WO1989008605A1 - Process for producing thin-film oxide superconductor - Google Patents

Process for producing thin-film oxide superconductor Download PDF

Info

Publication number
WO1989008605A1
WO1989008605A1 PCT/JP1989/000277 JP8900277W WO8908605A1 WO 1989008605 A1 WO1989008605 A1 WO 1989008605A1 JP 8900277 W JP8900277 W JP 8900277W WO 8908605 A1 WO8908605 A1 WO 8908605A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
oxygen
substrate
producing
discharge
Prior art date
Application number
PCT/JP1989/000277
Other languages
English (en)
French (fr)
Inventor
Etsuo Noda
Setsuo Suzuki
Osami Morimiya
Kazuo Hayashi
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13138402&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1989008605(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to DE68922734T priority Critical patent/DE68922734T2/de
Priority to EP89903216A priority patent/EP0431160B1/en
Publication of WO1989008605A1 publication Critical patent/WO1989008605A1/ja
Priority to US07/888,627 priority patent/US5284824A/en
Priority to US08/140,398 priority patent/US5374613A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/408Oxides of copper or solid solutions thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/729Growing single crystal, e.g. epitaxy, bulk
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • Y10S505/731Sputter coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • Y10S505/732Evaporative coating with superconducting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/734From organometallic precursors, e.g. acetylacetonates

Definitions

  • the present invention relates to a method for producing a thin film of an oxide superconductor as a high-temperature superconductor.
  • oxide superconductors such as the Y—Ba—Cu-0 system, which are high-temperature superconductors, have been prepared by mixing raw material powders at an appropriate mixing ratio (for example, 1: 1 yttrium: barium: copper). : 2: 3), after sintering in a high-temperature furnace, and then keeping it at a high temperature in an oxygen atmosphere, or after mixing the raw material powders and sintering directly in a high-temperature oxidizing atmosphere.
  • the oxide superconductor manufactured in this way is usually in the form of a block. In actual use, it is necessary to process wires, ribbons, thin films, elements, etc., but it is practically impossible to manufacture these from the blocks created as described above. is there.
  • a film forming technology examples include a method of applying a slurry in which a raw material is mixed with a solvent such as water on a substrate, and a method of forming a thin film such as a plasma CVD, a thermal CVD, a sputtering method, and a laser sputtering method.
  • a plasma CVD a thermal CVD
  • a sputtering method a sputtering method
  • a laser sputtering method There is technology. Among them, the thin film forming technology is considered to be applied to various devices and the like, and various studies are being made. For example, J. Narayan et a in Appl.Phys. Lett. 51 (22) PP. 1845 (1987). And D.
  • oxide superconductor thin film can be formed on these substrates, the range of application of the oxide superconductor can be widened, and a great step forward toward its practical use.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a method of manufacturing a superconducting thin film capable of forming an oxide superconductor thin film on any substrate. The purpose is to provide.
  • the method of manufacturing a superconducting thin film according to the present invention includes the steps of: quasi-selecting a substrate; depositing an oxide superconducting thin film on the substrate; A process. According to this method, a sufficient amount of oxygen is taken into the deposited thin film because exciting oxygen is supplied to the deposition portion or its vicinity during the deposition of the thin film. Therefore, it is not necessary to expose the thin film and the substrate to a high-temperature oxygen atmosphere after the formation of the thin film, and a good oxide superconductor thin film can be formed regardless of the substrate.
  • FIG. 1 to 12 are schematic structural diagrams each showing an apparatus for carrying out the method of the present invention.
  • excited oxygen is supplied to the thin film deposition portion or its vicinity.
  • the oxide superconducting thin film according to the present invention may be formed of any conventionally known oxide superconductor.
  • oxide superconductor include a layered perovskite-type oxide superconductor of the La—Ba—Cu-0 system (critical temperature of about 40 K or more), L n B a 2 C u 3 0 7 1 (where L n is Y, L a, S c, N d, S m, E u, G d, D y, H o, E r, Tm, Y b and L n Represents at least one element selected from the group consisting of: 5 is usually 1 or less and represents an oxygen vacancy, and a part of 83 may be substituted by 3r or the like) — C u— 0 defect typical perovskite type (critical temperature about 90 K or more), Bi-Sr—Ca—Cu—0 system, and T 1—Ba—Ca—C There is a u-0 system (critical temperature about 105
  • the substrate may be of any type as long as it is for forming a thin film, and may be a heat-resistant substrate such as a ceramic or glass, an epoxy substrate for wiring, an aluminum ribbon, or the like. Semiconductor substrates and silicon substrates on which elements have already been formed, such as those having no heat resistance, can also be used.
  • the substrate is not limited to a flat plate, and can take various forms depending on the application, such as a wire, a sphere, and the like.
  • the method for depositing the oxide superconducting thin film on the substrate may be any thin film forming method, but a laser beam, an electron beam, an ion beam, or a neutral particle beam is applied to the substrate.
  • Beam sputtering, plasma CVD, photo-CVD, thermal CVD, etc. which deposits on the substrate by evaporating, sublimating, or plasma-irradiating the irradiated part, and ion beam superconducting oxide.
  • a beam evaporation method of irradiating a substrate in a beam form such as a neutral beam, a molecular beam, a cluster beam, and a cluster ion beam to deposit the substrate is preferable.
  • the evening target contains a constituent element of the oxide superconductor, and it is not necessary to use the oxide superconductor itself. It may be a raw material constituting the body.
  • the number of targets need not be one, but may be two or more.
  • the method for supplying the excited oxygen to or near the thin film deposition portion is not particularly limited.
  • oxygen excited by high-frequency discharge or the like, or a gas containing such oxygen may be supplied : Fill the device with oxygen gas or gas containing oxygen, and Ultraviolet light, vacuum ultraviolet light, visible light, infrared light, or the like may be applied to the force for performing a high-frequency discharge in the inside, or the thin film deposition portion or its vicinity in the force.
  • the excited oxygen referred to herein is atomic oxygen, ozone, excited oxygen molecules, oxygen molecular ions, oxygen atom ions, etc., and these may be used alone or in combination of two or more. It may be.
  • the substrate temperature at the time of forming the thin film is not particularly limited, and is appropriately determined according to the type of the substrate.
  • a good thin film can be formed even at room temperature. Therefore, it is preferable to set the substrate as high as possible without adversely affecting the substrate used. Also in this case, it is not necessary to set the substrate temperature to more than 650.
  • the oxide superconducting thin film formed on the substrate by such a method exhibits good superconducting properties and does not require heat treatment after the formation of the thin film. That is, in the conventional method, oxygen is released from the oxide superconductor during the formation of the thin film, and the superconductivity of the thin film becomes insufficient. Therefore, a heat treatment in an oxygen atmosphere is essential. Excited oxygen is supplied to the deposition portion or its vicinity during deposition, so that a sufficient amount of oxygen is taken into the thin film, and good superconductivity can be obtained without performing heat treatment in an oxygen atmosphere. And can be.
  • FIG. 1 is a diagram showing a schematic configuration of an apparatus applied to the first embodiment of the present invention.
  • a target 2 made of an oxide superconductor or a raw material thereof is provided in the vapor deposition chamber 1, and a substrate 3 is provided so as to face the target 2.
  • the powder of each raw material is mixed in an appropriate ratio (for example, it is a powder of lithium: a powder of cobalt: a powder of copper: Powders mixed in a ratio of 1: 2: 3), or a mixture obtained by baking such a mixture can be used.
  • a beam incident window 7 is provided on the upper wall of the vapor deposition chamber 1, and is output from a beam source (not shown) provided outside the vapor deposition chamber 1 and collected by the lens 6.
  • a beam 5 such as a laser beam is applied to the target 2 through the entrance window 7, and the irradiated portion of the target 2 evaporates to emit a supbata vapor 4.
  • the beam 5 may be pulsed or continuous.
  • An exhaust pipe 19 is provided on the bottom wall of the vapor deposition chamber 1, and the pipe 19 is connected to an exhaust pump 20 via a valve 18. It is exhausted to the vacuum of.
  • One end of a pipe 11 is connected to the bottom of the vapor deposition chamber 1.
  • a nozzle 14 for ejecting excited oxygen that extends to the vicinity of the substrate 3 is connected to the pipe 11.
  • the other end of the pipe 1 1 It is connected to a gas cylinder 8 containing an oxygen gas or a mixed gas of oxygen and another gas such as a rare gas, or a gas containing an oxygen compound that releases excited oxygen by electric discharge or light irradiation.
  • the gas in the gas cylinder 8 is supplied to the surface of the substrate 3 through the pipe 11.
  • the cylinder 8 is provided with a pressure reducing valve 9, and the pipe 11 is provided with a valve 10.
  • a coil 13 is provided around a portion of the nozzle 14 near the substrate 3, and a high frequency (R F) power supply 12 is connected to the coil 13.
  • R F high frequency
  • oxygen gas is discharged from the cylinder 8 through the pipe 11 and the nozzle 14 while the inside of the evaporation chamber 1 is evacuated by the pump 20.
  • the mixed gas is supplied to the substrate 3.
  • the target 5 is irradiated with the beam 5 to emit sputter vapor 4, and the vapor 4 is deposited on the substrate 3.
  • the power supply 12 is turned on and the coil 13 is energized, a discharge occurs in the gas supplied to the substrate 3.
  • This discharge excites the oxygen gas supplied to the substrate to form one or a mixture of two or more of atomic oxygen, ozone, excited oxygen molecules, oxygen molecular ions, and oxygen atom ions.
  • oxygen atoms are incorporated into the crystal structure of the thin film deposited on the substrate 3, and an oxide superconductor thin film is generated.
  • the pressure of the oxygen gas in the deposition chamber 1 at this time is 1 0 -. May be any 5 the To rr above but ⁇ 1 1 0 0 ⁇ ⁇ ⁇ ⁇ range of gamma is laid preferred, 1 to 1 ⁇ ⁇ MTO rr is more preferred.
  • the temperature of the substrate 3 during the deposition of the thin film is particularly high.
  • a heater 30 for heating the substrate may be provided near the substrate 3 as shown in FIG.
  • DC discharge, AC discharge, and microwave discharge can be used in addition to the RF discharge described above.
  • a polar discharge or a silent discharge using an electrode, a microphone mouth-wave discharge using a waveguide, or an electron cyclotron resonance can be used.
  • Such a discharge may be of a continuous gun type or, if the beam 5 to be irradiated has a pulse shape, a pulsed discharge synchronized with this pulse may be "L".
  • FIG. 3 shows a thin film forming apparatus configured to form excited oxygen by the above-described silent discharge.
  • the configuration is the same as that in FIG. 1 except that the coil 13 in FIG. 1 is replaced by an electrode 22 covered with a dielectric.
  • the pipe 11 is made of a dielectric material such as glass, the dielectric material around the electrodes is unnecessary.
  • FIG. 4 shows a thin film forming apparatus configured to form excited oxygen by pulsed DC discharge.
  • This device differs from the device shown in Fig. 1 only in the excited oxygen generation mechanism. That is, the electrode 24 is arranged near the substrate, the DC power source 23 is connected to the electrode 24 and the substrate 3, and the DC power source 23 is turned on to discharge between the electrode 24 and the substrate 3. Let it.
  • a trigger device 25 is connected to the DC power source 23, and a trigger synchronized with the pulse period of the beam 5 is supplied from the trigger device 25 to the power source 23.
  • the trigger from the girder 25 may be at the same time as the beam irradiation pulse, or a little before or a little after that.
  • FIG. 5 shows a thin film forming apparatus having a configuration in which excited oxygen is formed by micro-wave discharge by electron cyclotron resonance.
  • This device also differs from the device shown in FIG. 1 only in the excited oxygen generation mechanism. That is, a microwave power supply 26 is provided below the vapor deposition chamber 1, and a waveguide 27 extending to the bottom of the vapor deposition chamber 1 is connected to the power supply 26. A discharge tube 28 is provided at the bottom of the vapor deposition chamber 1 so as to be continuous with the waveguide 27, and a coil 29 is provided around the discharge tube 28. Then, a pipe 11 for supplying oxygen gas is connected to the discharge tube 28, and the gas is supplied into the discharge tube 28.
  • the microphone mouth-wave power source 26 is operated, and microwave discharge occurs in the discharge tube 28 to generate excited oxygen.
  • This excited oxygen is supplied to the thin film deposition surface of the substrate 3.
  • the coil 29 can be replaced by another magnetic field generator such as a permanent magnet.
  • the excited oxygen was supplied to the thin film deposition surface of the substrate 3 by the nozzle 14, but as shown in FIG. Thus, the same effect can be obtained even if excited oxygen is supplied to the space where the sputtered particles fly.
  • FIG. 7 is a diagram showing a schematic configuration of an apparatus applied to the second embodiment of the present invention.
  • This device requires no nozzle 14 Except for, the configuration is the same as that of the device shown in FIG.
  • the method of supplying the excited oxygen is different from that of the first embodiment.
  • the inside of the vapor deposition chamber 1 is filled with an oxygen gas or a gas containing oxygen at an appropriate pressure, and the coil 13 is energized to generate a discharge, and excited oxygen is generated near the substrate 3.
  • Excited oxygen is supplied to the thin film deposition portion of the substrate 3 and its vicinity. As a result, oxygen atoms are incorporated into the crystal structure of the thin film, and an oxide superconductor thin film is formed.
  • FIG. 8 is a diagram showing a schematic configuration of an apparatus applied to a third embodiment of the present invention.
  • the method of forming excited oxygen is different from those of the first and second embodiments.
  • Windows 17 and 18 are provided on the upper wall and the bottom wall of the evaporation chamber 1 shown in FIG.
  • Ultraviolet laser light 15 emitted from a light source (not shown) installed in the upper part of the vapor deposition chamber 1 is condensed near the thin film deposition portion of the substrate 3 through the condenser lens 16 and the window 17. Then, it diverges and goes out of the vapor deposition chamber 1 through the window 18.
  • the inside of the vapor deposition chamber 1 When the inside of the vapor deposition chamber 1 is filled with an oxygen gas or a gas containing oxygen at an appropriate pressure, and the ultraviolet laser light 15 is irradiated as described above, the acid near the substrate 3 where the ultraviolet laser light 15 is collected is obtained.
  • the element is excited to form excited oxygen, which is supplied to the thin film deposition portion of the substrate 3. Therefore, oxygen atoms are incorporated into the crystal structure of the thin film, and an oxide superconductor thin film is not formed.
  • an ultraviolet lamp may be used instead of an ultraviolet laser beam to excite oxygen.
  • vacuum ultraviolet rays having a shorter wavelength having a wavelength of about 200 A or less
  • oxygen can be excited using visible light or infrared light.
  • ultraviolet rays are irradiated near the substrate.
  • the present invention is not limited to this, and the surface of the substrate may be irradiated.
  • ultraviolet rays are focused and irradiated near the substrate, but need not necessarily be focused.
  • 1 ⁇ 7 ⁇ irradiation energy of the beam 5 If L 0 8 W Bruno cm or more, target WINCH 2 into plasma, strong ultraviolet rays and X-rays are generated from the plasma. Excited oxygen can also be formed by these ultraviolet rays and X-rays.
  • the pressure of the oxygen gas in the vapor deposition chamber 1 may be 1 ° _5 Torr or more, but is preferably in the range of 0.1 to 100 in Torr. About 100 mTorr is more preferable.
  • FIG. 9 is a diagram showing a schematic configuration of an apparatus applied to the fourth embodiment of the present invention.
  • the vapor deposition chamber 1, the exhaust system, the oxygen gas supply system, and the excited oxygen forming means are the same as those in the apparatus shown in FIG.
  • One end of a pipe 31 is connected to the upper part of the vapor deposition chamber 1, and a gas ejection nozzle extending to the vicinity of the substrate 3 is connected to the pipe 31.
  • the gas in the gas cylinder 38 is connected to the gas cylinder 38, into which the gas as the raw material of the substrate is charged.
  • the cylinder 38 has a pressure reducing valve 39.
  • the pipe 31 is provided with a valve 40.
  • a coil 33 is provided around the nozzle 3 4 near the substrate 3
  • the RF power supply 3.2 is connected to the coil 3 3.
  • the source gas of the oxide superconductor is supplied to the surface of the substrate 3 through the
  • a thin film is deposited.
  • the oxygen gas or mixed gas ejected from the nozzle 14 is supplied to the coil from the RF power supply 12 as in the case of the device shown in Fig. 1.
  • Oxygen atoms are incorporated into the crystal structure of
  • the pay may be performed alternately or simultaneously.
  • Discharge methods for forming excited oxygen include DC discharge and AC
  • Excitation of the source gas is also the same as when excited oxygen is formed.
  • Various similar discharge methods can be adopted, and other excitation by light and excitation by heat can also be performed.
  • the gas used as the raw material of the oxide superconductor is preferably an organic metal gas, but is not limited thereto, and may be any gas that can be used as the raw material of the oxide superconductor.
  • the pressure in the vapor deposition chamber 1 is maintained at the same value as in the first to third embodiments.
  • FIG. 10 is a diagram showing a schematic configuration of an apparatus applied to a fifth embodiment of the present invention.
  • the method of supplying excited oxygen is different from that of the fourth embodiment.
  • a gas as a raw material of the oxide superconductor is supplied from a cylinder 38 to the vapor deposition chamber 1 through a pipe 31 to be maintained at an appropriate pressure, and a current is supplied to the coil 13 to supply electricity to the coil 13. Discharge occurs near the substrate 3. As a result, a thin film is deposited on the surface of the substrate 3.
  • the gas used as the raw material of the oxide superconductor is exhausted by the pump 2 °, and oxygen gas or mixed gas is supplied from the cylinder 8 through the pipe 11 into the vapor deposition chamber 1.
  • the coil 13 is maintained at an appropriate pressure, and the coil 13 is energized to generate a discharge near the substrate 3.
  • the excited oxygen is supplied to the thin film deposition portion of the substrate 3.
  • oxygen atoms are incorporated into the crystal structure of the thin film, and an oxide superconducting thin film is formed.
  • the raw material gas and the oxygen gas are used as described above. It is preferable to alternately introduce u and, when the source gas and the oxygen gas can coexist, these may be introduced simultaneously to excite.
  • FIG. 11 is a diagram showing a schematic configuration of an apparatus applied to a sixth embodiment of the present invention.
  • the method of forming excited oxygen is different from those of the fourth and fifth embodiments.
  • Windows 17 and 18 are provided on the upper wall and the bottom wall of the vapor deposition chamber 1 shown in FIG. 11 so as to face each other, similarly to the apparatus shown in FIG.
  • Ultraviolet laser light 15 emitted from a light source (not shown) installed in the upper part of the vapor deposition chamber 1 is condensed near the thin film deposition portion of the substrate 3 through the condenser lens 16 and the window 17. Then, it diverges and goes out of the vapor deposition chamber 1 through the window 18.
  • the inside of the vapor deposition chamber 1 is alternately or simultaneously filled with the oxide superconductor raw material and the oxygen gas or the mixed gas, and the ultraviolet laser beam 15 is irradiated as described above.
  • the oxide-conductor material is excited and deposited on the substrate, and the excited oxygen is supplied to the thin film deposition portion of the substrate 3. Therefore, oxygen atoms are incorporated into the crystal structure of the thin film, and an oxide superconductor is formed.
  • an ultraviolet lamp may be used instead of an ultraviolet laser beam to excite oxygen.
  • ⁇ 5 Vacuum ultraviolet light with a shorter wavelength (wavelength of about 20
  • the raw material gas in the vapor deposition chamber 1 the raw material gas in the vapor deposition chamber 1
  • the pressure of the oxygen gas are the pressures of the oxygen gas of the first to third embodiments.
  • the range of ⁇ is preferable, and about 1 to 100 mTorr is more preferable.
  • a thin film is formed by irradiating a beam containing particles of the conductor or its raw material.
  • FIG. 12 is a schematic diagram of an apparatus applied to the seventh embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration. This device is basically the device shown in Fig. 7.
  • the means for forming excited oxygen is the same as in FIG. Outside deposition chamber 1
  • the beam containing the oxide superconductor material injected from 6 is
  • the electric discharge causes a discharge, which causes
  • the pressure of the oxygen gas in the vapor deposition chamber 1 may be 10 to 5 Torr or more as in the first to third embodiments, and is preferably in the range of 0.1 to 10 mTorr, and 1 to 10 mTorr. About 0 mTorr is more preferable.
  • a pattern of an oxide superconducting thin film can be formed by disposing a mask pattern on a thin film deposition surface of a substrate provided in a vapor deposition chamber.
  • a wiring board can be produced by such a method.
  • a semiconductor substrate such as a silicon wafer as a substrate
  • a superconducting thin film can be incorporated in an electronic device or used for wiring in an electronic device.
  • a thin film was formed using an apparatus as shown in FIG.
  • An excimer laser (KrF) that emits light with a wavelength of 248 nm was used as the beam source.
  • This laser was a pulse laser having a pulse width of 30 sec, and was repeated at 50 Hz. Further, an injection energy 3 0 0 m JZ pulse was set beam size of the irradiated surface 2 X 3 M 2.
  • the target have use a sintered body of YB a 2 C u 3 Or- S, as the substrate a single crystal of S r T i 0 3 (Chita Nsansu Toro Nchiumu).
  • a mixed gas of oxygen gas and argon gas was supplied while evacuating so that the vapor deposition chamber became 10 mTorr.
  • the RF power supply had a frequency of 13.6 MHz and its output was 1 ⁇ ⁇ W. Under these conditions, excited oxygen was supplied to the thin film deposition portion of the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

明 細 書
酸化物超伝導薄膜の製造方法
[技術分野]
この発明は、 高温超伝導体と しての酸化物超伝導体の薄膜 の製造方法に関する。
[背景技術]
従来、 高温超伝導体である Y— B a — C u - 0系等の酸化 物超伝導体は、 原料の粉末を適当な混合比 (例えば、 イ ツ 卜 リ ウム : バリ ウム : 銅を 1 : 2 : 3 ) で十分に混合し、 高温 炉で焼結した後、 更に酸素雰囲気で高温に保持するか、 又は 原料粉末を混合後、 直接高温の酸化雰囲気中で焼結してつく られている。 このようにして製造された酸化物超伝導体は通 常ブロ ック状である。 実際の使用に際しては線材、 リ ボン、 薄膜、 又は素子等に加工することが要求されるが、 上述のよ うにして作成されたプロックからは、 これらを製造すること は実質的に不可能である。
—方、 リボン、 薄膜及び素子を形成する場合には、 基板の 上に超伝導膜を形成することが必要となる。 このような成膜 技術と しては、 基板上に原料を水等の溶媒と混合したスラ リ を塗布するもの、 及びプラズマ C V D、 熱 C V D、 スパッ タ リ ング、 レーザスパッタ リ ング等の薄膜形成技術がある。 こ れらの中で薄膜形成技術は種々の素子等への応用が考えられ、 種々検討されている。 例えば、 J.Narayan et aに Appl .Phys. Lett.51(22) PP. 1845 (1987). 及び D.Dijkkamp et al . Appl .Phys.Lett.51(8)PP. 619 (1987)には、 真空中のレーザスパ ッタリ ングにより酸化物超伝導体を形成する方法が開示され ている。 ここに開示されている方法においては、 結晶構造中 に酸素を取込むために薄膜作成後、 酸素雰囲気で 8 0 0 〇以 上という高温で熱処理する必要がある。 従って、 この熱処理 により既に作成した基板が破壊されてしまったり、 あるいは 基板が酸化してしまい、 使用できなく なってしまう虞がある。 このような問題は、 他の薄膜形成技術においても同様に存在 するものであり、 酸化物超伝導体薄膜を作成する際に使用す る基扳の材料が制約される。 例えば、 配線用エポキシ基板、 アルミ リボン、 半導体基板、 及び既に素子を作成したシリ コ ン基扳等は、 高温の酸素雰囲気にさられると使用できなく な るため、 その上に酸化物超伝導薄膜を作成することはできな い o
しかし、 これらの基板上に酸化物超伝導体薄膜を形成する ことができれば、 酸化物超伝導体の適用範囲を広げることが でき、 その実用化に向けて大きく前進することになる。
[発明の開示]
この発明は、 上述の従来技術の問題点を解決するためにな されたものであり、 その目的は、 どのような基板でも酸化物 超伝導体薄膜を形成することができる超伝導薄膜の製造方法 を提供することを目的とする。
この発明に係る超伝導薄膜の製造方法は、 基板を準傭する 工程と、 この基板上に酸化物超伝導薄膜を堆積させる工程と、 薄膜堆積中に薄膜堆積部又はその近傍に励起酸素を供給する 工程とを具備している。 この方法によれば、 薄膜堆積中に堆積部又はその近傍に励 起酸素を供給するので、 堆積された薄膜中に十分な量の酸素 が取込まれる。 従って、 薄膜形成後に薄膜及び基板を高温の 酸素雰囲気にさ らす必要がなく なり、 基板によらず良好な酸 化物超伝導体薄膜を形成する こ とができる。
[図面の簡単な説明]
第 1図乃至第 1 2図は、 夫々 この発明の方法を実施するた めの装置を示す概略構成図である。
[発明を実施するための最良の形態] 以下、 この発明について詳細に説明する。
この発明に係る方法は、 基板上に酸化物超伝導薄膜を堆積 する際に、 薄膜堆積部又はその近傍に励起酸素を供給する も のである。
この発明における酸化物超伝導薄膜は、 従来知られている どのような酸化物超伝導体で形成されていてもよい。 このよ うな酸化物超伝導体と しては、 例えば、 L a— B a— C u— 0系の層状べロブスカイ ト型の酸化物超伝導体 (臨界温度約 40 K以上) 、 L n B a 2 C u 3 07一 (ただし、 L nは Y, L a , S c , N d, S m, E u , G d, D y, H o , E r , Tm, Y b及び L nから選択された少なく と も 1種の元素を 示し、 5は通常 1以下で酸素欠陥を表わし、 8 3の一部は 3 r等で置換されていてもよい) で表わされ Y— B a— C u— 0系に代表される欠陥べロブスカイ ト型 (臨界温度約 9 0 K 以上) 、 B i - S r— C a— C u - 0系や T 1 一 B a— C a — C u— 0系 (臨界温度 1 0 5 K程度) がある。 基板は、 薄膜を形成するためのものであればどのようなも のであつてもよ く、 セラ ミ ックス及びガラス等の耐熱性を有 するものは勿論のこと、 配線用エポキシ基板、 アルミ リボン、 半導体基板、 及び既に素子を作成したシリ コン基板等の耐熱 性を有しないものであつても使用することができる。 また、 基扳は平板に限らず、 ワイヤ、 球等、 用途に応じて種々の形 態を取ることができる。
基板に酸化物超伝導薄膜を堆積させる方法は、 どのような 薄膜成形方法であっても構わないが、 レーザビーム、 電子ピ ーム、 イオンビーム、 又は中性粒子ビームを夕 -ゲッ 卜に照 射して照射部分を蒸発、 昇華又はプラズマ化させ、 基板上に 堆積させるビームスパッタ リ ング法、 プラズマ C V D、 光 C V D、 熱 C V D等の C V D法、 及び、 酸化物超伝導体をィォ ン ビーム、 中性泣子ビーム、 分子線ビーム、 クラスタ ビーム、 クラスタイオンビーム等のビーム状にして基板に照射し堆積 させるビーム蒸着法が好適である。
ビームスパッ夕 リ ング法により薄膜を形成する場合、 夕― ゲッ トは酸化物超伝導体の構成元素を含むものであればよく 、 酸化物超伝導体自体である必要はなく、 酸化物超伝導体を構 成する原料であってもよい。 また、 ターゲッ トは 1個である 必要はなく、 2個以上であってもよい。
励起酸素を薄膜堆積部又はその近傍に供給する方法につい ても特に規定されず、 例えば高周波放電等により励起された 酸素、 又はこのような酸素を含むガスを供給しても :よいし、 薄膜堆積装置内に酸素ガス又は酸素を含むガスを満たし、 そ の中で高周波放電を行なう力、、 又はその中で薄膜堆積部又は その近傍に紫外線、 真空紫外線、 可視光線、 赤外線等を照射 してもよい。
なお、 こ こにいう励起酸素は、 原子状酸素、 オゾン、 励起 酸素分子、 酸素分子イオン、 及び酸素原子イオン等であり、 これらの単独であつてもよいし、 これらの 2以上混合された ものであってもよい。
薄膜形成の際の基板温度は特に規定されるものではなく 、 基板の種類に応じて適宜決定される。 この発明の方法により 薄膜を形成する場合、 常温でも良好な薄膜を形成することが できるが、 基板温度が高いほうが薄膜の特性が良好になる傾 向がある。 従って、 使用する基板に悪影響を与えない範囲で 基板を高めに設定することが好ま しい。 この場合においても、 基板温度を 6 5 0 以上にする必要はない。
このような方法により基板上に形成された酸化物超伝導薄 膜は、 良好な超伝導特性を示し、 薄膜形成後の熱処理を必要 と しない。 すなわち、 従来の方法では薄膜形成中に酸化物超 伝導体から酸素が放出されて薄膜の超伝導性が不十分となる ため、 酸素雰囲気中での熱処理が必須であつたが、 この発明 では薄膜堆積中に堆積部又はその近傍に励起酸素が供給され るので、 薄膜中に十分な量の酸素が取込まれ、 酸素雰囲気中 での熱処理を行なう こ となく 、 良好な超伝導性を得る こ とが できる。
以下、 この発明の具体的な態様について説明する。
先ず、 第 1の態様について説明する。 なお、 この第 1 の態 様以下第 3の態様まではビームスパッタリ ング法により薄膜 を堆積する場合について示す。
第 1図はこの発明の第 1の態様に適用される装置の概略構 成を示す図である。 蒸着室 1内には、 酸化物超伝導体又はそ の原料で形成されたターゲッ ト 2が設けられており、 このタ 一ゲヅ ト 2に対向するように基板 3が配設されている。 なお、 ターゲッ ト 2を酸化物超伝導体を構成する元素を含む原料で 形成する場合には、 各原料の粉末を適当な比率 (例えば、 ィ ッ ト リ ゥム粉末 : バリ ゥム粉末 : 銅粉末が 1 : 2 : 3 ) で混 合したもの、 又はこのような混合体を焼锆ざせたもの等を用 いることができる。
蒸着室 1の上壁にはビーム入射窓 7が設けられており、 蒸 着室 1の外部に設けられたビーム発生源 (図示せず) から出 力され、 レンズ 6で集光された前述のレーザビ一ム等のビ一 ム 5がこの入射窓 7を通ってターゲッ ト 2に照射され、 夕一 ゲッ ト 2の照射部分が蒸発してスバッタ蒸気 4が放出される。 この場合に、 ビーム 5はパルス状であつても連続的であつて もよい。
蒸着室 1の底壁には、 排気パイプ 1 9が設けられており、 このパイプ 1 9はバルブ 1 8を介して排気ポンプ 2 0に接続 されており、 この排気ポンプ 2 0により蒸着室内が所望の真 空度まで排気される。
蒸着チヤ ンバ 1の底部には、 パイプ 1 1 の一端が接続され ており、 このパイプ 1 1に基板 3近傍まで延長する励起酸素 噴出用のノズル 1 4が接続されている。 パイプ 1 1の他端は 酸素ガス、 又は酸素と希ガス等の他のガスとの混合ガス、 又 は放電や光照射で励起酸素を放出するような酸素化合物を含 むガスが装入されたガスボンベ 8に接続されており、 このガ スボンべ 8内のガスがパイプ 1 1を通って基板 3表面に供給 される。 なお、 ボンべ 8には減圧弁 9が設けられており、 パ イブ 1 1 にはバルブ 1 0が設けられている。
ノズル 1 4の基板 3の近傍部分の周囲にはコイル 1 3が設 けられており、 このコイル 1 3には高周波 ( R F ) 電源 1 2 が接続されている。
このような装置により酸化物超伝導薄膜を形成するために は、 先ず、 蒸着室 1内をポンプ 2 0 によ り排気しつつ、 ボン ベ 8からパイプ 1 1及びノズル 1 4を介して酸素ガス又は混 合ガスを基板 3に供給する。 次いで、 ビーム 5をターゲッ 卜 2に照射してスパッタ蒸気 4を放出させ、 この蒸気 4を基板 3に堆積させる。 この際に、 電源 1 2をオンにしてコイル 1 3に通電することにより、 基板 3に供給されるガス中で放電 が生じる。 この放電により基板に供給される酸素ガスが励起 されて、 原子状酸素、 オゾン、 励起酸素分子、 酸素分子ィォ ン、 及び酸素原子イオン等のうちの 1つ又は 2以上の混合体 となる。 この結果、 基板 3に堆積された薄膜の結晶構造中に 酸素原子が取込まれ、 酸化物超伝導体薄膜が生成される。
この際の蒸着室 1内の酸素ガスの圧力は 1 0 -5 To r r以上で あればよいが、 〇 . 1乃至 1 0 0 ◦ ΙΠ ΤΟ Γ Γ の範囲が好ま しく 、 1乃至 1 ◦ ◦ mTo r r 程度が一層好ま しい。
また、 前述したように、 薄膜堆積中の基板 3の温度は特に 限定されないが、 基板 3を加熱する必要がある場合には、 第 2図に示すように基板 3の近傍に基板加熱用のヒータ 3 0を 設けてもよい。
なお、 励起酸素を形成するためには、 上で説明した R F放 電以外に、 直流放電、 交流放電、 及びマイクロ波の放電を利 用することができる。
また、 上述のコイル等を用いた無極放電の他に、 電極を用 いた有極放電や無声放電、 導波管を用いたマイク口波放電や 電子サイ クロ トン共鳴を使用することもできる。 このような 放電は、 連銃的であってもよいし、 照射されるビーム 5がパ ルス状の場合には、 このパルスに同期したパルス状の放電で めつ " L もよい。
第 3図は上述した無声放電により励起酸素を形成する構成 の薄膜形成装置を示している。 第 1図のコイル 1 3が誘電体 で覆われた電極 2 2で置き替わった以外は、 第 1図と词様に 構成されている。 なお、 パイプ 1 1がガラス等の誘電体で形 成されている場合には電極周囲の誘電体は不要である。
第 4図はパルス状の直流放電により励起酸素を形成する構 成の薄膜形成装置を示している。 この装置は励起酸素発生機 構のみ第 1図に示す装置と異なっている。 すなわち、 基板近 傍に電極 2 4を配設し、 直流電源 2 3をこの電極 2 4及び基 板 3に接铳し、 直流電源 2 3をさせて電極 2 4と基板 3との 間で放電させる。 直流電源 2 3には ト リガ—装置 2 5が接続 されており、 この ト リ ー装置 2 5からビーム 5のパルス周 期と同期した ト リガーが電源 2 3に与えられる。 なお、 ト リ ガー装置 2 5からの ト リガ一はビーム照射パルスと同時であ つてもよいし、 その少し前又は少し後であってもよい。
第 5図は電子サイクロ ト ロ ン共鳴によるマイ ク口波放電に より励起酸素を形成する構成の薄膜形成装置を示している。 この装置も励起酸素発生機構のみ第 1図に示す装置と異なつ ている。 すなわち、 蒸着室 1の下方にマイ クロ波電源 2 6力く 設けられており、 この電源 2 6には蒸着室 1の底部まで延長 する導波管 2 7が接続されている。 蒸着室 1の底部には導波 管 2 7に連続して放電管 2 8が設けられており、 この放電管 2 8の周囲にはコイル 2 9が設けられている。 そして、 酸素 ガス供給用のパイプ 1 1が放電管 2 8に接続されており、 放 電管 2 8の中にガスが供給される。 この場合に、 放電管 2 8 内に酸素ガス等を供給しながら、 マイク口波電源 2 6を作動 させ、 放電管 2 8内でマイクロ波放電が生じ、 励起酸素が生 成される。 この励起酸素が基板 3の薄膜堆積面に供給される。 なお、 コイル 2 9は永久磁石等の他の磁界発生装置で置き替 えることができる。
なお、 前述の第 1図、 第 3図及び第 4図に示す装置では、 ノ ズル 1 4により励起酸素を基板 3の薄膜堆積面に供給した が、 第 6図に示すようにノズル 1 4 ' によりスパッ夕粒子が 飛来する空間に励起酸素を供給するようにしても同様の効果 を得ることができる。
次に第 2の態様について説明する。
第 7図はこの発明の第 2の態様に適用される装置の概略構 成を示す図である。 この装置は、 ノズル 1 4が存在しないこ と以外は第 1図に示す装置と同様に構成されている。 こ こで は励起酸素の供給方法が第 1の態様とは異なって る。 この 装置では、 蒸着室 1内を適当な圧力の酸素ガス又は酸素を含 むガスを満たしておき、 コイル 1 3に通電して放電を生じさ せ、 基板 3の近傍で励起酸素が生じ、 この励起酸素が基板 3 の薄膜堆積部分及びその近傍に供耠される。 その結果、 薄膜 の結晶構造中に酸素原子が取り込まれ、 酸化物超伝導体薄膜 が形成される。
なお、 放電を生じさせるためには、 第 1の態様と同様に種 々の手段を用いることができる。
次に第 3の態様について説明する。
第 8図はこの発明の第 3の態様に適用される装置の概略構 成を示す図である。 この装置においては、 励起酸素の形成方 法が第 1及び第 2の態様とは異なっている。 第 8図に示す蒸 着室 1の上壁及び底壁には、 夫々窓 1 7及び 1 8が対向して 設けられている。 蒸着室 1の上部に設置された光源 (図示せ ず) から射出された紫外線レーザ光 1 5が集光レンズ 1 6及 び窓 1 7を通って基扳 3の薄膜堆積部近傍に集光され、 その 後発散して窓 1 8から蒸着室 1外に出ていく。
蒸着室 1内を適当な圧力の酸素ガス又は酸素を含むガスを 満たしておき、 紫外線レーザ光 1 5を前述のように照射する と、 紫外線レーザ光 1 5が集光された基板 3近傍において酸 素が励起され励起酸素が形成され、 基板 3の薄膜堆積部に供 耠される。 従って、 薄膜の結晶構造中に'酸素原子が取込まれ、 酸化物超伝導体薄膜が形成ざれる。 なお、 酸素を励起させるために、 紫外線レーザ光の代りに 紫外線ラ ンプを用いてもよい。 また、 紫外線に限らず、 一層 波長が短い真空紫外線 (波長が約 2 0 0 0 A以下) を用いて もよく 、 更に可視光線、 赤外線を用いて酸素を励起すること もできる。
ここでは基扳近傍に紫外線を照射したが、 これに限らず基 板の表面に照射してもよい。 また、 紫外線を基板近傍に集光 して照射したが必ずしも集光する必要はない。
なお、 ビーム 5の照射エネルギを 1 ◦ 7 〜: L 0 8 Wノ cm 以上にすると、 ターゲッ 卜 2がプラズマ化し、 このプラズマ から強力な紫外線や X線が発生する。 この紫外線や X線によ つて励起酸素を形成することも可能である。
これら第 2及び第 3の態様においても、 蒸着室 1内の酸素 ガスの圧力は 1 ◦ _5 Torr以上であればよいが、 0 . 1乃至 1 0 0 0 inTorr の範囲が好ま しく 、 1乃至 1 0 0 mTorr 程度が 一層好ま しい。
次に、 第 4の態様について説明する。 なお、 この第 4の態 様から以下の第 6の態様までは C V D法によつて薄膜を堆積 する場合について説明する。
第 9図はこの発明の第 4の態様に適用される装置の概略構 成を示す図である。 蒸着室 1、 排気'系、 酸素ガス供給系、 及 び励起酸素形成手段については第 1図に示す装置と同様なの で同じ符号を付して説明を省略する。
蒸着室 1の上部には、 パイプ 3 1 の一端が接続されており、 このパイプ 3 1 に基板 3近傍まで延長するガス噴出用ノズル t 2
3 4が接続されている。 パイプ 3 1の他端は酸化物超伝導体
の原料となるガスが装入されたガスボンベ 3 8に接続されて '· おり、 ガスボンベ 3 8内のガスがパイプ 3 1を通つて基板 3
の表面に供耠される。 なお、 ボンべ 3 8には減圧弁 3 9が設
けられており、 パイプ 3 1 にはバルブ 4 0が設けられている。
ノズル 3 4の基板 3近傍部分の周囲にはコイル 3 3が設け
られており、 コイル 3 3には R F電源 3.2が接続されている。
このような装置により酸化物超伝導薄膜を形成するために
は、 ポンプ 2 ◦により蒸着室 1内を排気し、 電源 3 2からコ
ィル 3 3に通電しつつ、 ボンべ 3 8からパイプ 3 1及びノズ
ル 4を介して酸化物超伝導体原料ガスを基板 3の表面に供
給する。 この場合に、 コイル 3 3に通電することにより原料
ガス中で放電が生じて原料ガスが励起状態となり、 基板上に
薄膜が堆積される。
—方、 ノズル 1 4から噴出される酸素ガス又は混合ガスは、 第 1図に示す装置の場合と同様に、 R F電源 1 2からコイル
1 3に通電することにより励起され、 励起酸素が基板 3の薄
膜堆積部に供給される。 この結果、 基板 3に堆積された薄膜
の結晶構造中に酸素原子が取込まれ、 酸化物超伝導体薄膜が
形成される。
この場合に、 酸化物超伝導体の原料ガス及び酸素ガスの供
給は、 交互におこなってもよいし、 同時に行なってもよい。
励起酸素を形成する際の放電方法としては、 直流放電や交
流放電等、 前述した種々の方法を使用することができる。 ま た、 原料ガスの励起についても、 励起酸素を形成する場合と 同様の種々の放電方法を採用することができ、 その他光によ る励起及び熱による励起を行なう こともできる。
なお、 酸化物超伝導体の原料となるガスは、 有機金属ガス が好適であるが、 これに限らず酸化物超伝導体の原料になり 得る ものであればよい。 また、 蒸着室 1内の圧力は第 1乃至 第 3の態様と同様な値に保持される。
次に、 第 5の態様について説明する。
第 1 0図はこの発明の第 5の態様に適用される装置の概略 構成を示す図である。 この装置においては励起酸素の供給方 法が第 4の態様とは異なっている。 こ こでは、 酸化物超伝導 体の原料となるガスをボンべ 3 8からパイプ 3 1を介して蒸 着室 1 内に供铪して適当な圧力に保持し、 コイル 1 3に通電 して基板 3の近傍で放電を生じさせる。 これにより、 基板 3 の表面に薄膜が堆積される。
この放電を所定時間行なつた後、 酸化物超伝導体の原料と なるガスをポンプ 2 ◦により排気し、 ボンべ 8からパイプ 1 1を介して酸素ガス又は混合ガスを蒸着室 1内に供給して適 当な圧力に保持し、 コイル 1 3に通電して基板 3の近傍で放 電を生じさせる。 これにより、 基板 3の薄膜堆積部に励起酸 素が供給される。 この結果、 薄膜の結晶構造中に酸素原子が 取込まれ、 酸化物超伝導薄膜が形成される。 - 上記二つの過程を適当な回数綠返すことによ り、 必要な厚 さの酸化物超伝導薄膜を形成することができる。
なお、 原料ガスと酸素ガスとが反応して悪影響を及ぼすこ とを防止する観点からは、 上述のように原料ガスと酸素ガス u とを交互に導入することが好ましいが、 原料ガスと酸素ガス とが共存し得る場合には、 これらを同時に導入して励起させ てもよい。
なお、 この態様においても前述したような種々の放電手段 を採用することができる。
次に第 6の態様について説明する。
第 1 1図はこの発明の第 6の態様に適用される装置の概略 構成を示す図である。 この装置においては、 励起酸素の形成 方法が第 4及び第 5の態様とは異なっている。 第 1 1図に示 す蒸着室 1の上壁及び底壁には、 第 8図に示す装置と同様に、 夫々窓 1 7及び 1 8が対向して設けられている。 蒸着室 1の 上部に設置された光源 (図示せず) から射出された紫外線レ 一ザ光 1 5が集光レンズ 1 6及び窓 1 7を通って基板 3の薄 膜堆積部近傍に集光され、 その後発散して窓 1 8から蒸着室 1外に出ていく。
前述の第 5の態様と同様にして、 蒸着室 1内を酸化物超伝 導体原料と酸素ガス又は混合ガスとで交互、 あるいは同時に 満たしておき、 紫外線レーザ光 1 5を前述のように照射する と、 紫外線レーザ光 1 5が集光された基板 3の近傍において、 酸化物遛伝導体原料が励起されて基板に堆積すると共に, 励 起酸素が基板 3の薄膜堆積部に供耠される。 従って、 薄膜の 結晶構造中に酸素原子が取込まれ、 酸化物超伝導体が形成さ れ o
なお、 第 3の態様と同様に、 酸素を励起させるために、 紫 外線レーザ光の代りに紫外線ランプを用いてもよい。 また、 ί5 紫外線に限らず、 一層波長が短い真空紫外線 (波長が約 2 0
0 0人以下) を用いてもよく 、 更に可視光線、 赤外線を用い
て酸素を励起すること もできる。 更に、 紫外線等の照射方法
についても、 第 3の態様の場合と同様、 種々の方法を取るこ
とができる。
これら第 4乃至第 6の態様において蒸着室 1内の原料ガス
及び酸素ガスの圧力は、 第 1乃至第 3の態様の酸素ガスの圧
力と同様 1 0 _5 Torr以上であればよく 、 0. 1乃至 1 0 0 0
ΙΠΤΟΓΓ の範囲が好ま しく 、 1乃至 1 0 0 mTorr 程度が一層好
ま しい。
次に、 第 7の態様について説明する。 こ こでは、 酸化物超
伝導体又はその原料の粒子を含むビームを照射して薄膜を形
成する場合について説明する。
第 1 2図はこの発明の第 7の態様に適用される装置の概略
構成を示す図である。 この装置は基本的に第 7図に示す装置
と類似している。 第 1 2図中、 排気系、 酸素ガス供給系、 及
び励起酸素形成手段は第 7図と同一である。 蒸着室 1 の外側
にビーム射出装置 6が設けられており、 このビーム射出装置
6から射出された酸化物超伝導体の材料を含むビームが基板
3に照射される。 これによつて、 基板 3の表面に薄膜が形成
される。 · この場合に、 第 7図に示す装置と同様に、 コイル 1 3に通
電することによって放電が生じ、 これによつて基板 3の近傍
で励起酸素が生成され、 この励起酸素が基板 3の薄膜堆積部
分及びその近傍に供給される。 その結果、 薄膜の結晶構造中 に酸素原子が取り込まれ、 酸化物超伝導体薄膜が形成される。 なお、 この態様においても、 こ こで説明した方法に限らず、 前述の種々の方法により酸素を励起させることができる。 ま た、 蒸着室 1の酸素ガスの圧力は、 第 1乃至第 3の態様と同 様 1 0— 5 Torr以上であればよく 、 0. 1乃至 l O O O mTorr の範囲が好ましく、 1乃至 1 0 0 mTorr 程度が一層好ま しい。
なお、 第 1乃至第 7のいずれの態様においても、 蒸着室に 設置した基板の薄膜堆積面にマスクパターン¾配置すること により、 酸化物超伝導薄膜のバタ一ンを形成することができ る。 このような方法で配線基板を作成することができる。 ま た、 基板としてシリ コ ンゥヱー ハ等の半導体基板を用いるこ とにより、 電子素子内に超伝導薄膜を組込んだり、 電子素子 内での配線に使用することもできる。
次に、 この発明の方法により実際に酸化物超伝導薄膜を形 成した実施例について説明する。
第 1図に示すような装置を用いて薄膜を形成した。 ビーム 発生源としては、 24 8nmのの波長の光を射出するエキシマ レーザ ( K r F ) を用いた。 この レーザはパルス幅が 3 0 s e cのパルスレーザで繰返しは 5 0 H zで行なった。 また、 射出エネルギーを 3 0 0 m JZパルス、 照射面のビームサイズ を 2 X 3 M2 に設定した。
ターゲッ トとしては、 Y B a 2 C u 3 Or-S の焼結体を用 い、 基板としては S r T i 03 (チタ ン酸ス トロ ンチウム) の単結晶を用いた。 蒸着室が l O mTorr になるように、 排気 しながら酸素ガスとアルゴンガスとの混合ガスを供給した。 R F電源は周波数が 1 3. 6 M H zであり、 その出力を 1 〇 〇 Wと した。 この条件で基板の薄膜堆積部に励起酸素を供給 した。
このような処理を 2分間実施した結果、 厚みが約 0. 3 μ mで臨界温度が 9 0 Κの Y B a 2 C u 3 07 薄膜が形成さ れた。

Claims

請求の範囲
1 . 基板を準備する工程と、 この基板上に酸化物超伝導薄 膜を堆積させる工程と、 薄膜堆積中に薄膜堆積部又はその近 傍に励起酸素を 給する工程とを具備する酸化物超伝導薄膜 の製造方法。
2 . 前記酸化物超伝導薄膜を堆積させる工程は、 酸化物超 伝導体の構成元素を含むターゲツ 卜にビームを照射してター ゲッ トの照射部分を蒸発させ、 その蒸発物を基板に蒸着させ ることによりなざれる請求項 1に記載の酸化物超伝導薄膜の 製造方法。
3 . 前記ビームは、 レーザビーム、 電子ビーム、 イオン ビ ーム、 中性粒子ビームからなる群から選択されるものである 請求項 2に記載の酸化物超伝導薄膜の製造方法。
4 . 前記ターゲッ トは、 酸化物超伝導体又はその原料を含 む請求項 2に記載の酸化物超伝導薄膜の製造方法。
5 . 前記励起酸素は、 酸素ガス又は酸素を含むガス中で放 電を生じさせて形成される請求項 2に記載の酸化物超伝導薄 膜の製造方法。
6 . 前記励起酸素は、 基板に吹付けられるようにして基板 の薄膜堆積部又はその近傍に供耠される請求項 5に記載の酸 化物超伝導体薄膜の製造方法。
7 . 前記励起酸素は、 薄膜を形成するための蒸着室内を酸 素ガス又は酸素を含むガスの雰囲気とし、 この雰囲気中で放 電を生じさせて形成され、 基板の薄膜堆積部又はその近傍に 供铪される請求項 5に記載の酸化物超伝導薄膜の製造方法。
8. 前記放電は、 直流放電、 交流放電、 R F放電、 及びマ ィク口波放電からなる群から選択されたものである請求項 5 に記載の酸化物超伝導薄膜の製造方法。
9. 前記放電は、 パルス状又は連続的に発生される請求項 5に記載の酸化物超伝導薄膜の製造方法。
1 0. 前記励起酸素は、 酸素ガス又は酸素を含むガスに光 を照射することによつて形成される請求項 2に記載の酸化物 超伝導薄膜の製造方法。
1 1. 前記励起酸素は、 薄膜を形成するための蒸着室内を 酸素ガス又は酸素を含むガスの雰囲気と し、 この雰囲気中に 光を照射することにより形成され、 基板の薄膜堆積部又はそ の近傍に供給される請求項 1 ◦に記載の酸化物超伝導薄膜の 製造方法。
1 2. 前記光は、 基板近傍又は基板表面に照射される請求 項 1 1に記載の酸化物超伝導薄膜の製造方法。
1 3. 前記光は、 紫外線、 真空紫外線、 可視光線、 及び赤 外線からなる群から選択されるものである請求項 1 0に記載 の酸化物超伝導薄膜の製造方法。
14. 前記酸化物超伝導薄膜を堆積させる工程は、 C V D によってなされる請求項 1に記載の酸化物超伝導体薄膜の製 造方法。 ―
1 5. 前記酸化物超伝導薄膜を堆積させる工程は、 プラズ マ C VD、 光 C VD、 又は熱 C V Dによってなされる請求項 14に記載の酸化物超伝導薄膜の製造方法。
1 6. 前記酸化物超伝導薄膜を堆積させる工程は、 酸化物 超伝導体の構成元素を含むガスを励起させて、 励起された原 料ガスを基板に蒸着することによつてなされる請求項 1 4に 記載の酸化物超伝導薄膜の製造方法。
1 7 . 前記励起された原料ガスは、 前記酸化物超伝導体の 構成元素を含むガス中で放電を生じさせて形成される請求項 1 6に記載の酸化物超伝導薄膜の製造方法。
1 8 . 前記励起された原料ガスは、 基板に吹付けられるよ うにして基板の表面に供給される請求項 1 7に記載の酸化物 超伝導体薄膜の製造方法。
1 9 . 前記励起された原料ガスは、 薄膜を形成するための 蒸着室内を酸化物超伝導体の構成元素を含むガスの雰囲気と し、 この雰囲気中で放電を生じさせて形成され、 基板表面に 供給される請求項 1 7に記載の酸化物超伝導薄膜の製造方法。
2 0 . 前記放電は、 直流放電、 交流放電、 R F放電、 及び マイク口波放電からなる群から選択されたものである請求項 1 7に記載の酸化物超伝導薄膜の製造方法。
2 1 . 前記励起された原料ガスは、 酸素ガス又は酸素を含 むガスに光を照射することによって形成される請求項 1 4に 記載の酸化物超伝導薄膜の製造方法。
2 2 . 前記励起酸素は、 酸素ガス又は酸素を含むガス中で 放電を生じさせて形成される請求項 1 6に記載の酸化物超伝 導薄膜の製造方法。
2 3 . 前記励起酸素は、 基板に吹付けられるようにして基 板の薄膜堆積部又はその近傍に供耠される請求項 2 2に記載 の酸化物超伝導体薄膜の製造方法。
2 4 . 前記励起酸素は、 薄膜を形成するための蒸着室内を 酸素ガス又は酸素を含むガスの雰囲気と し、 この雰囲気中で 放電を生じさせて形成され、 基板の薄膜堆積部又はその近傍 に供給される請求項 2 2に記載の酸化物超伝導薄膜の製造方 法
2 5 . 前記放電は、 直流放電、 交流放電、 R F放電、 及び マイ ク口波放電からなる群から選択されたものである請求項 2 2に記載の酸化物超伝導薄膜の製造方法。
2 6 . 前記励起酸素は、 酸素ガス又は酸素を含むガスに光 を照射することによつて形成される請求項 1 6に記載の酸化 物超伝導薄膜の製造方法。
2 7 . 前記薄膜の基板への堆積と、 前記励起酸素の基板の 薄膜堆積部への供給が交互に行われることを特徴とする請求 項 1 6に記載の酸化物超伝導薄膜の製造方法。
2 8 . 前記酸化物超伝導薄膜を堆積させる工程は、 酸化物 超伝導体の構成元素を含むビームを基板に照射するこ とによ りなされる請求項 1 に記載の酸化物超伝導薄膜の製造方法。
2 9 , 前記ビームは、 イオン ビーム、 中性粒子ビーム、 分 子線ビーム、 クラスタ ビーム、 及びクラスタイオン ビーム力、 らなる群から選択される ものである請求項 2 8に記載の酸化 物超伝導薄膜の製造方法。 一
3 0 . 前記励起酸素は、 酸素ガス又は酸素を含むガス中で 放電を生じさせて形成される請求項 2 8に記載の酸化物超伝 導薄膜の製造方法。
3 1 . 前記励起酸素は、 基板に吹付けられるようにして基 板の薄膜堆積部又はその近傍に供給される請求項 3 0に記載 の酸化物超伝導体薄膜の製造方法。
3 2 . 前記励起酸素は、 薄膜を形成するための蒸着室内を 酸素ガス又は酸素を含むガスの雰囲気とし、 この雰囲気中で 放電を生じさせて形成され、 基板の薄膜堆積部又はその近傍 に供耠される請求項: 3 0に記載の酸化物超伝導薄膜の製造方 法
3 3 . 前記放電は、 直流放電、 交流放電、 R F放電、 及び マイク口波放電からなる群から選択されたものである請求項 3 0に記載の酸化物超伝導薄膜の製造方法。
3 4 . 前記放電は、 パルス状又は連続的に発生される請求 項 3 0に記載の酸化物超伝導薄膜の製造方法。
3 5 . 前記励起酸素は、 酸素ガス又は酸素を含むガスに光 を照射することによつて形成される請求項 2 8に記載の酸化 物超伝導薄膜の製造方法。
3 6 . 前記励起酸素は、 薄膜を形成するための蒸着室内を 酸素ガス又は酸素を含むガスの雰囲気とし、 この雰囲気中に 光を照射することにより形成され、 基板の薄膜堆積部又はそ の近傍に供耠される請求項 3 5に記載の酸化物超伝導薄膜の 製造方法。
3 7 , 前記光は、 基板近傍又は基板表面に照射される請求 項 3 6に記載め酸化物超伝導薄膜の製造方法。
3 8 . 前記光は、 紫外線、 真空紫外線、 可視光線、 及び赤 外線からなる群から選択ざれるものである請求項 3 5に記載 の酸化物超伝導薄膜の製造方法。
PCT/JP1989/000277 1988-03-16 1989-03-15 Process for producing thin-film oxide superconductor WO1989008605A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE68922734T DE68922734T2 (de) 1988-03-16 1989-03-15 VERFAHREN ZUR HERSTELLUNG EINES DüNNSCHICHTOXYDSUPRALEITERS.
EP89903216A EP0431160B1 (en) 1988-03-16 1989-03-15 Process for producing thin-film oxide superconductor
US07/888,627 US5284824A (en) 1988-03-16 1992-06-23 Method for manufacturing an oxide superconductor thin film
US08/140,398 US5374613A (en) 1988-03-16 1993-10-25 Method for manufacturing an oxide superconductor thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6030888 1988-03-16
JP63/60308 1988-03-16

Publications (1)

Publication Number Publication Date
WO1989008605A1 true WO1989008605A1 (en) 1989-09-21

Family

ID=13138402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000277 WO1989008605A1 (en) 1988-03-16 1989-03-15 Process for producing thin-film oxide superconductor

Country Status (4)

Country Link
US (3) US5158931A (ja)
EP (1) EP0431160B1 (ja)
DE (1) DE68922734T2 (ja)
WO (1) WO1989008605A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392630A1 (en) * 1989-04-10 1990-10-17 Interuniversitair Microelektronica Centrum Vzw Method for applying a layer of superconducting material and a device suitable therefor
DE4016352A1 (de) * 1989-05-24 1990-11-29 Mitsubishi Electric Corp Laser-aufdampfeinrichtung
US5322817A (en) * 1990-10-16 1994-06-21 Superconductor Technologies, Inc. In situ growth of TL-containing oxide superconducting films
CN1037793C (zh) * 1992-01-28 1998-03-18 华中理工大学 激光沉积大面积超导膜的方法及其装置
US5779802A (en) * 1990-12-10 1998-07-14 Imec V.Z.W. Thin film deposition chamber with ECR-plasma source
RU2508576C1 (ru) * 2012-07-26 2014-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Поволжский государственный технологический университет Способ электроискрового формирования тонкопленочной втсп схемы

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260267A (en) * 1989-07-24 1993-11-09 Sumitomo Electric Industries, Ltd. Method for forming a Bi-containing superconducting oxide film on a substrate with a buffer layer of Bi2 O3
US5571169A (en) 1993-06-07 1996-11-05 Endovascular Instruments, Inc. Anti-stenotic method and product for occluded and partially occluded arteries
JPH05302163A (ja) * 1992-04-27 1993-11-16 Sumitomo Electric Ind Ltd 複合酸化物超電導薄膜の成膜方法
DE4229399C2 (de) * 1992-09-03 1999-05-27 Deutsch Zentr Luft & Raumfahrt Verfahren und Vorrichtung zum Herstellen einer Funktionsstruktur eines Halbleiterbauelements
GB2303379B (en) * 1992-11-30 1997-05-28 Mitsubishi Electric Corp Thin film forming apparatus using laser
JP3255469B2 (ja) * 1992-11-30 2002-02-12 三菱電機株式会社 レーザ薄膜形成装置
US5733609A (en) * 1993-06-01 1998-03-31 Wang; Liang Ceramic coatings synthesized by chemical reactions energized by laser plasmas
WO1995002709A2 (en) * 1993-07-15 1995-01-26 President And Fellows Of Harvard College EXTENDED NITRIDE MATERIAL COMPRISING β-C3N¿4?
US5976992A (en) * 1993-09-27 1999-11-02 Kabushiki Kaisha Toshiba Method of supplying excited oxygen
US5411772A (en) * 1994-01-25 1995-05-02 Rockwell International Corporation Method of laser ablation for uniform thin film deposition
US5443863A (en) * 1994-03-16 1995-08-22 Auburn University Low-temperature oxidation at surfaces using ozone decomposition products formed by microwave discharge
US5490912A (en) * 1994-05-31 1996-02-13 The Regents Of The University Of California Apparatus for laser assisted thin film deposition
DE19510318B4 (de) * 1995-03-22 2004-02-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Herstellung epitaktischer Schichten
JP3073906B2 (ja) * 1995-03-27 2000-08-07 財団法人国際超電導産業技術研究センター 超電導デバイスの製造方法
US6652922B1 (en) * 1995-06-15 2003-11-25 Alliedsignal Inc. Electron-beam processed films for microelectronics structures
DE19631101C2 (de) * 1996-08-02 1999-05-20 Siemens Ag Beschichtungsapparatur für oxidische Materialien
JP3704258B2 (ja) * 1998-09-10 2005-10-12 松下電器産業株式会社 薄膜形成方法
US20010052323A1 (en) * 1999-02-17 2001-12-20 Ellie Yieh Method and apparatus for forming material layers from atomic gasses
EP1214759A2 (en) * 1999-08-27 2002-06-19 Alan E. Hill Electric oxygen iodine laser
US6826222B2 (en) 1999-08-27 2004-11-30 Alan E. Hill Electric oxygen iodine laser
US7215697B2 (en) * 1999-08-27 2007-05-08 Hill Alan E Matched impedance controlled avalanche driver
US6638857B1 (en) * 2000-03-30 2003-10-28 Triquint Technology Holding Co. E-beam deposition method and apparatus for providing high purity oxide films
US20030054105A1 (en) * 2001-08-14 2003-03-20 Hammond Robert H. Film growth at low pressure mediated by liquid flux and induced by activated oxygen
US20030157269A1 (en) * 2002-02-20 2003-08-21 University Of Washington Method and apparatus for precision coating of molecules on the surfaces of materials and devices
JP3910466B2 (ja) * 2002-02-26 2007-04-25 独立行政法人科学技術振興機構 半導体又は絶縁体/金属・層状複合クラスタの作製方法及び製造装置
US8182862B2 (en) * 2003-06-05 2012-05-22 Superpower Inc. Ion beam-assisted high-temperature superconductor (HTS) deposition for thick film tape
JP5273495B2 (ja) * 2005-12-13 2013-08-28 独立行政法人産業技術総合研究所 クラスター成膜装置及び成膜方法、並びにクラスター生成装置及び生成方法
KR100772014B1 (ko) * 2006-07-14 2007-10-31 한국전기연구원 보조 클러스트빔 분사에 의한 고온 초전도막 제조방법,제조장치, 이 방법에 의해 제조되는 고온 초전도막
DE102008028542B4 (de) * 2008-06-16 2012-07-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Abscheiden einer Schicht auf einem Substrat mittels einer plasmagestützten chemischen Reaktion
JP5866815B2 (ja) * 2011-06-21 2016-02-24 株式会社アルバック 成膜方法
RU2676720C1 (ru) * 2018-03-28 2019-01-10 Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук Способ вакуумного ионно-плазменного низкотемпературного осаждения нанокристаллического покрытия из оксида алюминия

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192857A (ja) * 1987-02-05 1988-08-10 Sumitomo Electric Ind Ltd 超電導薄膜の作製法
JPS63239742A (ja) * 1987-03-27 1988-10-05 Matsushita Electric Ind Co Ltd 薄膜超電導体の製造方法
JPS63239151A (ja) * 1987-03-27 1988-10-05 Sumitomo Electric Ind Ltd 超電導セラミツクスの形成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2085482B (en) * 1980-10-06 1985-03-06 Optical Coating Laboratory Inc Forming thin film oxide layers using reactive evaporation techniques
JPS5773178A (en) * 1980-10-23 1982-05-07 Hitachi Ltd Production of oxide
JPS63241823A (ja) * 1987-03-27 1988-10-07 Nissin Electric Co Ltd 超電導薄膜の製造方法
CA1332324C (en) * 1987-03-30 1994-10-11 Jun Shioya Method for producing thin film of oxide superconductor
EP0288001B1 (en) * 1987-04-20 1993-01-13 Nissin Electric Company, Limited Process for producing superconducting thin film and device therefor
US4925829A (en) * 1987-05-26 1990-05-15 Sumitomo Electric Industries, Ltd. Method for preparing thin film of compound oxide superconductor by ion beam techniques
JPS6421973A (en) * 1987-07-16 1989-01-25 Nissin Electric Co Ltd Device for manufacturing superconductive material
JPS6439783A (en) * 1987-08-06 1989-02-10 Matsushita Electric Ind Co Ltd Manufacture of superconducting element
KR910007382B1 (ko) * 1987-08-07 1991-09-25 가부시기가이샤 히다찌세이사꾸쇼 초전도 재료 및 초전도 박막의 제조방법
JPH0791152B2 (ja) * 1987-08-31 1995-10-04 松下電器産業株式会社 超伝導体薄膜の製造方法
CA1338202C (en) * 1988-02-10 1996-04-02 Robert George Charles Chemical vapor deposition of oxide films containing alkaline earth metals from metal-organic sources
US4882023A (en) * 1988-03-14 1989-11-21 Motorola, Inc. Method and system for producing thin films
US4874741A (en) * 1988-04-14 1989-10-17 The Research Foundation Of State University Of New York Non-enhanced laser evaporation of oxide superconductors
JPH04500198A (ja) * 1988-08-19 1992-01-16 リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミネソタ オゾンを用いた超電導セラミック酸化物の調製

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192857A (ja) * 1987-02-05 1988-08-10 Sumitomo Electric Ind Ltd 超電導薄膜の作製法
JPS63239742A (ja) * 1987-03-27 1988-10-05 Matsushita Electric Ind Co Ltd 薄膜超電導体の製造方法
JPS63239151A (ja) * 1987-03-27 1988-10-05 Sumitomo Electric Ind Ltd 超電導セラミツクスの形成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Denki Joho Tsushin Gakkai Gijutsu Kenkyu Hokoku, Vol. 87, No. 137, SCE87-20 (Sankabutsu Ceramics Superconductor Thin Film no Sputtering-ho Niyoru Sakusei) p 49-54 *
Japanese Journal of Applied Physics, *
Nikkan Kogyo Shimbun, 1987. 6. 24 (Kinzoku Kiban-jo ni Superconductor Himaku) *
Nikkan Kogyo Shimbun, 1988. 2. 8 (Ion Beam de Superconductor Thin Film Keisei) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392630A1 (en) * 1989-04-10 1990-10-17 Interuniversitair Microelektronica Centrum Vzw Method for applying a layer of superconducting material and a device suitable therefor
WO1990012425A1 (en) * 1989-04-10 1990-10-18 Interuniversitair Micro-Elektronica Centrum Vzw Method for applying a layer of superconducting material and a device suitable therefor
DE4016352A1 (de) * 1989-05-24 1990-11-29 Mitsubishi Electric Corp Laser-aufdampfeinrichtung
US5322817A (en) * 1990-10-16 1994-06-21 Superconductor Technologies, Inc. In situ growth of TL-containing oxide superconducting films
US5779802A (en) * 1990-12-10 1998-07-14 Imec V.Z.W. Thin film deposition chamber with ECR-plasma source
CN1037793C (zh) * 1992-01-28 1998-03-18 华中理工大学 激光沉积大面积超导膜的方法及其装置
RU2508576C1 (ru) * 2012-07-26 2014-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Поволжский государственный технологический университет Способ электроискрового формирования тонкопленочной втсп схемы

Also Published As

Publication number Publication date
EP0431160A4 (en) 1991-03-18
US5284824A (en) 1994-02-08
EP0431160B1 (en) 1995-05-17
EP0431160A1 (en) 1991-06-12
DE68922734D1 (de) 1995-06-22
US5158931A (en) 1992-10-27
US5374613A (en) 1994-12-20
DE68922734T2 (de) 1995-09-14

Similar Documents

Publication Publication Date Title
WO1989008605A1 (en) Process for producing thin-film oxide superconductor
JP3490483B2 (ja) Pzt薄膜の作製方法
EP1239056A1 (en) Improvement of a method and apparatus for thin film deposition, especially in reactive conditions
JP2793532B2 (ja) プラズマディスプレイパネルの製造方法
JP2854648B2 (ja) 酸化物超伝導膜の製造方法
JPH05320882A (ja) 蒸着薄膜の作製法
EP0349341A2 (en) Method of improving and/or producing oxide superconductor
US5731270A (en) Oxide superconductor and method and apparatus for fabricating the same
JP2583552B2 (ja) 酸化物超電導薄膜の製造方法
JP2742418B2 (ja) 酸化物超電導薄膜の製造方法
JP2529220B2 (ja) 硫化物蛍光体膜の製造方法
JPH06291375A (ja) 薄膜超電導体の製造方法及びその製造装置
JPH0585633B2 (ja)
JPH01163917A (ja) 化合物薄膜形成方法
JP3169278B2 (ja) 薄膜形成方法及び薄膜形成装置
JP3452458B2 (ja) 薄膜形成装置
JPH02296724A (ja) 薄膜超電導体の製造方法
JPH07243035A (ja) 化合物薄膜作製方法および装置
JPH07110800B2 (ja) イオン化ガス供給ノズル
JPH0818913B2 (ja) 薄膜超電導体の製造方法
JPS6179767A (ja) 被膜を形成する方法
JPS63261625A (ja) 超電導薄膜の製造方法
JPH01298007A (ja) 酸化物系超電導体の製造方法
JPH04114904A (ja) 高品質酸化物超電導薄膜の作製方法
JPH0818912B2 (ja) 薄膜超電導体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1989903216

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989903216

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989903216

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989903216

Country of ref document: EP