分散させ水酸化 ナト リウムで処理した後、 還元剤、で還元する方法が、 特開昭 6 1 — 1 9 0 5 3 6号公報 ( B P 84 327 28及び 8 5 0 44 82 ) で既に開示されているが、 水酸化ナト リゥムで処 理する時点で銀塩水溶液の大部分が析出して酸化銀の微粒子 となるため、 粒子表面を酸化銀で被膜させるこ とは困難であ り、 一部において銀の付着した粒子と銀自体の微粒子との混 合物が形成されてしま う 。 また銀塩水溶液に担体粒子を分散 しスラリー状になした状態で水に不溶な化合物と して銀を析 出させる方法が開示されている [特開昭 63— 88 1 0 9号 公報 ( B P 86 1 62 94 ) ] 。 しかしながら、 硝酸銀水溶 液に塩化ナト リウムを添加して反応させる該方法では、 反応 速度が早過ぎ粒子表面に均一に銀化合物を付着させるこ とは 非常に困難であ り 、 銀化合物のみの微粒子も同時に生成する ため、 やはり一部銀化合物の付着した粒子と銀化合物自体の 微粒子との混合物が形成される。 このよ うな微粒子が混在し た系では微粒子を核と した 2次凝集が発生するこ とが多く 、 粗大粒子を形成し易いために成形品の表面が粗くなつた り 、 成形原料の流動特性を悪化させるよ うな実用面において重大 な欠点を発生する可能性がある。
それ故本発明の第 1 の目的は、 担体となる粒子の表面に均 一に抗菌性金属または金属化合物を付着させ、 これによ つて 該金属または金属化合物自体の微粒子の生成が充分に回避出 来且つ担体自体の粒度分布を殆ど変らない状態で維持でき、 更に全体と しての金属の量割合が相対的に低く 、 従って比重 が小さ く 、 しかも充分な抗菌性を有する抗菌性組成物を提供 することにある。
一方導電性繊維製品等を製造するために添加される従来の 導電性微粒子と しては、 種々の金属粒子やカーボンブラ ック 等が知られている。 尚、 酸化チタンの微粒子に酸化亜鉛また は酸化錫被膜を形成させることによ り比抵抗が 1 0一2 Ω cm程 度の組成物が得られている (特公平 1 一 2 2 3 6 5号) 。
しかしながら、 金属粒子を使用すれば高価となり、 又粒子 全体と しての比重が大となるため成型用マト リ ックスとの比 重差が大となって該マ ト リ クスとの混練時に粒子の沈降が生 じ易いと云う課題があ り、 一方カーボンブラ ックを導電性物 質と して使用する と成型品と して黒色のものしか得られない と云う利用上の課題があった。 尚、 上記のよ うに金属粒子に 酸化亜鉛または酸化錫の被膜を形成させる と 、 この被膜形成 物質は一種のセラ ミ ックであるために硬度が高く 、 従ってこ - - のよ うな複合粒子を用いて導電性合成繊維を製造する場合に は、 延伸処理に際して トラべラー等に高い摩耗を生じさせる 点に課題があつた。
従って、 本発明の第 2の目的は導電性物質を配合した成型 品であって着色が自由であ り 、 製造が容易で導電性が高く且 つ廉価な導電性組成物を提供する こ とにある。
翻って、 合成重合体は繊維、 フ ィルム、 シート、 容器等と して成形され種々の用途に供せられている。 例えば合成繊維 は衣料用、 寝装イ ンテリア用に幅広く使われているが、 近年 サニタリー分野に注目が集ま りマッ トやカーペッ ト類に抗菌 性、 防徵性を有するものが強く要望されて来ている。
従来、 天然又は合成繊維に抗菌防徵カを有する化合物を塗 布又はスプレーしたり 、 繊維を化合物溶液にを含浸せしめる 方法が知られているが、 このよ うな方法を利用して得た製品 はその効果において持続性が乏しく付着せしめた薬剤が洗濯 等によって早期に散逸する点に課題を有している 。 また繊維 に耐洗濯性を付与するために薬剤と樹脂を用いて樹脂加工を 行う方法は、 繊維の風合を損う点に課題があった。
従来、 合成繊維に銅化合物又は銅や亜鉛の金属微粉末を 添加して紡糸する方法 (特開昭 5 5 - 1 1 5 4 4 0号公報 等) 、 ァゾール誘導体を添加配合-した上で紡糸する方法 (特 開昭 5 3— 1 3 9 8 9 5号公報) 等が提案されているが、 良 好な分散状態をもたらす事は難しく繊維中で凝集し易いため 可紡性が低い上に、 菌に対する接触面積が小さ くなり抗菌効 果が不充分となり、 或いは重合体に及ぼす影響が大きいため に配合等が限定される点に課題があった。 尚、 ァゾール誘導 体は毒性が高いので実用化が妨げられてきた。
発明の開示
本発明によれば、 上記の第 1 の目的は、 抗菌作用を有する 金属及び/又は金属化合物が、 無機質微粒子の表面に付着せ しめられていることを特徴とする抗菌性組成物によ り達成さ れる と共に、 鬨連課題が解決される。
即ち、 本発明においては比重の小さな無機質微粒子を担体 と して用いるこ とによ り全体と しての比重の軽減を図り 、 こ れによ って抗菌性製品の製造に際しての取扱いを便なら し め、 又この担体と して無機質微粒子を用いることによ り付着 されるべき抗菌性金属の表面積を大となし、 これによつて該 金属のイオン化を容易にさせて抗菌性の向上をもたらすので ある。
担体と しての無機質微粒子と してはゼォライ 卜 (アルミノ シ リ ケー ト ) 、 珪藻土、 マイ 力、 アルミナ、 カオリ ン (粘 土) 、 タルク、 シリカゲルの単体又はこれらの混合物であつ ても差支えはないが、 混合物である場合には粒子のイオン性 を勘案し、 二次凝集を起さぬよ う配合組成等について配慮を 払う必要がある。 担体材料と しては酸化チタン、 酸化アルミ 二ゥム、 硫酸バリウム、 炭酸カルシウム、 リ トポン、 鉛白等 も例示する ことができ る。
これら無機質微粒子の平均粒径は 5 m 又はそれ以下であ るこ とが好ま しい。 蓋し、 本発明によ る抗菌性組成物が配合 されて調製される最終製品が厚手のプラスチックス成型品等 の場合には無機質微粒子の平均粒径に上記のよ うな制限は必 ずしも存在しないが、 最終製品が繊維、 フ ィ ルム、 塗料等の よ う に薄手のものとなされる場合には無機質微粒子の平均粒 径が 5 /i m 以上である と最大粒径も大となるので最終製品乃 至成形物の表面に凹凸が目立つよ う になり商品価値において 低下を来たすからである。 殊に、 本発明による抗菌性組成物 を配合して抗菌性合成繊維を製造しょ う とする場合には無機 質微粒子と して平均粒径が 0 · 5 α πι 又はそれ以下のものを用 いるのが好ま しい。 蓋し、 最大粒径 10 z m 以上の無機質微粒 子が存在すると紡糸口金に目塞り を生じる虞れがあるからで ある。 尚、 担体と しての無機質微粒子はその平均粒径が小さ い程、 これに付着した抗菌作用を有する金属の表面積が増加 し、 抗菌性が向上すること に留意され度い。
本発明による抗菌性組成物において、 抗菌作用を有する金 属と しては種々のもの、 例えば銀、 銅、 亜鉛、 錫、 鉛、 ビス マス、 カ ド ミウム、 クロム、 水銀等が考えられるが、 抗菌力 の程度、 保健衛生上等の観点から銀、 銅又はこれらの両者を 用いるのが好ま しい。 これらの銀又は銅の金属は酸化物や塩 化物等の形であっても差し支えないが、 水に不溶性である方 が好ま しく 、 付着せしめられる量は担体である無機質微粒子 に対して 0 . 1〜20wt%程度又はそれ以上である。 この場合の 下限値は抗菌性能や用途を考慮に入れたものである。 即ち、 抗菌性組成物において抗菌性金属の付着量が 0 . 1 wt%未満で ある と、 その用途に依存して、 例えば抗菌性繊維製品になす 場合に所期の抗菌性能をもたらすためには紡糸原液への抗菌 性組成物の配合量を相対的に大にする必要性が生じるが、 紡 糸原液に抗菌性組成物を 20 %又はそれ以上添加すると紡糸時 に糸切れが生じ易くなつて生産性が低下するからである 。 尚、 銀と銅の両者を用いる場合に、 これらの付着量は無機質 微粒子に対してそれぞれ 0 .5wt %以上である 。 この場合にお ける下限値の設定理由は上記と同様である。
担体と しての水不溶性無機質微粒子に銀又は銅若しく はこ れらの両者を付着させて本発明による抗菌性組成物を製造す るためには、 自体周知の真空蒸着法や還元析出法を用いるこ とができる。
これらの内で、 真空蒸着法は無機質微粒子を蒸着装置の チャンバ一内にセッ ト し、 蒸着源材料 (銀、 銅又は銀一銅合 金の切片〉 をタングステン製バスケッ ト内に配置して上記の チャンバ一内にセッ ト し、 該チャンバ一内を減圧し (約 2 X 10 _4To rr程度迄) 、 次いで上記の無機質微粒子を振動させな がら上記のタングステンバスケッ トを加熱して上記の蒸着源 金属を蒸発せしめるこ とによ り実施することができる。
—方、 還元析出法は、 無機質微粒子を純水中に分散させ、 この分散液とメ ツキ液とを混合し、 次いで、 攪拌しながらこ の混合液にメ ツキ用還元液を添加するこ とによ り実施するこ とができる 。
これらの両方法の内で真空蒸着法は蒸発金属の照射方向が 限定されるために、 抗菌性金属を無機質微粒子に均斉に付着 させる目的で無機質微粒子に振動を与えて転動させる必要性 があ り 、 この場合に粗い粒子が上に且つ細かい粒子が下にな る、 所請分級が生じる傾向があり 、 従って無機質微粒子の粒 径が揃っていないと抗菌性金属の付着量に差が生じるが、 一 方、 還元析出法によれば、 分散した状態の無機質微粒子上に 抗菌性金属が析出してゆくので均斉な付着が可能であり 、 付 着量の制御も容易なので、 前者よ り も後者の方法が好ま し い。
一方、 導電性組成物の場合には、 無機質の微粒子の表面に 導電性金属被膜が 2 5重量%以上均斉に形成せしめられてい ることを特徴とする導電性組成物によ り上記の目的が達成さ れる と共に関連課題が解決される。
使用される導電性金属と しては金、 銀、 銅、 アルミニゥ ム、 錫、 ニッケル、 鉄、 ステンレススチール等を例示するこ とが出来る 。 導電性の点では銀、 銅、 金、 アルミニウム、 錫、 ニッケル、 鉄、 ステンレススチールの順に好ましいが、 金、 銀は高価であるために重畳層と して形成すること、 即ち 第 1層と して銅又はアルミニゥム被膜を形成させた後、 更に 第 2層と して金又は銀被膜を形成させること もできる。
金属被膜が酸化され易い条件下にある場合には第 2層に金 又は銀を使用するこ とが望ま しく 、 又 3層以上の組み合せで あっても差支えない。
担体と しての微粒子上に導電性金属を付着させて本発明に よる導電性組成物を製造するためには、 既述の真空蒸着法や 還元析出法を用いるこ とができる。
'導電性金属による被膜が 2 5重量%未満の場-合は導電性が 一般に充分でないために、 2 5重量%以上となるよう に導電 性金属被膜を施こす必要があり、 更に高い導電性をもたらす ためには、 導電性金属被膜を 5 ◦重量%以上形成させること もでき る。
担体と しての微粒子の平均粒径が 2 m 以下であればマト リ ックスに混練する際に実用上の問題は生じない。 また担体 微粒子は球に近い形状の方が混練する際には容易であるが、 配向を考慮する と、 針状である方が導電性の向上からは好ま しい。
担体微粒子と しては無電解メ ツキをする際に変性を生じな いものであれば何でも良く 、 水不溶性の金属酸化物、 例えば 酸化チタン、 酸化アルミニウム、 硫酸バリウム又は炭酸カル シゥム等を使用するこ とが出来る。
本発明の導電性組成物は各種合成重合体 (ポリエステル、 ナイ ロン、 アク リル、 ポリエチレン、 ポリプロピレン、 ェポ キシ樹脂、 不飽和ポリエステル樹脂〉 や、 繊維、 フ ィルム、 プラスチッ クの原材料、 塗料等に添加配合され帯電防止、 電 磁シールド、 低温発熱体等の製造に利用することができ る。
比抵抗を 1 04 Q cni以下にするには、 上記の導電性組成物を 通常 5 0重置%以上好ま しく は 7 0重量%以上配合する。 従ってこのよ うな配合物は、 成形性と物性に劣る場合が多く 各種成形物に成形するためには、 複合繊維や複合フ ィルム等 を成形する原料の一部と して使用する ことが好ま しい。 殊に 導電性繊維の導電性成分と して使用する場合、 従来の金属酸 化物をコーティ ングした粒子 (例えば特公平 1 3 2 2 6 0 号公報参照) に比べ、 金属は摩耗性が低く且つ金属のコー ティ ング量が多いので摩耗性は低下し、 又本発明では導電性 成分が繊維表面に露呈した形状乃至状態にするこ とが可能と なり 、 従ってカーペッ ト、 作業服、 ユニホーム、 ホーマルゥ エアなどの繊維製品に適用して導電性を付与する場合に、 従 来品と比較して混入率を 1 /2〜1 /5 に減らすことができ る。
—方、 本発明の抗菌性成形物はポリ アミ ド、 ポリエステ ル、 ポリオレフ イ ン、 ポリウレタン及びアク リロニト リル系 合成樹脂の成形物において、 抗菌性金属が表面にコーテ ィ ン グされた無機質微粒子を 0 · 1〜 2 0重量%含有している こと を特徴と している。
この場合における本発明の第 1 の方法は、 溶融状態のポリ アミ ド、 ポリエステル及びポリオレフ イ ンに抗菌性金属が表 面コーティ ングされた平均粒径 0 . 1〜 5 (を有する無機質微 粒子と分散媒とからなる液状混合物を配合し混合した後、 こ れを溶融成形するこ とによ り実施される。
本発明の第 2の方法は、 アク リ ロニ トリル系共重合体を湿 式紡糸するに際し、 抗菌性金属が表面コーティ ングされた平 均粒径 0 . 1〜 5 u m を有する無機質微粒子を有機溶剤に均一 分散させ、 次いでアク リロニト リル系共重合体の有機溶剤溶 液に添加し、 これを紡糸原液と して湿式紡糸することによ り 実施される 。
上記のボリアミ ドと してはナイ ロン 6 、 ナイ ロン 6 6 、 ナ ィ ロン 1 2等、 ポリエステルと してはポリエチレンテレフタ レート、 ポリブチレンテレフタレート等、 ポリウレタンと し てはポリエーテル型、 ポリエステル型、 ポリカーボネー ト型 のポリウレタン、 ポリオレ.フ ィ ンと してはポリエチレン、 ポ リプロピレン等、 及びこれらの共重合体を例示することがで きる。
尚、 ポリウレタンの場合にはジメチルホルムアミ ドなど公 知の溶剤を使用して湿式紡糸或いは湿式成膜など公知の湿式 成形方法によ り繊維、 フ ィ ルム、 フォーム状等と して成形す るこ とができる。 アク リル二ト リル共重合体と しては、 少な く と も 4 0重量%のァク リ ロニト リルを構成モノマーとする ものであ り 、 繊維形成能を有する ものが好ま しい。 すなわ ちァク リロ二 ト リルを 4 0重量%以上と他のビニル系モノ マー、 例えばアク リル酸、 メタク リル酸、 或いはこれらのァ ルキルエステル類、 酢酸ビニル、 塩化ビニル、 塩化ビニリデ ン、 ァリルスルホン酸ソーダ、 メ タ リルスルホン酸ソーダ、 ビニルスルホン酸ソーダ、 スチレンスルホン酸ソーダ、 2 — ァク リルアミ ド— 2—メチルプロパンスルホン酸ソーダなど を適宜組合せたものを 6 0重量%以下の割合で共重合せしめ た ものを例示する こ とができ る 。 特に、 アク リ ロニ ト リル 8 0重量%以上と 2 0重量%以下のビニル系モノマー及びス ルホン酸基含有モノマーとの共重合体、 又はァク リロ二ト リ ル 4 0重量%以上と塩化ビ二リデン及びスルホン酸基含有モ ノマーを 2 0〜 6 0重量%舍有する共重合体が好ま しい。 本発明で用いる抗菌性金属と しては銀、 銅、 亜鉛等が挙げ られ、 無機質微粒子に対して 1〜 2 0重量%、 好ま しく は 3 〜 1 0重量%表面コーティ ングする。 金属のコーティ ング量 が 1 . 0重量%未満では、 前記重合体に対する添加量を多く し なければ充分な抗菌性をが付与するこ とができず、 又添加量 の過多によ り成形性及び加工性が低下する。 一方、 2 0重量 %を越える と表面コーティ ング層が厚くなり安価に製造する 事が困難となり 、 更に繊維製品にされた際に着色が問題とな る。
上記の無機質微粒子と しては硫酸バリウム、 炭酸カルシゥ ム、 リ トポン (ZnS + BaS04 ) . 鉛白 [ 2PbC3 · Pb ( OH ) 2 ]、 酸 化亜鉛、 酸化チタン、 チタンイェロー (T i 02 · N i O · S b 203 ) 等が挙げられるが、 汎用性の点から白色のものが好ま しい。 抗菌性金属が表面コーティ ングされた無機質微粒子の添加 量は金属の種類、 表面コーティ ングした量にもよ るが前記重 合体に対して 0.1〜2 0重量%、 好ま しくは 0.3〜5.0 重量 %である。 0.1 重量%未満では繊維やフ ィルム等の成形物に 充分な抗菌性を付与出来ず、 また 20重量%を越えると物性 が低下する と共に成形性及び加工性が低下する。 また粒径は 通常 0.1〜 5 ί πι 好ま しく は 0.3〜 2 u m であ り 、 粒径が 5 m を越える と成形性及び得られた成形物の物性が低下す る。
既述の第 1の方法において使用する分散媒にはポリエステ ル、 ポリオール、 ポリエステルエーテル、 ポリエステルポリ エーテルブロック共重合体などが挙げられるが、 紡糸口金や 金型への付着、 成形性或いは成形物の物性等の観点から末端 カルボキシル基がアルキル化又は 0 H化されて酸価が 4以 下、 水酸基価が 3 0〜 5 0の範囲のポリエステルやポリエス テルエーテルが好ま しい。 また抗菌性金属が表面にコーティ ングされた無機質微粒子を高濃度に分散させた際にも液状で ある物質を得るためには、 常温で液状であり 、 更には粘度も 低い分散媒、 例えば、 20 0ボイ ズ以下のものが好ま しい。
得られる液状混合物は通常 5〜 5 0重量%の前記抗菌性無 機質微粒子と 9 5〜 5 0重量%の分散媒とよ りなる。 尚、 こ の液状混合物に他の添加剤、 例えば染顔料, 耐熱剤、 老化防 止剤, 親水性物質等を併用するこ と もでき る 。 液状混合物 は、 ギヤポンプやプランジャーポンプ等を用いて定量供給 し、 溶融状態の熱可塑性重合体に圧入して配合される。 定量 圧入するためには、 液状混合物は常温から成形温度において 流動性を示すこ とが必要であ り 、 常温で 3 0 , 0 0 0ボイズ よ り高い粘度になる と計量精度に支障をきた し好ま しくな い。 また配合は、 通常の溶融紡糸法、 溶融射出成形法或いは 溶融押出成形法などに使用する成形装置の成形ヘッ ド毎に紡 糸口金又は金型の直前で行うのが好ま しく 、 でき るだけ紡糸 口金又は金型までの流路を短くするこ とがよ り好ま しい。 さ らに配合後、 均一に混合するためには、 駆動部分が不要な静 止系混練素子を用いる ことが好ま しく通常 5〜 6 0素子を使 用する。
本発明による抗菌性成形物は、 前記抗菌性無機質 m粒子を 1 0〜 8 0重量%熱可塑性重合体に混練して溶融成形する方 法によ り製造することができる。
既述の第 2の方法において使用する溶剤と してはジメチル ホルムアミ ド、 ジメチルァセ トア ミ ド 、 ジメチルスルホキシ ド、 アセ ト ン等アク リル系合成繊維の紡糸に用いられる公知 の有機溶剤を例示するこ とができ る。
分散装置と しては公知の湿式粉砕機ならば何れも使用でき るが、 分散液を連続的に紡糸原液に添加せしめるためにはサ ンドグライ ンダー、 パールミル、 グレンミル、 ダイ ノ ミルな どの流通管型粉砕機が好適である。
本発明において、 抗菌性金属が表面コーテ ィ ングされた無 機質微粒子の有機溶剤溶液への分散濃度は通常 5〜4 0重 i %、 好ま しくは 1 5〜 3 0重 i %である。 この瀵度が 5重量 %未満では、 無機質微粒子の添加量にもよるが紡糸原液の濃 度が下がり可紡性が低下すると共に繊維物性が低下する。 ま - u - た 4 0重量%を越える と、 良好な均一分散状態が得られずェ 業的観点から容易に製造する事が困難となる 。 紡糸は通常の アク リル系合成繊維の場合と同様な条件で行えば良く 、 数段 の浴槽を通し、 順次延伸、 水洗、 乾燥、 後処理を行なう こ と によ り実施される。
発明を実施するための最良の形態
(I).次に、 本発明による抗菌性組成物の製造例及び使用例 (抗 菌性繊維の製造及び抗菌性評価) によ り、 本発明を更に詳細 に説明する。
尚、 下記において言及する%及び部は、 別段の定めがない 限り重量基準によるものである。
製造例 1
(1) 下記の 3 種類の液を調製した。 ·
A) 酸化チタン分散液
酸化チタン粉末 (平均粒径 0.5 m) 65g を純水 300mi に分散させたもの。
B ) 銀メ ツキ液
硝酸銀 20g を純水に溶解して 800m と した後に水酸 化アンモニゥムを添加して PH を 11 に調整したもの。 C) 銀メ ッキ用還元液
酒石酸カリウムナト リウム ( 4 水和物) 100gを純水に よ り溶解して 700mJ となし、 液温を 30°C に保つ たもの。
(2) 操作
上記の酸化チタン分散液 (A) に銀メ ツキ液(B) を添加し て混合し、 液温 3CTC で攪拌しながら上記の銀メ ツキ用還 元液(C) を添加して攪拌を続ける こと によ り銀を完全に還元 させ、 次いで更に 1 時間攪袢を継続した。
その後に攪拌を中止し、 No.5C 濾紙を用いて吸引濾過し、 純水で充分に洗浄し、 80°C の空気乾燥機内で 12 時間乾燥 する ことによ り所望の抗菌性組成物を得た。
この抗菌性組成物における銀の付着状態を EPMA にて観察 した処、 酸化チタン粉末の表面に銀が均斉に付着しているこ とが判明した。
化学分析によれば、 銀の付着量は 16.3% であった。
製造例 2 - 4
酸化チタン分散液と して酸化チタン粉末を 130g 、 325g、 680g を用いたこ と並びに銀の完全還元後の攪拌を 2 時間 に亘り継続した以外は、 製造例 1 と全く同様にして 3 種 類の抗菌性組成物を得た。
EPMA 観察によれば、 何れの抗菌性組成物においても酸化 チタン粉末の表面に銀が均斉に付着しており 、 又化学分析に よれば、 銀の付着量はそれぞれ 8.9%、 3.8% 及び 1.9% で あった。
製造例 5
(1) 次の銅メ ツキ液及び銅メ ツキ用還元液を調製した。
B' )銅メ ッキ液
硫酸銅 ( 5 水和物) 34.6g、 酒石酸カ リウムナト リ ウム ( 4 水和物) 173g、 及び水酸化ナト リウム 50g を純水 によ り溶解して 500miとなしたもの。
)銅メ ッキ還元液
37% ホルムアルデヒ ド溶液 150mi であって、 液温 30°C に保たれたもの。
(2) 操作
製造例 1 で調製した酸化チタン分散液 (A)に上記の銅 メ ツキ液 (Β' ) を添加して混合し、 液温 30でで攪拌しながら 上記の銅メ ツキ還元液( )を添加して撹拌を続けるこ と によ り銅を完全に還元させ、 次いで更に 1 時間攪拌を継続し た。
その後に攪拌を中止し、 No.5C 濾紙を用いて吸引濾過し、 純水で充分に洗浄し、 8(TC の空気乾燥機内で 12時間乾燥す るこ とによ り所望の抗菌性組成物を得た。
この抗菌性組成物における銅の付着状態を EPMA によ り観 察した処、 酸化チタン粉末の表面に銅が均斉に付着している ことが判明した。
化学分析によれば銅の付着量は、11.9 であった。
製造例 6 - 8
酸化チタン分散液と して酸化チタン粉末を 130g 、 325g, 680g を用いたこと並びに銅の完全還元後の攪拌を 2 時間 に亘り継続した以外は、 製造例 5 と全く同様にして 3 種 類の抗菌性組成物を得た。 -
EPMA 観察によれば、 何れの抗菌性組成物においても酸化 チタン粉末の表面に銅が均斉に付着しており -、 又化学分析に よれば、 銅の付着量はそれぞれ 6.3%、 2.6%及び 1.3%で あった。
使用例 1
平均粒径 0.5 u m の酸化チタン微粒子を担体と し、 Ag を 1% 付着させた抗菌性組成物 20 部、 アク リ ロニトリル (以 下 AN と略記する ) /アク リル酸メチル (以下 MA と略記す る ) /メタ リルスルホン酸ソーダ = 90.0/9.0/1.0 の組成で 分子量 5 万のアク リル系重合体 (A) 2 部、 ジメチルホル ムアミ ド (以下 DMF と略記する ) 78 部をホモミキサーを 用いて約 1 時間分散させた。 次いでサンドグライ ンダーを 用いて上記抗菌性組成物予備分散液を約 5 分間分散させた 後、 連続的に前記のァク リル系重合体 (A) 20 部、 DMF 80 部よ りなる紡糸原液に上記抗菌性組成物が上記アク リル系重 合体 (A) に対して 1.0, 3.0, 5.0 重量 %となるよ うに上 記の分散液をパイ プライ ンミキサーによ り添加混合し、 常法 に従って湿式紡糸して 3 デニールの抗菌性アク リル系繊維 を得た。
この繊維の抗菌性評価を後記の第 1 表に示す。
この表による と上記の抗菌性組 物を 3.0% 以上添加する こ と によって良好な抗菌性のもたらされるこ とが判る。 尚、 抗菌性の評価は、 抗菌性アク リル系繊維を常法によ り紡績し て 30 番単糸となした後、 丸編みしたものを ¾験体と して用 い且つ繊維製品衛生加工協議会制定の抗菌防臭加工製品認定 基準 「シェークフラスコ法」 の方法に準拠して行つた (以下 の使用例等においても同様)。
尚、 後記の第 1、 2 及び 3 表において、 洗濯回数の右欄 が被検体の菌減少率を示す。 以下各表において同じ。
使用例 2
平均粒径 の酸化チタン微粒子を担体と し、 Ag を 18% 付着させた抗菌性組成物を用いて使用例 1 と同様の 組成、 方法で抗菌性アク リル系繊維を得た。 この繊維の抗菌性評価を後記の第 1 表に示す。
この表による と上記の抗菌性組成物を 0.2%以上添加する ことによって良好な抗菌性がもたらされるこ とが判る。
使用例 3
平均粒径 0·5 £ ΠΙ の酸化チタン微粒子を担体と し、 Cu を 2% 付着させた抗菌性組成物を用いて使用例 1 と同様の組 成、 方法で抗菌性アク リル系繊維を得た。
この繊維の抗菌性評価を後記の第 2 表に示す。
この表による と上記の抗菌性組成物を 3.0% 以上添加する こ と によって良好な抗菌性がもたらされるこ とが判る。
使用例 4
平均粒径 の酸化チタン微粒子を担体と し、 Cu を 15% 付着させた抗菌性組成物を用いて使用例 1 と同様の 組成、 方法で抗菌性アク リル系繊維を得た。
この繊維の抗菌性評価を後記の第 2 表に示す。
この表による と上記の抗菌性組成物を 0.2% 以上添加する こと によつて良好な抗菌性がもたらされるこ とが判る。
使用例 5
平均粒径 の酸化チタン微粒子を担体と し、 Ag を 1%、 Cu を 1% それぞれ付着させた抗菌性組成物を用いて 使用例 1 と同様の組成、 方法で抗菌性アク リル系繊維を得 た。
この繊維の抗菌性評価を後記の第 3 表に示す。
この表による と上記の抗菌性組成物を 3.0% 以上添加する ことによって良好な抗菌性がもたらされるこ とが判る。 使用例 6
平均粒径 0.5 / m の酸化チタン微粒子を担体と し、 Ag を 18%、 Cu を 8% それぞれ付着させた抗菌性組成物を用いて 使用例 1 と同様の組成、 方法で抗菌性アク リル系繊維を得 た。
この繊維の抗菌性評価を後記の第 3 表に示す。
この表による と上記の抗菌性組成物を 0.2% 以上添加する こと によって良好な抗菌性がもたらされるこ とが判る。
使用例 7
平均粒径 0.5ju m の酸化チタン微粒子を担体と し、 Ag を 5% 付着させた抗菌性組成物 20 部、 AN/MA/メタ リルスルホ ン酸ソーダ = 0.0/9.0/1.0 の組成で分子量 5 万のァク リ ル系重合体(A) 2部、 D M F 78部をホモミキサーを用いて約 1 時間分散した。 次いでサンドグライ ンダーを用いて上記 の抗菌性組成物予備分散液を約 5 分間分散した後、 連続的 に前記アク リル系重合体 (A〉 23 部、 DMF 77 部よ りなる紡 糸原液に上記該抗菌剤が上記アク リル系重合体 (A) に対し て 0.3 重量 ¾; となる よ う に上記の分散液をパイ プライ ン ミキサーによ り添加混合し、 常法に従って湿式紡糸して 3 デニールの抗菌性アク リル系繊維を得た。 この繊維の抗菌性 評価を後記の第 4 表に示す。
この表による と 、 上記の抗菌性繊維は種々の細菌類に対し て良好な抗菌性を有していることが判る。
Figure imgf000021_0001
第 抗菌性物質 Ag 1 % Ag 1 % Ag 1 % Agl8% Agl8 Agl8% 種類
被検菌 . 添加是
5.0 3.0 1.0 0.3 0.2 · " 0.05 洗濯回数
K 1 ebs i e I 1 a 0 99.1% 98.2% 19.1% 99.5% 97.3% 22.3% pneumoniae 30 98.3% 89.1% 18.3% 99.2% 19.5% 備 考 使用例 使用例 対 照 使用例 使用例 対 照
(1) (1) (2) (2) 第 2 表 抗菌性物質 Cu 2 % Cu 2 % Cu 2 % Cul5% Cul5% Cul5% 種類
被検菌 添加置
5.0 3.0 1.0 0.3 0.2 0.05 洗濯回数
K 1 ebs i e 1 la 0 21.5% 99.8% 98.1%
pneumoniae 30 99.0% 20.1% 99.5% 95.7% 23.2% 備 考 使用例 使用例 対 照 使用例 使用例 対 照
(3) (3) (4) (4)
抗菌性物質 Ag 1 % Ag 1 % A 1 % Agl8 Agl8% Agl8% 種類 + Cu 1 % + Cu 1 % + Cu 1 % + Cu8 % + Cu8 % + Cu 8 % 被検菌 添加置
5.0 3.0 1.0 0.3 0.2 . - 0 :05 洗灌回数
K 1 ebs e 11 a 0 24.1% pneumoniae 30 91.3% 95.2% 21.7% 備 考 使用例 使用例 対 照 使用例 使用例 対 照 ひひ (5) (5) (6) (6)
第 4 表 被 検 菌 Klebsiel la Staphylococcus Proteus Pseudofflonus
pneunoniae aureus vul aris aeregi nosa
菌滅少率 99.4 90.8 98.3 96.8
( % ) o
Figure imgf000023_0001
ミ 製造例 9
純水による洗浄に先立ち 1 N塩酸 300miにて処理した点及 び吸引濾過後に黄色の容器に入れて 8(TCで乾燥させた点を除 き製造例 1 と同様に処理して抗菌性組成物を得た。
製造例 1 0— 1 2
酸化チタン粉末を 241.3g、 410.6g, 1257.3gを用いて攪拌 を 2時間と した以外は製造例 9と同様に処理し、 銀の付着量 が 5 . 0 %、 3. 0 %、 1 . 0 %の抗菌性組成物を得た。 製造例 1 3
製造例 1 と全く同様に処理し、 80でで 1 2時間乾燥した 後、 4 0 0での空気中で熱処理を行う ことによ り酸化チタン 表面に銅の酸化物が均斎に付着した抗菌性組成物を得た。 銅 の付着量は 1 1 . 9 %であった。
製造例 14一 1 6
酸化チタン粉末を 166.1g、 282.6g、 865.2gを用いて製造例
6— 8 と同様に処理し、 銅の付着量 6 . 3 %、 2 . 6 %、
1 . 3 %の抗菌性組成物を得た。
使用例 8
塩化銀を 1 0 %付着させた抗菌性組成物を用いたこと、(A) に対して 1 . 0、 0. 5、 0. 1重量%となるよ うに添加混 合したこ と 外は、 使用例 1 と全く同様にして使用し抗菌性 アク リル繊維を得、 その抗菌性を調べて、 第 5表の結果を得 た。
この結果抗菌性組成物を 3. 0 %以上添加することによつ て良好な結果がもたらされることが判明した。 使用例 9
酸化銀を銀と して 5 %付着させた抗菌性組成物を用いたこ と以外は、 使用例 8 と 同様にして抗菌性を調べた結果を第 5 表に示す。 この結果 0 . 7 %以上添加するこ とが好ま しいこ とが判明した。
使用例 1 0
酸化銅を銅と して 5 %付着させた抗菌性組成物を用いた以 外は、 使用例 8 と同様にして抗菌性を調べた結果を第 6表に 示す。 この結果 0 . 7 %以上添加することが好ま しいこ とが 判明した。
使用例 1 1
塩化銀を銀と して 5 %、 酸化銅を銅と して 1 %それぞれ付 着させた抗菌性組成物を用いたこ と以外は、 使用例 8 と同様 にして抗菌性を調べた結果を第 6表に示す。 この結果 0 . 6 %以上添加することが好ま しいこ とが判明した。
使用例 1 2
酸化銀を銀と して 3 %、 酸化銅を銅と して 5 %夫々付着さ せた抗菌性組成物を用いた以外は、 使用例 8 と同様にして抗 菌性を調べた結果を第 7表に示す。 この結果 0 . 5 %以上添 加することが好ま しいことが判明した。
使用例 1 3
塩化銀を銀と して 3 %、 酸化銀を銀と して 3 %それぞれ付 着させたこ と以外は、 使用例 8と同様にして抗菌性を調べた 結果を第 7表に示す。 この結果 0 . 6 %以上添加するこ とが 好ま しいこ とが判明した。 2 - 使用例 1 4
塩化銀を銀と して 5 %付着.させた抗菌性組成物を用いたこ と以外は使用例 7 と同様にして抗菌性を調べた結果を第 8表 に示す。
Figure imgf000026_0001
第 5 表 抗菌性物質 Ag20 Ag20
種類 s5%) (Ag5¾)
被検菌 添加置
1.0 0.5 0.1 1.0 0.7 . - 0.2 洗濯回数
1 eb s i e 1 la 0 97.6% 19.3% pneumoniae 30 99.5% 98.2% 18.3% 96.2% 18.1% 備 者 使用例 使用例 対 照 使用例 使用例 対 照
(8) (8) (9) (9)
第 6 表 抗菌性物質 Cu20 Cu20 Cu20 AgCJ (Ag5¾) AgCJ (Ag5¾) AgCJ (Ag5¾) 種類 o
(Cu5¾) (Cu5¾) (Cu5X) Cu20(CulX) Cu20(Cul ) Cu20(Cul¾) 被検菌 添加量
1.0 0.7 0.2 1.0 0.6 0.2 洗 ¾回数 ^、
o o
K 1 eb s i e 1! a 0 97.7%
pneumoniae 30 18.6% 備 考 使用例 使用例 対 照 使用例 使用例 対 照
(10) (10) (11) (11)
o 第 7 表 抗 j/u菌 mil性物 tvj質 Ag20(Ag3¾) Ag20(Ag3¾) Ag20( Ag3¾) AgCJ(Ag3%) AgCi(Ag3¾) AgCi (Ag3¾) 種類 + +
Cu20(Cu5¾) Cu20(Cu5¾) Cu20(Cu5¾) Ag20(Ag3¾) Ag20(Ag3¾) Ag20(Ag3¾) 被検菌 添加 *
1.0 0.5 0.2 1.0 0.6 0.2 洗濯回数
K 1 ebs 1 e 11 a 0 22.3% 98.7%
pneumon i ae 30 20.7%
Figure imgf000028_0001
96.3% 18.3% 備 考 使用例 使用例 対 照 使用例 使用例 対 照
(12) (12) (13)
第 Ο 3¾ 被 検 菌 Κ 1 ebs i e 11 a Staphylococcus Proteus Pseudomonus
pneumon i ae aureus vu lgaris aer egi nosa
菌滅少率 99.6 90.9 98.4 97.1
( % )
Figure imgf000028_0002
製造例 1 7
担体と してゼォライ ト粉末を使用した以外は、 製造例 1 と 全く 同様に処理して、 銀の付着量が 1 6. 3 %の抗菌性組成 物を得た。
製造例 1 8— 2 0
担体と してアルミナ、 カオリ ン、 タルク , シリカゲルおよ び珪藻土を使用し、 それぞれ 241.3g用い、 攪拌を 2時間と し た以外は製造例 1 7と全く 同様に処理して、 銀の付着量がそ れぞれ 5. 0 %の抗菌性組成物を得た。
製造例 2 1
アルミナ分散液を用いた以外は製造例 5と同様に処理して 銅の付着量が 1 1 . 9 %の抗菌性組成物を得た。
製造例 22— 24
担体と してゼォライ ト、 カオリ 、 タルク、 シリカゲルお よび珪藻土粉末をそれぞれ 166. lg用い、 攪拌時間を 2時間と した以 は製造例 2 1 と同様に処理して銅の付着量が 5 . 0 %の抗菌性組成物を得た。
使用例 1 5
平均粒径 0. 5 のアルミナ粒子を担体と し、 銀を 5 %付 着させた抗菌性組成物を用いたこ と、 (A) に対して 1 . 0、 0 . 5 、 0 . 1 %となる よ う に添加混合したこ と以外は、 使用例 1 と同様にして抗菌性を調べた結果を第 9表に示す。 この結果 0 . 7 %以上添加するこ とが好ま しいこ とが判明し た。
使用例 1 6
担体を平均粒径 0. 5 のカオリ ン粒子と した抗菌性組成 物を用いた以外は使用例 1 5 と同様に処理して抗菌性を調べ た結果を第 9表に示す。 この結果 0 . 8 %以上添加すること が好ま しいことが判明した。
使用例 1 7
担体を平均粒径 0 . 5 のアルミナと し、 銅を 1 1 . 9 % 付着させた抗菌性組成物を用いたこと以外は使用例 1 5 と同 様に処理して抗菌性を調べた結果を第 1 0表に示す。 この結 果 0 . 5 %以上添加するこ とが好ま しいことが判明した。 使用例 1 8
担体を平均粒径 0 . 5 /imのカオリ ン粒子と し、 銅を 5 %付 着させた抗菌性組成物を用いたこ と以外は使用例 1 5 と同様 に処理して抗菌性を調べた結果を第 1 0表に示す。 この結果 0 . 8 %以上添加することが好ま しいことが判明した。
使用例 1 9
担体と して平均粒径 0 . 5 のゼオライ ト とアルミナを用 い、 銀 5 %、 銅 5 %をそれぞれ付着させた抗菌性組成物を用 いたこと以外は、 使用例 1 5 と同様に処理して抗菌性を調べ た結果を第 1 1表に示す。 この結果 0 . 5 %以上添加するこ とが好ま しいこ とが判明した。
使用例 2 0
担体と して平均粒径 0 . 5 /£itiのカオリンと珪藻土を用い、 銀 5 %、 銅 5 %をそれぞれ付着させた抗菌性組成物を用いた こと以外は、 使用例 1 5 と同様に処理して抗菌性を調べた結 果を第 1 1表に示す。 この結果 0 . 6 %以上添加するこ とが 好ま しいこ とが判明した。 使用例 2 1
担体と して平均粒径 0 . 5 /imのタルク と シリカゲルを用 い、 銀 5 %、 銅 5 %をそれぞれ付着させた抗菌性組成物を用 いたこ と以外は、 使用例 1 5と同様に処理して抗菌性を調べ た結果を第 1 2表に示す。 この結果 0 . 5 %以上添加するこ とが好ま しいこ とが判明した。
使用例 2 2
担体と して平均粒径 0. 5 のシリカゲルを用いた抗菌性 組成物を使用したこと以外は、 使用例 1 5と同様に処理して 抗菌性を調べた結果を第 1 3表に示す。
Figure imgf000031_0001
第 9 表
Figure imgf000032_0001
第 11 表 抗菌性物質 Ag 5 % Ag5 % Ag 5 % Ag 5 % Ag 5 % Ag 5 % 種類 + Cu 5 % + Cu 5 % + Cu 5 % + Cu 5 % + Cu 5 % + Cu 5 % 被検菌 添加 i
1.0 0.5 0.1 1.2 0.6 0,2 洗濯回数
K 1 ebs i e 11 a 0 98.5%
pneumoniae 30 94.6% 19.1% 98.6% 19.3% 備 考 使用例 使用例 対 照 使用例 使用洌 対 照
(19) (19) (20) (20) o
第 12 表 抗菌性物資 Ag5 % Ag5 % Ag5 %
種類 + Cu 5 % + Cu 5 % + Cu 5 %
被検菌 添力 D量
1.0 0.5 0.2
洗濯回数
K 1 ebs i e 1 I a 0 98.8% 21.3%
pneumoniae 30 97.6% 97.2%
備 考 使用例 使用例 対 照
(21) (21)
o 第 13 表 被 検 菌 Kl"siel 1 Staphylococcus Proteus Pseudomonus pneumoniae aureus vulgaris aer eg i nosa 菌滅少率 98.9 90.3 97.8 96.2 ( % )
Figure imgf000034_0001
製造例 2 5
担体と して平均粒径 0.7 m の硫酸バリウムを使用したこ と以外は製造例 1 と同様にして、 銀付着量 16.3%の抗菌性組 成物を得た。
製造例 2 6 — 2 8
硫酸バリウム粉末を 130g, 325g, 680gを用いて、 攪拌を 2 時間と した以外は製造例 2 5 と同様にして銀の付着量がそれ ぞれ 8.9%,3.8%,1.9%の抗菌性組成物を得た。
製造例 2 9
硫酸バリ ウム分散液を用いた以外は製造例 5 と同様に処理 して銅の付着量が 11.9%の抗菌性組成物を得た。
製造例 3 0 — 3 2
抗菌性金属と して銅を用いた以外は製造例 2 6 — 2 8 と同 様に処理して銅の付着量がそれぞれ 6.3% ,2.6% ,1.3%の抗 菌性組成物を得た。
使用例 2 3
製造例 2 5による抗菌性組成物を用いた以外は使用例 1 と 同様にして抗菌性を調べた結果を第 1 4表に示す。 この結 果 3.0%以上添加することが好ま しいことが判明した。
使用例 2 4
"製造例 2 5による抗菌性組成物を用いた以外は使用例 2 と 同様にして抗菌性を調べた結果を第 1 4表に示す。 この結 果 0.2%以上添加することが好ま しいことが判明した。
使用例 2 5
製造例 2 5による抗菌性組成物を用いた以外は使用例 3 と 同様にして抗菌性を調べた結果を第 1 5表に示す。 この場合 - 3 - も 3 .0%以上の添加が好ま しい。
使用例 2 6
製造例 2 5による抗菌性組成物を用いた以外は使用例 4 と 同様にして抗菌性を調べた結果を第 1 5表に示す。 この場合 も 0 .2%以上の添加が好ま しい。
使用例 2 7
製造例 2 5による抗菌性組成物を用いた以外は使用例 5 と 同様にして抗菌性を調べた結果を第 1 6表に示す。 この場合 も 3 .0%以上の添加が好ま しい。
使用例 2 8
製造例 2 5による抗菌性組成物を用いた以外は使用例 6 と 同様にして抗菌性を調べた結果を第 1 6表に示す。 この場合 も 0 .2%以上の添加が好ま しい。
使用例 2 9
製造例 2 5による抗菌性組成物を用いた以外は使用例 7 と 同様にして抗菌性を調べた結果を第 1 7表に示す。
Figure imgf000036_0001
第 14 表
Figure imgf000037_0001
第 16 表
Figure imgf000038_0002
第 17 表
Figure imgf000038_0003
Figure imgf000038_0001
(!) 次に、 本発明による導電性組成物の製造例及び使用例に よ り 、 本発明を更に詳細に説明する。
尚、 下記において言及する%及び部は、 別段の定めがない 限り重量基準によるものである。
製造例 3 3
(1) 下記の 3種類の液を調製した。
(A) 担体微粒子分散液
担体微粒子 100 gを純水 500 ^に分散させたもの。
(B) 銀めつき液
硝酸銀 68.5 gを純水に溶解して 1,000 ττώと した後に水酸 化アンモニゥムを添加して ΡΗを 1 1 に調整したもの。
(C) 銀めつき用還元液
酒石酸カリウムナト リウム ( 4水和物) 220 gを純水に よ り溶解して 500 7?ώとなし、 液温を 3 0 に保ったもの。 (2) 操作
担体微粒子と して酸化チタン (平均粒径 1.5 u m ) を 用 い、 上記の分散液(A) に銀めつき液(B) を添加して混合し、 液温を 3 0でで攪拌しながら上記の銀めつき用還元液(C) を 添加して攪拌を続けることによ り銀を完全に還元させ、 次い で更に 1時間撹拌を-継続した,
その後に攪拌を中止し、 Nix 5 Cろ紙を用いて吸引ろ過し、 純水で充分に洗浄し、 8 0 Cの空気乾燥機内で 1 2時間乾燥 するこ とによ り所望の導電性組成物を得た。 この導電性組成 物における銀の付着状態を E P M Aにて観察した処、 酸化チ タン粉末の表面に銀が均斉に付着しているこ とが判明した。 化学分析によれば銀の付着置は 30.1%であった。 製造例 3 4
銀めつき液中の硝酸銀溶解量を 159.1 gと し、 銀めつ き用 還元液中の酒石酸カリウムナト リ ウム ( 4水和物) 量を 500 g と したこ と以外は製造例 3 3 と全く 同様にして導電性組成 物を得た。
この導電性組成物における銀の付着状態を E P Aにて観察 した処、 酸化チタン粉末の表面に銀が均斉に付着しているこ とが判明した。 化学分析によれば銀の付着量は 50.1%であつ た。
製造例 3 5
担体微粒子と して酸化アルミニウム (平均粒径 .5 m ) を 用いたこと以外は製造例 3 3 と同様にして導電性組成物を得 た。
この導電性組成物における銀の付着状態を E P MAにて観 察した処、 酸化アルミニウム粉末の表面に銀が均斉に付着し ていることが判明した。 化学分析によれば銀の付着量は 30.2 %であった。
製造例 3 6
担体微粒子と して酸化アルミニウムを用いたこ と以外は製 造例 34 と同様にして導電性組成物を得た。
この導電性組成物における銀の付着状態を E P M Aにて観 察した処、 酸化アルミニウム粉末の表面に銀が均斉に付着し ていることが判明した。 化学分析によれば銀の付着量は 50.0 %であった。
製造例 3 7
担体微粒子と して硫酸バリウム (平均粒径 1.5 m ) を用 いたこと以外は製造例 3 4 と全く 同様にして導電性組成物を 得た。
この導電性組成物における銀の付着状態を E P MAにて観 察した処、 硫酸バリウム粉末の表面に銀が均斉に付着してい るこ とが判明した。 化学分析によれば銀の付着量は 30.0%で あった。
製造例 3 8
担体微粒子と して前記の硫酸バリウムを用いたこ と以外は 製造例 3 5 と同様にして導電性組成物を得た。
この導電性組成物における銀の付着状態を E P M Aにて観 察した処、 硫酸バリウム粉末の表面に銀が均斉に付着してい るこ とが判明した。 化学分析によれば銀の付着量は 50.2%で あった。
製造例 3 9
担体微粒子と して炭酸カルシウム (平均粒径 1.5 M m ) を 用いたこと以外は製造例 3 4 と全く同様にして導電性組成物 を得た。
この導電性組成物における銀の付着状態を E P M Aにて観 察した処、 炭酸カルシウム粉末の表面に銀が均斉に付着して いる ことが判明した。 化学分析によれば銀の付着量は 30.1% であった。
製造例 4 0
担体微粒子と して硫酸カルシウムを用いたこと以外は製造 例 3 5 と全く同様にして導電性組成物を得た。
この導電性組成物における銀の付着状態を E P M Aにて観 察した処、 炭酸カルシウム粉末の表面に銀が均斉に付着して - - いる ことが判明した。 化学分析によれば銀の付着量は 50.1% であった。
製造例 4 1
(1) 次の銅めつき液及び銅めつき用還元液を調製した。
(Β' )銅めつき液
硝酸銅 ( 5水和物) 173.0 g 、 酒石酸カ リウムナト リウ ム ( 4水和物) 350 g及び水酸化ナ ト リウム 100 gを純水 によ り溶解して 2, 000 となしたもの。
( )銅めつき用還元液
37%ホルムアルデヒ ド溶液 750 Ώ&であって、 液温 3 0 °C に保たれたもの。
(2) 操作
担体微粒子と して酸化チタンを用い、 製造例 3 4 と 同様 に、 調製した分散液(A) に銅めつ き液(Β' )を添加して混合 し、 液温を 3 0 °Cで撹拌しながら上記の銅めつき用還元液 ( )を添加して攪拌を続ける こ と によ り銅を完全に還元さ せ、 次いで更に 1時間攪拌を維続した。
その後に攪袢を中止し、 Ν 5 Cのろ紙を用いて吸引ろ過 し、 純水で充分に洗浄し、 8 0 °Cの空気乾燥機内で 1 2時間 乾燥することによ り所望の導電性組成物を得た。 この導電性 組成物における銅の付着状態を E P M Aにて観察した処、 酸 化チタン粉末の表面に銅が均斉に付着しているこ とが判明し た。 化学分析によれば銅の付着量は 30.3%であつた。
製造例 4 2
銅めつき液中の硫酸銅溶解量を 401.1 g と し、 銅めつき 用還元液中の酒石酸カ リ ウムナト リ ウム ( 4水和物) 量を 1,100 g と したこと以外は製造例 4 1 と同様にして導電性組 成物を得た。
この導電性組成物における銅の付着状態を E P MAにて観 察した処、 酸化チタン粉末の表面に銅が均斉に付着している こ とが判明した。 化学分析によれば銅の付着量は 50.2%であ つた。
製造例 4 3
担体微粒子と して酸化アルミニウムを用いたこ と以外は製 造例 4 1 と同様にして導電性組成物を得た。
この導電性組成物における銅の付着状態を E P M Aにて 観察した処、 酸化アルミニウム粉末の表面に銅が均斉に付着 している こ とが判明した。 化学分析によれば銅の付着量は 30.1 %であった。
製造例 4 4
担体微粒子と して酸化アルミニウムを用たこと以外は製造 例 4 2と全く 同様にして導電性組成物を得た。
この導電性組成物における銅の付着状態を E P MAにて観 察した処、 酸化アルミニウム粉末の表面に銅が均斉に付着し ているこ とが判明した。 化学分析によれば銀の付着量は 50.3 %であつ ·た。r
製造例 4 5
担体微粒子と して硫酸バリウムを用いたこ と以外は製造例 4 1 と同様にして導電性組成物を得た。
この導電性組成物における銅の付着状態を E P MAにて観 察した処、 硫酸バリウム粉末の表面に銅が均斉に付着してい るこ とが判明した。 化学分析によれば銅の付着量は 30.4%で あった。
製造例 4 6
担体微粒子と して硫酸バリウムを用いたこ と以外は製造例 4 2 と同様にして導電性組成物を得た。
この導電性組成物における銅の付着状態を E P M Aにて観 察した処、 硫酸バリウム粉末の表面に銅が均斉に付着してい るこ とが判明した。 化学分析によれば銅の付着量は 50.1%で めった。
製造例 4 7
担体微粒子と して炭酸カルシウムを用いたこと以外は製造 例 4 1 と同様にして導電性組成物を得た。
この導電性組成物における銅の付着状態を E P M Aにて観 察した処、 炭酸カルシウム粉末の表面'に銅が均斉に付着して いることが判明した。 化学分析によれば銅の付着量は 30.1% であった。
製造例 4 8
担体微粒子と して炭酸カルシウムを用いたこと以外は製造 例 4 2 と同様にして導電性組成物を得た。
この導電性組成物における銅の付着状態を E P MAにて観 察した処、 炭酸カルシウム粉末の表面に銅が均斉に付着して いる こ とが判明した。 化学分析によれば銅の付着量は 50.3% あった。
製造例 4 9
製造例 4 1で得られた、 銅 30.3 wt %付着ざせた酸化チタ ン微粒子 113.9 gに製造例 3 3 と同様の方法で、 銀めつき液 の硝酸銀を 20 g と して、 銀めつき用還元液の酒石酸カリ ウム - 3 - ナト リウム ( 4水和物) を 100 g と して操作したところ、 暗 銀灰色の微粒子が得られた。
この微粒子の化学分析によ り銅および銀の含有率を調べた ところ、 銅は 27%、 銀は 10%であった。
製造例 5 0
製造例 4 5で得られた、 銅 30.4 wt %付着させた硫酸バリ ゥム微粒子 101.3 gに製造例 3 3 と同様の方法で、 銀めつき 液の硝酸銀を 40g と して、 銀めつ き用還元液の酒石酸力 リウ ムナ ト リウム ( 4水和物) を 200 gと して操作したところ、 銀灰色の微粒子が得られた。
この微粒子の化学分析によ り銅および銀の含有率を調べた と ころ、 銅は 24.3%、 銀は 20.0%であった。
製造例 5 1
製造例 4 9で得られた、 銅 27 wt %、 銀 10 wt %を付着させ た酸化チタン微粒子 126.6 gを純水 500 中に分散させ、 つ いで、 塩化金酸 26.7 g を純水 に溶解しアンモニア水を 加えて PHを 1 1 に調整した溶液を加えて約 60°Cに加温しなが ら、 攪拌下でヒ ドラジンヒ ドラー ド 5 %水溶液 200 ^を加え て反応させたと ころ、 褐色の微粒子が得られた。
この微粒子の化学分析によ り銅、 銀および金の含有率を調 ベたところ、 銅 24.3%、 銀 9.0 %、 金 9.9 %であった。
製造例 5 2
酸化チタン微粒子 (平均粒径 1.5 μ. m ) 200 gを蒸着装置 のチャンバ一内にセッ ト し、 蒸着源 (アルミニウム切片) を タングステン製バスケッ トに乗せて上記のチャンバ一内にセ ッ ト し、 該チャンバ一内を減圧し、 ( 2 X 1 0— 4 Torr ) 、 - u一
次いで上記の酸化チタン微粒子に振動を与えながら上記のタ ングステンバスケッ ト を加熟し上記の蒸着源金属が 50 g蒸散 した時点で蒸着処理を終了したと ころ灰白色の微粒子が得ら れた。
この微粒子の化学分析によ りアルミニウムの含有率を調べ たと ころ、 アルミニウム 22%であった。
上記で得たアルミニゥム付着酸化チタン微粒子を 65g宛 2 回採取し、 それぞれ純水 500 に分散させ、 一方には実施例 4 9 と同様に銀を付着させ、 他方には実施例 5 1 と同様の方 法で塩化金酸を 13.3g と し、 ヒ ドラジンヒ ドラー ト 5%水溶 液を 100 ヒ した以外は同様にして金を付着させた。
上記で得た、 銀を付着させた微粒子の銀とアルミニウムの含 有率は、 銀 16.3%、 アルミニウム 18.4%であった。
また、 金を付着させた微粒子の とアルミニウムの含有率 は、 金 10.6%、 アルミニウム 19.7%であった。
尚、 製造例 3 3〜 5 2にて調製された微粒子の比抵抗は 0.8 Ω cn!〜 1 · 2 Ω cmの範囲内であった。
使用例 3 0
製造例 3 3〜 5 2にて調製した比抵抗 0.8 Ωαπ〜: 1·2 Ω cm の導電性組成物 50%又は 70%を分子量約 17,000、 融点 215 °C のナイ ロン 26に混練して調製された導電性ポリマーを芯と し、 一方、 上記と同様のナイロン 2 6ポリマーを鞘と して複 合比 1 : 1 0で複合し、 直径 0.3 のオリフ ィ スから 280 °C で押し出し、 1,000 m "Mの速度で卷き取った。
得られたナイ ロン繊維をホッ トピンを用い 3倍に延伸し、 20デニールのナイ ロンフ ィ ラメン トを得た。 得られたフ ィ ラ メン トの比抵抗は共に、 102 Q cm以下の優れた比抵抗を有し ていた。
参考例 1
製造例 3 3 と 同様の方法にて 10%の銀被膜を形成せしめた 酸化チタン微粒子 (比抵抗 5 X 105 Ω αη ) を 70%混練したナ ィ ロン 26を芯となした以外は使用例 3 0 と同様にして製造さ れたフ ィ ラメ ン トの比抵抗は 106 Ω cmであり 、 好ま しい導電 性を示すものとは云えなかった。
使用例 3 1
平均粒径 l .Oiiin の酸化チタン微粒子を用い、 製造例 4 9 と 同様の方法で製造した導電性組成物 7 5 %を、 分子置約 50,000. 融点 1 ◦ 2での低密度ボリエチレンに混線して導電 性重合体組成物を得た。 次いで、 この導電性重合体組成物と 分子量約 17,000、 融点 2 1 5 eCの イ ロン 6 とを体積比 1 : 1 0でサイ ドバイサイ ド型に複合し、 以下使用例 3 0 と同様 に紡糸、 延伸して導電性複合フ ィ ラメ ン トを製造した。 尚、 1 kg量卷取った場合に、 延伸工程における トラべラーの摩耗 は僅かで、 糸切れも 5〜 1 5 %であった (これは導電性カー ボンブラック含有フ ィ ラメ ントの場合と同じ程度であり 、 一 方金属酸化物のコーティ ングを施した酸化チタン含有フ イ ラ メ ン トの場合にはトラべラーの摩耗が著しく 、 糸切れも 7 0 〜 1 0 0 %であった) 。
得られた導電性複合フ ィ ラメ ン トは通常のナイ ロンフ イ ラ メン トと同レベルの糸性能を有し、 かつ導電性成分の比抵抗 は 1 0〜: L 0 0 Ω cmであった。
次に、 導電性複合フ ィ ラメ ントを 2600d/140fのナイ ロン糸 と合糸し (合糸率 1 : 5 ) 、 卷縮加工糸を得た。 次いで、 こ の卷縮加工糸を 1 0条おき にタフテ ィ ングし、 その間には 2600d/140fのナイ ロン卷縮加工糸を配してループパイルカー ペッ トを製造した。 このカーペッ トを精練し染色 (ベージュ 色) した後にバッキングを施し、 カーペッ トの上を皮靴で歩 行 ( 2 5で、 2 0 %RH ) したと きの人体の帯電圧を測定し た結果、 — 2,000 〜一 2,500Vであ り、 優れた制電性能を示し た。
比較例 1
酸化チタン微粒子の表面に酸化アンチモン 1 0 %含有酸化 錫をコーテ ィ ングして、 導電性金属酸化物の含有率約 1 5 %、 平均粒径 0.25 であり 、 200 kgZcm2で圧縮したときの比 抵抗 4 Ω cmの導電性粒子を製造した。
次いで、 芯鞘型に複合する点以外は使用例 3 1 と同様にし て、 導電性複合フ ィ ラメ ン トを製造し (導電性成分の比抵抗 50〜 500 Ω cm ) 、 ループパイルカーペッ トを製造した。 このカーぺッ トで人体帯電圧を測定した結果, — 4,000 〜 一 6,000Vであり 、 また使用例と同じレベルの人体帯電圧を賦 与するには、 導電性複合繊維を 2条間隔で配する必要があつ た。
I ) 次に本発明の抗菌性成形物の製造例 (実施例) によって 本発明を具体的に説明する 。 尚、 例中 「%」 と あるのは 「重量%」 を意味する。
実施例 1〜 6及び比較例 2
アジピン酸と ジエチレングリコールとの重縮合反応物 (75 eCにおける粘度が 800CP 、 分子量 16, 000) 55% , 銀又は銅で - 7 - 表面コーテ ィ ングした硫酸バリウム粉末 ( コーテ ィ ング量 5.0 、 平均粒径 0.9/iin ) 45%とを混練して液状混合物を調製 した。 次いで重合度 180 のナイ ロン 6の溶融液に第 1 8表記 載の配合量となるよ う に液状混合物を溶融紡糸ヘッ ドから圧 入して配合し、 1200m Z分で 224 デニール 24フ ィ ラメ ント (未延伸糸、 卷量 6 kg ) を紡糸した。 次いで 3.2 倍の延伸仮 撚を施した後、 丸編を作成した。 この編物を 5 cm角の大きさ に切り、 抗菌テストを行った。
[抗菌テスト条件 ]
編物を 5 cm角の大き さ二き り黄色ブドウ球菌又は肺炎棹菌 の緩衝液を注加し、 密閉容器中で 150 回ノ分 1 時間振盪後の 生菌数を計測し、 注加懸濁液の菌数に対する減少率を求め た。
[紡糸操業性の判定 ]
実施例記載の条件で製造した載の濾過圧、 単糸切れ, 糸切れ 等を総合して 「◎」 、 「〇」 、 「△」 、 「 X 」 の 4段階で評 価した。
又、 着色具合の判定は目視によ り 4段階でおこなった。 第 1 8表から明らかなよ う に、 実施例品は比較例品に比べ て優れた抗菌性能を有しているこ とがわかる 。
Figure imgf000049_0001
一 8 -
^ 1 ^
Figure imgf000050_0001
実施例 7
実施例 3で得られた繊維を丸編にして家庭用洗濯機で 0 , 5 , 1 0, 2 0回洗濯後の抗菌テストを行った。
第 1 9表に示すごと く 、 2 0回の洗濯後でも良好な抗菌効 果を示した。
第 1 9表 洗濯回数 菌 減 少 率 (% ) (回) 黄色ブドゥ球菌 :肺炎棹菌
0 > 9 9 > 9 9
5 > 9 9 9 8
1 0 9 7 9 7
2 0 9 7 9 6 [洗濯条件]
市販小型電気洗濯機使用
中 性 洗 剤 1 gハ
浴 比 1 : 1 0 0
温度 X時間 4 0 °C X 5分間
水 洗 1 ◦分間
乾 燥 8 0 °C X 1 時間
実施例 8〜 1 2並びに比較例 3及び 4
アク リロニト リル ( A N ) メチルァク リ レー ト ( M A ) /メ タク リルスルホン酸ソーダ ( S M A S ) =91.2/8.0 / 0.8 からなるアク リル系重合体のジメチルホルムアミ ド ( D M F 〉 溶液を準備した。
そ してアク リル系共重合体に対して抗菌性を有する金属を 第 2 0表記载の量で表面コーティ ングした硫酸バリウム (平 均粒径 0.9/im ) をホモ ミキサーで D M Fに分散した後、 上記 ァク リル系共重合体溶液に添加しホモ ミキサーで充分攪拌し 紡糸原液と した。
上記原液を 2 0で、 6 0 %D M F水溶液注中に紡出し脱溶 媒をさせながら延伸水洗後、 油剤を付与して乾燥緻密化を行 つた。 この繊維にク リ ンプを付与後、 1 2 0 °Cにて湿熱処理 を行った。 得られた繊維をカツ ドし紡績した後、 丸編みを作 製した。 この編物を 1.5 g (約 3〜 5 cm角の布) の大き さに 切り 、 抗菌テス トを行った。
尚、 比較例と して前記記載の添加量と異なる量を示すァク リロ二 ト リル系共重合体に添加したものを示す。
第 2 0表から明らかなよ うに、 実施例品は比較例品に比べ て優れた抗菌性能を有しているこ とが分かる
第 20 表 ηιコ ィ 厘を表面 菌 少率(%〉 テス卜 ングした金属 コーティング
一千
グ置%) ゥムの添加量 操業性 JftSフ 卜ヮ:^困
\ /0 実施例 8 雜 (3.0) 1 0 88 9 3 i) 9 銀 (5.0) 0.5 ◎ ◎ 87 89
» 10 銀 (10.0) 0.5 ◎ ◎ 9 5 1
" 11 銅 (7.0) 2.0 〇 ◎ > 9 9 > 9 9 i) 12 銀 (15.0) 2.0 〇 〇 > 9 9 > 9 9 比較例 3 0 2.0 〇 ◎ 0 0
)' 4 銀 (3.0) 12.0 X
Figure imgf000052_0001
実施例 1 3
A N Z塩化ビニ リデン ( V C 2 ) Zァリルスルホン酸 ソーダ ( S A S ) - 57Z40Z3からなるアク リル系共重 合体の D M F溶液を準備した。 そのアク リル系共重合体に対 して銀を 5 %表面コーティ ングした硫酸バリ ウム 1.0%をサ ンドグライ ンダーで処理して均一に分散させた後、 ァク リル 系共重合体溶液に添加し、 充分撹拌して紡糸原液と した。 上 記紡糸原液を 2 5で、 5 5 % D M F水溶液中に紡出し、 脱溶 媒を させながら延伸水洗後、 油剤を付与して乾燥緻密化を 行った。 この繊維にク リ ンプを付与後、 1 1 5でにて湿熱処 理を ίτつた。
得られた繊維を丸編と し、 次いで実施例 7 と同様にして家 庭用洗濯機にて 0, 5 , 1 0, 2 0回洗濯した後の抗菌テス トを行った。
第 2 1表に示すごと く 、 2 0回の洗濯後でも良好な抗菌効 杲を示した。 1 洗濯回数 菌 減 少 率 (% )
(回) 黄色ブドウ球菌 肺 炎 棹 菌
0 > 9 9 > 9 9
5 > 9 9 9 8
1 0 9 7 9 7
2 0 9 6 9 8 実施例 1 4
アジピン酸 4 7 2部と ジエチレングリ コール 1 6 0部、 2—ェチルへキシルアルコール 1 6 8部との重縮合反応物 (酸価 1.0、 粘度 1000 c p 、 分子量 1000) 5 5 %、 銀で表面 コーテ ィ ングした硫酸バリ ウム ( コーティ ング量 5.0%、 平均粒径 0.9 u m ) 4 5 %とを混練して液状混合物を調製し た。
次いで、 直径 0.40mmの吐出孔が 3 mm間隔で 2列に合計 240 ケ並んだ吐出孔列とその両側に合計 250ケ並んだ加熱ガスの 噴射孔列を有する口金、 及び口金面の下方 20cmに設けられか つ横方向に往復しながら進行する繊維フ リ ースの捕集スク リーンを具備したスパンボン ド製造装置を用い、 極限粘度 0.65のポリエチレンテレフタレー トの溶融ポリマー 9 6部に 上記液状混合物 4部を圧入して配合して、 不織布シート (単 糸繊度約 1 d、 幅 140m 、 目付 lOOgZm2 ) を製造した。
不織布シートを 4枚重ねて 5 cm角の大きさに切り、 抗菌テ ス トを行ったと ころ、 優れた抗菌性能を有していた。
実施例 1 5
銀で表面コーティ ングした炭酸カルシウム (コーティ ング 量 3.0%、 平均粒径 1.3 Tm ) 4部を低密度ポリエチレン 9 6部にバンバリ一型ミキサーを用いて常法によ り混練し、 イ ンフ レーシ ョ ン法によ り厚さ 40 / m のフ ィ ルムを製造し た。
得られたフ ィ ルムを 5 cm角の大きさに切り 、 抗菌テス トを 行ったところ、 優れた抗菌性能を有しており 、 例えば食品包 装に好適である。 実施例 1 6〜 2 及び比較例 5
抗菌性金属である銀又は銅の担体と して硫酸バリウム粉末 の代りに二酸化チタン粉末 (平均粒径 1 .0 / m ) を用いた以 外は実施例 1 と同じ条件でフ ィ ラメン トを作成し、 丸鎘とな して抗菌テストを行った。
結果は下記の通りであり 、 実施例品は比較例品よ り も優れ た抗菌性能を示した。 A 2 ¾fe
Figure imgf000055_0001
実施例 2 2
実施例 1 8で得られた丸編について、 実施例 7 と同様に抗 菌テス トを行った。 結果は第 2 3表に示される通りであ り 2 0 回の洗濯後でも良好な抗菌効果を示した。 ^ ^:
Figure imgf000056_0002
実施例 2 3〜 2 7並びに比較例 6及び 7
抗菌性金属である銀の担体と して硫酸バリウム粉末の代り に二酸化チタン粉末 (平均粒径 Ι.θ ί ΐη ) を用いた以外は実 施例 8〜 1 2並びに比較例 3及び 4 と同じ条件でフ イ ラメン トを作成し、 丸編となして抗菌テストを行った。
結果は下記の第 2 4表に示されている通りであ り 、 実施例 品は比較例品よ り も優れた抗菌性能を示した。
Figure imgf000056_0001
第 24 表
表面コーティ 金属を表面 紡 糸 菌減少率(%) テス卜 ングした金属 コーティング
No. (コーティン した二酸化チ 着色
グ量%) タンの添加量 保業性 昔^ 拔茴
( ) 実施例 23 銀 (3.0) 1.0 ◎ .◎ " 84 90 a 24 銀 (5.0) 0.5 ◎ ◎ 88 88
" 25 銀 (10.0) 0.5 ◎ 〇 92 91 a 26 銅 (7.0) 2.0 〇 〇 >99 >99 a 27 銀 (15.0) 2.0 〇 '厶 >99 >99 比較例ら 0 2.0 〇 ◎ 0 0
" 7 銀 (3.0) 12.0 X
Figure imgf000057_0001
実施例 2 8
A N /塩化ビニリデン ( V C ^ 2 ) ァ リルスルホン酸 ソーダ ( S A S ) = 57Z40 3からなるァク リル系共重 合体の D M F溶液を準備した。 このアク リル系共重合体に対 して銀を 5 %表面コーティ ングした二酸化チタン 1.0%をサ ンドグライ ンダ一で処理して均一に分散させた後、 ァク リル 系共重合体溶液に添加し、 充分攪拌して紡糸原液と した。 上 記紡糸原液を 25で、 55%D M F水溶液中に紡出し、 脱溶媒を させながら延伸水洗後、 油剤を付与して乾燥緻密化を行つ た。 この繊維にク リ ンプを付与後、 115でにて湿熟処理を 行った。
得られた繊維を丸編にして実施例 7 と同様に抗菌テス トを 行った。 結果は第 2 5表に示される通りであ り 、 2 0回の洗 濯後でも良好な抗菌効果を示した。 第 2 5 表 洗濯回数 菌 減 少 率 (% )
(回) 黄色ブドウ球菌 炎 If 菌
0 9 8 . 5 > 9 9 , .
5 9 9 - 9 8. 5
1 0 9 5 . 2 9 7
2 0 9 4 . 7 9 8
Figure imgf000058_0001
産業上の利用可能性
本発明による抗菌性又は導電性組成物は、 合成繊維や、 合 成重合体フ イルム等の合成重合体成形品等の製造に適してい る。
尚、 本発明に組成物を利用して抗菌性や導電性を有する成 形品を製造する場合に、 製造工程や設備に格別な変更を加え る必要性はない。

Claims

請求の範囲
(1) 抗菌作用を有する金属及び/又は金属化合物からなるコー ティ ングが無機質微粒子の表面に施されているこ とを特徴と
5 する 、 抗菌性組成物。
(2) 抗菌作用を有する金属が銀、 酸化銀、 塩化銀、 銅、 酸化 銅、 亜鉛、 鉛、 ビスマス、 カ ドミ ウム、 クロム及び水銀から なる群からなる選択された少なく と も一種類のものであるこ とを特徴とする、 請求の範囲 (1)に記載の抗菌性組成物。
0
(3) 無機質微粒子の素材が金属酸化物, 金属塩、 ゼォライ ト、 珪藻土、 マイ力, カオリン、 タルク、 及びシリカゲルからな る群から選択された少なく と も一種類のものであること を特 徴とする、 請求の範囲 (1)に記載の抗菌性組成物。
(4) 抗菌作用を有する金属が金、 銀、 アルミニウム、 錫、 ニッ ぅ ケル、 鉄及びステンレススチールからなる群から選択された 少なく と も一種類のものであ り 、 導電性をも有している こと を特徴とする請求の範囲 (1)に記載の抗菌性組成物。
(5) 平均粒径が 0.1 - 5iim であるこ とを特徴とする、 請求の範 囲 (1)に記載の抗菌性組成物。
0
(6) 抗菌作用を有する金属からなるコーティ ングの付着量が無 機質微粒子に対して 0.1 — 2 0重量%であること を特徴とす る、 請求の範囲 (1)に記載の抗菌性組成物。
(7) 金属酸化物が酸化チタン及び酸化アルミニウムからなる群 から選択された少なく と も一種類のものであるこ とを特徴と5 する 、 請求の範囲 (3)記載の抗菌性組成物
(8) 金属塩が硫酸バリウム、 炭酸カルシウム、 リ トポン及び鉛 白からなる群から選択された少なく と も一種類のものである こと を特徴とする、 請求の範囲 (3)に記載の抗菌性組成物。
(9) 抗菌作用を有する金属が組成物全体に対して少なく と も 2 5重量%付着せしめられている こ と を特徴とする請求の範 囲 (4)に記載の抗菌性組成物。
(10)抗菌作用を有する金属からなる コーティ ングが表面に施さ れている無機質微粒子を含有している合成重合体である こ と を特徴とする、 抗菌性重合体組成物。
(11)抗菌作用を有する金属が銀、 銅、 及び亜鉛からなる群から 選択された少なく と も一種類のものである こ と を特徴とす る、 請求の範囲(10)に記載の抗菌性重合体組成物。
〈12)無機質微粒子の素材が金属酸化物及び金属塩の内の少なく と も一種類のものであるこ とを特徵とする、 請求の範囲(10) に記載の抗菌性組成物。
(13)抗菌作用を有する金属からなる コーティ ングの付着量が無 機質微粒子に対して 0.1 — 2 0重量%であること を特徴とす る 、 請求の範囲(10〉に記載の抗菌性重合体組成物。
(14)抗菌作用を有する金属からなるコーティ ングを表面に有す る無機質微粒子の平均粒径が、 0.1 - 5 mである こと を特徴 とする、 請求の範囲(10)に記載の抗菌性重合体組成物。 .
(15)合成重合体 ·がポリ ア ミ ド 、 ポリ エステル、 ポリ オレフ ィ ン、 ポリウレタ ン及びアク リロニ ト リル系重合体からなる群 から選択された少なく と も一種類のものであるこ とを特徴と する 、 請求の範囲(10)に記載の抗菌性重合体組成物。
(16)金属酸化物が酸化チタン及び酸化アルミニウムからなる群 から選択された少なく と も一種類のものであるこ とを特徴と する、 請求の範囲(12)に記載の抗菌性重合体組成物。
(17)金属塩が硫酸バリウム、 炭酸カルシウム、 リ トボン及び鉛 白からなる群から選択された少なく と も一種類のものである こと を特徴とする、 請求の範囲(12)に記載の抗菌性重合体組 つ 成物。
(18)抗菌作用を有する金属からなるコーティ ングが表面に施さ れている無機質微粒子と分散媒とからなる液状混合物を、 溶 融状態の合成重合体に添加し、 混合した後に成形するこ とを 特徴とする 、 抗菌性成形物の製法。
0
(19)抗菌作用を有する金属からなる コーティ ングを表面に有す る無機質微粒子の平均粒径が 0.1 - 5 /(inであ り且つその含有 量が 0.1 — 2 0重量%になるよ う に合成重合体に添加される こと を特徴とする、 請求の範囲(18)に記載の抗菌性成形物の 製法。
5
(20)成形を溶融紡糸法によ り行い繊維体になすこと を特徴とす る、 請求の範囲(18)に記載の抗菌性成形物の製法。
(21)抗菌作用を有する金属からなるコーティ ングが表面に施さ れている無機質微粒子を合成重合体の溶液に添加し、 混合し た後に成形する こ とを特徴とする抗菌性成形物の製法。
(22)成形を混式紡糸法又は乾式紡糸法によ り行って繊維体にな すこ とを特徴とする、 請求の範囲(21)に記載の抗菌性成形物 の製法。
(23)無機質微粒子の表面に導電性金属からなるコーティ ングが 2 5重量%以上均斉に形成せしめられている こと を特徴とす る導電性組成物。
(24)導電性金属からなるコーティ ングが金、 銀、 銅、 アルミ二 ゥム、 ニッケルからなる群から選択された少なく と も - のものである請求項(23)記載の導電性組成物。
(25)導電性金属からなるコーティ ングがニッケル、 銅及びアル ミニゥムからなる群から選択された金属の下地コーティ ング と金及び銀から選ばれた金属の上地コーティ ングよ りなる請 求の範囲(23)記載の導電性組成物。
(26〉無機質の微粒子が金属酸化物、 硫酸バリウム及び炭酸カル シゥムからなる群から選択された少なく と も一種類のもので ある請求の範囲(23)記載の導電性組成物。
(27)無機質の微粒子の平均粒径が 2 /im以下である請求の範囲
〈23)記載の導電性組成物。
(28)金属酸化物が酸化チタン及び酸化アルミニウムから選択さ れた少なく と も一種類のものである請求の範囲(26)記載の導 電性組成物。
(29)導電性金属からなる コーティ ングが表面に施されている無 機質微粒子と合成重合体からなる こと を特徴とする導電性重 合体組成物。
(30)請求の範囲(29)に記載の導電性重合体組成物を少なく と も 一部の構成部分とすること を特徴とする導電性成形物。
(31)成形物が繊維、 フィ ルム、 塗膜及び射出成形品からなる群 から選択されたものである請求の範囲(30)に記載の導電性成 形物。
(32)請求の範囲(31)に記載の繊維を混用するこ とを特徵とする 繊維製品。
PCT/JP1990/000243 1989-02-28 1990-02-27 Antibacterial or conductive composition and applications thereof WO1990009736A1 (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP1/49238 1989-02-28
JP1/45417 1989-02-28
JP4541789A JPH02225402A (ja) 1989-02-28 1989-02-28 抗菌性組成物
JP4923789A JPH02229209A (ja) 1989-02-28 1989-02-28 抗菌性アクリル系合成繊維及びその製造方法
JP4923889A JPH02229214A (ja) 1989-02-28 1989-02-28 抗菌性合成繊維及びその製造方法
JP1/49237 1989-02-28
JP8700389A JPH02268105A (ja) 1989-04-07 1989-04-07 抗菌性組成物
JP1/87003 1989-04-07
JP8700289A JPH02268104A (ja) 1989-04-07 1989-04-07 抗菌性組成物
JP1/87002 1989-04-07
JP1087001A JPH02268103A (ja) 1989-04-07 1989-04-07 抗菌性組成物
JP1/88571 1989-04-07
JP8857189A JPH02269141A (ja) 1989-04-07 1989-04-07 抗菌性成形物及びその製造方法
JP1/87001 1989-04-07
JP18242689A JPH0347850A (ja) 1989-07-17 1989-07-17 導電性組成物
JP1/182426 1989-07-17

Publications (1)

Publication Number Publication Date
WO1990009736A1 true WO1990009736A1 (en) 1990-09-07

Family

ID=27572331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000243 WO1990009736A1 (en) 1989-02-28 1990-02-27 Antibacterial or conductive composition and applications thereof

Country Status (2)

Country Link
EP (1) EP0427858A4 (ja)
WO (1) WO1990009736A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180585A (en) * 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
US5595750A (en) * 1991-08-09 1997-01-21 E. I. Du Pont De Nemours And Company Antimicrobial particles of silver and barium sulfate or zinc oxide
CN114775097A (zh) * 2022-05-26 2022-07-22 青岛德冠超导材料制造有限公司 永久性防静电抗菌可印染漂洗纤维及其制备方法和用途
CN115023244A (zh) * 2019-12-09 2022-09-06 3M创新有限公司 抗微生物制品

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3942112A1 (de) * 1989-12-20 1991-06-27 Braun Melsungen Ag Medizinische vorrichtung mit einem oligodynamisch wirkenden material
DE4425278A1 (de) * 1994-07-16 1996-01-18 Basf Ag Mischungen enthaltend Silber auf nicht zeolithischen Trägeroxiden
EP0695501B1 (en) * 1994-08-01 2001-05-30 Maruwa KCK Co., Ltd. Metallic bactericidal agent
DE4445881C2 (de) * 1994-12-22 2003-04-17 Gradl Grams Marianne Mittel zur Verhinderung von mikrobiellem Wachstum an Oberflächen
DE59509637D1 (de) * 1994-12-22 2001-10-31 Toni Gradl Verfahren sowie Wirkstoff zur Verhinderung von mikrobiellem Wachstum an Oberflächen sowie Masse zur Oberflächenbeschichtung oder -Veredelung
GB2298149B (en) * 1995-02-14 1999-08-18 Hirayama Setsubi Kk An air conditioner for a clean room
GB9505083D0 (en) 1995-03-14 1995-05-03 Johnson Matthey Plc Improvements in biocidal compositions
JPH0914358A (ja) * 1995-06-29 1997-01-14 Tsubakimoto Chain Co 抗菌性及び防かび性のチェーン
JP4979151B2 (ja) * 1998-02-19 2012-07-18 アスカテック株式会社 抗菌・脱臭材料およびその製造方法
DE19936059A1 (de) 1999-07-30 2001-02-01 J Peter Guggenbichler Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern
IL135487A (en) 2000-04-05 2005-07-25 Cupron Corp Antimicrobial and antiviral polymeric materials and a process for preparing the same
WO2003033596A1 (fr) 2001-10-17 2003-04-24 Kabushiki Kaisha Sangi Particules composites antibacteriennes et composition de resine antibacterienne
US7296690B2 (en) 2002-04-18 2007-11-20 The Cupron Corporation Method and device for inactivating viruses
KR100621452B1 (ko) * 2002-06-05 2006-09-13 도시오 고무로 항혈전성을 갖는 백금함유 세라믹 조성물 및 그것을 함유하는 물품
KR100656169B1 (ko) * 2002-12-23 2006-12-12 삼성전자주식회사 나노 사이즈의 금속 입자를 이용하여 물체의 표면에항균성을 부여하는 방법
BRPI0409420A (pt) 2003-04-18 2006-04-25 Merck Patent Gmbh pigmentos antimicrobianos
US7364756B2 (en) 2003-08-28 2008-04-29 The Cuprin Corporation Anti-virus hydrophilic polymeric material
US7480393B2 (en) 2003-11-19 2009-01-20 Digimarc Corporation Optimized digital watermarking functions for streaming data
WO2006051529A1 (en) 2004-11-09 2006-05-18 The Cupron Corporation Methods and materials for skin care
EP1879457A1 (en) * 2005-05-10 2008-01-23 Ciba Specialty Chemicals Holding, Inc. Antimicrobial porous silicon oxide particles
GB0512194D0 (en) * 2005-06-16 2005-07-20 Ici Plc Anti-microbial coating compositions
US20070243263A1 (en) * 2006-04-14 2007-10-18 Agion Technologies, Inc. Antiviral Methods
GB2472126B (en) * 2009-07-21 2011-08-03 Aidance Skincare & Topical Solutions Llc Topical Formulations Containing Silver (II) Oxide and Zinc Oxide
DE102012103903A1 (de) 2012-05-03 2013-11-07 Eckart Gmbh Plättchenförmiges Effektpigment umfassend eine kupferhaltige Beschichtung, Verfahren zu dessen Herstellung und Verwendung desselben
WO2015057783A1 (en) 2013-10-17 2015-04-23 Rudinger Richard F Post-extruded polymeric man-made synthetic fiber with polytetrafluoroethylene (ptfe)
US9469923B2 (en) 2013-10-17 2016-10-18 Richard F. Rudinger Post-extruded polymeric man-made synthetic fiber with copper
CN107596437A (zh) * 2017-10-24 2018-01-19 无锡微色谱生物科技有限公司 一种制备含纳米氯化银颗粒的水凝胶敷料的方法
CN109021399A (zh) * 2018-08-23 2018-12-18 安徽同力新材料有限公司 一种纤维增强型塑料及其制备方法
CN109206745A (zh) * 2018-08-23 2019-01-15 安徽同力新材料有限公司 一种用于制作玩具的塑料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133235A (ja) * 1983-01-21 1984-07-31 Kanebo Ltd 殺菌性ポリマー組成物及びその製造法
JPS6388109A (ja) * 1986-07-03 1988-04-19 ジヨンソン マツセイ パブリツク リミテイド カンパニ− 抗菌性組成物
JPH0122365B2 (ja) * 1980-06-14 1989-04-26 Kanebo Ltd

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116234A (en) * 1974-07-31 1976-02-09 Tokyo Shibaura Electric Co Kotaibutsushitsuni gin oyobi enkaginofuchakusuruhoho
CH644087A5 (en) * 1978-10-09 1984-07-13 Kurt Gautschi Process and agent for maintaining the sterility of water and aqueous solutions
CA1158816A (en) * 1980-06-06 1983-12-20 Kazuo Okamoto Conductive composite filaments and methods for producing said composite filaments
US4608247A (en) * 1984-10-24 1986-08-26 George J. LeMire Composition for bactericidal treatment of water
DE3587286T2 (de) * 1984-12-28 1993-09-23 Johnson Matthey Plc Antimikrobielle zusammensetzungen.
JPS61225270A (ja) * 1985-03-27 1986-10-07 ノ−ウツド・インダストリ−ズ・インコ−ポレイテツド 導電接着組成物とその積層体
JPS6243459A (ja) * 1985-08-20 1987-02-25 Youbea Le-Ron Kogyo Kk 導電性摺動材組成物
US4711814A (en) * 1986-06-19 1987-12-08 Teichmann Robert J Nickel particle plating system
JP2686638B2 (ja) * 1988-03-17 1997-12-08 石原産業株式会社 抗菌性粉末及びその製造方法
JPH01268764A (ja) * 1988-04-20 1989-10-26 Ishihara Sangyo Kaisha Ltd 抗菌性顔料粉末
US4857233A (en) * 1988-05-26 1989-08-15 Potters Industries, Inc. Nickel particle plating system
US5207950A (en) * 1989-03-16 1993-05-04 Ercon, Inc. Polymer composition containing chlorided conductive particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0122365B2 (ja) * 1980-06-14 1989-04-26 Kanebo Ltd
JPS59133235A (ja) * 1983-01-21 1984-07-31 Kanebo Ltd 殺菌性ポリマー組成物及びその製造法
JPS6388109A (ja) * 1986-07-03 1988-04-19 ジヨンソン マツセイ パブリツク リミテイド カンパニ− 抗菌性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0427858A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180585A (en) * 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
US5595750A (en) * 1991-08-09 1997-01-21 E. I. Du Pont De Nemours And Company Antimicrobial particles of silver and barium sulfate or zinc oxide
CN115023244A (zh) * 2019-12-09 2022-09-06 3M创新有限公司 抗微生物制品
CN114775097A (zh) * 2022-05-26 2022-07-22 青岛德冠超导材料制造有限公司 永久性防静电抗菌可印染漂洗纤维及其制备方法和用途

Also Published As

Publication number Publication date
EP0427858A4 (en) 1993-03-10
EP0427858A1 (en) 1991-05-22

Similar Documents

Publication Publication Date Title
WO1990009736A1 (en) Antibacterial or conductive composition and applications thereof
US5047448A (en) Antimicrobial-shaped article and a process for producing the same
EP1564315B1 (en) Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
KR100727086B1 (ko) 기능성 고분자 소재 및 이의 제조 방법
US11758909B2 (en) Antimicrobial nonwoven polyamides with zinc content
CN100363541C (zh) 纳米纤维集合体、聚合物合金纤维、混合纤维、纤维结构体以及它们的制造方法
CN109183181A (zh) 一种具有抗菌功效的石墨烯导电聚酯纤维
JPH02225402A (ja) 抗菌性組成物
WO2007032001A2 (en) Method for preparation of silver-polymer composites by sonochemical deposition
JPH0384066A (ja) 抗菌作用を有する樹脂組成物およびその製造方法
JP3392554B2 (ja) 抗菌性繊維状物
JP2945264B2 (ja) 抗菌性繊維およびその製造方法
JP2566610B2 (ja) 抗菌性成形物及びその製造方法
CN109049903A (zh) 一种抗静电耐弯折布料
JPH01246204A (ja) 抗菌性成形物及びその製造法
JP2593890B2 (ja) 抗菌性成形物及びその製造法
JPH05222614A (ja) 芯鞘型消臭性繊維
JP4270202B2 (ja) ナノファイバー集合体
JPH01250411A (ja) 抗菌性成形物及びその製造法
JPH02229214A (ja) 抗菌性合成繊維及びその製造方法
KR20230067146A (ko) 항균력을 갖는 멜트블로운 부직포 및 그 제조방법
JPH02169662A (ja) 抗菌成形物及びその製造法
CN116284998A (zh) 一种离子型纳米粒子及由其制备的抗菌亲水聚乳酸纤维
JPS6329681B2 (ja)
JPH02264069A (ja) 抗菌性成形物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 1990903399

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990903399

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990903399

Country of ref document: EP