WO1983000703A1 - Heat- and wear-resistant tough alloy - Google Patents

Heat- and wear-resistant tough alloy Download PDF

Info

Publication number
WO1983000703A1
WO1983000703A1 PCT/JP1982/000338 JP8200338W WO8300703A1 WO 1983000703 A1 WO1983000703 A1 WO 1983000703A1 JP 8200338 W JP8200338 W JP 8200338W WO 8300703 A1 WO8300703 A1 WO 8300703A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
wear
alloy
resistant
group
Prior art date
Application number
PCT/JP1982/000338
Other languages
English (en)
French (fr)
Inventor
Kinzoku Kabushiki Kaisha Mitsubishi
Original Assignee
Yabuki, Ritsue
Ohe, Junya
Kawamura, Takumi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yabuki, Ritsue, Ohe, Junya, Kawamura, Takumi filed Critical Yabuki, Ritsue
Priority to DE3248987T priority Critical patent/DE3248987C2/de
Publication of WO1983000703A1 publication Critical patent/WO1983000703A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the invention relates to a super-aged wear-resistant toughness alloy, which is composed of one carbon one carbon two titanium titanium aluminum alloy one tungsten metal alloy one manganese alloy.
  • -Copal is a ferrous iron-based alloy, and if necessary, nitrogen and niobium, tantalum ⁇ or two, hydrogen, one of zirconium, or It is characterized in that it contains at least one selected from the group consisting of two species.
  • This alloy is a alloy that can be used as a guide for rolling mills, or a ⁇ alloy that can be used as a build-up alloy.
  • the hot bar tilt rolling mills used in the production of ⁇ less steel pipes are placed in the upper and lower positions, with 2 ⁇ barrel-shaped tilt rolls intersecting diagonally and barrel-shaped tilt rolls.
  • the round billets heated to ⁇ 1550 to 1250 are supplied to the heat-simple rolling mill, and the round billets are fed to the barrel-shaped tilting roll. With the rotation of the round billet, the central part of the round billet is perforated by the plug without any rotation. After that, the perforated round billet is rolled to produce a glass tube.
  • the formed tube is formed while exhibiting an elliptical shape due to the compression force due to the barrel-shaped tilt roll and the tensile output.
  • guide barrels are provided opposite each other at a position of 90 ° in the circumferential direction with respect to the barrel-shaped inclined roll. Therefore, the guides come into contact with the shavings that are aged at a high temperature and formed, and the surface of the guides slides with the steel pipes that rotate and advance in a spiral shape. As a result, the guide is subjected to repeated rapid heating and quenching with cold S3 water. Furthermore, it receives rolling sliding friction under a large stress load.
  • This invention was studied to obtain an alloy with a heat resistance required for the guide of a rolling mill for producing seamless pipes ⁇ wear resistance ⁇ strong 13 columns ⁇ high hardness alloy. It was obtained as a result. Announcement of announcement
  • the object of the present invention is to provide an alloy having both mature impact resistance, high temperature corrosion resistance, and high drill wear resistance. Another object of this invention is to provide an alloy that can be used for the power of a gradient rolling mill for producing seamless steel pipe.
  • the alloy of this invention has carbon: 0.55 to 1.996, chromium: 28 to 39%, nickel: 25 to 49%, titanium: 0.01 to 45. %, Aluminum: 0.01 to 4.5%, tungsten: 0.1 to 8%, molybdenum: 0.1 to 9%, and if necessary Element: 0.1 to 3%, Manganese: 0. "! ⁇ 2%, Cobalt: 1 to 8%, Nitrogen: 0.05 to 0% if necessary. .2% and one or two of niobium and tantalum 0.01 to 1.5%, respectively, and hydrogen and zirconium 0.001 to 0.296, respectively.
  • Ripe wear containing at least ⁇ selected from the group consisting of one or two, and the balance consisting of iron and unavoidable impurities (up to 96 in weight). It is a strong alloy .-- First of all, to explain it in a thorough manner, this is the second "] of the power e! ! The characteristic alloy is carbon: 0.55 to 1.996, chrome: 28 to 39%,
  • Nickel 25 to 49%, Titan: 0.01 to 4.5%, Aluminum: 0.01 to 4.5% Tangsten: 0.0 to 8% Molypten: 0.1 to 9%, if necessary,-: 0. ⁇ to 3% or manganese: 0.1 to 26, and if necessary, nitrogen: 0.00 596 to 0.2%, and one or two of two-year-old, tantalum and 0.011 to 1.596 respectively, and boron and zirconium respectively 0.001 to 0.2 It contains at least ⁇ selected from the group consisting of 1 or 2 of 96, and the balance is composed of iron and unavoidable wear-resistant steel (weight 96 below). It has.
  • the second heat-resistant shochu wear toughness alloy of this invention is carbon: 0 55 to ⁇ .9%, chrome: 28 to 3 996, nickel: 25 to 49% Titanium: 0.01 to 4 .596, Aluminum: 0.01 to 4.5%, Tungsten: 0.1 to 8%, Molypden: 0.1 to 9%, Copal: 1 to 8% If necessary, silicon: 0.1 to 3%, or manganese: contains 0.1 to 2%, and if necessary nitrogen: 0.05 to 0 .296 with niobium and tantalum, respectively, one or two of 0.011 to .596 and boron and zirconium of 0.001 to 0.2%, respectively, 1 or 2 It is a ⁇ mature wear-strength H-alloy that contains at least one selected from the group consisting of seeds and the rest has a ⁇ ⁇ (above wt%) consisting of iron and unavoidable insulative storage.
  • the third alloy of the present invention comprises: carbon: 0.55 to 1.996, chrome: 28 to 3996, nickel: 25 to 49%, titanium: 0 0 1 ⁇ 4.596, Aluminum: 0.01 ⁇ 4.5%, tan Contains stainless steel: 0.1 to 8%, molybdenum: 0.1 to 9%, silicon: 0.1 to 0.396, manganese: 0.1 to 2%, and further required.
  • Each contains 0.001 to 0.2% of each, at least ⁇ , selected from the group consisting of one or two, and the balance is iron and unavoidable wear. It is a sour-aged, wear-resistant and strength-resistant alloy that has a ⁇ composition (above weight 96).
  • the fourth alloy of this alloy has carbon: 0.55 to 1.9%, chromium: 28 to 39%, nickel: 25 to 49%, titanium: 0. ⁇ ⁇ ⁇ 4.596, Aluminum: 0.01 ⁇ 4.5%, Tungsten: 0.1 ⁇ 8%, Molypden: 0.1 ⁇ 9%, Key: 0. 1 to 3 '%, Manganese: 0.1 to 2%, Kozuru: 1 to 8%, Nitrogen: 0.005 to 0.2%, and Nitrogen as necessary. 1% or 2% each of 0.01% to 1.5% each for hydrogen and tantalum, and 0.000% to 0.2% each for hydrogen and zirconium.
  • Carbon The carbon component dissolves in S in the sardine in high slag.
  • carbon Minerals combine with chrome, tungsten, molybdenum, titanium, niobium, and tantalum to form carbides such as M 7 C 3 type, MC type, and M 23 C 6 type.
  • the strength and strength of the obtained alloy are improved, and as a result, there is a workability that secures not only wear resistance but also weldability and weldability. If the carbon content is less than 0.55% by weight, the above-mentioned effects cannot be obtained. On the other hand, if the carbon content is
  • the content exceeds 9% by weight, in the obtained alloy, not only the precipitation of carbides will increase, but also the grain size of the carbides will increase and the toughness will decrease, and the alloy will be aged by rapid heating and quenching.
  • the carbon content was determined to be 0.55 to 1.9 weight 6 because it will not be able to withstand spruce.
  • Chrome A part of the chromium component is dissolved in the matrix, and the remaining part forms a carbide. In addition to improving the hardness of the obtained alloy, improving the high wear resistance, and improving the high mixed corrosion resistance, if the chromium content is less than 28% by weight, the above-mentioned effects are obtained. I can't. On the other hand, when the content of chrome exceeds 39 9 by weight, the thermal shock resistance decreases. Therefore, the content of chrome was determined to be 28 to 39% by weight.
  • Nickel component stabilizes the austenite base material and improves thermal shock resistance and toughness.
  • the nickel component combines with aluminum and titanium to form a conglomerate compound ⁇ 3 ( ⁇ .Ti) ⁇ , which improves the high ⁇ strength and the high wear resistance of the alloy, and further Together with ROM, it has the effect of improving the high temperature S corrosion resistance. If the nickel content is 25% by weight or less, the above-mentioned work effect cannot be obtained. On the other hand, if the content exceeds 49% by weight, further improvement effect
  • the nickel content was determined to be 25-49% by weight, taking into account economic factors.
  • Titanium The titanium component not only suppresses the growth of the crystal grains of the base material, but rather makes the crystal grains finer, and the carbides and nitrides thereof, and the above-mentioned ⁇ . Form 3 ( ⁇ . ⁇ «) metal-locking compounds.
  • the titanium component has the effect of improving high humidity strength and high shovel abrasion resistance. If the titanium content is 0.01 weight 9 or less, the above-mentioned effects cannot be obtained. On the other hand, when the content of titanium exceeds 4.5% by weight, the formation of carbides in high carbon is promoted, the ⁇ of the alloy decreases, and the high contact The generation of salvation is also remarkable, and it may lead to deterioration of high-soluble diet. Therefore, the content of titanium was set to 0.01-1 to 4.5% by weight. Furthermore, it is more preferably from 0.0 ⁇ to 3.5% by weight.
  • the aluminum component improves the oxidation resistance and corrosion resistance at high temperature when coexisting with chromium. Furthermore, as described in fr, it combines with nickel and titanium to form an intermetallic compound of NL 3 ( «.Ti), and also forms nitriding to improve the high strength and wear resistance. It has a higher effect, and also has the effect of improving the maturation impact and the toughness. If the content of aluminum is less than 0.0% by weight, the effect of the chest of drawers cannot be obtained. On the other hand, when the content of aluminum exceeds 4.5% by weight, not only is the flow of the molten metal ⁇ and the extensibility of the molten steel deteriorated, it becomes difficult to manufacture, but also the ⁇ property and the welding column are Beta is not practical. Therefore, the content of aluminium was therefore set to 0.01 to 4.5% by weight. Furthermore, it is preferable to use 0.0 *! ⁇ 3.5% by weight
  • Tungsten component forms a solid solution in the matrix and reacts with carbon to form a carbide.
  • Tungsten component has the function of improving high temperature hardness and wear resistance. If the content of tungsten is less than 0.1% by weight, the above effects cannot be obtained. On the other hand, when the content of tungsten is more than 8% by weight, the wear resistance is improved, but the ⁇ length and the thermal shock resistance are deteriorated. Therefore, the content of tungsten was determined to be 0 .8 to 8% by weight. Furthermore, 0.5 to 8% by weight is more preferable.
  • the molybden component has the effect of improving the high wear resistance especially in the case of tongue stain and circumference. If the content of molybdenum is less than 0.1% by weight, the above-mentioned S effect cannot be obtained. On the other hand, when the content of molybdenum exceeds 9% by weight, the toughness and thermal shock resistance deteriorate as in the case of tungsten. Therefore, the content of molybdenum was determined to be 0.1-9% by weight. Furthermore, 0.5 to 9% by weight is more preferable.
  • the key element has the function of improving heat resistance together with chromium. In addition, it has a function of improving the fluidity of the molten metal and the slag production by improving the fluidity of the molten metal.
  • the silicon component has the effect of improving the high temperature strength of the alloy. If the content of the silicon is less than 0.% by weight, the above-mentioned effects cannot be obtained. On the other hand, if the content exceeds 3% by weight, the toughness and weldability will decrease in relation to chromium. Therefore, the content of silicon was determined to be 0.1 to 3 weight 96. It should be noted that the silicon component is inevitable impurities such as when it is used as derailing agent.
  • the total content including the unavoidable inevitable substance content should be 0. ⁇ % by weight or more. do it.
  • Manganese component together with nickel, has a function of forming a solid solution with the nickel to stabilize the stainless steel base material, and to improve the S-ripening impact resistance and high temperature abrasion resistance. And has a demolition effect. If the manganese content is less than 0.1% by weight, the above-mentioned effects cannot be obtained. On the other hand, when the content exceeds 2% by weight, the high temperature corrosion resistance deteriorates. Therefore, the manganese content was determined to be 0.1 to 2% by weight. However, in this case as well, it is advisable to adjust the ingredients so that the total content is 0.1% by weight or more, including the content of unavoidable impurities.
  • Cobal is a solid solution in austenite and improves the high temperature strength.
  • the copal content has the effect of improving high g / wear and thermal shock resistance. If the cobalt content is less than 1% by weight, the above effects cannot be obtained. On the other hand, if the content exceeds 8% by weight, no further improvement effect can be seen. On the contrary, a decrease in the above-mentioned effects can be seen. Therefore, the content of copal is specified as 1 to 8% by weight.
  • Nitrogen Part of the nitrogen component is solid-solved in austenite 3 ⁇ 4 to stabilize it, and the remaining part forms a metal nitride to further improve high temperature strength. Therefore, if high temperature strength is required, it is contained as necessary.
  • the nitrogen content is If the amount is less than 0.05% by weight, the effect of further improving the high temperature strength cannot be seen. On the other hand, if the content exceeds 0.2% by weight, not only the amount of nitride increases, but also the size of the nitride particles is shortened to embrittle the alloy and deteriorate the maturing impact of the alloy. Therefore, the nitrogen content was determined to be 0.005 to 0.2 weight 6.
  • Niobium and tantalum These components suppress the grain growth of the base material in particular, and form MC type charcoal and nitride to further improve the high temperature strength and high abrasion resistance. There is an equalizing effect. Therefore, if these characteristics are especially required, they are contained as needed. If the contents of niobium and tantalum are not more than 0.01% by weight, the action and effect described in 15 cannot be obtained. It causes remarkable deterioration such as high return corrosion resistance, and too much carbide formation, resulting in deterioration of toughness and S thermal shock resistance. Therefore, the content of 2-year-old broth and tantalum was determined to be 0.01 to 1.5% by weight, respectively.
  • Boron and zirconium These components have a leveling action to further improve high temperature strength, high temperature wear resistance, shochu thermal shock resistance and high temperature corrosion resistance. Therefore, if necessary, these components are contained, but if the content of each of these components is less than 0.0001% by weight, the above-mentioned effect cannot be obtained, while if it exceeds 0.2% by weight. If it is contained, it causes deterioration of toughness, heat shock resistance, wicker workability and weldability. The contents of fluorine and zirconium were determined to be 0.001 to 0.2% by weight, respectively.
  • Iron The iron component is contained as the rest. It has a nickel-like action effect. It is contained as a partial replacement component for nickel components, which aims to reduce costs and is highly competitive.
  • each metal was sterilized, and a normal high-frequency melting furnace was used in the atmosphere. At 1400 to 1700, heat for 20 to 30 minutes to dissolve. Then, I made a sand mold. Test pieces were prepared for various tests using the obtained steel alloy. Using these test pieces, under a condition close to the hardness measurement test, the usual ⁇ Sharpy impact value, the Ogoshi-type metal leap wear test, and the rapid maturation and rapid cooling of the actual product. The thermal shock test was conducted.
  • the hardness measurement test was performed by measuring the Vickers hardness at 900, 100, and 100.
  • the other party is SUJ — 2 (H, c: 57 or more ⁇ .
  • Load 18.2 1 ⁇ 2 and the friction speed is 0.08 3 m Z se under the condition.
  • the specific wear amount was calculated from these concretions in a dry condition, and the thermal shock test, on the other hand, revealed that a spherical dent with a diameter of 10 ⁇ was formed in the center of the gall surface.
  • the spherical depression of this test piece was heated for 30 seconds with oxygen-propan gas spanner, and then the ⁇ Approximately 900 degrees, immediately after that, spray the water with fog for 20 seconds, and set the g degree at approximately 200 degrees as the ⁇ cycle, and repeat this process. Every three times, the spherical indentation was inspected by the fluorescent penetrant inspection method, and the number of cycles was measured until cracks occurred, and the cycle until cracking occurred.
  • the indication of 30 or more means that no cracking / deterioration is observed in the spherical sphere even in the repeated thermal agitation test of 30 cycles.
  • one of the constituent components such as the weight percent of the metal showing the structural component, is shown as a shoulder with a square mark.
  • the composition and properties of the comparative alloys having a grain content outside the range of the present invention are shown, and an example of a conventional alloy for the alloy of the present invention is also added for reference. ..
  • the following percentages are weight percentages.
  • a high-frequency molten metal ⁇ was used, and molten metal with a composition as shown in Tables i, 2, 3, and 4 was melted in the atmosphere, and then sand-cast.
  • Actual ⁇ 3 ⁇ 4 ⁇ 0 1 to N 0 16 indicate the alloying components of the alloy.
  • ⁇ . 1 7 to N. 1 9 is an example of the alloy containing silicon
  • N. 20 to N. 2 2 is an example containing manganese
  • 2 3 to N. 2 5 indicates a nitrogen-containing container.
  • 6 1 Shown by 6 1.
  • o 6 2 to 70 represent comparative alloys containing the g range ⁇ content of this alloy with respect to the ash-based one-chromium one-nickel rutile-tan-aluminum-mutanda-stain-molypden-ferrous alloy. It was Furthermore N. 7 1 to 7 2 show examples of ⁇ 3 ⁇ 4 alloy.
  • Table 2 Tables 1, 2, and 3 show that 3 ⁇ 4 1 ⁇ 2, 900, and 100 each have the same hardness, normal sharp impact! I, specific wear, cracking
  • Nc 6 is carbon: 0.79%, Chrome: 30.25%, Nickel: 25.2%, Titan: 1.79%, Armium: 1.02% , Tungsten: 5.36%, Molypden: 3.31%, composition of iron residue (above weight 96 ⁇ .
  • the properties of Nc 6 alloy are shown in Table 2 ⁇ .
  • Hardness (Vickers Hardness) Normal g is 3 3 2, 9 00 " ⁇ is 1 5 1, 1 00 0 is 1 45.
  • Normal room temperature shock impact value is 1 3 4 kg — m / rf, the specific wear rate 1 9 8 xl 0 -.. 7, cycles number of cracks or were Tsu der least 3 0 times comparative alloys N.
  • 7 1 is carbon: 1.32%, Chrome: 25.89%, Nickel: 11.04%, Molybden: 0.5096, Key: 1.59 %, Manganese: 2.0%, vanadium: 0.18% It is an alloy that has S) (above weight%) of iron. Its characteristics Ri cycle 3 ⁇ 4 1 8 der in cracking or, the specific wear rate is 3 2 8 X 1 0 -. 7, Tsune ⁇ Shi catcher Le e e impact value 0. 8 9 kg-si Bruno was of. The Vickers hardness of the normal mixture showed values of 7 7 at 2 59 and 90 0, and 6 4 at 100 0.
  • OMPI Table 1, 1, 2, 3, 4 and Table 2, ⁇ , 2, 3 show the alloying components of the alloy and their characteristics.
  • the heat-resistant wear-resistant alloy of the present invention shown in Example 2 is different from the base alloy of'Example 1 in that 1 to 8% by weight of Copal is contained as a base alloy.
  • the alloy N of the present invention is shown in Tables 1, 2, 3, and 4 as well as Example 1.
  • the composition of the comparative alloys (N. 1 3 5 to ⁇ 1 4 4) and the secondary alloys (No. 1 4 5 to N. 1 4 6) from 73 to «1 34 is shown in% by weight.
  • the characteristics of each alloy are shown in Table 1 and Tables 1, 2 and 3 in addition to the performance curve 1.
  • N in Table 3, Table 1.
  • the 78 alloy has the following values as shown in Table 4, for example, the average hardness is 337, that of 900 is 1 54, and that of 1 000 is 1 48. The value was 1.37 kg — E.ZO ?, the specific wear was 1.93 x 10 _ 7 , and the number of cycles before cracking was 30 or more. Actual travel example ⁇ N. Compared with 6, the hardness and wear resistance at high temperature was slightly improved due to the inclusion of Copal.
  • Example 3 is different from Example 1 in that it contains silicon and manganese as a basic alloy.
  • the composition of the alloy of the invention is shown in wt% in Tables 1, 2 and 3 as in Example 1 and Zhou.
  • Up to 1 7 6 are alloys of this invention, N. 1 7 7 to N. Up to 187 it is a comparative alloy, N. 1 8 8 to N. 1 8 9 shows an example of a conventional alloy.
  • N in Table 5, Table 1. 1 5 2 is carbon: 0.80%, phone: 0.67%, mangan: 0.11%, chrome: 3 1..7%, nickel: 35.1% , Titanium: 103%, Aluminum: 0.03%, Tungsten: 2.98%, Molypden: 6.21%, Iron residue (above weight%).
  • N is an alloy containing at least ⁇ species selected from the group consisting of one or two of each of the 0.02 to 0.0096 types. It is shown from 1 6 6 to N «1 7 6. Similar to the actual trip example 1, N is shown in Table 6, ⁇ , 2. 1 4 7 to N. The properties of each alloy up to 189 are shown. For example, N. As the pick-up degree, 1 52 is 3 6 6 at room temperature, 2 3 8 is at 9 00, and 1 4 6 is at 100 0.
  • the normal temperature shear shock value is 1.9 8 KS— A3 / ⁇ , the specific wear amount is 1.79 x 10 -7, and the number of cycles before cracking is 30 times or more. Met .
  • Tables 1, 2 and 3 and 6 and 1 and 2 show the chemical composition of alloys and their special columns. No
  • Example 4 contains the basic alloy of Example 3 with a cobalt content of ⁇ to 8% by weight. The point is different.
  • Table 1 and 2 of Table 7 and Table 7 show the conventional alloy ( ⁇ . 190 to 91) and the alloy of this invention ( ⁇ .
  • the properties of the alloys at 1 are shown in Tables 1 and 2.
  • ⁇ . 1 9 9 is the Vickers hardness, 3 3 6 at room temperature, 1 7 5 at 900 0 ⁇ . , 1 0 0 0 shows a value of 1 58.
  • the shear impact value is 1.8 7 1 m Zrf and the specific wear amount is 1 6 7 x 1 0 -7.
  • the number of cycles until the crack occurred was 30 times or more.N of Example 4 N. 1 of Example 3 with a relatively similar formation ⁇ N. 1 Compare with 5 4
  • OMPI And 199 contain 2.15% by weight of copal. N.
  • the hardness is 3 3 2 at room temperature, at 900 1 7 ⁇ , 100
  • the alloy of the present invention has heat resistance, wear resistance, and heat shock resistance, when it is used as a guide for a hot-rolled slant rolling machine (including a punching machine) for producing seamless pipes, It has industrially useful properties such as stable performance over an extremely long period of time. Furthermore, the alloy of the present invention has versatility even as a cladding alloy and is industrially useful.

Description

明 耐熱耐摩耗強靱牲合金 技 術 分 野
し の発明 は尉熟耐摩耗強靭性合金 に 関 し 、 炭素一ク ロ ム 一 二 ッ ケル ー チタ ン一アル ミ ニ ウ ム一タ ングス テ ン一モ リ プデ ン一 ケィ 素一マ ンガ ン ー コ パル 卜 一鉄系 の合金で あ り 、 必要 に 応 じ て 窒素 と ニ オブ、 タ ン タ ルの Ί 種 ま た は 2 種 、 ホ ウ 素、 ジルコ 二 ゥ ム の 1 種 ま た は 2 種か ら なる群 よ り 選ばれ た す く なく と も 1 つ を含有す る こ と を特徴 と する 。 こ の羟明 の合金 は継目 無鐲 管製造用熟圜傾 ^圧延機のガ イ ド シ ユ ー と し て 使用 でき る合金 ま た は肉盛合金 と し て 使用 で き る ^ 合金 に 関 す る 。 背 景 技 術
一般 に ^ 目 無鐧管製造 に使 ^ さ れる熱閭傾斜圧延機 は上 ♦ 下 位置 に 配置 し 、 斜め に 交差す る 2 ^ の樽形傾斜 ロ ー ル と 、 樽形 傾斜 ロ ールの 中心軸方向 に 相対向 し て そ の左右位置 に 取付け ら れる ガ イ ドシ ユ ー と 、 樽形傾 ^ ロ ー ルの前面の 中心位置に配 し た 槍の穂先の よ う なブラ グを備え て い る 。 Ί 1 5 0 〜 1 2 5 0 で に 加熱さ'れた丸 ビ レ ツ 卜 は熱-簡 儇斜圧延機 に 供給 さ れ、 樽形 傾斜 ロ ール に よ つ- て丸 ビ レ ツ 卜 は回 ¾を与 え ら れな が ら プラ グ に よ り 丸 ビ レ ツ 卜 の中心部を熟 穿孔 す る 。 し かる の ち 、 穿孔 さ れた 丸 ビ レ ツ 卜 は圧延 を繰逗さ れて ^目 鐄 管が 製造 さ れる
O PI この場合成形さ れる管は樽形傾 ^ ロ ールに よる圧縮力な らびに 張出力 に よ り 楕円形を呈 しなが ら成形さ れる 。 この管の外形及 び肉厚を一定 に調整する ため に樽形傾斜 ロ ールに-対 して円周方 向ぺ 9 0 ° の位置で互に相対向 してガイ ドシ ユ ーが設け られる し たが っ てガイ ドシ ュ 一 は高温に加熟されて成形さ れる鑲管と 接触 し 、 ガイ ドシユ ーの表面は螟旋状に回転前進する鋼管と摺 動する 。 その結旲、 ガイ ドシ ユ ー は急速加熱と冷 S3水に よる急 冷の繰返 しを受ける 。 さ ら に大きな応力負荷の下で転がり摺動 摩擦を受ける。 この よ う に苛酷な条件下で使用されるガイ ドシ ユ ーの材料 と して従采、 2 6重量 6 ク ロ ム一 3 重量%ニッ ケル を含有する鉄系合金や、 2 6重量 % ク ロ ム一 2 重量 96ニッ ケル を含有する鉄系合金の耐熱慰摩耗性合金鐲、 1 重量%炭素一 2 0重量% ク ロ ム一 7 重量%ニ ッケ %コパル 卜一 5 重 量%鋦を含有する鉄系合金及び 1 重量%炭素 - 5 重量% ク ロ ムー 5 重量%モ リ ブテンを含有するニッ ケル系合金の籙造合金 が使用されてきた 。 こ れらの合金のあるちのは、 高温 食倥が 不充分であるために こ れらの合金か らつ く られたガイ ドシユ ー の表面に は高混に加熱さ れた成影された管の表面に発生するス ケール又は鍚片が烷付け られ、 この焼付け ら れたスケール又は 鑲片が成形さ れる鐸管の表面に Sを形成する こ とになり 、 崇管 製造の歩留 り を惡 く する 。 ま た、 ^来の合金のあるあのは、 局 所的高握加熱 と水冷の繰返 しに よる熱的衝撃に西え られない。 その結果、 ガイ ドシユ ー の表面から割れを生 じ δ支損 し た り する さ ら に これら の合金のあるものは 、 i¾ tea k- ί?ける S摩耗性が不
OMPI 充分であ り 、 ガイ ドシ ユ ー と して の使招寿命が短い 。
こ の発明 は継目 無鎮管製造用熟間傾 ^圧延機のガイ ドシ ユ ー に要求される耐熱性 ♦ ¾摩耗性 ♦ 強 13柱 · 高硬度-の合金を得る ため に検討を行 っ た結果得 られたものである 。 発 明 の 開 示
この発明の 目 旳は ¾熟衝撃性、 高温尉食性及び高搵耐摩耗性 を兼ね備えた合金を提供する ものである 。 こ の発明の他の 目 的 は継目 無鋼管製造用熟 傾斜圧延撐の力'ィ ドシ ユ ー に使用でき る合金を提供するちのである 。
こ の発明の合金は、 炭素 : 0. 5 5〜 1 . 996、 ク ロ ム : 2 8〜 3 9 %、 ニ ッ ケル : 2 5〜 4 9 %、 チタ ン : 0. 0 1 〜 4 5 %、 アルミ ニ ウ ム : 0. 0 1 〜 4 . 5 %、 タ ングステ ン : 0. Ί 〜 8 %、 モ リ ブデン : 0. 1 〜 9 %を含有 し 、 さ ら に必要に 応じ てケィ 素 : 0. 1 〜 3 %、 マ ンガ ン : 0. "! 〜 2 %、 コパ ル 卜 : 1 〜 8 %を含有 し 、 さ ら に必要に応 じ て窒素 : 0. 0 0 5〜 0. 2 %と 、 ニオブ、 タ ンタルそれぞれ 0. 0 1 〜 1 . 5 %のう ち の 1 種 ま た は 2種 と 、 ホ ウ素、 ジルコ ニウムそれぞれ 0. 0 0 1 〜 0. 296のう ち の 1 種ま た は 2種 と から なる群よ り 選ばれた少な く と も Ί つ を含有 し 、 残 り が鉄 と不可避不純物 か ら なる ¾成 ( 以上重量 96 ) を有する ¾熟 摩耗強 ^性合金で ある 。 - まず具悻的に説明すれば、 この発 eの第 "] の ¾熱尉摩耗強!! 性合金は炭素 : 0. 5 5〜 1 . 9 96、 ク ロ ム : 2 8〜 3 9 %、
O PI ニ ッ ケル : 2 5〜 4 9 %、 チタ ン : 0. 0 1 〜 4. 5 %、 アル ミ ニゥム : 0. 0 1 〜 4 . 5 % タ ングステン : 0. Ί 〜 8 % モ リ プテン : 0. 1 〜 9 %、 必要に応じ てケィ 素- : 0. Ί 〜 3 % ま たはマ ンガン : 0. 1 〜 2 6を含有 し 、 さ ら に必要に応じ て窒素 : 0. 0 0 596〜 0. 2 %と、 二才プ、 タ ンタルそれぞ れ 0. 0 1 〜 1 . 596の う ち 1 種ま た は 2種とホウ素、 ジルコ ニゥムそれぞれ 0. 0 0 1 〜 0. 2 96の う ち 1 種ま た は 2種か らなる群よ り 選ばれた少な く とも Ί つを含有 し 、 残り が鉄と不 可避不耗钩か ら なる ¾成 ( 以下重量 96〉 を有す るものである。
さ ら に こ の発 ¾の第 2の耐熱酎摩耗強靱性合金は、 炭素 : 0 5 5〜 Τ . 9 % . ク ロ ム : 2 8〜 3 996、 ニ ッ ケル : 2 5〜 4 9 % チタ ン : 0. 0 1 〜 4 . 596、 アルミ ニ ウム : 0. 0 1 〜 4. 5 %、 タ ングステン : 0. 1 〜 8 %、 モ リ プデン : 0. 1 〜 9 %、 コパル 卜 : 1 〜 8 %必要に応じてケィ素 : 0. 1 〜 3 %、 ま たはマ ンガン : 0. Ί 〜 2 %を含有 し 、 さ ら に必要に 応じて窒素 : 0. 0 0 5〜 0. 296とニオブ、 タ ンタルそれぞ れ 0. 0 1 〜 . 5 96のうち 1 種ま た は 2種と ホウ素、 ジルコ ニゥムそれぞれ 0. 0 0 1 〜 0. 2 %のう ち 1 種または 2種と か らなる群よ り 選んだ少 く とも 1 種類を含有 し残りが鉄と不可 避不耗勅からなる轻 ^ (以上重量% ) を有する ^熟¾摩耗強 H 性合金である。
さ ら に本発明の第 3の合金は、 炭素 : 0. 5 5〜 1 . 9 96、 ク ロ ム : 2 8〜 3 996、 ニッ ケル : 2 5〜 4 9 %、 チタ ン : 0 0 1 〜 4 . 596、 アルミ ニウム : 0. 0 1 〜 4. 5 %、 タ ンダ ステン : 0. 1 〜 8 %、 モ リ ブデン : 0. 1 〜 9 %、 ケィ 素 : 0. Ί 〜 0. 396、 マ ンガ ン : 0. 1 〜 2 %を含有 し 、 さ ら に 必要に応 じ て 、 窒素 : 0. 00 5〜 0. 2 %と 、 ニオブ、 タ ン タ ルそれぞれ 0. 0 1 〜 Ί . 5 %の う ち 1 種 ま た は 2種 と 、 ホ ゥ素、 ジルコ ニ ウムそれぞれ 0. 00 1 〜 0. 2 %のう ち 1種 ま た は 2種 とか ら なる群よ り 選んだ少 く と も Ί 種を含有 し 、 残 り が鉄 と不可避不耗 ¾か ら なる ^成 ( 以上重量 96 ) を有する酎 熟耐摩耗強 ϋ性合金で ある。
さ ら に こ の発 ^の第 4合金は、 炭素 : 0. 5 5〜 1 . 9 %、 ク ロ ム : 2 8〜 3 9 %、 ニ ッ ケル : 2 5〜 4 9 %、 チタ ン : 0. Ο Ί 〜 4. 596、 アルミ ニウム : 0. 0 1 〜 4. 5 % , タ ング ステ ン : 0. 1〜 8 %、 モ リ プデン : 0. 1 〜 9 %、 ケィ素 : 0. 1 〜 3'%、 マンガ ン : 0. 1 〜 2 %、 コ ズ ル 卜 : 1 〜 8 % を含有 し 、 さ ら に 必要に応 じ て窒素 : 0. 005〜 0. 2 %と 、 二才プ、 タ ンタルそれぞれ 0. 0 1 〜 1 . 5 %の う ち 1種ま た は 2種 と 、 ホ ウ素、 ジルコ ニ ウムそれぞれ 0. 00 Ί 〜 0. 2 %のう ち 1 種ま た は 2種 と から なる群か ら選んだ少 く とも Ί 種 を含有 し 、 残 り が鉄 と不可避不耗 か ら なる耝成 ( 以上重量% ) を有する耐熱 Β摩耗強 ^性合金である 。 発 e月を実 ^するための最良の彤態 ―
この発明の酎熱 w摩耗強靭性合金の成分 ^素の作 及びその成 分範囲を隈定 し た理由 は下記の通 り である 。
炭素 : 炭素成分は高湼に て 、 素垲中 に S溶する 。 一方炭素成 分は ク ロ ム、 タ ングステン、 モ リ ブデン 、 チタ ン、 ニオブ、 及 び、 タ ンタ ル等と結合 して M 7 C 3 型、 M C型、 及び M 23 C 6 型などの炭化物を形成 し、 得 られる合金の強度と镘さの向上を はか り 、 .こ の結果と してす ぐれた 摩耗牲のほか溶接性及び鍀 造性を確保する作甩がある 。 炭素の含有量が 0 . 5 5 重量%以 下では前記の作用効果が得られない。 一方炭素の含有量が
9 重量%を越えて含有させる と、 得られた合金において、 炭化 物の析出が多 く なるばか りでなく 、 炭化物の粒径が钽大化して 靭性が低下 し 、 急熱急冷に よる熟暫擎に耐え られな く なるこ と から 、 炭素の含有量は 0 . 5 5〜 1 . 9 重量 6 と定めた。
ク ロ ム : ク ロ ム成分は、 その一部が素地 に固溶し 、 残りの部 分が炭化物を形成する。 得 られた合金の硬さを向上させ、 高提 耐摩耗性を改善するほか、 高混耐食倥を向上させる作用がある ク ロ ムの含有量は 2 8 重量%以下では前記の作用効果が得られ ない 。 一方ク ロ ムの含有量が 3 9 重量 6を越えて含有させる と 耐熱衝撃性が低下する。 し たが っ てク ロ ムの含有量は 2 8〜 3 9 重量% と定めた 。
ニ ッ ケ レ : ニ ッ ケゾレ成分はオーステナイ 卜素地を安定に して 耐熱衝撃性及ぴ靭惶を高める。 そのほかにニ ッ ケル成分はアル ミニゥム及びチタ ン と結合 して会属閤化合物 { 3 ( Μ . Ti ) } を形成し、 合金の高 ^強度及び高浸 摩耗性を改善 し 、 さ ら に ク ロ ム と共に高温 S食性を向上させる作用がある。 ニッ ケルの 含有量が 2 5 重量%以下では前記の作侘効果が得ら れない。 一 方 4 9 重量%を越えて含有させる きに は一層の改善効果
OM?I は見 ら れず、 経済拄を考慮 して 、 ニ ッ ケルの含有量を 2 5 〜 4 9 重量% と定めた 。
チタ ン : チタ ン成分 は素地の結晶粒の成長を抑—制するぱか り でなく 、 む しろこの結晶粒を微細化 し 、 かつ の炭化物及 び窒化物 、 さ ら に上記の よ う に Νί 3 ( Αί . Τ« ) の金属閭化合物 を形成する。 チタ ン成分は高湿強度及び高 酎摩耗性を向上さ せる作用 がある 。 チタ ンの含有量は 0 . 0 1 重量 9 以下で は前 記の作用効果が得 られない。 一方チタ ンの含有量が 4 . 5 重量 %を越え て含有させる と き に は、 高滢に おける炭化物の形成が 促進されて合金の ^倥が低下 し 、 さ ら に 、 高 での接化救の生 成も顕著 と な り 、 高湟酎食性の劣化を ま ね く よ う になる 。 した が っ て チタ ンの含有量は 0 . 0 1 〜 4 . 5 重量% と定め た。 さ ら に好ま し く は 0 . 0 Ί 〜 3 . 5 重量%である 。
アルミ ニ ウム : アルミ ニ ウム成分は ク ロ ム と の共存に おいて 高温での耐酸化性及び耐食性を改善する 。 さ ら に fr述 し た よ う にニ ッ ケル及びチタ ン と結合 して NL 3 ( « . Ti ) の金属間化合 物を形成する ほか窒化 ¾を形成 して高渥強度及び^摩耗性を一 段 と高め 、 かつ ^熟衝撃牲及び靱倥を向上させる作用 がある。 アルミ ニ ウムの含有量が 0 . 0 Ί 重量%以下では笥記の作用効 果が得ら れない 。 一方アルミ ニ ウムの含有量が 4 . 5 重量%を 越えて含有させる と 、 溶湯の流動 ϋ及び誇造性'が S下 して製造 が困難と なるばかりでな く 、 ϋ性及び溶接柱も β下 し て実用的 でない。 アルミ ニウムの含有量は したが っ て 0 . 0 1 〜 4 . 5 重量% と定めた。 さ ら に好ま し く は 0 . 0 *! 〜 3 . 5 重量%で
OMFI ある。
タ ングステン : タ ングステン成分は素地中 に 固溶する と共に 炭素と反応 して炭化物を形成する 。 タ ングステン成分は高温硬 さ及び ^摩耗性を改善する作 がある。 タ ングステンの含有量 は 0 . Ί 重量%以下では前記の作用効果が得 ら れない。 一方タ ングステンの含有量が 8 重量%を越えて含有させると、 耐摩耗 性は向上するよ う に なるが、 ϋ牲及ぴ尉熱衝撃性が劣化する。 したが っ て タ ングステンの含有量は 0 . Ί 〜 8 重量% と定めた 。 さ ら に好ま し く は 0 . 5〜 8 重量%である。
モ リ プデン : モ リ ブデン成分は タ ングステ ン と周様に特に高 搵耐摩耗性を向上させる作 ¾がある 。 モ リ ブデンの含有量が 0 . 1 重量%以下では前記の作 S効果が得られない 。 一方モ リ ブデ ンの含有量が 9 重量%を越えて含有させる と 、 タ ングステ ン と 同様に靱性及び ®熱衝擎性が劣化する 。 したが っ てモ リ ブデン の含有量は 0 . 1 〜 9 重量% と定め た。 さ ら に好ま し く は 0 . 5〜 9 重量%である 。
ケィ素 : ケィ素成分は、 ク ロ ム と共に耐熱性を向上させる作 用 がある。 ほか脫酸作用並びに溶湯の流動性を改善して鍀造性 を向上させる作用がある 。 さ ら にケィ素成分は合金の高温強度 も改善する作招がある 。 ケィ 素の含有量が 0 . Ί 重量%以下で は前記の作用効果が得ら れない。 一方 3 重量%を越えて含有さ せる と、 ク ロ ム と の関連において靱性及び溶接性が低下する。 したが っ てケィ素の含有量は 0 . 1 〜 3 重量 96 と定めた。 なお、 ケィ素成分はこ れを脱稜剤と して使用 し た場合など不可避不純
O FI 0 物 と し て 0 . 1 重量%以下の範囲で含有する場合があるが、 こ の場合に は、 不可避不耗物含有量を含め 、 全体含有量が 0 . Λ 重量%以上に なるよ う に すればよ い。
マンガ ン : マ ンガ ン成分 はニ ッ ケル と共 に素 ¾に 固溶 して 才 ー ステナイ 卜素地を安定化させ、 ま た S熟衝撃牲及び高温耐摩 耗性を向上させる作用がある 。 かつ脱骸作用を有する 。 マンガ ンの含有量が 0 . 1 重量%以下では前記の作用効果が得 られな い。 一方 2 重量%を越え て含有させる と 、 高温 ¾食性が劣化す る。 し たが っ てマンガンの含有量は 0 . 1 〜 2 重量% と定めた なお、 マ ンガ ン成分もケィ素成分と周様 に不可避不耗物 と して 0 . 1 重量%以下の篛囲で含有する場合があるが、 この場合も 不可避不純物含有量を含め 、 全体含有量が 0 . 1 重量%以上に なるよ う に成分調整すれぱ よい。
コバル 卜 : コパル 卜成分 はオーステナィ 卜素 ¾に 固溶 して高 温強度を改善する 。 そのほかコパル 卜 成分 は高 g ¾摩耗性及び 耐熱衝撃性を 向上させる作用がある 。 コバル ト の含有量が 1 重 量%以下で は前記の作用効果が得 られない。 一方 8 重量%を越 えて含有させてち ょ り一層の改善効果が見 られない。 む しろ前 記作用効果の減少が見 ら れる。 したが っ て コパル 卜 の含有量は 1 〜 8 重量% と定めた 。
窒素 : 窒素成分はその一部がオーステナ イ 卜 素 ¾ に 固溶 して 安定化する と 共に 、 ¾の残 り の部分が金属窒化 を形成 して高 温強度を一段 と 向上させる作用がある 。 したが っ て高温強度が 要求される場合に は必要に応じて含有さ れる。 窒素の含有量は 0. 0 0 5重量%以下ではよ り一層の髙温強度の改善効果が見 られない 。 一方 0. 2重量%を越えて含有させる と、 窒化物量 が増大するばかりでな く 、 窒化物粒子の短大化が起 っ て合金を 脆化 し 、 合金の ¾熟衝撃性が劣化する 。 したが っ て窒素の含有 量は 0. 0 0 5〜 0. 2重量 6と 陧定された 。
ニオブ及びタ ンタ ル これら の成分は特に素地の結晶粒の成 長を抑制 し 、 かつ M C型の炭化勒及び窒化物を形成して髙温強 度及び高盪耐摩耗倥をさ ら に一段と向上させる均等化作用があ る。 したが つ てこれらの特牲が特に必要と さ れる場合に必要に 応じて含有されるものである。 ニオブ及びタ ンタルの含有量は それぞれ 0. 0 1 重量%以下では 15記の作用効果が得られない 一方 1 . 5重量%を越えて含有させる と、 高逞での ϋ化 ¾の生 成が著 し く なるなどの高還耐食性の劣化を生 じ 、 さ ら に炭化物 の形成が多 く な り過ぎて靱性及び S熱衝撃性の劣化を生 じる 。 したが っ て二才ブ及びタ ンタルの含有量はそれぞれ 0. 0 1 〜 1 . 5重量% と定めた。
ホウ素及びジルコ ニウム : これら の成分は高温強度、 高温耐 摩耗性、 酎熱衝撃倥及び高温 ^食性をよ り一層向上させる均等 化作用がある 。 したが っ て必要に応 じ てこれら の成分は含有さ れるがその含有量がそれぞれ 0. 0 0 1 重量%以下では上述の —効果が得ら れず、 一方、 0. 2重量%を越えて含有させる と 、 靱性、 酎熱衝撃性さ ら に は籙造牲及び溶接性の劣化を生じる 。 ホゥ素、 ジルコ ニゥムの含有量はそれぞれ 0. 00 1 〜 0. 2 重量% と定めた 。 鉄 : 鉄成分 は残り と じ て含有される 。 ニ ッ ケル と周様の作用 効果を有する 。 費用低滅をはかる 目 的で高衝なニ ッ ケル成分の 一部代替成分 と して 含有さ れる。
こ の発钥の耐熱酎摩耗強 ¾ϊ性合金の耝成成分範囲 とその特性 と の関係を明 ら かに す るた め、 各金属を稃量 し 、 通常の高周波 溶解炉を用いて大気中で 1 4 0 0 〜 1 7 0 0 で 、 2 0 〜 3 0分 間加熱 し溶解する。 つ いで砂型に錶造 し た 。 得 ら れた鍀造合金 よ り各種試験のた めの試験片を作製 した 。 こ れ ら試験片を用 い て 、 硬さ測定試験、 常 ϊ§シ ャ ル ピ ー衝撃値、 大越式金属閏摩耗 試験および実撐の急速 ¾熟および急速冷却の繰返 しに近い条件 での熱衝撃試験をそれぞれ行な っ た 。
なお硬さ測定試験は常 §、 9 0 0 、 及び 1 0 0 0 に おけ る ビ ッ カ ース硬度を測定するこ と に よ り 行な っ た 。 大越式金属 藺摩耗試験は相手が S U J — 2 ( H, c : 5 7 以上 〉 である。 荷 重 : 1 8 . 2 ½ と し摩擦速度は 0 . 0 8 3 m Z se の条俘下でか っ常搵乾燥状態で行ない、 こ れ ら の結旲か ら比摩耗量を算出 し た 。 さ ら に熱衝撃試験は、 一方铠面の中心部 に 直径が 1 0 翻 ø の球面凹みを形成 した 1 2 nns X l 2 =1 X 3 0卿の角柱 試験片 を用 い 、 こ の試験片の球面凹みを 、 酸素一プ ロ パンガスパー ナ に よ り 3 0秒閭加熱 して、 その §度を約 9 0 0 と した後、 直 ち に嘖霧水を 2 0 秒閏吹付けて 、 その g度を約 2 0 0 で と する 工程を Ί サイ クルと し 、 これを繰返 し行い 3 回 ごと に球面凹み を螢光浸透探傷法を招いて醫察 し割れが癸生 する ま でのサイ ク ル数を測定する こ と に よ っ て行 っ た 。 なお割れ発生 までのサイ
O PI クル数に おいて 、 3 0 以上と い う表示は、 3 0 サイ クルの繰返 し熱暂擎試験でも球面回みに割れ癸生が見ら れないものである この発明の耐熟耐摩耗強 ^性合金に対 して比較の こめ に構成成 分のう ち のいずれかの成分例えば構威成分を示す金属の重量% の ¾値の肩にホ印を付 して表示し たが 、 の含有量がこの発明の 範囲か ら外れた钽成を有する比較合金の ¾成及び特性を示 した さ ら に この発明の合金に対する従柬公 ¾の合金例 についても参 考のために付記 した 。 以下百分率は重量百分率を示す 。
実旌例 1
C - Cr - Hi - Ti - Αί· - W一 Mo— Fe系
遑常の高周波溶餑 ^を ^い、 それぞれ第 i 表 , 2 , 3 , 4 に示される通り の虡分 成をち っ た溶湯を大気中溶鋅 し、 つい で砂型に篛造 し た 。 実 ^ ¾ ^ 0 1 か ら N0 1 6 はその合金の钽成 成分を示 している 。 さ ら に Ν。 1 7 から N。 1 9 はその合金にケィ 素を含有 し た例、 N。 2 0 から N。 2 2 はマ ンガ ンを含有した例、 2 3 から N。 2 5 は窒素を含有 した侥を示 した 。 さ ら に、 ケィ 素、 マンガン 、 空 、 ニオブ、 タ ン タ ル、 ホゥ素、 ジルコ ニゥ ムの群か ら還ばれた少く と ¾ 1 つを含有する例を N。 2 6 から N。
6 1 までに示し た 。 o 6 2 から 7 0 は灰 系一ク ロ ム一二ッ ケ ルーチタ ン一アルミ 二ゥムータ ンダステンーモ リ プデン一鉄系 合金に対 して この発 ^の g囲 ^の含有量を含む比較合金を示し た。 さ ら に N。 7 1 か ら 7 2 には ^ ¾合金の例を示 し
第 2 表 1 , 2 , 3 は 、 ¾ ½2 、 9 0 0て 、 1 0 0 0 各々の ビ ッ カ ース硬度、 常 シ ャ ル ピ一衝撃! I 、 比摩耗量、 割れ発生ま
O PI でのサイ クル数を各実験番号に対応 し て示 し た 。 第 1 表 1 の N„
6は炭素 : 0. 7 9 %、 ク ロ ム : 3 0. 2 5 %、 ニ ッ ケル : 2 5 . 2 %、 チタ ン : 1 . 7 9 %、 ァルミ ニ ゥム : 1 . 0 2 %、 タ ングステン : 5. 3 6 %、 モ リ プデン : 3 . 3 1 %、 鉄残 り の組成 ( 以上重量 96〉 を有する 。 Nc 6合金の特性 は第 2 表 Ί に 示されて いる。 例えば硬度 ( ビ ッ カ ース硬度 ) 常 gで 3 3 2 、 9 00 "Όで 1 5 1 、 1 0 00 で 1 4 5である 。 常温シ ャルピ 一衝撃値は 1 . 3 4 kg— m /rf 、 比摩耗量 は 1 . 9 8 x l 0 -7 、 割れ発生ま でのサイ クル数は 3 0回以上であ っ た 。 比較合金 N。
6 2炭素 : 0. 4 9 % . ク ロ ム : 3 5 . 0 6 % , ニ ッ ケル : 3 0. 1 % , チタ ン : 0. 5 9 %, アルミ ニウム : 0. 1 3 % , タ ングステ ン : 5 . 6 0 % , モ リ ブデン : 4 . 9 2 %鉄残 り の 組成 ( 以上重量% ) につ いて みる と割れ癸生 ま でのサイ クル数 は 3 0回以上であ っ た 。 ま た比摩耗量は 3 . 7 1 Χ 1 0 ·7 とな り 、 常温シ ャ ル ピー衝撃値は 0. 8 7 1<9—!11 ノ 0?でぁ り 、 と く に ビ ッ カ ー ス硬度は常揾で 2 3 9、 9 0 0 で 9 5 、 1 000 でで 8 0 と低下 し ている 。 従来合金の N。 7 1 は炭素 : 1 . 3 2 %、 ク ロ ム : 2 5 . 8 9 %、 ニ ッ ケル : 1 1 . 0 4 %、 モ リ ブ デン : 0. 5 096、 ケィ 素 : 1 . 5 9 %、 マ ンガン : 2 . 0 0 %、 バナジ ウ ム : 0. .1 8 % 鉄の こ り )S成 ( 以上重量% ) を 有する合金である 。 その特性は割れ発生 ま でのサイ クル ¾が 1 8であ り 、 比摩耗量は 3 . 2 8 X 1 0 -7 、 常涅シ ャ ル ピ ー衝撃 値は 0. 8 9 kg— si ノ of であ っ た 。 そ し て ビ ッ カ ース硬度は常 混で 2 5 9 , 9 0 0でで 7 7 、 1 0 0 0 で 6 4 の値を示 した 。
OMPI 第 1 表 1 , 2 , 3 , 4及び第 2表 Ί , 2 , 3は合金の钽成成分 及びその特性を示 した。
OMPI WIPO レ,
Figure imgf000017_0001
Figure imgf000018_0001
8£E00/S8cir/IDd -9T- SOI00/S8 OA
Figure imgf000019_0001
LI- 802.0088 OA
Figure imgf000020_0001
一 / 9一
Figure imgf000021_0001
2 の /
Figure imgf000022_0001
2 表 の 2 ,
' ~ " - 2 /
Figure imgf000023_0001
2 の
実施例 2
C - Cr - ΰ - Co - ΤΪ 一 Ai— W— Mo— Fe系合金
実施例 2に示すこの発日月の 熱耐摩耗性合金は'実施例 1 の基 礎合金に対 し てコパル 卜 を 1 〜 8重量%を基礎合金 と して含有 する点が異なる。 実施例 1 と周 じ く 第 3表 1 , 2 , 3 , 4に こ の発明の合金 N。 73か ら « 1 34と比較合金 ( N。 1 3 5から ^ 1 4 4 ) 及び従桌合金 ( No 1 4 5 から N。 1 4 6 ) の成分組成を 重量%で示 し た。 さ ら に実施榥 1 と周 じ く 第 4表 1 , 2 , 3に 各合金の特性を示した。 第 3表 1 の N。 7 8は炭素 : 0. 7 7 %、 ク ロ ム : 3 0. 23 %、 ニッ ケル : 25. 9 %、 コバル ト : 1 . 6 1 %、 チタ ン : 1 . 8096、 アルミ ニウ ム : 1 . 00 %、 タ ングステン : 5 . 3 7 96 、 モ リ プデン : 3 . 2 6 % 、 鉄残り の 靼成 ( 以上重量 % ) を有 している 。 N。 78の合金は第 4表 1 よ り例えぱビ ッ カ ース硬度は常渥で 33 7、 900でで 1 54、 1 000でで 1 4 8 と い う値を示 し 、 常搔シャルビー衝撃値は 1 . 3 7 kg— E .ZO?、 比摩耗量は 1 . 93 x 1 0 _7 、 割れ発生 までのサイ クル数は 3 0回以上であ っ た。 実旅例 Ί の N。 6との 比較においてコパル 卜 を含有するために高温における硬度耐摩 耗性が若干改良さ れた 。 比較合金 ( N。 I 3 5から Nc 1 44 ) 及 び従来合金 ( N, 1 4 5か ら ^ 1 4 6 〉 との比較においても と く に従来合金 N。 1 4 5 に比較する と割れ髡生 ま でのサイ クル数 1 8回に対 して N。 78の合金は割れ究生までのサイ クル致は 30 回以上であ っ た 。 さ ら に ピ ツ カ 一ス稷度 1 000ての値 64に 対 して 7 8合金は 1 48と鳇を示 した 。 第 3表 1 , 2 , 3 ,
OMFI ¾η ¾^^^?ffi脇© ^ 0^^ ^
CO CM
CM
Figure imgf000026_0001
88£00/S8df/XDJ SO 00/S8 OA
Figure imgf000027_0001
Figure imgf000028_0001
/ 8o/ssoJf3dJL/ §0ε8 OAiト^ - it ½ ε
Figure imgf000029_0001
- 2 ε ~ ビ ッ カ ー ス硬さ 比 摩 耗量 割れ難まで 攝超
Figure imgf000030_0001
のサイクル数 常 温 9 0 0°C 1 0 0 o'c ( x i r7 ) (回)
73 20 161 150 ι.δο ' 1.96 >30
7 333 170 1 1.73 1.79 >30
75 38ο 252 193 1.17 1.21 27
76 170 1.92 I.72 〉30
77 18 181 1.63 , 1.3 〉30
78 1-37 1-93 〉30
79 221 179 2.26 1.67 >30 本 80 168 1 7 1.88 1.90 〉50
81 1 Ιδ7 179 1 1.98 1.3^ >30
82 3 0 21 q 165 2.01 1Λ7 27
83 スフ 1 251 ISO 1.10 0.98 21
8 36ο 2 7 Ιδδ 1.79 1.39 27
85 89 268 213 1.08 0.96 Zk
86 * フフス丄 ϊδο 1.29 1.-37 >30 明 87 20S 1.20 0.89 2
88 ェ 2ン5 - 1δ9 1.48 1.20 >30
89 i-02 263 213 1.21 0.83 2k
90 370 ?^? 173 1-50 1.62 >30
91 376 1S2 1Λ3 1.50 〉30
92 3-35 25"5 1お 1.28 1.32 30
93 : 238 1^6 1.96 1.77 >30 金 9 235 1 1.98 1.63 >30
95 8 230 1 3 2.00 1.52 〉30
96 ス 5"! 237 3A5 1.93 1.61 >30
97 367 153 1.62 1. 0 27
98 372 251 1β7 1.09 1.26 21
99 369 248 155 ' 1.65 丄.ス s
100 368 2 7 151 1.66 1.39 >30
101 361 237 1¾ 1-99 1.61
102 364 2^1 1.70 1.57 >30 表 の I
Figure imgf000031_0001
の 2 ビッ カ ー ス硬さ 常温シ ャ ル 比摩 耗 量 s ^生まで-
^金種類 ビー衝撃値 のサイクル数
am. 900°C lOOO'C ( X 1 ο-7 ) (回)
133 378 158 1-90 1.03 >30
13^ 376 250 156 1.93 1.05 〉30
135 98 83 0.90 3-57 〉30 比 136 zk 276 223 0.50 0.63 9
137 267 101 90 1. ^ >30
396 220 195 1.06 6 較
丄 287 I30 12 ΟΛ2 2.61 >30
140 251 110 90 0.61 2.63 >30 口 141 28 286 223 0.42 0.64 6
1 2 kl 297 2 8 0.31 0.55 3 金 1 l2 2?1 21? 0.30 0.61 6
I 19 276 220 0.28 0.6k 3 従来 1 259 77 6k 0.89 3·2δ 18
^金 ike 305 1^3 130 ' 0 3 · 1.97 3 if- の 3
実施例 3
C - SL - Μ» - Cr - Νί - Ti 一 Αί — W— Mo— Fe系合金
実施例 3 は実施例 1 に対 し てケィ 素、 マ ンガ ン'を基礎合金と して含有 している点が異な っ ている 。
実施例 1 と周様に第 5表 1 , 2 , 3 に発明の合金の成分組成 を重量%で示す。 N。 1 4 7か ら N。 1 7 6 まで は この発明の合金 であ り 、 N。 1 7 7から N。 1 8 7 ま で は比較合金であ り 、 N。 1 8 8か ら N。 1 8 9 は従来合金の例を示す。 第 5表 1 の N。 1 5 2は 炭素 : 0. 8 0 %、 ケィ素 : 0. 6 7 %、 マ ンガン : 0. 1 1 % 、 ク ロ ム : 3 1 ..7 %、 ニ ッ ケル : 3 5 . 1 % , チタ ン : 1 0 3 %、 アルミ ニウ ム : 0. 0 3 %、 タ ングステン : 2. 9 8 %、 モ リ プデン : 6. 2 1 %、 鉄残 ( 以上重量% ) である。 さ ら に必要に応じて窒素 : 0 : 0 0 5〜 0. 2 %と ニオブ、 タ ン タルそれぞれ 0. 0 1 〜 1 . 5 %のう ち の 1 種ま た は 2種 と ホウ素、 ジルコ ニウムそれぞれ 0 . 0 0 1 〜 0. 2 96の う ちの 1 種ま た は 2種とか ら なる群か ら選んだ少 く とも Ί 種を含有 し て いる合金が N。 1 6 6か ら N« 1 7 6まで に示されて いる。 実旅 例 1 と同 じ く 第 6表 Ί , 2 に は N。 1 4 7か ら N。 1 8 9 までの各 合金の特性が示されて いる。 例えば、 N。 1 5 2 は ピ ッ カ ー ス擾 度と して常温で 3 6 6、 9 00 で 2 3 8 、 1 0 0 0でで 1 4 6の値を示 し た 。 常温シ ャ ルピ ー衝撃値は 1 . 9 8 KS— A3 / ^ であ り 、 比摩耗量は 1 . 7 9 x 1 0 -7 であ り 、 割れ発生 までの サイ クル数は 3 0回以上であ っ た 。 第 5表 1 , 2 , 3及び第 6 表 1 , 2 は合金の成分組成 とその特柱を示 した 。 ノ ( 僭 ノ
合^秫類
C Si Mn Cr Ni Ti W Mo N Nb B Zr Fe
0.558 0.68 O.77 35.I 3O.O O.56 0.11 5.6O 5.OO *~~ 残
3 8 1.28 O.70 O.81 35.2 30.I 0.10 5-59 97 残
1½ 1.86 O.69 O.83 35.O 30.I O.53 0.11 5.6I .96 一 残
150 1.03 0.12 O.5I 40.0 I.07 0.0k 2.10 5.12 残
151 1.01 2.92 0 1 Λ 0.2 l.O^t 0.0ラ 2.09 5.10
152 0.80 O.67 0.11
本 51.7 35-1 1.03 0.03 2. 8 6.21 ~" 残
153 0.79 0.68 I.93 ?1.6 55-2 1.08 0.02 2.96 6.20 一 一 残
15 0.70 0.70 0.69 28 J0.2 0.25 0.06 5.IO ' 82 残
155 0.69 0.68 O.70 58.1 30*3 0.28 0.02 5.O7 80 — ·..,一,一 ——二— 残
156 0.76 O.8O O.83 30.2 25.3 1,75 1.00 3.25 一
157 0.77 0,79 O.8I 30.1 .7 1.72 1.09 5.3O 3.22 一 残
158 0.81 0.67 0.73 30.2 0.012 3-86 , 5.O7 2.06 残
159 0.8ο 0.66 0.70 30.1 ^3.2 ^ .'13 0.05 5.01 2.03
160 0.82 0. 2 0.50 30.1 3.61 0.011 5.05 2.01 一 ― 一 一 残 金 161 0.80 0 2 0Λ7 30.0 5.2 0.07 h.hi 5.03 2.00 ― 一 ― ― ― 残
162 1.0? 0.68 O.76 35.1 35.1 0.61 0.22 0.11 7.93 一 一 ― 一 一 残
163 1.00 0.67 Ο.70 35.0 0.60 .2h 7.9^ I.90
164 0.98 0.70 O.69 3^.1 35-2 0.63 0.17 7.11 0.12 残
165 0.96 069 O.72 3^.0 35.1 0.62 •0.16 1.87 8.89 残
166 1.06 0.6? Ο.8Ο 35.0 30.1 0.37 0.10 5..^8 5.IO 0.083 残
S の /
て s
Figure imgf000035_0001
Figure imgf000036_0001
~3 ~
Figure imgf000037_0001
6 の /
'-: π ~3 έ~
Figure imgf000038_0001
6 の 2
実施例 4
C - Si - M - Cr - Νί - Co - W - Mo - Ti 一 Ai— Fe系合金 実施例 4 は実施例 3の基礎合金に対 し て コ バル'卜 : Ί 〜 8重 量%を含有 し ている点が異なる 。 実施倒 Ί と周 じ く 第 7表 1 , 2 に従来合金 ( Ν。 1 9 0から 9 1 ) と こ の発明の合金 ( Ν。
1 9 2か ら N。 2 2 3 ) さ ら に 、 比較合金 ( N。 2 2 4か ら N。 2 3 5 〉 の成分耝成が示さ れている。 第 8表 1 , 2 に は こ れら の合 金の特性が示されている 。 Ν· 1 9 9 は炭素 : 0. 7 0 %、 ケィ 素 : 0. 6 8 %、 マ ンガ ン : 0. 7 0 %、 ク ロ ム : 2 8. 9 7 % 、 ニ ッ ケル : 3 0. 1 2 %、 コ バル ト : 2 . 1 596、 タ ンダ ステン : 5 . 0 696、 モ リ プデン : 4 . 8 0 %、 チタ ン : 0. 2 3 %、 アルミ ニウム : 0. 0 5 、 鉄残部 ( 以上重量% ) であ る。 なおこ のほかに必要に応じて窒素 : 0. 0 0 5〜 0. 2 % と ニオブ、 タ ン タ ルそれぞれ 0. 0 "! 〜 1 . 5 %の う ち の Ί 種 ま た は 2種 と 、 ホウ素、 ジルコ ニ ウムそれぞれ 0. 0 0 1 〜 0 2 %のう ち の " 1 種ま た は 2種とか ら なる群よ り選んだ少 く とも 1 種を含有 し ている合金が Ν« 2 2 4〜 2 3 5 までに示されてい る。 実施例 Ί と周 じ く Ν。 1 9 0〜 Ν· 2 3 5 ま での合金の特性が 第 8表 1 , 2 に示されて いる。 例えば Ν。 1 9 9 は ビ ッ カ ー ス硬 度 と して 、 常温で 3 3 6 、 9 0 0 ^で 1 7 5 、 1 0 0 0でで 1 5 8の値を示 し て いる。 常 §シ ャ ル ピー衝撃値は 1 . 8 7 一 m Zrf であ り 比摩耗量は 1 . 6 7 x 1 0 -7 であ り 、 割れ発生ま でのサイ クル敦は 3 0·回以上であ っ た 。 実施例 4の N。 1 9 9 に 比較的に類似 し た钽成を有する実施 ^ 3の N。 1 5 4 と比較する
OMPI と 1 99ではコパル 卜 2. 1 5重量%が含有されている 。 N。
1 5 4では、 硬度は常温で 3 3 2、 900でで 1 7 Π 、 1 00
0 *0で 1 5 4、 常温シ ャル ピー暂擎値 " 1 . 9 3 kg - m Z rf であ り 、 比摩耗量は 1 . 7 2 x 1 0 _7 で割れ発生までのサイ クル数 は 30回以上であ っ た 。 第 7表 1 , 2 , 3及び第 8表 1 , 2は 合金の成分钽成とその特性を示 し た 。
OMPI
Figure imgf000041_0001
~-
Figure imgf000042_0001
ε Q) .vT
Figure imgf000043_0001
2
Figure imgf000044_0001
表 の / 3一
Figure imgf000045_0001
ε の 2 産業上の利用可能性
この発明の合金は耐熱性耐摩耗牲及び耐熱衝撃性を具備 して いるので縫目無榘管製造用熱藺傾斜圧延機 ( 穿孔機も含む) の ガイ ドシユ ー と し て使用 し た場合、 きわめて長期に亘つ て安定 な性能を発揮するなど工業上有用な特性を有する。 さ ら に この 発明の合金は肉盛 り用合金と しても汎用性を有し工業上有用で め 。
O PI

Claims

請 求 の 範 炭素 : 0. 5 5〜 1 . 996、 ク ロ ム : 28〜 3 996、 ニ ッ ケル : 2 5〜 49 %、 チタ ン : 0. 0 1 〜 4. 5 %、 アルミ 二 ゥム : 0. 0 1 〜 4. 5 % タ ングステ ン : 0. 1 〜 8 %、 モ リ ブデン : 0. 1 〜 9 %を含有 し 、 さ ら に必要に応 じ てケィ 素 : 0. 1〜 396、 マ ンガン ·· 0. 1 〜 2 % 、 コバル ト : 1 〜 8 % を含有 し 、 さ ら に必要に応じ て窒素 : 0. 005〜 0. 29 と 、 ニオブ、 タ ン タ ルそれぞれ 0. 0 1 〜 Ί . 5 %のう ち の 1種ま たは 2種と 、. ホ ウ素、 ジルコニウムそれぞれ 0. 00 1 〜 0. 2 %のう ち の 1 種ま た は 2種 とから なる群よ り選ばれた少な く とも 1 つ を含有 し 、 残り が鉄 と不可避不純物から なる钽成 ( 以 上重量% ) と有する耐熱耐摩耗強靭牲合金。
2 炭素 : 0. 5 5〜 1 . 9 %、 ク ロ ム : 28〜 3 9 %、 ニ ッ ケル : 2 5〜 49 %、 チタ ン : 0. 0 1 〜 4. 5 %、 アルミ 二 ゥム : 0. 0 1 〜 4. 596、 タ ングステ ン : 0. 1 〜 8 %、 モ リ ブデン : 0. 1 〜 9 %を含有 し 、 残り が鉄 と不 ¾ 避不 物か ら なる組成 ( 以上重量 6 ) を有する こ と を特徴 と す る ^熟耐摩 耗強靱性合金。
3 さ ら に窒素 : 0. 00 5〜 0. 2重量%を含有する こ と を 特徴 とする請求の範囲第 2項記載の Κ熟尉摩耗強 ^性合金。
4 さ ら にニオブ、 タ ンタ ルそれぞれ 0. 0 1 〜 1 . 5重量% の群よ り選ばれた少なく とも 1 つを含有するこ とを特徴 とする 請求の範囲第 2項記載の耐熟耐摩耗強 ^性合金。
. ( OMPI 5 さ ら にホウ素、 ジルコ ニウムそれぞれ 0. 00 〜 0. 2 重量%の群よ り 選ばれた少な く とも 1 つ を含有する こ とを特徵 とする請求の範囲第 2項記載の酎熱酎摩耗強靭性合金。
6 さ ら にニオブ、 タ ンタルそれぞれ 0. 0 1 〜 1 . 5重量% の群よ り選ばれた少な く と も 1つを含有するこ とを特徴 とする 請求の範囲第 3項記載の酎熱耐摩耗強 13性合金。
7 さ ら にホウ素、 ジルコ ニウムそれぞれ 0. 00 1 〜 0. 2 重量%の群よ り選ばれた少な く とも 1 つ を含有する こ とを特徴 とする請求の範囲第 3項記載の ϋ熟 S摩耗強靱柱合金。
8 さ ら にホウ素、 ジルコ ニ ウムそれぞれ 0. 00 1〜 0. 2 重量%の群よ り選ばれた少な く とも 1 つを含有する こ とを特徵 とする請求の範囲篛 4項記載の 1ί熱酎摩耗強 ¾性合金。
9 さ ら にホウ素、 ジルコ ニ ウムそれぞれ 0. 00 1 〜 0. 2 重量 96.の群よ り選ばれた少な く とも 1 つ を含有する こ とを特徴 とする請求の範囲第 6項記載の ¾熟¾摩耗強 ϋ性合金。
10 炭素 : 0. 5 5〜 1 . 9 %、 ク ロ ム : 2.8〜 3 9 %、 ニッ ケル : 2 5〜 4996、 チタ ン : 0. 0 1 〜 4. 596、 アルミ 二 ゥム : 0. 0 1 〜 4. 5 タ ングステ ン : 0. ^! 〜 896、 モ リ ブデン : 0. 1 〜 9 %、 ケィ素 : 0. 1 〜 3 %を含有 し 、 残 り が鉄 と不可避不^ t)からなる 成 ( 以上重量% ) を有するこ とを特截 とする耐熱 S摩耗強 ¾S合金。 _
11 さ ら に窒素 : 0. 005〜 0. 2重量%を含有するこ とを 特徴とする請求の 囲第 10項記載の ¾熟尉摩耗強靱性合金。
12 さ ら にニオブ、 タ ンタルそれぞれ 0. 0 1 〜 1 . 5重量%
O PI
WIPO の群よ り 選ばれた少な く とも 1 つ を含有す る こ とを特徴 と する 請求の範囲第 10項記載の耐熱 ¾摩耗強靱性合金。
13 さ ら にホ ウ素、 ジルコ ニ ウムそれぞれ 0 . CT0 1 〜 0 . 2 重量%の群よ り選ばれた少な く とも 1 つ を含有する こ とを特徴 と する請求の範囲第 10項記載の耐熱耐摩耗強靱性合金。
14 さ ら にニ オブ、 タ ンタ ルそれぞれ 0 . 0 1 〜 1 . 5重量 96 の群よ り選ばれた少な く とも 1 つ を含有する こ とを特徴と する 請求の範囲第 11項記載の耐熱 ^摩耗強靱性合金。
15 さ ら に ホ ウ素、 ジルコ ニ ウムそれぞれ 0 . 0 0 Ί 〜 0. 2 重量%の群 よ り選ばれた少な く と も 1 つ を含有する こ とを特徴 とする請求の範囲第 11項記載の酎熱耐摩耗強靱性合金。
16 さ ら に ホ ウ素、 ジルコ ニウムそれぞれ 0 . 0 0 1 〜 0 . 2 重量 6の群よ り選ばれた少な く とも 1 つ を含有する こ とを特徴 とする請求の範囲第 12項記載の酹熱耐摩耗強靱性合金。
17 さ ら に ホ ウ素、 ジルコ ニ ウムそれぞれ 0. 0 0 1 〜 0 . 2 重量%の群よ り選ばれた少な く とも 1 つ を含有する こ とを特徴 と する請求の範囲第 14項記載の耐熟耐摩耗強靱性合金。- 18 炭素 : 0 . 5 5〜 1 . 9 %、 ク ロ ム : 2 8〜 3 9 96、 ニ ッ ケル : 2 5〜 4 9 %、 チタ ン : 0 . 0 1 〜 4 . 5 96、 アルミ 二 ゥム : 0. 0 1 〜 4 . 5 % タ ングステ ン : 0 . 1 〜 8 %、 モ リ ブデン : 0 . ^! 〜 9 %、 マ ンガ ン : 0 . 1 〜 2 %を含有 し 、 残り が鉄と不可避不耗物か らなる耝成 ( 以上重量% 〉 を有する こ と を特徴 と する ^熱酎摩耗 ¾ ^性合金。
19 さ ら に窒素 : 0 . 0 0 5〜 0. 2重量 96を含有するこ とを
、外、 ^ ΡΟ 特徴 とする請求の範囲第 18項記載の ¾熱酎摩耗強靱性合金。
20 さ ら に二才プ、 タ ンタルそれぞれ 0. 0 1 〜 1 . 5重量% の群よ り選ばれた少な く とも 1 つを含有するこ とを特滢 とする 請求の範囲第 18項記載の耐熱 ¾摩耗強 ^倥合金。
21 さ ら にホウ素、 ジルコ ニウムそれぞれ 0. 00 1 〜 0. 2 重量 96の群よ り選ばれた少な く とも 1 つ を含有するこ とを特徴 と する請求の範囲第 18項記載の酎熱 m摩耗強靱性合金。
22 さ ら にニオブ、 タ ンタ ルそれぞれ 0. 0 1 〜 1 . 5重量% の群よ り選ばれた少なく とも 1 つを含有する こ とを特徵 とする 請求の範囲第 19項記載の酎熱酎摩耗強 ^倥合金。
23 さ ら にホウ素、 ジルコ ニウムそれぞれ 0. 00 1 〜 0. 2 重量%の群よ り選ばれた少な く とも 1 つ を含有する こ とを特徴 とする請求の範囲第 19項記載の S熟 ®摩耗強 S性合金。
2 さ ら にホ ウ素、 ジルコ ニウムそれぞれ 0. 00 1 〜 0. 2 重量%の群よ り選ばれた少な く とち 1 つを含有する こ とを特徴 とする請求の範囲第 20項記載の ¾熱酎摩耗強 H柱合金。
25 さ ら にホウ素、 ジルコ ニウムそれぞれ 0. 00 1 〜 0. 2 重量%の群よ り選ばれた少な く とも 1 つ を含有する こ とを特徴 とする請求の範囲第 22項記載の尉熟 ^摩耗強靱性合金。
26 炭素 : 0. 5 5〜 "! . 9 %、 ク ロ ム : 2 8〜 3 996、 ニッ ケル : 2 5〜 4 9 %、 チタ ン : 0. 0 1 〜 4 . 596、 アルミ二 ゥム : 0. 0 1 〜 4. 596、 タ ングステ ン : 0. 1 〜 8 %、 モ リ ブデン : 0. 1 〜 9 %、 コバル 卜 : 1 〜 8 %を含有 し 、 残り が鉄 と不可避不耗钧からなる 瘃 ( 以上重量 6 ) を有するこ と
OMPI を特徴 と する耐熟耐摩耗強靭性合金。
27 さ ら に窒素 : 0 . 0 0 5 〜 0 . 2重量%を含有する こ とを 特徴 と する請求の範囲第 26項記載の耐熱耐摩耗強靱性合金。
28 さ ら にニオブ、 タ ンタルそれぞれ 0 . 0 1 〜 1 . 5 重量% の群よ り選ばれた少な く と も 1 つを含有する こ と を特徵 と する 請求の範囲第 26項記載の耐熱尉摩耗強靱性合金。
29 さ ら にホ ウ素、 ジルコ ニウムそれぞれ 0 . 0 0 1 〜 0 . 2 重量%の群よ り選ばれた少な く とも 1 つを含有する こ と を特徴 と する請求の範囲第 26項記載の耐熱耐摩耗強靭性合金。
30 さ ら に 才プ、 タ ン タ ルそれぞれ 0 . 0 1 〜 1 . 5重量% の群よ り選ばれた少な く とも Ί つ を含有する こ と を特徴 とする 請求の範囲第 27項記載の耐熟耐摩耗強靱性合金。
31 さ ら にホウ素、 ジルコ ニウ ムそれぞれ 0 . 0 0. Ί 〜 0 . 2 重量%の群よ り 選ばれた少な く とも 1 つ を含有するこ と を特徴 と する請求の範囲第 27項記載の耐熟耐摩耗強靭性合.金。
32 さ ら にホウ素、 ジルコ ニウムそれぞれ 0 . 0 0 "! 〜 0 . 2 重量%の群よ り 選ばれた少な く と も 1 つ を含有する こ と を特徴 と する請求の範囲第 28項記載の耐熱耐摩耗強靭性合金。
33 さ ら に ホウ素、 ジルコ ニ ウ ムそれぞれ 0 . 0 0 1 〜 0 . 2 重量%の群よ り 選ばれた少な く と も 1 つを含有する こ とを特徴 と する請求の範囲第 30項記載の ^熱 ϋ摩耗強 ^性合金。
34 炭素 : 0. 5 5〜 1 . 9 %、 ク ロ ム : 2 8〜 3 9 %、 ニ ッ ケル : 2 5〜 4 9 %、 チタ ン : 0 . 0 1 〜 4 . 5 96、 アルミ 二 ゥム : 0 . 0 1 〜 4 . 5 %、 タ ングステン : 0 . 1 〜 8 %、 モ
4と
- 5 0 - リ ブデン : 0 . 1 〜 9 % 、 ケィ素 : 0 . "! 〜 3 % 、 コ ゾ ル 卜 : 1 〜 8 %を含有 し 、 残り が鉄 と不可避不耗物から なる耝成 (以 量% ) を有する こ とを特徵と する耐熱酎摩耗'強 1!性合金。
3 5 さ ら に窒素 : 0 . 0 0 5 〜 0 . 2 重量 6を含有するこ とを 特徴とする請求の篛囲第 3 4項記載の耐熱耐摩耗強靭性合金。
36 さ ら にニオブ、 タ ン タルそれぞれ 0 . 0 1 〜 1 . 5 重量% の群よ り選ばれた少な く とち 1 つを含有する こ とを特襟とする の範囲第 3 4項記載の耐熱 &摩耗強靱性合
3 7 さ ら にホ ゥ素、 ジルコ ニゥムそれぞれ 0 . 0 0 1 〜 0 . 2 %の群よ り選ばれた少なく とも 1 つを含有する こ とを特徴 とする請求の ^囲第 34項記載の ffi熱耐摩耗強靱性合金。
3 8 さ ら に二才プ、 タ ンタルそれぞれ 0 . 0 〜 1 . 5 重量 96 の群よ り選ばれた少な く とち 1 つを含有するし を特徴とする n目 の範囲第 3 5項記載の耐熱酎摩耗強靱性合
39 さ ら にホウ素、 ジルコニゥムそれぞれ 0 . 0 0 ト 0 . 2 9 の群よ り還ばれた少なく とち 1 つを含有する こ とを特徵 と する請求の範囲第 35項記載の捃熟耐摩耗強靱性合金。
4 0 さ ら にホウ素、 ジルコ ニゥムそれぞれ 0 . 0 0 ト 0 . 2 %の群よ り選ばれた少な く とも 1 つを含有する こ とを特徴 る請 ¾ の箬囲第 3 6項記載の ¾熟 t摩耗強靱性合 z a
さ ら にホウ素、 ジルコ ニゥムそれぞれ 0 . 0 0 ト 0 . 2 %の群よ り 選ばれた少な く とち "1 つ を含有する こ とを特 する請求の範囲第 38項記載の S熟丽摩耗強 合金。
42 炭素 : 0 . 5 5 〜 "! . 9 %、 ク ロ ム : 2 8 〜 3 9 % > ニッ
f O PI ケル : 2 5〜 4 9 %、 チタ ン : 0. 0 1 〜 4 . 5 % アルミ 二 ゥ ム : 0. 0 1 〜 4 . 5 96、 タ ングステ ン : 0. 1 〜 8 %、 モ リ ブデン : 0. 1 〜 9 % 、 マ ンガ ン : 0 · Ί 〜 2 %、 コパル 卜 :
1 〜 8 όを含有 し 、 残り が鉄 と不可避不耗物か らなる耝成 ( 以 上重量% ) を有する こ と を特徵 と する酎熱 ®摩耗強靱性合金。
43 さ ら に窒素 : 0. 0 0 5〜 0. 2重量%を含有する こ とを 特徴 と する請求の範囲第 42項記載の耐熱尉摩耗強 ¾性合金。
44 さ ら にニオブ、 タ ン タ ルそれぞれ 0. 0 1 〜 1 . 5重量% の群よ り 選ばれた少な く とも 1 つを含有する こ と を特徴 とする 請求の範囲第 42項記載の耐熟 摩耗強 19牲合金。
45 さ ら に ホ ウ素、 ジルコ ニ ウムそれぞれ 0. 0 0 1 〜 0. 2 重量%の群よ り選ばれた少な く とも 1 つ を含有する こ と を特徴 とする請求の範囲第 42項記載の S熟酎摩耗強靱性合金。
46 さ ら にニオブ、 タ ンタ ルそれぞれ 0. 0 1 〜 1 . 5重量% の群よ り 選ばれた少な く とも 1 つ を含有する こ と を特徴 と する 請求の篛囲第 43項記載の耐熱尉摩耗強靱性合金。
47 さ ら に ホ ウ素、 ジルコ ニ ウムそれぞれ 0. 0 0 1 〜 0. 2 重量 96の群よ り選ばれた少な く とも 1 つ を含有する こ とを特徴 と する請求の範囲第 43項記載の ¾熱酎摩耗強靱性合金。
48 さ ら にホ ウ素、 ジルコ ニ ウムそれぞれ 0. 0 0 1 〜 0. 2 重量%の群よ り 選ばれた少な く と も Ί つ を含有する こ とを特徴 と する請求の範囲第 44項記載の S熟耐摩耗強靭性合金。
49 さ ら に ホウ素、 ジルコ ニ ウムそれぞれ 0. 0 0 1 〜 0. 2 重量%の群よ り選ばれた少な く とも 1 つを含有する こ とを特徴
OMPI とする請求の範囲第 46項記載の耐熱耐摩耗強靱性合金。
50 炭素 : 0. 5 5〜 "! . 9 %、 ク ロム : 2 8〜 3 9 %、 ニ ッ ケル : 2 5〜 4 9 %、 チタ ン : 0. 0 1 〜 4 . 5 %、 アルミ 二 ゥム : 0. 0 1 〜 4. 5 %、 タ ングステン : 0. 1 〜 8 %、 モ リ プデン : 0. 1 〜 996、 ケィ素 : 0. 1 〜 3 %、 マ ンガン : 0. 1 〜 2 %を含有 し 、 残りが鉄 と不可避不純物からなる組成 ( 以上重量% ) を有する こ とを特徴 とする耐熟耐摩耗強靱性合
51 さ ら に窒素 : 0. 00 5〜 0. 2重量 96を含有するこ とを 特徴と する請求の範囲第 50項記載の酎熟尉摩耗強靱性合金。 52 さ ら にニオブ、 タ ンタルそれぞれ 0. 0 1 〜 1 . 5重量 6 の群よ り 選ばれた少な く とも 1 つ を含有する こ とを特徴と する 請求の範囲第 50項記載の耐熱丽摩耗強靭性合金。
53 さ ら にホ ウ素、 ジルコニウムそれぞれ 0. 0 0 -! 〜 0. 2 重量 9 の群よ り選ばれた少なく とも 1 つを含有するこ とを特徵 とする請求の範囲第 50項記載の酎熱酎摩耗強靱性合金。
54 さ ら に二才プ、 タ ンタルそれぞれ 0. 0 1 〜 1 . 5重量 96 の群よ り選ばれた少な く とも 1 つ を含有する こ とを特徴とする 請隶の範囲第 51項記載の耐熱 ^摩耗強靱牲合金。
55 さ らに ホ ウ素、 ジルコニウムそれぞれ 0. 0 0 1 〜 0. 2 重量%の群よ り選ばれた少なく とも 1 つを含有するこ とを特徴 とする請求の範囲第 51項記载の酎熟酎摩耗強靱性合金。
56 さ ら にホ ウ素、 ジルコニウムそれぞれ 0. 0 0 1 〜 0. 2 重量%の群よ り選ばれた少なく とも 1 つを含有する こ とを特徴
O PI と する請求の篛囲第 52項記載の酎熱耐摩耗強靱性合金。
57 さ ら にホ ウ素、 ジルコ ニ ウムそれぞれ 0. 0 0 1 〜 0. 2 重量%の群よ り選ばれた少な く とも 1 つ を含有する こ と を特徴 と する請求の範囲第 54項記載の爾熟耐摩耗強靱性合金。
58 炭素 : 0. 5 5〜 1 . 9 %、 ク ロ ム : 2 8〜 3 9 %、 ニ ッ ケル : 2 5〜 4 9 %、 チタ ン : 0. 0 ·! 〜 4 . 5 %、 アルミ 二 ゥ厶 : 0. 0 1 〜 4 . 5 % > タ ングステ ン : 0. 1 〜 8 %、 モ リ ブデン : 0. 1 〜 9 %、 ケィ素 : 0. Ί 〜 3 %、 マンガン :
0. 1 〜 2 %、 コ パル 卜 : ^! 〜 8 %を含有し 、 残 り が鉄と不可 避不純物か らなる耝成 (以上重量 96 ) を有する こ とを特徴 と す る.耐熱耐摩耗強 ^!性合金。
59 さ ら に窒素 : 0. 00 5〜 0. 2重量 6を含有するこ とを 特徴 と する請求の範囲葸 58項記載の耐熱 ¾摩耗強靱性合金。
60 さ ら に ニオブ、 タ ンタ ルそれぞれ 0. 0 1 〜 1 . 5重量% の群よ り選ばれた少なく と ち Ί つを含有する こ と を特徵 とする 請求の範囲第 58項記載の耐熱 S摩耗強 S性合金。
61 さ ら にホウ素、 ジルコ ニ ゥムそれぞれ 0. 0 0 1 〜 0. 2 重量%の群よ り選ばれた少な く とち 1 つ を含有する こ とを特徴 と する請求の範囲第 5 δ項記載の酎熱耐摩耗強靱性合金。
62 さ ら にニオブ、 タ ンタ ルそれぞれ 0 . 0 1 〜 Ί . 5重量% の群よ り 選ばれた少な く とち 1 つ を含有する こ と を特徵 と する 請求の範囲第 59項記載の酎 ¾ @摩耗強 ¾柱合金。
63 さ ら にホウ素、 ジルコ ニ ウムそれぞれ 0. 0 0 1 〜 0. 2 重量%の群よ り還ばれた少な く とち 1 つを含有する こ とを特徴 とする請 ^の範囲第 59項記載の耐熱酎摩耗強靭性合金。
6 さ ら に ホウ素、 ジルコニ ウムそれぞれ 0. 0 0 1 〜 0. 2 重量%の群よ り選ばれた少な く とも 1 つ を含有す.る こ とを特徴 とする請求の範囲第 60項記戴の酎熟酎摩耗強 性合金。
65 さ ら にホウ素、 ジルコ ニ ウムそれぞれ 0. 00 1 〜 0. 2 重量%の群よ り選ばれた少な く とも 1 つを含有する こ とを特徴 とする請求の篛囲第 62項記載の耐熱 ®摩耗強靱性合金。
OMPI
PCT/JP1982/000338 1981-08-27 1982-08-26 Heat- and wear-resistant tough alloy WO1983000703A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE3248987T DE3248987C2 (de) 1981-08-27 1982-08-26 Verwendung einer Legierung für Führungsschuhe in Warmwalzwerken

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP56134501A JPS5837160A (ja) 1981-08-27 1981-08-27 継目無鋼管製造用熱間傾斜圧延機のガイドシユ−用鋳造合金
JP56/134501810827 1981-08-27

Publications (1)

Publication Number Publication Date
WO1983000703A1 true WO1983000703A1 (en) 1983-03-03

Family

ID=15129794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1982/000338 WO1983000703A1 (en) 1981-08-27 1982-08-26 Heat- and wear-resistant tough alloy

Country Status (6)

Country Link
US (1) US4832912A (ja)
JP (1) JPS5837160A (ja)
KR (1) KR890001447B1 (ja)
CH (1) CH657379A5 (ja)
DE (1) DE3248987C2 (ja)
WO (1) WO1983000703A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0391381A1 (en) * 1989-04-05 1990-10-10 Kubota Corporation Heat-resistant alloy
DE3248987C2 (de) * 1981-08-27 1994-06-30 Mitsubishi Materials Corp Verwendung einer Legierung für Führungsschuhe in Warmwalzwerken
US6168757B1 (en) 1995-11-15 2001-01-02 Alphatech, Inc. Material formulation for galvanizing equipment submerged in molten aluminum and aluminum/zinc melts
US6899772B1 (en) 2000-03-27 2005-05-31 Alphatech, Inc. Alloy molten composition suitable for molten magnesium environments
CN103343289A (zh) * 2013-07-01 2013-10-09 北京工业大学 一种高温抗磨铸钢及其制备方法
CN103422007A (zh) * 2013-08-30 2013-12-04 北京工业大学 一种含铝-硼-铬耐高温磨蚀合金钢的制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983000883A1 (en) * 1981-09-04 1983-03-17 Yabuki, Ritsue Heat- and abrasion-resistant tough nickel-based alloy
JPS5858259A (ja) * 1981-10-03 1983-04-06 Nippon Steel Corp 継目無鋼管圧延用ガイドシユ−
DE3718779A1 (de) * 1987-06-04 1988-12-22 Krauss Maffei Ag Schnecke od. dgl. maschinenteil fuer kunststoffverarbeitende maschinen
JPH0593239A (ja) * 1991-09-30 1993-04-16 Kubota Corp 炭化水素類の熱分解・改質反応用管
EP1007308B1 (en) * 1997-02-24 2003-11-12 Superior Micropowders LLC Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US6338809B1 (en) * 1997-02-24 2002-01-15 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US7097686B2 (en) * 1997-02-24 2006-08-29 Cabot Corporation Nickel powders, methods for producing powders and devices fabricated from same
CN1077672C (zh) * 1997-11-03 2002-01-09 中国科学院金属研究所 一种颗粒增强铝基耐磨管材及其制备
US20050097987A1 (en) * 1998-02-24 2005-05-12 Cabot Corporation Coated copper-containing powders, methods and apparatus for producing such powders, and copper-containing devices fabricated from same
US6110301A (en) * 1998-07-21 2000-08-29 Stoody Company Low alloy build up material
DE19903974A1 (de) * 1999-01-26 2000-07-27 Sms Demag Ag 2-Walzen-Schrägwalzwerk und Verfahren zur Herstellung von Hohlblöcken aus hochlegierten Stählen
DE10302989B4 (de) * 2003-01-25 2005-03-03 Schmidt + Clemens Gmbh & Co. Kg Verwendung einer Hitze- und korrosionsbeständigen Nickel-Chrom-Stahllegierung
CA2543948C (en) * 2006-04-24 2014-01-14 Ladder Stabilizerz Inc. Ladder stabilizer
US20090093739A1 (en) * 2007-10-05 2009-04-09 Axel Voss Apparatus for generating electrical discharges
DE102008051014A1 (de) 2008-10-13 2010-04-22 Schmidt + Clemens Gmbh + Co. Kg Nickel-Chrom-Legierung
AT507215B1 (de) * 2009-01-14 2010-03-15 Boehler Edelstahl Gmbh & Co Kg Verschleissbeständiger werkstoff
CN102864372B (zh) * 2012-09-14 2014-03-05 江苏久联冶金机械制造有限公司 一种耐磨轧机导卫及其制造方法
CN106191660A (zh) * 2016-08-22 2016-12-07 蚌埠市光辉金属加工厂 一种高强度抗冲击耐磨材料
CN110153189B (zh) * 2019-06-13 2020-12-01 江阴华润制钢有限公司 一种利用钢管连轧管机组并行生产锆合金无缝管的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128921A (en) * 1978-03-22 1979-10-05 Hitachi Metals Ltd Heat resistant cast steel having improved oxydation resistance
JPS5723050A (en) * 1980-07-18 1982-02-06 Sumitomo Metal Ind Ltd Heat resistant steel with excellent high temp. strength

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040099B1 (ja) * 1971-03-09 1975-12-22
US3901164A (en) * 1973-07-16 1975-08-26 Gibson Greeting Cards Modular display structure
JPS52105526A (en) * 1976-03-03 1977-09-05 Mitsubishi Heavy Ind Ltd Treatment of cobalt base heat-resisting alloy
JPS5424214A (en) * 1977-07-27 1979-02-23 Daido Steel Co Ltd Heattresistant steel having good heat fatigue characteristic
JPS54128920A (en) * 1978-03-22 1979-10-05 Hitachi Metals Ltd Heat resistant cast steel having improved oxydation resistance
US4279645A (en) * 1978-04-19 1981-07-21 Brown Roger K Heat resistant alloy and method of manufacture
SE428937B (sv) * 1979-01-11 1983-08-01 Cabot Stellite Europ Nickelbaserad, hard legering eller tillsatsmaterial avsett for pasvetsning eller svetsning
JPS5857506B2 (ja) * 1980-06-03 1983-12-20 太平金属工業株式会社 耐熱合金
JPS5940219B2 (ja) * 1980-08-19 1984-09-28 新日本製鐵株式会社 表面にAl↓2O↓3皮膜を生成するオ−ステナイト系耐酸化耐熱鋳造合金
US4410362A (en) * 1981-01-12 1983-10-18 Kubota Ltd. Heat resistant cast iron-nickel-chromium alloy
JPS5837160A (ja) * 1981-08-27 1983-03-04 Mitsubishi Metal Corp 継目無鋼管製造用熱間傾斜圧延機のガイドシユ−用鋳造合金
WO1983000883A1 (en) * 1981-09-04 1983-03-17 Yabuki, Ritsue Heat- and abrasion-resistant tough nickel-based alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128921A (en) * 1978-03-22 1979-10-05 Hitachi Metals Ltd Heat resistant cast steel having improved oxydation resistance
JPS5723050A (en) * 1980-07-18 1982-02-06 Sumitomo Metal Ind Ltd Heat resistant steel with excellent high temp. strength

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3248987C2 (de) * 1981-08-27 1994-06-30 Mitsubishi Materials Corp Verwendung einer Legierung für Führungsschuhe in Warmwalzwerken
EP0391381A1 (en) * 1989-04-05 1990-10-10 Kubota Corporation Heat-resistant alloy
US6168757B1 (en) 1995-11-15 2001-01-02 Alphatech, Inc. Material formulation for galvanizing equipment submerged in molten aluminum and aluminum/zinc melts
US6899772B1 (en) 2000-03-27 2005-05-31 Alphatech, Inc. Alloy molten composition suitable for molten magnesium environments
CN103343289A (zh) * 2013-07-01 2013-10-09 北京工业大学 一种高温抗磨铸钢及其制备方法
CN103343289B (zh) * 2013-07-01 2015-07-01 北京工业大学 一种高温抗磨铸钢及其制备方法
CN103422007A (zh) * 2013-08-30 2013-12-04 北京工业大学 一种含铝-硼-铬耐高温磨蚀合金钢的制备方法
CN103422007B (zh) * 2013-08-30 2015-07-08 北京工业大学 一种含铝-硼-铬耐高温磨蚀合金钢的制备方法

Also Published As

Publication number Publication date
KR840000659A (ko) 1984-02-25
CH657379A5 (de) 1986-08-29
JPS6145695B2 (ja) 1986-10-09
DE3248987C2 (de) 1994-06-30
DE3248987T1 (de) 1984-01-12
US4832912A (en) 1989-05-23
JPS5837160A (ja) 1983-03-04
KR890001447B1 (ko) 1989-05-03

Similar Documents

Publication Publication Date Title
WO1983000703A1 (en) Heat- and wear-resistant tough alloy
US4727740A (en) Thermal and wear resistant tough nickel based alloy guide rolls
EP1471158B1 (en) Austenitic stainless steel
TWI415955B (zh) 抗蝕及抗磨之合金
EP2172573A1 (en) Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same
US20040258557A1 (en) High strength multi-component alloy
FI100422B (fi) Telan valmistus
US11692254B2 (en) Heat resistant durable high entropy alloy compositions
US4034588A (en) Methods of piercing and enlarging elongate metal members such as seamless tubes
US3355280A (en) High strength, martensitic stainless steel
US3989474A (en) Austenitic stainless steel
US3940266A (en) Austenitic stainless steel
US20220380872A1 (en) Alloy
JP3357863B2 (ja) 析出硬化型ステンレス鋼およびその製品の製造方法
US3962897A (en) Metal working apparatus and methods of piercing
JP2001527156A5 (ja)
US4720435A (en) Nuclear grade steel articles
JPS5842743A (ja) 継目無鋼管製造用熱間傾斜圧延機のガイドシユ−用Ni基鋳造合金
US5507886A (en) Method for preparing titanium-bearing low-cost structural steel
JP7372774B2 (ja) 高速度鋼
WO2005121384A2 (en) High strength steel alloy
JP7431631B2 (ja) 粉末高速度鋼
JPS59153871A (ja) ガイドシユ−用高靭性Fe−Cr−Ni系鋳造合金
JPS6121297B2 (ja)
JPS6173867A (ja) 分散強化型焼結合金鋼製熱間耐摩耗部材

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): CH DE US

RET De translation (de og part 6b)

Ref document number: 3248987

Country of ref document: DE

Date of ref document: 19840112

WWE Wipo information: entry into national phase

Ref document number: 3248987

Country of ref document: DE