WO1986006106A1 - Couche de protection - Google Patents

Couche de protection Download PDF

Info

Publication number
WO1986006106A1
WO1986006106A1 PCT/EP1986/000225 EP8600225W WO8606106A1 WO 1986006106 A1 WO1986006106 A1 WO 1986006106A1 EP 8600225 W EP8600225 W EP 8600225W WO 8606106 A1 WO8606106 A1 WO 8606106A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
approximately
protective layer
adhesive layer
carrier
Prior art date
Application number
PCT/EP1986/000225
Other languages
English (en)
French (fr)
Inventor
Heiko Gruner
Original Assignee
Plasmainvent Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasmainvent Ag filed Critical Plasmainvent Ag
Priority to AT86902820T priority Critical patent/ATE68019T1/de
Priority to DE8686902820T priority patent/DE3681778D1/de
Publication of WO1986006106A1 publication Critical patent/WO1986006106A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • Y10T428/12646Group VIII or IB metal-base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component

Definitions

  • the invention relates to a protective layer applied to a metallic carrier in the plasma spraying process, consisting of at least one metallic adhesive layer and a multilayer top layer, which has different proportions of metallic and ceramic materials in its layers.
  • Protective layers of this type can be applied to very different carrier bodies. This is always associated with the intention of increasing the service life of the carrier body in a specific application and / or opening up new areas of use for the carrier material.
  • workpiece surfaces can be given specific specific properties at certain points. This expands the possible uses of the workpieces and increases their resistance in daily use.
  • PCT-WO-82/01898 has made known protective layers of the type described at the outset, which include an adhesive layer made of NiCrAlY and a multilayer top layer with different layers of oxide-ceramic materials such as
  • the total layer thickness given there on the examples is between 0.8 mm and 2.5 mm, according to the claims there 0.5 to 8 mm or 2 to 7 mm.
  • VPS technology The vacuum plasma spray technology was developed from these points of view. Their development, taking into account the special requirements of this new technology, led to significant improvements in coating conditions and layer properties compared to spraying in the atmosphere. Vacuum plasma spraying is a further development and addition to the atmospheric plasma spraying process (APS process). It differs from this principle in that the coating process takes place in a vacuum chamber at negative pressure.
  • the heating of the plasma gas in the arc and its ex- expansion into vacuum accelerate the gas atoms to more than three times the speed of sound.
  • the jet speed in vacuum is about 2 to 3 times higher.
  • the spray powder particles, which are still injected into the hot zone of the plasma jet within the burner nozzle, are correspondingly faster. Higher powder particle speeds result in denser spray layers and significantly reduce residual porosity and surface roughness.
  • the workpiece surface can be cleaned in a sputtering process before coating. Gas contamination, water vapor and oxide layers are dusted off. This leads to a significant improvement in the adhesion of the spray layers, especially on smooth surfaces.
  • free surface energy of cleaned carriers is saturated by layer atoms.
  • favorable conditions are created for interdiffusion processes between the carrier material and the layer.
  • Oxide-free layers are formed which have the same chemical composition as the wettable powder. Reactive powders find no reactant, their melting temperature and heat of fusion are not influenced.
  • the invention has for its object to provide a protective layer of the type described above, which can be used practically universally in all four main areas of application of the plasma spray layers, in particular the carrier simultaneously effective against corrosion, oxidation, erosion, chemical attack and Radiation protects, it is electrically isolated and temporarily protected from overheating by thermal insulation.
  • the protective layer is applied free of cracks and pores in the vacuum plasma spraying process, b) that in the protective layer on the pronounced adhesive layer of defined thickness there is a pronounced intermediate layer of defined thickness and then a pronounced cover layer.
  • thickness follows, c) that the adhesive layer consists of a material whose chemical composition essentially corresponds to that of the material of the carrier and has a thermal expansion coefficient very similar to that of the carrier, d) that the adhesive layer is sprayed as a dense Layer is built up.
  • the intermediate layer is sprayed from a.
  • Mixing the materials of the adhesive layer and the cover layer results in a particularly good connection of the tightly sprayed adhesive layer with the tightly sprayed cover layer, their different thermal expansion coefficients being matched to one another.
  • the adhesive layer and intermediate layer are practically not limited in their layer thickness
  • the intermediate layer is expediently constructed with a continuously graded transition from the material of the adhesive layer to the material of the cover layer.
  • the intermediate layer is advantageously sprayed on starting with the spray chamber when the adhesive layer is applied and gradually transitioning to the spray chamber pressure when the cover layer is applied.
  • the thickness of the adhesive layer in the range from approximately 20 ⁇ m to approximately 50 ⁇ m, at approximately 100 ⁇ m or at approximately 200 ⁇ m
  • the thickness of the intermediate layer in the range from approximately 20 ⁇ m to approximately 200 ⁇ m, preferably in the range from approximately 20 microns microns to about 50 microns, in particular at about 50 or about 200 microns
  • the thickness of the topcoat in the range from about 30 microns to about 100 microns, preferably .in the range of about 50 •• microns to about 80 microns, in particular at about 50 ⁇ m or about 100 ⁇ m.
  • the adhesive layer can advantageously have a thickness of approximately 200 ⁇ m, the intermediate layer a thickness of up to 5 mm and the cover layer a thickness of up to 500 ⁇ m.
  • the protective layer effect is given by the tightness of the cover layer, which for refractory materials with very high melting temperatures can practically only be achieved by the VPS process at these layer thicknesses. It is thus possible to combine materials with very different physical properties in a stable and temperature-change-resistant manner without the protective layer coming off, cracking and thus losing its protective effect in the different areas of use.
  • the grain size of the wettable powder is advantageously a maximum of 25 ⁇ m, so that it is ensured that both when the adhesive layer is sprayed with the top layer, but especially when the spray the intermediate layer, all wettable powder particles form the spray layer as molten droplets. This and in conjunction with the high mechanical impact energy ensures the tightness of the spray layer.
  • An essential feature of the protective layer structure is the lamellar overlap of the materials of the adhesive layer and the cover layer in the intermediate layer, which is caused by the bursting of the liquid wettable powder particles on impact on the workpiece surface.
  • the protective layer produced according to the invention only develops its effect when its density practically corresponds to the solid value.
  • the refractory material of the top layer TiB_ whose temperature resistance is 3200 ° C., is advantageous.
  • the material of the carrier and the adhesive layer can advantageously be made of Ti and the material of the intermediate layer can be made of 80% Ti and - 3 -
  • the material of the carrier and the adhesive layer can consist of a superalloy such as In 738 and the material of the intermediate layer can consist of 100% In 738 graded transition into 100% TiB or A1 2 ° 3.
  • the material of the carrier can advantageously also consist of a superalloy such as In 738 and the material of the adhesive layer can consist of an alloy of the type MC AlY which is matched to the alloy of the carrier, where M is Fe, Co ' or NiCo as the main alloy component.
  • the material of the intermediate layer advantageously consists of 100% M-CrAlY graded, transitioning into 100% TiB 2 or A1 2 0 3 .
  • the material of the intermediate layer can expediently also consist of M-CrAlY and A1 2 0, and the intermediate layer has a ' tightly sprayed, laminated, crack and pore-free structure, A1 2 0 being used for the material of the cover layer .
  • the protective effect of the M-CrAlY alloy layer is also due to the constant conversion of the AI portion into AI. J O3 caused. It is essential for the protective layer according to the invention when building up with oxides as refractory portion, especially with A1 2 0 3 in M-CrAlY, that no portion of stabilized oxides is required, that no micro-cracks or pores in the
  • Layer are present and that also here the Al 2 0 3 ⁇ particles were liquid when the layer was formed and are embedded in the interlayer in the form of a surface or build up the cover layer.
  • the material of the carrier and the adhesive layer can advantageously be made of steel and the material of the intermediate layer can consist of 50% steel and 50% TiB 2 . - 3 -
  • FIG. 1 shows a section through a protective layer applied to a carrier in the cutout
  • FIG. 2 shows the structure of the intermediate layer in the protective layer according to FIG. 1.
  • the 1 shows a carrier 1 which has been degassed on its surface 2 before the application of a composite protective layer 3, 4, 5 and has been heated to a certain temperature.
  • the surface 2 of the carrier 1 can be specially treated, for example roughened by sandblasting, and sputter-cleaned and coated with absorbed gases, water and thin oxide layers before coating with the aid of the transmitted arc.
  • An adhesive layer 3 is applied to the surface 2 of the carrier 1 using the VPS method, the chemical composition of which largely corresponds to the material of the carrier 1 and has practically the same thermal expansion coefficient as the carrier 1.
  • the thickness of the adhesive layer 3 is preferably approx. 50 ⁇ m, but can also be any greater if e.g. in the event of a repair, a worn surface is to be returned to its original dimension.
  • An intermediate layer 4 of any thickness is applied to the adhesive layer 3, and a densely sprayed cover layer 5 with a preferred thickness of 50 to 1.00 ⁇ m made of a refractory material, for example TiB 2 , is applied to this intermediate layer 4. Both the intermediate layer 4 and the cover layer 5 are also deposited using the VPS method.
  • the intermediate layer 4 consists of a mixture of the materials of the adhesive layer 3 and the cover layer 5 and is formed, for example, with a graded transition between the latter two layers.
  • the cover layer 5 made of refractory material represents the actual protective layer of the composite protective layer 3, 4, 5, which layer structure corresponds as closely as possible to the solid material, that is to say is as dense as possible, in contrast to previously known layers made of refractory material, that is to say has no residual porosity and no microporosity. and built in macro cracks.
  • FIG 2 shows schematically the structure of the intermediate layer 4, in which the materials of the adhesive layer and the cover layer overlap like lamellae.
  • a turbine component which for reasons of weight and mechanical properties consists of a titanium alloy, is exposed to severe erosion loads in practical operation.
  • a protective layer according to the invention consisting of a Ti adhesive layer 3, an intermediate layer 4, produced by simultaneous powder injection of 80% Ti and 20% TiB 2 , and a pure TiB 2 ⁇ top layer 5, the erosion attack succeeds very strongly to diminish.
  • the adhesive layer 3 is approximately 20 to -50 ⁇ m thick, the intermediate layer 4 advantageously approximately 20 to .50 ⁇ m and the cover layer 5 on average 40 ⁇ m.
  • the coating is carried out in such a way that the thickness of the TiB 2 top layer 5 was specifically increased to approximately 50 ⁇ m at the gas entry points exposed to the particularly erosive forces, such as the leading edge or the pressure side of a turbine blade. -. 1 -
  • TiB 2 top layer 5 has a very low erosion rate at a layer hardness above 2300, measured according to the Vickers method, while according to the prior art, rather softer materials have a high erosion stability.
  • Carrier 1 and protective layer 3, 4, 5 can be seen.
  • the layer adhesion can no longer be measured using the known test methods.
  • a measurement carried out in accordance with D N 50160 does not provide any adhesive tensile strength values for the protective layer, since there is a breakout in the adhesive point.
  • a carrier 1 is to au, s alloy of a super, for example, in 738, to erosion and / or H redesigngasoxida- tion to be protected. These grades are made according to the
  • the preferred protective layer structure in this application is adhesive layer 3 in 738 about 100 ⁇ m thick, graded over transition from 100% In 738 to 100% TiB 2 in the intermediate layer 4 to a layer thickness of approximately 200 ⁇ m, and top layer 5 TiB-, approximately 50 ⁇ m thick ..: with targeted reinforcements to 80 ⁇ m ' at the critical points.
  • a carrier 1 made of steel is to be used as an aluminum die casting tool and is to be protected against the attack of liquid Al.
  • spray powder of this type of steel is used for the adhesive layer 3, the thickness of the adhesive layer 3 preferably being up to 200 ⁇ m.
  • the thickness of the intermediate layer 4 made of a 50:50 mixture of steel spray powder and TiB 2 is relatively small at 50 ⁇ m. Since the temperature for liquid aluminum is around 700 ° C, the TiB 2 ⁇ top layer 5 is 100 ⁇ m thick. Since die casting tools have a perfect fit, the total layer application on the workpiece must be taken into account before coating.
  • the original geometry can be restored by spraying on the adhesive layer material, and then the intermediate layer and cover layer can be applied.
  • a protective layer is sought for the first wall boundary of the fusion plasma, which protects the carrier material against ion bombardment and electrical flashovers with a high current density, but is temperature-resistant in an inert gas atmosphere, has a low sputtering rate under particle bombardment and the demand for one if possible low atomic number fulfilled.
  • TiB 2 has proven itself for the top layer 5, the temperature resistance of which in the '. Vacuum at. 3,200 ° C. S. ⁇ h ' utz. harsh elaborate depends on the chosen. Straps, material. And are otherwise assembled according to the invention.
  • Components of hydropower plants are particularly exposed to erosive forces, which are further reinforced by the cavitation effect.
  • a substantial material reserve is usually included in order to achieve a certain service life despite severe erosion.
  • a protective layer in this application should also be able to be applied correspondingly thickly.
  • the protective layer according to the invention also develops an ideal protective effect here.
  • a Haf 'layer 3 is about 200 microns thick, followed by a for example up to 5 mm-thick intermediate layer 4 material as a mixture with about 20 to 60 weight percent refractory, very fine and uniformly in the matrix of the Adhesive layer material is distributed before in this case an up to 500 ⁇ m thick cover layer 5 made of refractory material is sprayed on very densely.
  • An essential feature of the invention is the ability to repair these components after the protective layer has been used up. Since a material corresponding to the carrier material was applied as the adhesive layer 3, residues of the protective layer 3, 4, 5 can be removed, for example by sandblasting, as far as the adhesive layer material, in order then to be sprayed on again.
  • adhesive layer material can first be sprayed on until the original configuration of the component is reached again in order to finally apply the protective layer 3, 4, 5 again with the tried and tested layer structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

SCHUTZSCHICHT
Die Erfindung bezieht sich auf eine im Plasmaspritzverfah¬ ren auf einen metallischen Träger aufgebrachte Schutzschicht, bestehend aus wenigstens einer metallischen Haftschicht und einer mehrlagigen Oberschicht, die in ihren Lagen unter- schiedliche Anteile an metallischen und keramischen Materia¬ lien aufweist. Derartige Schutzschichten können auf sehr verschiedene Trägerkörper aufgebracht werden. Immer ist da¬ mit die Absicht verbunden, die Lebensdauer des Trägerkörpers in einer bestimmten Applikation zu erhöhen und/oder neue Einsatzgebiete für das Trägermaterial zu erschließen. Mit
Hilfe der Schutzschicht gelingt es, Werkstückoberflächen an bestimmten Stellen spezifisch andere Eigenschaften zu ver¬ leihen. Dies erweitert die Einsatzmöglichkeiten der Werk¬ stücke und steigert deren Widerstandsfähigkeit im täglichen Einsatz.
Durch die PCT-WO-82/01898 sind Schutzschichten der eingangs beschriebenen Art bekannt geworden, die eine Haftschicht aus NiCrAlY und eine mehrlagige Oberschicht mit lagenver- schiedenen Anteilen an oxidkeramischen Materialien wie
Zr02-Y2° A13 -er Ca-SiO. aufweisen. Die dort an den Beispielen angegebene Gesamtschichtdicke beträgt zwischen 0,8 mm und 2,5 mm, nach den dortigen Ansprüchen 0,5 bis 8 mm bzw. 2 bis 7 mm. Die Haftschichtdicke beträgt dort 0,1 mm, 0,15 mm oder 0,2 mm.
Für die Beschichtung von Werkstückoberflächen kommen heute sehr unterschiedliche Techniken zur Anwendung. Aufgrund der hohen Energiedichte in der Plasmaflamme hat sich das Plas- maspritzen sehr rasch eine führende Rolle in der Beschich- tungstechnik gesichert. Praktisch alle pulverförmigen Mate¬ rialien können mit dieser Beschichtungstechnik unter be¬ stimmten Bedingungen als Schicht auf den unterschiedlichsten tungstechnik gesichert. Praktisch alle pulverförmigen Mate¬ rialien können mit dieser Beschichtungstechnik unter be¬ stimmten Bedingungen als Schicht auf den unterschiedlichsten Trägermaterialien abgeschieden werden. Meist sind es harte, widerstandsfähige, hochtemperaturbeständige und korrosions¬ feste Plasmaspritzschichten, welche die Standzeiten hoch¬ wertiger Maschinenbauteile in rauhen Umweltbedingungen ent¬ scheidend verlängern. Jedoch zeigt die industrielle Anwen¬ dung der Plasmaspritztechnik auch ihre physikalischen Ein- satzgrenzen. In vielen Fällen ist die Spritzschicht nicht dicht genug, ihre Haftung auf dem Grundwerkstoff nicht ausreichend. Bei reaktiven Spritzpulvern verändert sich die chemische Zusammensetzung inder Spritzschicht zu stark. Relativ leicht kann Luftsauerstoff in'die Plasmaflamme ein- diffundieren, oxidierend und damit störend wirken.
Unter diesen Gesichtspunkten wurde die Vakuumplasmaspritz-^ technik (VPS-Technik) erschlossen. Ihre Entwicklung führte unter konsequenter Berücksichtigung der speziellen Anforde- rungen dieser neuen Technologie zu wesentlichen Verbesse¬ rungen der Beschichtungskonditionen und Schichteigenschaf¬ ten im Vergleich zum Spritzen in Atmosphäre. Dabei ist das Vakuumplasmaspritzen eine Weiterentwicklung und Ergänzung des atmosphärischen Plasmaspritzverfahrens (APS-Verfahren) . Es unterscheidet sich von diesem Prinzip dadurch, daß der Beschichtungsprozeß in einer Vakuumkammer bei Unterdruck stattfindet.
Die ansich bekannten Verbesserungen der Beschichtungskondi- tionen und Schichteigenschaften der VPS-Technik lassen sich in 4 Gruppen zusammenfassen:
1. Teilchengeschwindigkeit
Die Erwärmung des Plasmagases im Lichtbogen und seine Ex- pansion ins Vakuum beschleunigen die Gasatome auf mehr als dreifache Schallgeschwindigkeit. Im Vergleich zum atmosphä¬ rischen Spritzen ist die Strahlgeschwindigkeit im Vakuum etwa 2 bis 3 mal höher. Entsprechend schneller sind auch die Spritzpulverpartikel, welche noch innerhalb der Brenrer- düse in die heiße Zone des Plasmastrahles injektiert werden. Höhere Pulverpartikelgeschwindigkeiten ergeben dichtere Spritzschichten und reduzieren signifikant die Restporosität und die Oberflächenrauhigkeit.
2. Oberflächenreinigung
Mit Hilfe des übertragenen Lichtbogens kann die Werkstück¬ oberfläche vor dem Beschichten in einem Sputterprozeß ge- reinigt werden. Gaskontaminätion, Wasserdampf und Oxid¬ schichten werden abgestäubt. Das führt zu einer deutlichen Haf verbesserung der Spritzschichten, insbesondere auf glat¬ ten Oberflächen. Zur rein mechanischen Verzahnung der Spritz¬ schicht mit dem Werkstoff des Trägers kommt die Absättigung freier Oberflächenenergie gereinigter Träger durch Schicht¬ atome. Zusätzlich werden für Interdiffusionsprozesse zwi¬ schen Trägermaterial und Schicht günstige Bedingungen er¬ zeugt.
3. Werkstücktemperatur
Da der Beschichtungsprozeß im Vakuum verläuft, können alle Trägermaterialien vor dem Beschichten bis an ihre thermische Stabilitätsgrenze aufgeheizt werden. Dabei kann die Heizwir- kung der Plasmaflamme mit Hilfe des übertragenen Lichtbogens noch verstärkt werden. Ohne Oxidationsgefahr für Träger und Schicht sind gezielte Temperaturveränderungen während oder nach dem Beschichten möglich. Innere Spannungen in der Spritzschicht werden dadurch vermieden oder abgebaut. 4. Schichtreinheit
Der Beschichtungsprozeß erfolgt ohne reaktive Gaspartner. Es entstehen oxidfreie Schichten, welche in der chemischen Zusammensetzung mit dem Spritzpulver übereinstimmen. Reak¬ tionsfreudige Pulver finden keinen Reaktionspartner, ihre Schmelztemperatur und AufSchmelzwärme werden nicht beein¬ flußt.
Unter gezielter Ausnutzung der Vorteile der VPS-Technik sind weitere Applikationen für Plasmaspritzschichten er¬ schlossen worden. Auch wurden in Verbindung mit im VPS- Verfahren gespritzten Deckschichten für bekannte Trägerma¬ terialien erst neue Einsatzgebiete möglich.
Beispiele bevorzugter Anwendungsgebiete derartiger Vakuum- plasmaspritzschichten sind:
Heißkorrosions-:., Oxidations- und Erosionsschütz von Turbinenbauteilen,
Elektrische Isolation und/oder- ärmedämmung,
Chemische Beständigkeit und
Strahlungsschutz in- der Kerntechnik.
Bisher wurde praktisch für jede individuelle Anwendung von Plasmaspritzschichten auch eine nur in dieser Anwendung ein- setzbare Schutzschicht entwickelt. Als Entwicklungskriterien für diese Schutzschicht sind im wesentlichen die Beanspru¬ chung, das Temperaturverhalten und ihre mechanische und/oder chemische Stabilität zu nennen. Aber auch der Trägerwerk¬ stoff und die Umgebungsbedingungen beeinflussen die Wahl des Schichtwerkstoffes und seine Dicke, welche wieder aus Gründen der Wirtschaftlichkeit nur so dick als nötig sein sollte. > -
Der Erfindung liegt die Aufgabe zugrunde, eine Schutzschicht der eingangs beschriebenen Art zu schaffen, welche praktisch universell in allen vier genannten Hauptanwendungsgebieten der Plasmaspritzschichten zum Einsatz kommen kann, insbeson- dere den Träger gleichzeitig wirksam gegen Korrosion, Oxida- tion, Erosion, chemischen Angriff und Strahlung schützt, ihn dabei elektrisch isoliert und durch Wärmedämmung kurz¬ fristig vor überhitzen bewahrt.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst,
a) daß die Schutzschicht im Vakuumplas aspritzverfahren riß- und porenfrei aufgebracht ist, b) daß in der Schutzschicht auf die ausgeprägte Haftschicht definierter Dicke eine ausgeprägte Zwischenschicht defi¬ nierter Dicke und hierauf eine ausgeprägte Deckschicht . definierter Dicke folgt, c) daß die Haftschicht aus einem Material besteht, dessen chemische Zusammensetzung im wesentlichen der des Ma- terials des Trägers entspricht und einen thermischen Aus¬ dehnungskoeffizienten sehr ähnlich dem des Trägers auf¬ weist, d) daß die Haftschicht als dichte gespritzte Schicht auf¬ gebaut ist.
Dadurch, daß die Zwischenschicht dichtgespritzt aus einer . Mischung der Materialien der Haftschicht und der Deckschicht besteht, ergibt sich eine besonders gute Verbindung der dicht gespritzten Haftschicht mit der dichtgespritzten Deckschicht, wobei deren unerschiedliche thermische Ausdehnungskoeffizien¬ ten einander angeglichen werden. Dadurch sind Haftschicht und Zwischenschicht in ihrer Schichtdicke praktisch nicht begrenz
Zweckmäßig ist die Zwischenschicht mit kontinuierlich gra- diertem Übergang vom Material der Haftschicht zum Material der Deckschicht aufgebaut. - <_ -
Vorteilhaft ist die Zwischenschicht beginnend mit dem Spritz- ka merdurck beim Aufbringen der Haftschicht und graduell übergehend zum Spritzkammerdruck beim Aufbringen der Deck¬ schicht aufgespritzt.
Zweckmäßig liegen
a) die Dicke der Haftschicht im Bereich von etwa 20 μm bis etwa 50 μm, bei etwa 100 μm oder bei etwa 200 μm, b) die Dicke der Zwischenschicht im Bereich von etwa 20 μm bis etwa 200 μm, vorzugsweise im Bereich von etwa 20 μm bis etwa 50 μm, insbesondere bei etwa 50 μm oder etwa 200 μm, c) die Dicke der Deckschicht im Bereich von etwa 30 μm bis etwa 100 μm, vorzugsweise .im Bereich von etwa 50••μm bis etwa 80 μm, insbesondere bei etwa 50 μm oder etwa 100 μm.
Für Anwendungen zur Vermeidung von Korrosion oder Kavitation des Trägers kann vorteilhaft die Haftschicht eine Dicke von etwa 200 μm, die Zwischenschicht eine Dicke bis zu 5 mm und die Deckschicht eine Dicke bis zu 500 μm aufweisen.
Die Schutzschichtwirkung ist durch die Dichtheit der Deck¬ schicht gegeben, welche für Refraktärmaterialien mit sehr hohen Schmelztemperaturen praktisch nur durch das VPS-Ver- fahren bei diesen Schichtdicken erreichbar ist. So ist es möglich, Materialien mit sehr unterschiedlichen physikali¬ schen Eigenschaften stabil und te peraturwechselbeständig miteinander zu verbinden, ohne daß die Schutzschicht ab- springt, Risse bekommt und damit in ihrer Schutzwirkung in den unterschiedlichen Einsatzgebieten nachläßt.
Die Körung des Spritzpulvers liegt vorteilhaft bei maximal 25 μm, damit sichergestellt ist, daß sowohl beim Aufspritzen der Haftschicht mit Deckschicht, vor allem aber beim Auf- spritzen der Zwischenschicht, alle Spritzpulverpartikel als geschmolzene Tröpfchen die Spritzschicht ausbilden. Dadurch und in Verbindung mit der hohen mechanischen Auftreffenerqie wird die Dichtheit der Spritzschicht sichergestellt. Wesent¬ liches Merkmal der Schutzschichtstruktur ist die lamellenar¬ tige Überlappung der Materialien der Haftschicht und der Deckschicht in der Zwischenschicht, welche durch das Ausein¬ anderplatzen der flüssigen Spritzpulverpartikel beim Auf¬ prall auf der Werkstückoberfläche entsteht.
Im Gegensatz zu bisher durch Plasmaspritzen hergestellten, thermischen Barriereschichten, welche z.B. aus stabilisier¬ tem ZrO_ bestehen und deren thermische Stabilität im we¬ sentlichen durch Mikrorisse und eine Porosität von bis zu 15% Volumenanteil gegeben ist, entwickelt die erfindungsge¬ mäß hergestellte Schutzschicht erst ihre Wirkung, wenn ihre Dichte praktisch dem Festkörperwert entspricht.
Aufgrund der genannten Vorteile der VPS-Technik können erstmals sämtliche Trägermaterialien auch als Spritzschicht realisiert werden, ohne chemische Veränderung und praktisch mit identischer Dichtheit und Temperaturverhalten, so daß die Deckschicht aus Refraktärmaterial in bestmöglicher Art über die Zwischenschicht und Haftschicht mit dem Trägerwerk- stoff verbunden werden kann.
Vorteilhaft ist das Refraktärmaterial der Deckschicht TiB_, dessen Temperaturbeständigkeit bei 3200° C liegt.
Übersteigt in :θxidierender.\_At_mosphäre:die Oberflächeritempe- xa ur..T.1.000.- Cy.'.sό wird als. Refraktärmaterial der^-Deckschicht vorzugsweise A1-0-. verwendet.
Das Material des Trägers und der Haftschicht kann vorteilhaft aus Ti und das Material der Zwischenschicht aus 80% Ti und - 3 -
20% TiB_ bestehen, wobei das Material der Deckschicht TiB_ ist.
Alternativ kann das Material des Trägers und der Haftschicht aus einer Superlegierung wie In 738 bestehen und das Material der Zwischenschicht aus 100% In 738 gradiert übergehend in 100% TiB- oder A12°3 bestehen.
Vorteilhaft kann das Material des Trägers auch aus einer Superlegierung wie In 738 und das Material der Haftschicht aus einer der Legierung des Trägers angepaßten Legierung vom Typ M-C AlY bestehen, wobei M als Hauptlegierungskom¬ ponente Fe, Co ' oder NiCo ist. Hierbei besteht das Ma¬ terial der Zwischenschicht vorteilhaft aus 100% M-CrAlY gradiert übergehend in 100% TiB2 oder A1203.
Zweckmäßig kann das Material der Zwischenschicht auch aus M-CrAlY und A120-, bestehen und die Zwischenschicht eine 'dicht¬ gespritzte, lamellierte, riß- und porenfreie Struktur aufwei- sen, wobei für das Material der Deckschicht A120, verwendet wird. Die Schutzwirkung der M-CrAlY-Legierungsschicht wird mit durch die stetige Umwandlung des AI-Anteils in AI.JO3 ver¬ ursacht. Wesentlich für die erfindungsgemäße Schutzschicht beim Aufbau mit Oxiden als Refraktäranteil, speziell mit A1203 in M-CrAlY, ist, daß kein Anteil an stabilisierten Oxi¬ den benötigt wird, daß keine Mikrorisse oder Poren in der
Schicht vorhanden sind und daß auch hier die Al203~Partikel bei der Schichtbildung flüssig waren und flächenförmig in die Zwischenschicht eingelagert sind bzw. die Deckschicht aufbauen.
Schließlich kann vorteilhaft das Material des Trägers und der Haftschicht aus Stahl und das Material der Zwischen¬ schicht aus 50% Stahl und 50% TiB2 bestehen. - 3 -
Die Erfindung ist im folgenden an Ausführungsbeispielen und anhand der Zeichnung näher erläutert. In der Zeichnung zeigen
Fig. 1 einen Schnitt durch eine auf einen Träger aufgebrach¬ ten Schutzschicht im Ausschnitt, und
Fig. 2 die Struktur der Zwischenschicht in der Schutzschicht nach Fig. 1.
In Fig. 1 ist ein Träger 1 dargestellt, welcher an seiner Oberfläche 2 vor dem Aufbringen einer zusammengesetz¬ ten Schutzschicht 3, 4, 5 entgast und auf eine bestimmte Temperatur aufgewärmt worden ist. Die Oberfläche 2 des Trä- gers 1 kann speziell behandelt sein, beispielsweise durch Sandstrahlen aufgerauht, und vor dem Beschichten mit Hilfe des übertragenen Lichtbogens sputtergereinigt und von absor¬ bierten Gasen, Wasser und dünnen Oxidschichten ,befreit sein.
Auf die Oberfläche 2 des Trägers 1 ist eine Haftschicht 3 im VPS-Verfahren aufgebracht, welche in ihrer chemischen Zusammensetzung dem Material des Trägers 1 weitgehend ent¬ spricht und praktisch den gleichen thermischen Ausdehnungs¬ koeffizienten wie der Träger 1 aufweist. Die Dicke der Haft- Schicht 3 ist vorzugsweise ca. 50 μm, kann aber auch belie¬ big größer sein, wenn z.B. in einem Reparaturfall eine abge¬ tragene Oberfläche in ihre ursprüngliche Dimension zurückge¬ bracht werden soll.
Auf die Haftschicht 3 ist eine Zwischenschicht 4 beliebiger Dicke aufgebracht, und auf diese Zwischenschicht 4 weiter eine dichtgespritzte Deckschicht 5 mit einer bevorzugten Dicke von 50 bis 1.00 μm aus einem Refraktärmaterial, bei¬ spielsweise TiB2, aufgebracht. Sowohl die Zwischenschicht 4 als auch die Deckschicht 5 sind ebenfalls im VPS-Verfahren abgeschieden. Die Zwischenschicht 4 besteht aus einer Mischung der Mate¬ rialien der Haftschicht 3 und der Deckschicht 5 und ist bei¬ spielsweise mit gradiertem Übergang zwischen den beiden letztgenannten Schichten ausgebildet. Die Deckschicht 5 aus Refraktärmaterial stellt die eigentliche Schutzschicht der zusammengesetzten Schutzschicht 3, 4, 5 dar, welche in ihrer Schichtstruktur möglichst dem Festkörperwerkstoff entspricht, also möglichst dicht ist, im Gegensatz zu bisher bekannten Schichten aus Refraktärmaterial, also keine Restporosität aufweist und keine Mikro- und Makrorisse eingebaut hat.
Fig. 2 zeigt schematisch die Struktur der Zwischenschicht 4, in der sich die Materialien der Haftschicht und der Deck¬ schicht lamellenartig überlappen.
Im folgenden sind mehrere Anwendungsbeispiele der erfindungs¬ gemäßen Schutzschicht näher erläutert.
Beispiel 1
Ein Turbinenbauteil, welches aus Gewichtsgründen und mecha¬ nischen Eigenschaften aus einer Titanlegierung besteht, ist im praktischen Betrieb starken Erosionsbelastungen ausgesetzt. Durch eine erfindungsgemäße Schutzschicht, bestehend aus einer Ti-Haftschicht 3, aus einer Zwischenschicht 4, herge¬ stellt durch gleichzeitiges Pulverinjektieren von 80% Ti und 20% TiB2, und einer reinen TiB2~Deckschicht 5, gelingt es, den Erosionsangriff sehr stark zu vermindern. In diesem An¬ wendungsfall ist die Haftschicht 3 etwa 20 bis -.50 μm dick, die Zwischensicht 4 vorteilhaft etwa 20 bis .50 μ und die Deckschicht 5 im Mittel 40 μm. Dabei ist die Beschichtung so ausgeführt, daß an den besonders erosiven Kräften ausge¬ setzten Gaseintrittsstellen wie z.B. der Führungskante oder der Druckseite einer Turbinenschaufel, die Dicke der TiB2~ Deckschicht 5 gezielt auf etwa 50 μm verstärkt wurde. - . 1 -
Wichtig ist, daß die TiB2-Deckschicht 5 bei einer Schicht¬ härte über 2300, gemessen nach der Vickersmethode, eine sehr geringe Erosionsrate aufweist, während nach dem Stand der Technik eher weichere Materialien eine hohe Erosions- Stabilität aufweisen.
Durch die Abscheidung der Ti-Haftschicht 3 und der Zwischen¬ schicht 4 aus Ti und TiB_ nach dem VPS-Verfahren und durch die vorgenommene Sputterreinigung der Ti-Trägeroberflache 2 vor dem Beschichten ist praktisch kein Übergang zwischen
Träger 1 und Schutzschicht 3, 4, 5 erkennbar. Die Schicht¬ haftung ist mit den bekannten Testmethoden nicht mehr meßbar. Eine nach D N 50160 durchgeführte Messung liefert keine Haft- Zugfestigkeitswerte der Schutzschicht, da ein Ausbruch in der Klebestelle erfolgt.
Beispiel 2
In einem zweiten Beispiel soll ein Träger 1 au,s einer Super- legierung, z.B. In 738, gegen Erosion und/oder Heißgasoxida- tion geschützt werden. Diese WerkstoffSorten werden nach dem
Beschichten einer bestimmten Wärmebehandlung unterzogen, zur
Erzeugung einer WerkstoffStruktur, welche erst die mechani¬ schen Hochtemperatureigenschaften besitzt. Diese Wärmebe- handlung erfolgt bei Temperaturen, wo intermetallische
Diffusion stattfinden kann. Deshalb ist es besonders vor¬ teilhaft, diesen Träger 1 mit einer Haftschicht.3 der glei¬ chen Materialzusammensetzung zu beschichten, da so die Le¬ gierungskomponenten-Verarmung und -Anreicherung in der Haft- schicht 3 und in dem Träger 1 verhindert ist, welche immer mit Veränderungen der mechanischen Eigenschaf¬ ten verknüpft ist, die es zu vermeiden gilt.
Der bevorzugte Schutzschichtaufbau in diesem Anwendungsfall ist Haftschicht 3 In 738 etwa 100 μm dick, gradierter über- gang von 100% In 738 auf 100% TiB2 in der Zwischenschicht 4 auf einer Schichtdicke von etwa 200 μm, und Deckschicht 5 TiB-, etwa 50 μm dick..: mit gezielten Verstärkungen auf 80 μm' an den kritischen Stellen.
Überwiegt der Oxidationsangriff den Erosionsangriff, so
I
'kann für die Haftschicht 3 vorteilhafterweise ein dem Trä¬ gerwerkstoff angepaßter Legierungswerkstof'f vom Typ M-CrAlY ! benützt werden, wobei für M Fe, Co, Ni und NiCo als Haupt- ϊ egierungskomponente einzusetzen ist. Übersteigt die.Ober- ; flächentemperatur 1100° C,.so erfolgt der.gleiche Schicht-- ! aufbau am besten mit dem Refraktärmaterial Al203. In beiden I Fällen ist die" bevorzugte Spritzpulverkörnung, auf maximal 25 μm beschränkt, um einen gleichmäßigen Gradierübergang mit möglichst homogener .Materiaiverteilung zu erzeugen und die Deckschicht 5 dicht zu spritzen...
Beispiel 3
Im Anwendungsbeispiel 3 soll ein Träger 1 aus Stahl als Alu¬ miniumdruckgußwerkzeug verwendet werden und gegen den Angriff von flüssigem AI geschützt werden. In diesem Fall wird für di Haftschicht 3 Spritzpulver dieser Stahlsorte eingesetzt, wobei die Dicke der Haftschicht 3 bevorzugt bis zu 200 μm beträgt. Dagegen liegt die Dicke der Zwischenschicht 4 aus einer 50:50-Mischung von Stahlspritzpulver und TiB2 relativ gering bei 50 μm. Da für Flüssigaluminium die Temperatur bei etwa 700° C liegt, ist die TiB2~ Deckschicht 5 100 μm stark. Da Druckgußwerkzeuge Paßform besitzen, muß vor dem Beschichten der Gesamtschichtauftrag am Werkstück berück- sichtigt werden.
Für den Fall der Reparaturspritzung eines schon verwendeten Druckgußwerkzeuges, bei welchem durch seinen Gebrauch bestimm- te Bereiche so weit abgetragen werden, daß ein nicht mehr to- lerierbares Untermaß entstanden ist, kann durch Aufspritzen des Haftschichtmaterials die ursprüngliche Geometrie wieder erzeugt werden, und dann die Zwischenschicht und Deckschicht aufgebracht werden.
Beispiel 4
Im kerntechnischen Bereich ist eine Schutzschicht für die erste Wandbegrenzung des Fusionsplasma gesucht, welche das Trägermaterial gegen Ionenbeschuß und elektrische Überschlä¬ ge mit hoher Stromdichte schützt, dabei aber temperaturbe¬ ständig in Inertgasatmosphäre ist, eine kleine Sputterrate unter Teilchenbeschuß aufweist und die Forderung nach einer möglichst niederen Kernladungszahl erfüllt. Auch in- dieser Applikation bewährt sich TiB2 für die Deckschicht 5, dessen Temperaturbeständigkeit im.'.Väkuum bei .3.200° C .liegt: Der.. . S.αh'utz.schichtäufbau richtet sich nach dem gewählten. Trägern, material .und st sonst erf.indungsgemäß zusammengesetzt.
Beispiel 5
Bauteile von Wasserkraftwerken sind besonders erosiven Kräf¬ ten ausgesetzt, welche durch Kavitationswirkung weiter ver¬ stärkt werden. In der Gestaltung der Bauform ist meist eine erhebliche Materialreserve mit eingeplant, um eine bestimmte Lebensdauer trotz starker Erosion zu erreichen. Eine Schutz¬ schicht in dieser Anwendung soll neben der Herabsetzung der Erosionsrate an der Oberfläche des Bauteiles auch entspre¬ chend dick auftragbar sein. Auch hier entwickelt die erfin- dungsgemäße Schutztschicht ideale Schutzwirkung.
Nach dem Aufspritzen einer Haf'tschicht 3 etwa 200 μm dick, folgt eine beispielsweise bis zu 5 mm dicke Zwischenschicht 4 als Mischung mit etwa 20 bis 60 Gewichtsprozent Refraktär- material, sehr feinkörnig und gleichmäßig in der Matrix des Haftschichtmaterials verteilt, bevor in diesem Fall eine bis zu 500 μm dicke Deckschicht 5 aus Refraktärmaterial sehr dicht aufgespritzt wird.
Bei allen aufgeführten Beispielen handelt es sich um sehr teure Bauteile, deren Lebensdauerverlängerung aus Kostengrün¬ den sehr wichtig ist. Als wesentliches Merkmal der Erfindung ist die Reparaturfähigkeit dieser Bauteile nach dem Verbrauch der Schutzschicht aufzuführen. Da als Haftschicht 3 ein dem Trägerstoff entsprechendes Material aufgebracht wurde, können Reste der Schutzschicht 3, 4, 5 beispielsweise durch Sand¬ strahlen bis zum Haftschichtmaterial abgetragen werden, um dann neu aufgespritzt zu werden.
An den Stellen, wo während des Betriebseinsatzes des Bautei¬ les die Schutzschicht 3, 4, 5 und zusätzlich Material des Trägers beispielsweise erodiert wurde, kann zunächst solange Haftschichtmaterial aufgespritzt werden, bis die ursprüngli¬ che Konfiguration des Bauteiles wieder erreicht ist, um an- schließend die Schutzschicht 3, 4, 5 mit dem erprobten Schich aufbau wieder aufzutragen.

Claims

- 1 . -Patentansprüche:
1. Im Plasmaspritzverfahren auf einen metallischen Träger (1) aufgebrachte Schutzschicht (3, 4, 5) , bestehend aus wenigstens einer metallischen Haftschicht (3) und einer mehrlagigen Oberschicht, diein ihren Lagen un- terschiedliche Anteile an metallischen und keramischen Materialien aufweist, dadurch g e k e n n z e i c h n e t ,
a) daß die Schutzschicht (3, 4, 5) im Vakuumplasma- spritzverfahren riß- und porenfrei aufgebracht ist, b) daß in der Schutzschicht (3, 4, 5) auf die ausge¬ prägte Haftschicht (3) definierter Dicke eine aus¬ geprägte Zwischenschicht (4) definierter Dicke und hierauf eine ausgeprägte Deckschicht (5) definier- ter Dicke folgt, c) daß die Haftschicht (3) aus einem Material besteht, dessen chemische Zusammensetzung im wesentlichen der des Materials des Trägers (1) entspricht und einen thermischen Ausdehnungskoeffizienten sehr ähnlich dem des Trägers (1) aufweist, d) daß die Haftschicht (3) als dichtgespritzte Schicht aufgebaut ist7 e) daß die Zwischenschicht (4) als dichtgespritzte, durch Mischen der Materialien der Haftschicht (3) und der Deckschicht (5) deutlich lamellierte Schicht aufgebaut ist, und f) daß die Deckschicht (5) aus einem dicht gespritzten Refraktärmaterial aus der Gruppe der Boride, Karbi¬ de, Nitride und Oxide besteht.
Schutzschicht nach Anspruch 1 , dadurch g e k e n n z e i c h n e t , daß die Zwi¬ schenschicht (4) mit kontinuierlich gradiertem Übergang vom Material der Haftschicht (3) zum Material der Deck¬ schicht (5) aufgebaut ist.
Schutzschicht nach Anspruch 1 oder 2, dadurch g e k e n n z e i c h n e t , daß die Zwi¬ schenschicht (4) beginnend mit dem Spritzkammerdruck beim Aufbringen der Haftschicht (3) und graduell über¬ gehend zum Spritzkammerdruck beim Aufbringen der Deck¬ schicht aufgespritzt ist.
4. Schutzschicht nach Anspruch 1, 2 oder 3, dadurch g e k e n n z e i c h n e t ,
a) daß die Dicke der Haftschicht(3) im Bereich von etwa 20 μm bis etwa 50 μm, bei etwa 100 μm oder bei etwa 200 μm liegt, b) daß die Dicke der Zwischenschicht - (4) im Bereich von etwa 20 μm bis etwa 200 μm, vorzugsweise im Bereich von etwa 20 μm bis etwa 50 μm, insbeson- dere bei etwa 50 μm oder etwa 200 μm, liegt, und c) daß die Dicke der Deckschicht (5) im Bereich von etwa 30 μm bis etwa 100 μm, vorzugsweise im Be¬ reich von etwa 50 μm bis etwa 80 μm, insbesondere bei etwa 50 μm oder etwa 100 μm, liegt.
5. Schutzschicht nach Anspruch 1, 2 oder 3, dadurch g e k e n n z e i c h n e t , daß die Haft¬ schicht (3) eine Dicke von etwa 200 μm, die Zwischen¬ schicht (4) eine Dicke bis zu 5 mm und die Deckschicht (5) eine Dicke bis zu 500 μm aufweist.
6. Schutzschicht nach einem der Ansprüche 1 bis 5, dadurch g e k e n n z e i c h n e t , daß die Kör¬ nung des Spritzpulvers bei maximal 25 μm liegt.
7. Schutzschicht nach einem der Ansprüche 1 bis 6, dadurch g e k e n n z e i c h n e t , daß das Refrak¬ tärmaterial der Deckschicht (5) iB2 oder A1.-0-, ist.
8. Schutzschicht nach einem der Ansprüche 1 bis 7, dadurch g e k e n n z e i c h n e t , daß das Mate¬ rial des Trägers (1) und der Haftschicht (3) aus Ti und das Material der Zwischenschicht (4) aus 80% Ti und 20% TiB2 besteht.
9. Schutzschicht nach einem der Ansprüche 1 bis 7, dadurch g e k e n n z e i c h n e t , daß das Mate¬ rial des Trägers (1) und der Haftschicht (3) aus einer Superlegierung wie In 738 besteht und das Material der Zwischenschicht (4) aus .100% In 738 gradiert über¬ gehend in 100% TiB2 oder. Al20, besteht.
10. Schutzschicht nach einem der Ansprüche 1 bis 7, dadurch g e k e n n z e i c h n e t , daß das Mate- rial des Trägers (1) aus einer Superlegierung wie In 738 und das Material der Haftschicht aus einer der Legierung des Trägers (1) angepaßten Legierung vom Typ M-CrAlY besteht, wobei M als Hauptlegierungskomponente Fe, Co oder NiCo ist.
11. Schutzschicht nach Anspruch 10, dadurch g e k e n n z e i c h n e t , daß das Mate¬ rial der Zwischenschicht (4) aus 100% M-CrAlY gradiert übergehend in 100% TiB2 besteht.
12. Schutzschicht nach einem der Ansprüche 1 bis 7 oder 10, dadurch g e k e n n z e i c h n e t , daß das Mate¬ rial der Zwischenschicht (4) aus M-CrAlY und Al20, be¬ steht und die Zwischenschicht (4) eine dichtgespritzte, lameliierte, riß- und porenfreie Struktur aufweist.
13. Schutzschicht nach einem der Ansprüche 1 bis 6, dadurch g e k e n n z e i c h n e t , daß das Mate¬ rial des Trägers (1) und der Haftschicht (3) aus Stahl und das Material der Zwischenschicht (4) aus 50% Stahl und 50% TiB2 besteht.
PCT/EP1986/000225 1985-04-17 1986-04-17 Couche de protection WO1986006106A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT86902820T ATE68019T1 (de) 1985-04-17 1986-04-17 Schutzschicht.
DE8686902820T DE3681778D1 (de) 1985-04-17 1986-04-17 Schutzschicht.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3513882.3 1985-04-17
DE19853513882 DE3513882A1 (de) 1985-04-17 1985-04-17 Schutzschicht

Publications (1)

Publication Number Publication Date
WO1986006106A1 true WO1986006106A1 (fr) 1986-10-23

Family

ID=6268381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1986/000225 WO1986006106A1 (fr) 1985-04-17 1986-04-17 Couche de protection

Country Status (6)

Country Link
US (1) US4808487A (de)
EP (1) EP0219536B1 (de)
JP (1) JPS62502974A (de)
AT (1) ATE68019T1 (de)
DE (2) DE3513882A1 (de)
WO (1) WO1986006106A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285313A2 (de) * 1987-03-30 1988-10-05 Hitachi, Ltd. Verbundwerkstoff und Verfahren zu seiner Hertellung
EP0338520A1 (de) * 1988-04-19 1989-10-25 Inco Limited Legierungen mit geringerem Ausdehnungskoeffizienten, beschichtet mit einer wärmedämmenden Schicht
WO1995012473A1 (en) * 1993-11-02 1995-05-11 Sprayforming Developments Limited Production of sprayed deposits
AT1669U1 (de) * 1996-11-22 1997-09-25 Plansee Ag Oxidationsschutzschicht für refraktärmetalle
EP2366813A3 (de) * 2010-03-05 2011-12-21 General Electric Company Mehrschichtiger Artikel
CN112813430A (zh) * 2020-12-29 2021-05-18 承龙科技(嘉兴)有限公司 一种异型紧固件及生产工艺

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3724385A1 (de) * 1987-07-23 1989-02-02 Man B & W Diesel Gmbh Abgasturbolader mit vorrichtung zum abscheiden von festkoerpern
JPH0710966B2 (ja) * 1987-12-04 1995-02-08 信越化学工業株式会社 プライマー組成物とその用法
US4865252A (en) * 1988-05-11 1989-09-12 The Perkin-Elmer Corporation High velocity powder thermal spray gun and method
DE3821658A1 (de) * 1988-06-27 1989-12-28 Thyssen Guss Ag Verfahren zur herstellung von korrosionsbestaendigen und verschleissfesten schichten auf walzen von druckmaschinen
US5232789A (en) * 1989-03-09 1993-08-03 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh Structural component with a protective coating having a nickel or cobalt basis and method for making such a coating
US4966816A (en) * 1989-06-07 1990-10-30 Titanium Metals Corporation Of America (Timet) Pack assembly for hot rolling
AT398580B (de) * 1991-11-05 1994-12-27 Strauss Helmut Beschichtung für metallische oder nichtmetallische substrate, verfahren und vorrichtung zu deren herstellung
JP3077410B2 (ja) * 1992-07-29 2000-08-14 アイシン精機株式会社 ターボチャージャのタービンハウジング
US5683825A (en) * 1996-01-02 1997-11-04 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter
EP0904426B1 (de) * 1996-06-13 2001-09-19 Siemens Aktiengesellschaft Artikel mit schutzschicht, enthaltend eine verbesserte verankerungsschicht und seine herstellung
DE19625274A1 (de) * 1996-06-25 1998-01-02 Lwk Plasmakeramik Gmbh & Co Kg Verstärkung von thermisch gespritzten Hochtemperatur-Keramikformteilen mit thermisch gespritzten Metallschichten
US6044897A (en) * 1997-02-19 2000-04-04 Cross; Raymond E. Method of passivating commercial grades of aluminum alloys for use in hot chamber die casting
DE19714432C2 (de) * 1997-04-08 2000-07-13 Aventis Res & Tech Gmbh & Co Trägerkörper mit einer Schutzbeschichtung und Verwendung des beschichteten Trägerkörpers
DE19714433C2 (de) * 1997-04-08 2002-08-01 Celanese Ventures Gmbh Verfahren zur Herstellung einer Beschichtung mit einem Titanborid-gehald von mindestens 80 Gew.-%
CA2211961C (en) * 1997-07-29 2001-02-27 Pyrogenesis Inc. Near net-shape vps formed multilayered combustion system components and method of forming the same
US5863668A (en) * 1997-10-29 1999-01-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled thermal expansion coat for thermal barrier coatings
US6060177A (en) * 1998-02-19 2000-05-09 United Technologies Corporation Method of applying an overcoat to a thermal barrier coating and coated article
US6258402B1 (en) * 1999-10-12 2001-07-10 Nakhleh Hussary Method for repairing spray-formed steel tooling
DE10332938B4 (de) * 2003-07-19 2016-12-29 General Electric Technology Gmbh Thermisch belastetes Bauteil einer Gasturbine
CN100350068C (zh) * 2004-04-19 2007-11-21 梁一明 交直流电弧金属喷涂方法
DE102006057641A1 (de) * 2006-12-05 2008-06-12 Eads Deutschland Gmbh Reparatur und/oder Konturänderung einer Formoberfläche eines Formwerkzeugs
US8708655B2 (en) * 2010-09-24 2014-04-29 United Technologies Corporation Blade for a gas turbine engine
DE102011078066A1 (de) * 2011-06-24 2012-12-27 Oskar Frech Gmbh + Co. Kg Gießtechnisches Bauteil und Verfahren zum Aufbringen einer Korrosionsschutzschicht
CN103849834A (zh) * 2014-02-20 2014-06-11 西工大常熟研究院有限公司 基于二硼化钛的复合刀具涂层及其制备方法
US9869013B2 (en) * 2014-04-25 2018-01-16 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
RU2640239C1 (ru) * 2016-07-12 2017-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования Новосибирский государственный аграрный университет Способ получения лакокрасочных покрытий при ремонтном окрашивании рабочих органов технологических машин

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1215417A (fr) * 1957-12-03 1960-04-19 Union Carbide Corp Objet manufacturé recouvert d'une couche ou se composant de matières réfractaires pures
US3758233A (en) * 1972-01-17 1973-09-11 Gen Motors Corp Vibration damping coatings
US3911891A (en) * 1973-08-13 1975-10-14 Robert D Dowell Coating for metal surfaces and method for application
GB2117415A (en) * 1982-03-26 1983-10-12 Toyo Engineering Corp Process for coating a heat- resistant alloy base

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3010009A (en) * 1958-09-29 1961-11-21 Plasmadyne Corp Method and apparatus for uniting materials in a controlled medium
US3839618A (en) * 1972-01-03 1974-10-01 Geotel Inc Method and apparatus for effecting high-energy dynamic coating of substrates
US3802850A (en) * 1972-11-13 1974-04-09 Man Labs Inc Graded impact resistant structure of titanium diboride in titanium
JPS6028903B2 (ja) * 1979-10-30 1985-07-08 三菱重工業株式会社 金属材料の表面処理方法
US4328257A (en) * 1979-11-26 1982-05-04 Electro-Plasma, Inc. System and method for plasma coating
JPS57130750A (en) * 1981-02-05 1982-08-13 Nittetsu Hard Kk Roll for continuous casting
US4503130A (en) * 1981-12-14 1985-03-05 United Technologies Corporation Prestressed ceramic coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1215417A (fr) * 1957-12-03 1960-04-19 Union Carbide Corp Objet manufacturé recouvert d'une couche ou se composant de matières réfractaires pures
US3758233A (en) * 1972-01-17 1973-09-11 Gen Motors Corp Vibration damping coatings
US3911891A (en) * 1973-08-13 1975-10-14 Robert D Dowell Coating for metal surfaces and method for application
GB2117415A (en) * 1982-03-26 1983-10-12 Toyo Engineering Corp Process for coating a heat- resistant alloy base

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Vol. 101, Number 2, July 1984, Columbus, Ohio (US) D.W. TOWNSEND et al.: 'Titanium Diboride Coatings prepared by Plasma Spraying and Electroplating', see page 229, Abstract 11111s, & Light Met. (Warrendale, Pa) 1984, 555-71 (Eng). *
CHEMICAL ABSTRACTS, Vol. 85, 1976, Columbus, Ohio (US) M. LEVY et al.: 'Erosion and Fatique Behavior of Coated Titanium Alloys for Gas Turbine Engine CompressorApplications' see page 350, Abstract 128961m, & U.S. NTIS AD Rep. 1976, AD 1022344, 21pp (Eng) Avail. NTIS, Gov. Rep. Announce Index (U.S.) 1976, 76 (10), 127 *
Warme, Vol. 89, Number 3, June 1983, Grafeling (DE) PH.C. WOLF: 'Neue Anwendungsgebiete des Plasmaspritzens in der Energietechnik'; pages 42-45, see page 42, point 3; page 44, point 3.1 *
Wt-Zeitschrift fur Industrielle Fertigung, Vol. 67, published 1977, Springer-Verlag (DE) R. SCHARWACHTER et al.: 'Technik und Anwendung des Plasmaspritzens im Vakuum' pages 321-325, see page 323, right hand columm, lines 12-15; page 324, point 3 see page 323, left hand columm, line 14 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285313A2 (de) * 1987-03-30 1988-10-05 Hitachi, Ltd. Verbundwerkstoff und Verfahren zu seiner Hertellung
EP0285313A3 (en) * 1987-03-30 1989-08-16 Hitachi, Ltd. Compound member and method for producing the same
EP0338520A1 (de) * 1988-04-19 1989-10-25 Inco Limited Legierungen mit geringerem Ausdehnungskoeffizienten, beschichtet mit einer wärmedämmenden Schicht
WO1995012473A1 (en) * 1993-11-02 1995-05-11 Sprayforming Developments Limited Production of sprayed deposits
AT1669U1 (de) * 1996-11-22 1997-09-25 Plansee Ag Oxidationsschutzschicht für refraktärmetalle
EP2366813A3 (de) * 2010-03-05 2011-12-21 General Electric Company Mehrschichtiger Artikel
CN112813430A (zh) * 2020-12-29 2021-05-18 承龙科技(嘉兴)有限公司 一种异型紧固件及生产工艺

Also Published As

Publication number Publication date
ATE68019T1 (de) 1991-10-15
DE3681778D1 (de) 1991-11-07
JPS62502974A (ja) 1987-11-26
US4808487A (en) 1989-02-28
EP0219536A1 (de) 1987-04-29
DE3513882A1 (de) 1986-10-23
EP0219536B1 (de) 1991-10-02

Similar Documents

Publication Publication Date Title
EP0219536B1 (de) Schutzschicht
EP0776985B1 (de) Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile
EP1123455B1 (de) Erzeugnis mit wärmedämmschicht sowie verfahren zur herstellung einer wärmedämmschicht
DE69828732T2 (de) Verfahren zum Auftragen einer Haftbeschichtung für eine Wärmedämmschicht
DE60111658T2 (de) Beschichtung auf faserverstärkte Verbundmaterialien
EP2650398B1 (de) Spritzpulver mit einer superferritischen Eisenbasisverbindung, sowie ein Substrat, insbesondere Bremsscheibe mit einer thermischen Spritzschicht
EP0223104A1 (de) Beschichtung für ein Substrat und Verfahren zu dessen Herstellung
EP0880607B1 (de) Oxidationsschutzschicht für refraktärmetalle
EP3045560B1 (de) Verfahren und vorrichtung zur herstellung einer struktur oder eines bauteils für hochtemperaturanwendungen
EP3008317A1 (de) Verfahren zur erzeugung einer oxidationsschutzschicht für einen kolben zum einsatz in brennkraftmaschinen und kolben mit einer oxidationsschutzschicht
EP2398936A1 (de) Erosionsschutz-beschichtungssystem fur gasturbinenbauteile
EP2468925A2 (de) Verfahren zur Herstellung eines Wärmedämmschichtaufbaus
WO2019219402A1 (de) Bremskörper und verfahren zur herstellung eines bremskörpers
EP2576863B1 (de) Verfahren zum herstellen einer schicht mittels kaltgasspritzen und verwendung einer solchen schicht
WO2020064041A1 (de) Verfahren zur herstellung einer mehrlagigen erosions - und korrosionsschutzschicht und bauteil mit einer entsprechenden schutzschicht
DE4433514A1 (de) Selbstregenerierbares Überzugsmaterial und Verfahren zur Herstellung desselben
WO2019219551A1 (de) Bremskörper und verfahren zur herstellung
WO2008110161A1 (de) Schichtsystem und verfahren zu dessen herstellung
DE112018002221T5 (de) Verfahren zur Bildung von Wärmedämmschicht, Wärmedämmschicht, und Hochtemperaturelement
DE19920567C2 (de) Verfahren zur Beschichtung eines im wesentlichen aus Titan oder einer Titanlegierung bestehenden Bauteils
EP0911423B1 (de) Verfahren zum Verbinden von Werkstücken
DE102007016411B4 (de) Halbzeug aus Molybdän, welches mit einer Schutzschicht versehen ist, und Verfahren zu dessen Herstellung
EP2304068A1 (de) Verfahren zur aufbringung einer haftgrundschicht
DE102011120989B3 (de) Spritzwerkstoff für thermische Spritzbeschichtungen,dessen Verwendung und mit dem Spritzwerkstoffthermisch beschichteter Grauguss-Grundkörper
DE10332938B4 (de) Thermisch belastetes Bauteil einer Gasturbine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): FI JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1986902820

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986902820

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1986902820

Country of ref document: EP