USRE38970E1 - Indolyl or indolinyl derivatives and medicinal use thereof as ACAT or lipid peroxidation inhibitors - Google Patents

Indolyl or indolinyl derivatives and medicinal use thereof as ACAT or lipid peroxidation inhibitors Download PDF

Info

Publication number
USRE38970E1
USRE38970E1 US10/609,224 US60922498A USRE38970E US RE38970 E1 USRE38970 E1 US RE38970E1 US 60922498 A US60922498 A US 60922498A US RE38970 E USRE38970 E US RE38970E
Authority
US
United States
Prior art keywords
formula
alkyl
dimethylpropanamide
group
dimethylindolin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/609,224
Other languages
English (en)
Inventor
Shoji Kamiya
Hiroaki Shirahase
Hiroshi Matsui
Shohei Nakamura
Katsuo Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Pharmaceutical Industries Ltd
Original Assignee
Kyoto Pharmaceutical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Pharmaceutical Industries Ltd filed Critical Kyoto Pharmaceutical Industries Ltd
Application granted granted Critical
Publication of USRE38970E1 publication Critical patent/USRE38970E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics

Definitions

  • the present invention relaters to novel heterocyclic derivatives and pharmaceutical use thereof. More particularly, the present invention relates to novel heterocyclic derivatives having an indoline ring, indole ring or tetrahydroquinoline ring, which derivatives having an inhibitory activity on aryl CoA: cholesterol acyltransferase (hereinafter ACAT) and lipoperoxidation inhibitory activity, and to pharmaceutical use thereof.
  • ACAT cholesterol acyltransferase
  • lipoperoxidation inhibitory activity and to pharmaceutical use thereof.
  • arteriosclerosis is an extremely important factor causing various circulatory diseases, and active studies have been undertaken in an attempt to achieve suppression of the evolution of arterial sclerosis or regression thereof.
  • a pharmaceutical agent which reduces cholesterol in blood or arterial walls has been acknowledged, an ideal pharmaceutical agent exhibiting positive clinical effects while causing less side-effects has not been realized.
  • a pharmaceutical agent which directly inhibits deposition of cholesterol in arterial walls has been desired as a pharmaceutical agent which effectively prevents or treats arterial sclerosis, and studies in this field are fostering. Yet, an ideal pharmaceutical agent has not been developed.
  • Cholesterol in food is esterified in mucous membrane of small intestine, and taken into blood as chylomicron.
  • ACAT is known to play an important role in the generation of cholesterol ester in mucous membrane of small intestine.
  • esterification of cholesterol can be suppressed by inhibiting ACAT in mucous membrane of small intestine, absorption of cholesterol by mucous membrane and into blood can be presumably prevented to ultimately result in lower cholesterol level in blood.
  • ACAT ester ifies cholesterol and causes accumulation of cholesterol ester. Inhibition of ACAT in arterial walls is expected to effectively suppress accumulation of cholesterol ester.
  • an ACAT inhibitor will make an effective pharmaceutical agent for hyperlipemia and arteriosclerosis, as a result of suppression of absorption of cholesterol in small intestine and accumulation of cholesterol in arterial walls.
  • LDL low density lipoprotein
  • a compound having both an ACAT inhibitory activity and lipoperoxidation inhibitory activity is highly useful as a pharmaceutical product, since it effectively reduces accumulation of cholesterol ester in arterial walls and inhibits lipoperoxidation in living organisms, thereby preventing and treating various vascular diseases caused thereby.
  • the present inventors have conducted intensive studies to achieve the above-mentioned objects and found that a certain heterocyclic derivative having an indoline ring, indole ring or tetrahydroquinoline ring is superior in water solubility as compared to conventional ACAT inhibitors, and has lipoperoxidation inhibitory activity in addition to strong ACAT inhibitory activity, and that said compound permits superior oral absorption, strong anti-hyperlipemia effect and anti-arteriosclerosis effect, which resulted in the completion of the present invention.
  • the present invention also relates to pharmaceutical compositions.
  • Lower alkyl at R 1 , R 1a , R 1b , R 1c , R 2 , R 2c , R 3 , R 3a , R 3b , R 3c , R 4 , R 4c , R 5 , R 5c , R 9 , R 9c , R 10 and R 10c may be linear or branched and has 1 to 6 carbon atoms. Examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tent-butyl, pentyl, isopentyl, neopentylhexyl an the like.
  • Lower alkoxy at R 1 , R 1b , R 1c , R 2 , R 2a , R 3 , R 3b , R 3c , R 4 , R 4c , R 5 and R 5c may be linear or branched and has 1 to 6 carbon atoms. Examples thereof include methoxy, ethoxy propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, isopentyloxy, neopentyloxy, hexyloxy and the like.
  • Alkyl at R 6 , R 6a , R 6b , R 6c , R 7 , R 7a , R 7b , R 7c , R 8 , R 8b and R 8c may be linear or branched and preferably has 1 to 20 carbon atoms.
  • Examples thereof include methyl, ethyl propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, nonadecyl, icosyl, 1,1-dimethylpropyl, 1,1-dimethylbutyl, 1,1-dimethylhexyl, 1,1-dimethylheptyl, 3,3-dimethylbutyl, 4,4-dimethylbutyl and the like.
  • alkoxyalkyl at R 6 , R 6b , R 6c , R 7 , R 7b and R 7c the alkoxy moiety thereof preferably has 1 to 6 carbon atoms and alky moiety thereof preferably has 1 to 6 carbon atoms.
  • alkoxyalkyl include ethoxybutyl, ethoxyhexyl, butoxybutyl, butoxyhexyl, hexyloxybutyl, hexyloxyhexyl and the like.
  • alkylthioalkyl at R 6 , R 6b , R 6c , R 7 , R 7b and R 7c both alkyl moieties preferably have 1 to 6 carbon atoms
  • alkylthioalkyl include ethylthioethyl ethylthiohexyl, butylthiobutyl, butylthiohexyl, hexylthiobutyl, hexylthiohexyl and the like.
  • Cycloalkyl at R 6 , R 6a , R 6b , R 6c , R 7 , R 7a , R 7b , R 7c , R 8 , R 8b and R 8c preferably has 3 to 8 carbon atoms. Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
  • cycloalkylalkyl at R d , R da , R db , R dc , R 7 , R 7a , R 7b , R 7c , R 8 , R 8b , and R 8c its cycloalkyl moiety preferably has 3 to 6 carbon atoms and alkyl moiety preferably has 1 to 3 carbon atoms.
  • Examples of cycloalkylalkyl include cyclopropylmethyl, cyclobutylmethyl, cyclopropylmethyl, cyclohexylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylmethyl, cyclooctlmethyl and the like.
  • Examples of aryl at R 7 , R 7b , R 7c , R 8 , R 8b , and R 8c include phenyl, naphthyl and the like.
  • Arylalkyl at R 6 , R 6b , R 6c , R 7 , R 7b , R 7c , R 8 , R 8b and R 8c has the aforementioned aryl moiety and its alkyl moiety preferably has 1 to 4 carbon atoms.
  • arylalkyl include benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, 2-phenylpropyl, 3-phenylpropyl and the like.
  • Alkenyl at R 6 , R 6b and R 6c may be linear or branched and preferably has 3 to 12 carbon atoms. Examples thereof include propenyl, isopropenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, 3,3-dimethyl-2-propenyl and the like.
  • Acidic group at R 1 , R 2 and R 3 is exemplified by carboxy, sulfonic acid group, phosphoric acid group and the like.
  • alkoxycarbonyl at R 1 , R 1c , R 2 , R 2b , R 2c , R 5 and R 5c include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl and the like.
  • Alkyl to be substituted at R 1 , R 2 , R 2a , R 2b and R 3 may be linear or branched and preferably has 1 to 8 carbon atoms. Examples thereof include methyl, ethyl, propyl, butyl, pentyl, hexyl, 1,1-dimethylethyl, 2,2-dimethylpropyl and the like.
  • substituted alkyl include hydroxymethyl, hydroxyethyl, carboxymethyl, carboxyethyl, carboxypropyl, ethoxycarbonylmethyl, dimethylaminomethyl, dimethylaminoethyl, sulfomethyl, phosphonomethyl and the like.
  • Alkenyl to be substituted at R 1 , R 2 and R 3 may be linear or branched and preferably has 2 to 8 carbon atoms. Examples thereof include vinyl, propenyl, isopropenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, 3,3-dimethyl-2-propenyl and the lace. Examples of substituted alkenyl include carboxyvinyl, carboxypropenyl, hydroxypropenyl and the like.
  • Z is preferably
  • a more preferable compound is that of the above-mentioned formula (I) wherein R 2 and R 3 are each independently hydrogen atom, lower alkyl or lower alkoxy; either R 2 or R 3 is alkyl substituted by hydroxy, carboxy, alkoxycarbonyl or a group of the formula —NR 9 R 10 wherein R 9 and R 10 are each independently lower alkyl, and the other is hydrogen atom, lower alkyl or lower alkoxy; R 4 is a group of the formula —NHCOR 7 wherein R 7 is alkyl, alkoxyalkyl, alkylthioalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl or a group of the formula —NHR 8 wherein R 8 is alkyl; and R 6 is as defined above.
  • a still more preferable compound is that of the above-mentioned formula (I) wherein R 1 and R 3 are each independently hydrogen atom, lower alkyl or lower alkoxy; either R 2 or R 3 is alkyl substituted by hydroxy, carboxy, alkoxycarbonyl or a group of the formula —NR 9 R 10 wherein R 9 and R 10 are each independently lower alkyl, and the other is hydrogen atom; R 4 is a group of the formula —NHCOR 7 wherein R 7 is alkyl, alkoxyalkyl, alkylthioalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl or a group of the formula —NHR 8 wherein R 8 is alkyl; and R 6 is as defined above.
  • a still more preferable compound is that of the above-mentioned formula (I) wherein R 1 and R 3 am each independently hydrogen atom or lower alkyl; either R 2 or R 5 is alkyl substituted by hydroxy, carboxy, alkoxycarbonyl or a group of the formula —NR 9 R 10 wherein R 9 and R 10 are each independently lower alkyl, and the other is hydrogen atom
  • R 4 is a group of the formula —NHCOR 7 wherein R 7 is alkyl cycloalkyl or cycloalkylalkyl; and R 6 is alkyl, cycloalkyl or cycloalkylalkyl.
  • a still more preferable compound is that of the above mentioned formula (I) wherein R 1 and R 3 are each independently hydrogen atom or lower alkyl; R 2 is alkyl substituted by hydroxy, carboxy, alkoxycarbonyl or a group of the formula —NR 9 R 10 wherein R 9 and R 10 are each independently lower alkyl, and R 5 is hydrogen atom; R 4 is a group of the formula —NHCOR 7 wherein R 7 is alkyl, cycloalkyl or cycloalkylalkyl; and R 6 is alkyl, cycloalkyl or cycloalkylalkyl.
  • a still more preferable compound is that of the following formula (IIa): wherein R 3a is hydrogen atom or lower alkyl; R 3a is lower alkyl; R 2a is alkyl substituted by hydroxy or carboxy R 4a is a group of the formula —NHCOR 7a wherein R 7a is alkyl, cycloalkyl or cycloalkylalkyl:: and R 6a is alkyl, cycloalkyl or cycloalkylalkyl.
  • a still more preferable compound is that of the above formula (IIa) wherein R 3a is hydrogen atom or lower alkyl; R 3a is lower alkyl; R 2a is alkyl substituted by hydroxy or carboxy; R 4a is a group of the formula —NHCORla wherein R 7a is alkyl; and R 6a is alkyl.
  • Examples of the most preferable compound include N-(1-hexyl-5-carboxymethyl-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide, N-(1-heptyl-5-carboxymethyl -4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide, N-(1-octyl-5-carboxymethyl-4,5-dimethylindolin-7-yl)-2,2-dimethylpropanamide, N-(1-nonyl-5-carboxymethyl-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide, N-(1-decyl-5-carboxymethyl-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide, N-(1-undecyl-5-carboxymethyl-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide, N-(1
  • a still more preferable compound is that of the formula (IIb) wherein R 1b and R 3b are each independently lower alkyl or lower alkoxy; R 2b is alkyl substituted by hydroxy, carboxy or alkoxycarbonyl; R 4b is a group of the formula —NHCOR 7b wherein R 7b is alkyl, cycloalkylalkyl, arylalkyl or a group of the formula —NHR 8b wherein R 8b is alkyl; and R db is alkyl, alkoxyalkyl, alkylthioalkyl or cycloalkylalkyl.
  • a still more preferable compound is that of the formula (IIb) wherein R 1b and R 3b are each independently lower alkyl; R 2b is alkyl substituted by hydroxy or carboxy; R 4b is a group of the formula —NHCOR 7b herein R 4b is alkyl; and R 6b is alkyl.
  • Examples of the most preferable compound include N-(1-hexyl-6-carboxymethyl-5,7-dimethyl-1,2,3,4-tetrahydroquinolin-8-yl)-2,2-dimethylpropanamide, N-(1-heptyl-6-carboxymethyl-5,7-dimethyl-1,2,3,4-tetrahydroquinolin-8-yl)-2,2-dimethylpropanamide, N-(1-octyl-6-carboxymethyl-5,7-dimethyl-1,2,3,4-tetrahydroquinolin-8-yl)-2,2-dimethylpropanamide, N-(1-nonyl-6-carboxymethyl-5,7-dimethyl-1,2,3,4-tetrahydroquinolin-8-yl)-2,2-dimethylpropanamide, N-(1-decyl-6-carboxymethyl-5,7-dimethyl-1,2,3,4-tetrahydroquinolin-8-yl)
  • R 1c , R 2c and R 5c is hydroxy, carboxy alkoxycarbonyl or a group of the formula —NR 9C R 10C wherein R 9c and R 10c are each independently hydrogen atom or lower alkyl, and the other two are each independently hydrogen atom, lower alkyl or lower alkoxy; either R 3c or R 4c is a group of the formula —NHCOR 7C wherein R 7c is alkyl, alkoxyalkyl, alkylthioalkyl, cycloalkyl cycloalkylalkyl, aryl, arylalkyl or a group of the formula —NHR 8c wherein R 8c is alkyl, cycloalkyl, cycloalkylalkyl aryl or arylalkyl, and the other is hydrogen atom, lower alkyl or lower alkoxy; and R c is alkyl, alkenyl, alkoxyalkyl alkylthioalkyl
  • More preferable compound is a compound of the above formula (IIc) wherein R 1c and R 3c are each independently hydrogen atom, lower alkyl or lower alkoxy; R 2c is carboxy R 4c is a group of the formula —NHCOR wherein R 7c is alkyl, cycloalkyl or cycloalkylalkyl; R 5c is hydrogen atom and R 6c is alkyl, cycloalkyl or cycloalkylalkyl.
  • a still more preferable compound is a compound of the above formula (IIc) wherein R 1c is hydrogen atom or lower alkyl; R 3c is lower alkyl; R 2c is carboxy; R 4c is a group of the formula —NHCOR 7c wherein R 7c is alkyl; R 5c is hydrogen atom; and R 6c is alkyl.
  • mast preferable compound examples include N-(1-hexyl-5-carboxy-6-methylindolin-7-yl)-2,2-dimethylpropanamide, N-(1-octyl-5-carboxy-6-methylindolin-7-yl)-2,2-dimethylpropanamide, N-(1-decyl-5-carboxy-6-methylindolin-7-yl)-2,2-dimethylpropanamide, N-(1-hexyl-5-carboxy-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide, N-(1-octyl-5-carboxy-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide, N-(1-decyl-5-carboxy-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide and the like, and pharmaceutically acceptable salt thereof.
  • the compound (I) may form pharmaceutically acceptable salts.
  • compound (I) When compound (I) has a basic group, it an form acid addition salts.
  • the acid to germ such acid addition salts is subject to no particular limitation as long as it can form a salt with a basic moiety and is a pharmaceutically acceptable acid.
  • examples of such acid include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric add and the like, and organic scuds such as oxalic acid, fumaric acid, maleic acid, citric acid, tartaric acid, methanesulphonic acid, toluenesulphonic acid and the like.
  • compound (I) When compound (I) has an acidic group such as carboxy, it can form, for example, alkali metal salts such as sodium salt, potassium salt and the like; alkaline earth metal salts such as calcium salt, magnesium salt and the hate; and organic base salts such as triethylamine salt, dicyclohexylamine salt, pyridine salt and the like.
  • alkali metal salts such as sodium salt, potassium salt and the like
  • alkaline earth metal salts such as calcium salt, magnesium salt and the hate
  • organic base salts such as triethylamine salt, dicyclohexylamine salt, pyridine salt and the like.
  • the compound (I) of the present invention and pharmaceutically acceptable salts thereof can be produced by any one of the following methods 1 to 7.
  • R 6 , R 7 , R 8 , R 9 and R 10 are each as defined above;
  • R 11 and R 12 are each independently hydrogen atom, lower alkyl or lower alkoxy;
  • R 13 is amino protecting group;
  • R 14 is alkyl, alkoxyalkyl, alkylthioalkyl, cycloalkyl, cycloalkylalkyl, aryl or arylalkyl;
  • R 15 is alkyl or alkenyl substituted by halogen atom;
  • R 16 is alkyl or alkenyl substituted by hydroxy, protected hydroxy, acidic group, protected acidic group, alkoxycarbonyl or —NR 18 R 19 wherein R 18 and R 19 are each independently hydrogen atom, lower alkyl or amino protecting group;
  • R 17 is alkyl or alkenyl substituted by hydroxy, acidic group, alkoxycarbonyl or —NR 9 R 10 ;
  • R 20 is protected carboxy;
  • R 21 is protected hydroxy
  • Amino protecting group at R 13 , R 18 and R 19 is, for example, formyl, monochloroacetyl, dichloroacetyl, trifluoroacetyl, methoxycarbonyl, ethoxycarbonyl, benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, diphenylmethyloxycarbonyl, methoxymethyloxycarbonyl, 2,2,2-trichloroethoxycarbonyl, trimethylsilyl, 2-methylsulfonylethyloxycarbonyl, tert-butoxycarbonyl or trityl.
  • Hydroxy protecting group at R 16 and R 21 is, for example, formyl, acetyl, monochloroacetyl, dichloroacetyl, trifluoroacetyl, methoxycarbonyl, ethoxycarbonyl, benzyloxycarbonyl, 2,2,2-trichloroethoxycarbonyl, benzoyl, trityl, tetrahydropyranyl, trimethylsilyl or the like.
  • Acidic group protecting group at R 16 and R 20 is, when carboxy protecting group, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, tert-amyl, benzyl, p-nitrobenzyl, p-methoxybenzyl, benzhydryl, p-nitrophenyl, methoxymethyl, ethoxymethyl, benzyloxymethyl, methylthiomethyl, trityl, 2,2,2-trichloroethyl, trimethylsilyl, diphenylmethoxybenzene-sulfonylmethyl, dimethylaminoethyl and the like.
  • carboxy protecting group for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, tert-amyl, benzyl
  • the above-mentioned protecting groups can be removed by a method known per se, and the method for removing them may be determined according to the kind of the protecting group.
  • a decomposition by an acid e.g., that by an acid such as hydrochloric acid, trifluoroacetic acid and the like for formyl, tert-butoxycarbonyl, trityl, tetrahydropyranyl and the like
  • a decomposition by a base e.g., that by a base such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate and the like for acetyl, dichloroacetyl, trifluoroacetyl and the like
  • catalytic reduction e.g., decomposition by palladium-carbon and the like for benzyl, benzyloxycarbonyl and the like.
  • the compound (IV) can be produced by reducing compound (III) [J. Eric Nordlander, et al., J. Org. Chem., 46, 778-782 (1981), Robin D. Clark, et al., Heterocycle, 22, 195-221 (1994), Vernon H. Brown, et al., J. Heterocycle. Chem., 6(4), 539-543 (1969)]to introduce an indoline skeleton, protecting amino, introducing nitro on benzene ring by a method known per se, and reducing nitro using a catalyst such as palladium-carbon.
  • the compound (VII) can be produced by reacting compound (IV) with compound (V) or reactive derivative thereof at carboxy group, or compound (VI).
  • Said reaction is generally carried out in an inert solvent.
  • the inert solvent include acetone, dioxane, acetonitrile, chloroform, benzene, methylene chloride, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine, water and mixed solvents thereof.
  • a base such as triethylamine, pyridine, 4-dimethylaminopyridine, potassium carbonate and the like can be used.
  • the reaction temperature is generally ⁇ 10-160° C., preferably 0-60° C., and reaction time is generally from 30 min to 10 hr.
  • the compound (V) can be subjected to the instant reaction as a free carboxylic acid or a reactive derivative thereof, and the both modes are encompassed in the present invention. That is, it is used in this reaction as a free acid or a salt such as sodium, potassium, calcium, triethylamine, pyridine and the like, or as a reactive derivative such as its acid halide (e.g., acid chloride, acid bromide and the like), acid anhydride, mixed acid anhydride [e.g., substituted phosphoric acid (dialkyl phosphate and the like), alkyl carbonate (monoethylcarbonate and the like) and the like], active amide (amide with imidazole and the like), ester (cyanomethyl ester, 4-nitrophenyl ester etc.), and the like.
  • a free acid or a salt such as sodium, potassium, calcium, triethylamine, pyridine and the like
  • a reactive derivative such as its acid halide (e.g.
  • a condensing agent is preferably used.
  • the condensing agent include dehydrating agents such as N,N′-disubstituted carbodiimides (e.g., N,N′-dicyclohexylcarbodiimide); carbodiimide compounds (e.g., 1-ethyl-3-(3′-dimethylaminopropyl)carbodiimide, N-cyclohexyl-N′-morpholinoethyl carbodiimide and N-cyclohexyl-N′-(4-diethylaminocyclohexyl) carbodiimide); azolide compounds (e.g., N,N′-carbonyldiimidazole and N,N′-thionyldiimidazole); and the like.
  • dehydrating agents such as N,N′-disubstituted carbodiimides (e.g., N,N′-dicyclohexy
  • the reaction is considered to proceed via a reactive derivative of carboxylic acid.
  • the compound (VIII) an be produced by halo-genoalkylation of compound (VII) [R. C. Fuson et al., Org. React., 1, 63 (1969), G. A. Olah et al., “Fricdel Crafts and Related Reactions” Vol. 2. 659 (1964)].
  • the compound (IX) can be produced by converting halogenoalkyl of compound (VIII) to hydroxy, an acidic group such as carboxy or a group of the formula —NR 9 R 10 by a substituent conversion reaction known per se, and if necessary, introducing a corresponding protecting group.
  • the compound (XII) can lie produced by eliminating the amino protecting group at R 13 of compound (IX) by a method known per se to give compound (X) and by N-alkylation using compound (XI).
  • Said N-alkylation can be generally carried out in an inert solvent.
  • the inert solvent include acetone, dioxane, acetonitrile, chloroform, benzene, methylene chloride, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine, water and mixed solvents thereof.
  • a base such as triethylamine, pyridine, 4-dimethylaminopyridine, potassium carbonate and the like can be used.
  • the reaction temperature is generally ⁇ 10-100° C., preferably 0-60° C., and reaction time is generally from 30 min to 10 hr.
  • the compound (Ia) can be produced by eliminating the protecting group at R 16 of compound (XII) by a method known per se.
  • the compound (XIII) can be produced by hydroxyalkylation of compound (III) [Adof H. Phlipp., et al., J. Med. Chem., 19(3), 391-395 (1976)], reducing, introducing an indoline skeleton, protecting amino, and halogenating hydroxy.
  • the compound (XIV) can be produced from compound (XIII) according to the method for obtaining compound (IX) from compound (VIII) as described in Production Method 1.
  • the compound (XV) can be produced from compound (XIV) by introducing nitro and reducing nitro by a method known per se.
  • the compound (XVI) can be produced from compound (XV) according to the method for obtaining compound (VII) from compound (IV) as described in Production Method 1.
  • the compound (Ib) can be produced from compound (XVI) via compound (XVII) and compound (XIII) according to the method for obtaining compound (Ia) from compound (IX) as described in Production Method 1.
  • the compound (XIX) can be produced by oxidation of compound (X) by a method known per se (e.g., oxidation using chloranil, palladium-carbon and the like).
  • the compound (Ic) an be produced from compound (XIX) via compound (XX) according to the method for obtaining compound (Ia) from compound (X) as described in Production Method 1.
  • the compound (XXI) can be produced by reducing 2,3-dihydroquinolin-4-One derivative [J. R Merchant, et al., J. Chem. Soc. Perkin I, 932-935 (1972)]using a reducing agent such as lithium aluminum hydride-aluminum chloride and the like.
  • the compound (XXIII) can be produced from compound (XXII) by protecting amino of compound (XXI) by a method known per se to give compound (XXII) and according to the method for obtaining compound (VIII) from compound (VII) as described in Production Method 1.
  • the compound (XXV) can be produced from compound (XXIII) via compound (XXIV) according to the method for obtaining compound (XII) from compound (VIII) via compound compound(IX) and compound (X) as described in Production Method 1.
  • the compound (XXVI) an be produced from compound (XXV) by introducing nitro and reducing nitro by a method known per se.
  • the compound (XXVII) an be produced from compound (XXVI) according to The method for obtaining compound (VII) from compound (IV) as described in Production Method 1.
  • the compound (Id) an be produced from compound (XXVII) according to the method for obtaining compound (Ice) from compound (XII) as described in Production Method 1.
  • the compound (XXIX) an be produced from compound (XXVIII) (W. G. Gall, et al., J. Org. Chem., 20,1538 (1955)] according to the method for obtaining compound (XII) from compound (X) as described in Production Method 1.
  • the compound (XXX) an be produced by converting halogen of compound (XXIX) to cyano by a method known per se, hydrolysis of cyano, and introducing a protecting group into the obtained carboxy.
  • the compound (XXXI) can be produced from compound (XXX) by reducing nitro of compound (XXX) by a method known per se, and according to the method for obtaining compound (VII) from compound (IV) as described in Production Method 1.
  • the compound (Ie) can be produced by eliminating the protecting group al R 20 of compound (XXXI) by a method known per se.
  • the compound (XXXII) cm be produced by converting amino of compound (IV) to hydroxy by a method known per se and introducing a protecting group into hydroxy.
  • the compound (XXXIII) can be produced from compound (XXXII) by introducing nitro and reducing nitro by a method known per se.
  • the compound (XXXIV) can be produced from compound (XXXIII) according to the method for obtaining compound (VII) from compound (IV) as described in Production Method 1.
  • the compound (XXXV) can be produced from compound (XXXIV) according to the method for obtaining compound (XII) from compound (IX) via compound (X) as describe in Production Method 1.
  • the compound (If) can be produced by eliminating the protecting group at R 21 of compound (XXXV) by a method known per se.
  • the compound (XXXVI) can be produced by alkylation of amino or by introducing a protecting group of amino of compound (IV) by a method :known per se.
  • the compound (XXXVII) can be produced from compound (XXXVI) by introducing nitro and reducing nitro by a method known per se.
  • the compound (XXXVII) can be produced from compound (XXXVII) according, to the method for obtaining compound (VII) from compound (IV) as described in Production Method 1.
  • the compound (XXXIX) can be produced from compound (XXXVIII) according to the method for obtaining compound (XII) from compound (IX) via compound (X) as described in Production Method 1.
  • the compound (Ig) can be produced by eliminating the protecting group at R 22 of compound (XXXIX) by a method known per se.
  • the compound (I) of the present invention obtained by the above methods can be purified by a method conventionally known such as chromatography and recrystallization.
  • Said compound (I) can be converted to pharmaceutically acceptable salts by a method known per se.
  • a pharmaceutical composition containing the compound (I) of the present invention or a pharmaceutically acceptable salt thereof can further contain additives.
  • the additive include excipients (e.g., starch, lactose, sugar calcium carbonate and calcium phosphate), binders (e.g., starch, gum arabic, carboxymethylcellulose, hydroxypropylcellulose and crystalline cellulose), lubricants (e.g., magnesium stearate and talc:), and disintegrators (e.g., carboxymethyl-cellulose calcium and talc), and the like.
  • ingredients am minced and the mixture is prepared into oral preparations such as capsules, tablets, fine granules, granules; and dry syrups, or parenteral preparations such as injections and suppositories by a method known per se.
  • the dose of the compound (I) of the present invention and pharmaceutically acceptable salts thereof varies depending on administration targets, symptoms and others, when, for example, orally administered to adult patients of hypercholesterolemia, it is generally 0.1 mg-50 mg/kg body weight per dose which is administered about 1 to 3 time(s) a day.
  • the compound (I) of the present invention and pharmaceutically acceptable salts thereof exhibit superior ACAT inhibitory activity and lipoperoxidation inhibitory activity in mammals (e.g., human, cow, horse, dog, cat, rabbit, rat, mouse, hamster etc.) and are useful as ACAT inhibitors and lipoperoxidation inhibitors. In other words, they are useful for the prophylaxis and treatment of arteriosclerosis, hyperlipemia, arteriosclerosis in diabetes, cerebrovascular and cardiovascular ischemic diseases, and the like.
  • N-(1-octyl-5-ethoxycarboxymethyl-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide (3.5 g) was dissolved in EtOH (50 ml) and a solution of NaOH (1.6 g) in water (20 ml) was added, which was followed by stirring at 60° C. for 1 hr. EtOH was evaporated under reduced pressure. The residue was dissolved in water (20 ml) and the mixture was washed with AcOEt (20 ml). The aqueous layer was neutralized with 2N-hydrochloric acid and extracted with AcOEt (50 ml). The AcOEt layer was washed with saturated brine and dried over anhydrous sodium sulfate. AcOEt was evaporated under reduced pressure to give 2.4 g of the title compound.
  • N-(1-octyl-5-ethoxycarbonylmethyl-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide (3.5 g) was dissolved in EtOH (50 ml) and a solution of NaOH (1.6 g) in water (20 ml) was added, which was followed by stirring at 60° C. for 1 hr. EtOH was evaporated under reduced pressure. The residue was dissolved in water (20 ml) and the mixture was washed with AcOEt (20 ml). The aqueous layer was adjusted to pH 1-2 with hydrochloric acid and extracted with AcOEt (50 ml). The AcOEt layer was washed with saturated brine and dried over anhydrous sodium sulfate. AcOEt was evaporated under reduced pressure to give 2.0 g of the title compound.
  • N-(1-octyl-5-ethoxycarbonylmethyl-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide (4.0 g) was dissolved in EtOH (57 ml) and a solution of NaOH (1.8 g) in water (23 ml) was added, which was followed by stirring at 60° C. for 1 hr. EtOH was evaporated under reduced pressure. The residue was dissolved in water (30 ml) and the mixture was washed with AcOEt (30 ml). The aqueous layer was adjusted to pH 1-2 with sulfuric acid and extracted with AcOEt (50 ml). The AcOEt layer was washed with saturated brine and dried over anhydrous sodium sulfate. AcOEt was evaporated under reduced pressure to give 2.5 g of the title compound.
  • N-(1-octyl-5-ethoxycarbonylmethyl-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide (3.0 g) was dissolved in EtOH (42 ml) and a solution of NaOH (1.4 g) in water (17 ml) was added, which was followed by stirring at 60° C. for 1 hr. EtOH was evaporated under reduced pressure. The residue was dissolved in water (20 ml) and the mixture was washed with AcOEt (20 ml). The aqueous layer was adjusted to pH 1-2 with nitric acid and extracted with AcOEt (50 ml). The AcOEt layer was washed with saturated brine and dried over anhydrous sodium sulfate. AcOEt was evaporated under reduced pressure to give 2.0 g of the title compound.
  • N-(1-Octyl-5-ethoxycarbonylmethyl-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide (3.5 g) was dissolved in EtOH (50 ml) and a solution of NaOH (1.6 g) in water (20 ml) was added, which was followed by stirring at 60° C. for 1 hr. EtOH was evaporated under reduced pressure. The residue was dissolved in water (20 ml) and the mixture was adsorbed onto DIAION® HP-21 (70 ml). After washing with water, the mixture was elided with 50% aqueous methanol. The objective fraction was concentrated under reduced pressure. The residue was freeze-dried to give 1.0 g of the title-compound.
  • Example 13 0.7-1.1 (3H, br-t), 1.1-1.7 (6H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1. ( 2H, br).
  • Example 14 0.70-1.70 (8H, m), 1.1-1.7 (6H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (3H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 15 0.87 (6H, d), 1.1-1.8 (3H, m), 133 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3: 41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 16 1.65 (6H, s), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (41, m) 3.41 (2H, t), 3.56 (2H, s), 5.20 (1H, br-t), 7.6-8.1 (2H, br).
  • Example 17 1.59 (3H, t), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.3-3.6 (6H, m), 3.56 (2H, s), 3.56 (2H, s), 7.6-5.1 (2H, br).
  • Example 18 0.7-1.1 (3H, br-t), 1.1-1.7 (8H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 19 0.7-1.70 (10H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (3H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 20 0.7-1.70 (9H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 21 0.87 (6H, d), 1.1-1.8 (5H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 22 0.7-1.0 (6H, br-t), 1.0-1.7 (5H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 23 1.59 (3H, br-t), 1.0-1.7 (2H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.3-3.6 (6H, m), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 24 0.7-1-10 (3H, br-t), 1.1-1.7 (10H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, ml 3.41 (2H, t), 3.56 (2H, s), 7.6-73.1 (2H, br).
  • Example 25 0.7-1.70 (11H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 26 0.87 (6H, d), 1.1-1.8 (7H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 3.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 27 1.59 (6H, br-t), 1.1-1.7 (7H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 28 1.59 (3H, hr-t), 1.0-1.7 (4H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.3-3.6 (6H, m), 3.56 (2H, s), 7.63.1 (2H, br).
  • Example 29 0.7-1.70 (13H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 30 0.87 (6H, d), 1.1-1.8 (9H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 31 1.59 (6H, br-t), 1.0-1.7 (9H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 32 1.59 (3H, br-t ), 1.0-1.7 (6H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.3-3.6 (6H, m), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 33 0.7-1.10 (3H, br-t), 1.1-1.7 (14H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 34 0.87 (6H, d), 1.1-1.8 (11H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-5.1 (2H, br).
  • Example 35 1.59 (6H, br-t), 1.0-1.7 (11H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 36 0.7-1.10 (3H, br-t), 1.1-1.7 (16H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 37 0.87 (6H, d), 1.1-1.8 (13H, m), 1.33 (9H, s), 2.01 (3H, s), 215 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 38 0.7-1.10 (3H, br-t), 1.1-1.7 (18H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-51.1 (2H, br).
  • Example 39 0.87 (6H, d), 1.1-1.8 (15H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 40 0.7-1.10 (3H, br-t), 1.1-1.7 (20H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 41 0.87 (6H, d), 1.1-1.8 (17H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.10-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s) 7.6-8.1 (2H, br).
  • Example 42 0.7-1.10 (6H, br-t), 1.1-2.0 (20H, m), 201 (3H, s), 2.15 (3H, s), 2.70-3,10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 43 0.7-1.10 (6H, br-t), 1.0-2.0 (21H, m), 201 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 44 0.7-1.10 (6H, br-t), 1.0-2.0 (24H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 45 0.7-1.10 (6H, br-t), 1.0-2.0 (24H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 46 0.7-1.10 (6H, br-t), 1.0-2.0 (26H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 47 0.7-1.10 (6H, br-t), 1.0-2.0 (28H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 48 0.7-1.10 (6H, br-t), 1.0-2.0 (28H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 49 0.7-1.10 (6H, br-t), 1.0-2.0 (30H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-5.1 (2H, br).
  • Example 50 0.7-1.10 (6H, br-t), 1.0-2.0 (32H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.6-8.1 (2H, br).
  • Example 51 0.7-1.1 (3H, br-t), 1.1-1.7 (14H, m), 1.33 (9H, s), 2.42 (2H, q), 2.46 (2H, q), 2.7-3.1 (4H, m), 3.41 (2H, t), 3.56 (2H, t), 7.6-8.1 (2H, br).
  • Example 52 0.7-1.1 (3H, br-t), 1.0-1.7 (16H, m), 1.33 (9H, s), 2.42 (2H, q), 2.46 (2H, q), 2.7-3.1 (4H, m), 3.41 (2H, t), 3.56 (2H, t). 7.6-8.1 (2H, br).
  • Example 53 0.7-1.1 (3H, br-t), 1.0-1.7 (18H, m), 1.33 (9H, s), 2.42 (2H, q), 2.46 (2H, q), 2.7-3.1 (4H, m), 3.41 (2H, t), 3.56 (2H, t), 7.6-8.1 (2H, br).
  • Example 54 0.7-1.1 (3H, br-t), 1.0-1.7 (20H, m), 1.33 (9H, s), 2.42 (2H, q), 2.46 (2H, q), 2.7-3.1 (4H, m), 3.41 (2H, t), 3.56 (2H, 1 ), 7.6-8.1 (2H, br).
  • Example 55 0.7-1.1 (3H, br-t), 1.0-1.7 (22H, m), 1.33 (9H, s), 2.42 (2H, q), 2.46 (2H, q), 2.7-3.1 (4H, m), 3.41 (2H, t), 3.56 (2H, t), 7.6-8.1 (2H, br).
  • Example 56 0.7-1.1 (3H, br-t), 1.1-1.7 (8H, m), 1.33 (9H, s), 2.50-3.10 (4H, m), 3.32 (2H, t), 3.45 (2H, s), 3.73 (3H, s), 3.77 (3H, s), 7.6-8.1 (2H, br).
  • Example 57 0.7-1.1 (3H, br-t), 1.0-1.7 (10H, m), 1.33 (9H, s), 2.50-3.10 (4H, m), 3.32 (2H, t), 3.45 (2H, s), 3.73 (3H, s), 3.77 (3H, s), 7-6,8.1 (2H, br).
  • Example 58 0.7-1.1 (3H, br-t), 1.0-1.7 (12H, m), 1.33 (9H, s), 2.50-3.10 (4H, m), 3.32 (2H, t), 3.45 (2H, s), 3.73 (3H, s), 3.77 (3H, s), 7.6-8.1 (2H, br).
  • Example 59 0.7-1.1 (3H, br-t), 1.11-1.7 (14H, m), 1.33 (9H, s), 2.50-3.10 (4H, m), 3.32 (2H, t), 3.45 (2H, s), 3.73 (3H, s), 3.77 (3H, s), 7.6-5.1 (2H, br).
  • Example 60 0.7-1.1 (3H, br-t), 1.0-1.7 (16H, m), 1.33 (9H, s), 2.50-3.10 (4H, m), 3.32 (2H, t), 3.45 (2H, s), 3.73 (3H, s), 3.77 (3H, s), 7.6-8.1 (2H, br).
  • Example 61 0.7-1.1 (3H, br-t), 1.1-1.7 (8H, m), 1.33 (9H, s), 2.14 (3H, s), 2.22 (3H, s), 2.70-3.10 (4H, s), 3.41 (2H, t), 4.62 (2H, s), 6.86 (2H, br).
  • Example 62 0.7-1.1 (3H, br-t), 1.1-1.7 (10H, m), 1.33 (9H, s), 2.14 (3H, s), 2.22 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 4.62 (2H, s), 6.86 (2H, br).
  • Example 63 0.7-1.1 (3H, br-t), 1.1-1.7 (14H, m), 1.33 (9H, s), 2.14 (3H, s), 2.22 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 4.62 (2H, s), 6.86 (2H, br).
  • Example 64 0.7-1.1 (3H, br-t), 1.1-1.7 (16H, m), 1.33 (9H, s), 2.14 (3H, s), 2.22 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 4.62 (2H, s), 6.86 (2H, br).
  • Example 65 0.7-1.1 (3H, br-t), 1.1-1.7 (8H, m), 1.33 (9H, s), 2.00 (6H, s), 2.09 (3H, s), 2.23 (3H, s), 2.70-3.20 (4H, m), 3.31 (2H, s), 3.38 (2H, t), 6.84 (1H, br).
  • Example 66 0.7-1.1 (3H, br-t), 1.1-1.7 (10H, m), 1.33 (9H, s), 2.00 (6H, s), 2.09 (3H, s), 2.23 (3H, s), 2.70-3.20 (4H, m), 3.31 (2H, s), 3.38 (2H, t), 6.84 (1H, br).
  • Example 67 0.7-1.1 (3H, br-t), 1.1-1.7 (14H, m), 1.33 (9H, s), 2.00 (6H, s), 2.09 (3H, s), 2.23 (3H, s), 2.70-3.20 (4H, m), 3.31 (2H, s), 3.38 (2H, t), 6.84 (1H, br).
  • Example 68 0.7-1.1 (3H, br-t), 1.1-1.7 (16H, m), 1.33 (9H, s), 2.00 (6H, s), 2.09 (3H, s), 2.23 (3H, s), 2.70-3.20 (4H, m), 3.31 (2H, s), 3.38 (2H, t), 6.84 (1H, br).
  • Example 69 0.7-1.0 (3H, br), 1.0-1.7 (8H, m), 1.33 (9H, s), 1.97 (3H, s), 2.7-3.1 (4H, m), 3.35 (2H, t), 3.47 (2H, s), 6.90 (1H, s), 7.6-8.1 (2H, br).
  • Example 70 0.7-1.0 (3H, br), 1.0-1.7 (10H, m), 1.33 (9H, s), 1.97 (3H, s), 2.7-3.1 (4H, m), 3.35 (2H, t), 3.47 (2H, s), 6.90 (1H, s), 7.6-8.1 (2H, br).
  • Example 71 0.7-1.0 (3H, br), 1.0-1.7 (12H, m), 1.33 (9H, s), 1.97 (3H, s), 2.7-3.1 (4H, m), 3.35 (2H, t), 3.47 (2H, s), 6.90 (1H, s), 7.6-8.1 (2H, br).
  • Example 72 0.7-1.0 (3H, br), 1.0-1.7 (4H, m), 1.33 (9H, s), 1.97 (3H, s), 2.7-3.1 (4H, m), 3.35 (2H, t), 3.47 (2H, s), 6.90 (1H, s), 7.6-8.1 (2H, br).
  • Example 73 0.7-1.0 (3H, br), 1.0-1.7 (16H, m), 1.33 (9H, s), 1.97 (3H, s), 2.7-3.1 (4H, m), 3.35 (2H, t), 3.47 (2H, s), 6.90 (1H, s), 7.6-8.1 (2H, br).
  • Example 74 0.7-1.0 (3H, br), 1.0-1.7 (8H, m), 1.33 (9H, s), 2.07 (3H, s), 2.89 (2H, t), 3.09 (2H, t), 3.40 (2H, t), 4.51 (2H, s), 6.90 (1H, s), 7.0-7.4 (2H, br).
  • Example 75 0.7-1.0 (3H, br), 1.0-1.7 (10H, m), 1.33 (9H, s), 2.07 (3H, s), 2.89 (2H, t), 3.09 (2H, t), 3.40 (2H, t), 4.51 (2H, s), 6.90 (1H, s), 7.0-7.4 (1H, br).
  • Example 76 0.7-1.0 (3H, br), 1.0-1.7 (12H, m), 1.33 (9H, s), 2.07 (3H, s), 2.89 (2H, t), 3.09 (2H, t), 3.40 (2H, t), 4.51 (2H, s), 6.90 (1H, s), 7.0-7.4 (2H, br).
  • Example 77 0.7-1.0 (3H, br), 1.0-1.7 (14H, m), 1.33 (9H, s), 2.07 (3H, s), 2.89 (2H, t), 3.09 (2H, t), 3.40 (2H, t), 4.51 (2H, s), 6.90 (1H, s), (1H, s), 7.0-7.4 (2H, br).
  • Example 78 0.7-1.0 (3H, br), 1.0-1.7 (16H, m), 1.33 (9H, s), 2.07 (3H, s), 2.89 (2H, t), 3.09 (2H, t), 3.40 (2H, t), 4.51 (2H, s), 6.90 (1H, s), 7.0-7.4 (2H, br).
  • Example 79 0.7-1.0 (3H, br), 1.0-1.7 (8H, m), 1.33 (9H, s), 2.08 (3H, s), 2.23 (6H, s), 2.89 (2H, t), 3.14 (2H, t), 3.30 (2H, s), 3.38 (2H, t), 6.84 (1H, s), 6.90 (1H, br).
  • Example 80 0.7-1.0 (3H, br), 1.0-1.7 (10H, m), 1.33 (9H, s), 2.08 (3H, s), 2.23 (5H, s), 2.89 (2H, t), 3.14 (2H, t), 3.30 (2H, s), 3.38 (2H, t), 6.84 (1H, s), 6.90 (1H, br).
  • Example 81 0.7-1.0 (3H, br), 1.0-1.7 (12H, m), 1.33 (9H, s), 2.08 (3H, s), 2.23 (6H, s), 2.89 (2H, t), 3.14 (2H, t), 3.30 (2H, s), 3.38 (2H, t), 6.84 (1H, s), 6.90 (1H, br).
  • Example 82 0.7-1.0 (3H, br), 1.0-1.7 (14H, m), 1.33 (9H, s), 2.08 (3H, s), 2.23 (6H, s), 2.89 (2H, t), 3.14 (2H, t), 3.30 (2H, s), 3.38 (2H, t), 6,84 (1H, s), 6.90 (1H, br).
  • Example 83 0.7-1.0 (3H, br), 1.0-1.7 (16H, m), 1.33 (9H, s), 2.08 (3H, s), 2.23 (6H, s), 2.89 (2H, t), 3.14 (2H, t), 3.30 (2H, s), 3.38 (2H, t), 6.84 (1H, s), 6.90 (1H, br).
  • Example 84 0.7-1.0 (3H, br-t), 1.00-1.60 (8H, m), 1.38 (9H, s), 1.60-2.20 (2H, m), 2.07 (3H, s), 2.16 (3H, s), 2.20-2.40 (2H, m), 3.10-3.80 (3H, m), 3.27 (2H, br-t), 6.45 (1H, s), 7.20-7.60 (2H, br).
  • Example 85 0.7-1.0 (3H, br-t), 1.00-1.60 (10H, m), 1.38 (9H, s), 1.60-2.20 (2H, m), 2.07 (3H, s), 2.16 (3H, s), 2.20-2.40 (2H, m), 3.10-3.80 (3H, m), 3.27 (2H, br-t), 6.45 (1H, s), 7.20-7.60 (2H, br).
  • Example 86 0.7-1.0 (3H, br-t), 1.0-2.0 (10H, m), 1.33 (9H, s), 2.07 (3H, s), 2.16 (3H, s), 2.60-3.60 (7H, m), 6.44 (1H, s), 6.78 (2H, br).
  • Example 87 0.7-1.0 (3H, br-t), 1.0-2.0 (12H, m), 1.33 (9H, s), 2.07 (3H, s), 2.16 (3H, s), 2.60-3.60 (7H, m), 6.44 (1H, s), 6.78 (2H, br).
  • Example 88 0.7-1.0 (3H, br-t), 1.0-2.0 (10H, m), 1.35 (9H, s), 2.07 (3H, s), 1.16 (3H, s), 2.19 (6H, s), 2.21 (2H, t), 2.6-3.6 (5H, m), 6.45 (1H, s), 7.2 (1H, br).
  • Example 89 0.7-1.0 (3H, br-t), 1.0-2.0 (12H, m), 1.35 (9H, s), 2.07 (3H, s), 2.16 (3H, s), 2.19 (6H, s), 2.21 (2H, t), 2.6-3.6 (8H, m), 6.45 (1H, s), 7.2 (1H, br).
  • Example 90 0.7-1.0 (3H, br-t), 1.0-2.0 (14H, m), 1.35 (9H, s), 2.07 (3H, s), 2.16 (3H, s), 2.19 (6H, s), 2.21 (2H, t), 2.6-3.6 (5H, m), 6.45 (1H, s), 7.2 (1H, br).
  • Example 91 0.70-1.10 (6H, m), 1.10-1.90 (16H, m), 2.10 (6H, s), 1.80-2.00 (2H, br-t), 2.00-4.00 (6H, m), 3.55 (2H, s), 4.80 (1H, br), 5.50 (1H, br), 6.40 (1H, br).
  • Example 92 0.70-1.10 (6H, m), 1.10-1.90 (18H, m), 2.10 (6H, s), 1.80-2.00 (2H, br-t), 2.00-4.00 (6H, m), 3.55 (2H, s), 4.80 (1H, br), 5.50 (1H, br), 6.40 (1H, br).
  • Example 93 0.70-1.10 (6H, m), 1.10-1.90 (20H, m), 2.10 (6H, s), 1.80-2.00 (2H, br-t), 2.00-4.00 (6H, m), 3.55 (2H, s), 4.80 (1H, br), 5.50 (1H, br), 6.40 (1H, br).
  • Example 94 0.70-1.10 (6H, m), 1.10-1.90 (22H, m), 2.09 (4H, br-t), 1.80-2.00 (2H, br-t), 2.00-4.00 (6H, m), 3.55 (2H, s), 4.80 (1H, br), 5.50 (1H, br), 6.40 (1H, br).
  • Example 95 0.70-1.10 (6H, m), 1.1.0-1.90 (24H, m), 2.09 (4H, br-t), 1.80-2.00 (2H, br), 2.00-4.00 (6H, m), 3.55 (2H, s), 4.80 (1H, br), 5.50 (1H, br), 6.40 (1H, br).
  • Example 96 0.70-1.10 (6H, m), 1.10-1.90 (26H, m), 2.09 (4H, br-t), 1.80-2.00 (2H, br-5), 2.00-4.00 (6H, m), 3.55 (2H, s), 4.80 (1H, br), 5.50 (1H, br), 6.40 (1H, br).
  • Example 97 0.70-1.10 (6H, m), 1.10-1.90 (16H, m), 1.80-2.00 (2H, br-t), 2.00-4.00 (6H, m), 3.35 (2H, s), 3.74 (3H, s), 3.78 (3H, s), 4.80 (1H, br), 5.50 (1H, br), 6.40 (1H, br).
  • Example 98 0.70-1.10 (6H, m), 1.10-1.90 (18H, m), 1.80-2.00 (2H, br-t), 2.00-4.00 (6H, m), 3.35 (2H, s), 3.74 (3H, s), 3.78 (3H, s), 4,80 (1H, br), 5.50 (1H, br), 6.40 (1H, br).
  • Example 99 0.70-1.10 (6H, m), 1.10-1.90 (20H, m), 1.84-2.00 (2H, br-t), 2.00-4.00 (6H, m), 3.35 (2H, s), 3.74 (3H, s), 3.78 (3H, s), 4.80 (1H, br), 5.50 (1H, br), 6.40 (1H, br).
  • Example 100 0.70-1.10 (3H, br-t), 1.10-1.70 (14H, m), 1.33 (9H, s), 2.10 (3H, s), 2.39 (3H, s), 3.71 (2H, br), 3.99 (2H, br-t), 4.15 (2H, s), 6.38 (1H, d), 6.89 (1H, d).
  • Example 101 0.70-1.10 (3H, br-t), 1.10-1.70 (10H, m), 1.33 (9H, s), 2.10 (3H, s), 2.39 (3H, s), 3.71 (2H, br), 3.99 (2H, br-t), 4.15 (2H, s), 638 (1H, d), 6.89 (1H, d).
  • Example 102 0.70-1.10 (3H, br-t), 1.10-1.70 (18H, m), 1.33 (9H, s), 2.08 (2H, q), 2.46 (2H, q), 3.71 (2H, br), 3.99 (2H, br-t), 4.15 (2H, s), 6.38 (1H, d), 6.89 (1H, d).
  • Example 103 0.70-1.10 (3H, br-t), 1.10-1.70 (20H, m), 1.33 (9H, s), 2.08 (2H, q), 2.46 (2H, q), 3.71 (2H, br), 3.99 (2H, br-t), 4.15 (2H, s), 6.38 (1H, d), 6.89 (1H, d).
  • Example 104 0.70-1.10 (3H, br-t), 1.10-1.70 (22H, m), 1.33 (9H, s), 2.42 (2H, q), 2.46 (2H, q), 3.71 (2H, br), 3.99 (2H, br-t), 4.15 (2H, s), 6.38 (1H, d), 6.89 (1H, d).
  • Example 105 0.70-1.10 (3H, br-t), 1.10-1.70 (12H, m), 1.33 (9H, s), 3.60 (3H, s), 3.65 (3H, s), 3.71 (2H, br), 3.99 (2H, br-t), 4.15 (2H, s), 6.15 (1H, d), 6.70 (1H, d).
  • Example 106 0.70-1.10 (3H, br-t), 1.10-1.70 (14H, m), 1.33 (9H, s), 3.60 (3H, s), 3.65 (3H, s), 3.71 (2H, br), 3.99 (2H, br-t), 4.15 (2H, s), 6.15 (1H, d), 6.70 (1H, d).
  • Example 107 0.70-1.110 (3H, br-t), 1.10-1.70 (16H, m), 1.33 (9H, s), 3.60 (3H, s), 3.65 (3H, s), 3.71 (2H, br), 3.99 (2H, br-t), 4.15 (2H, s), 6.15 (1H, d), 6.70 (1H, d).
  • Example 108 0.70-1.10 (3H, br-t), 1.10-2.00 (15H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.37 (3H, s), 3.40 (2H, t), 3.41 (2H, t), 3.56 (2H, s), 7.60-8.10 (2H, br).
  • Example 109 0.70-1.10 (3H, br-t), 1.10-2.00 (15H, m), 2.01 (3H, s), 2.15 (3s), 2.17 (3H, s), 2.45 (2H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.60-8.10 (2H, br).
  • Example 110 0.70-1.10 (3H, br-t), 1.10-2.00 (23H, m), 2.01 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.60-8.10 (2H, br).
  • Example 111 0.70-1.10 (3H, br-t), 1.10-2.00 (25H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 336 (2H, s), 7.60-9.10 (2H, br).
  • Example 112 0.70-1.10 (3H, br-t), 1.10-1.70 (12H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.30-7.80 (3H, m), 7.60-8.10 (2H, br), 8.12 (2H, d).
  • Example 113 0.70-1.10 (3H, br-t), 1.10-1.70 (12H, m), 2.01 (3H, s), 2.15 (3H, s), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.53 (2H, s), 3.56 (2H, s), 7.30 (5H, s), 7.60-8.10 (2H, br).
  • Example 114 1.59 (3H, br-t), 1.10-1.70 (4H, m), 1.33 (9H, s), 2.01 (3H, s), 2.15 (3H, s), 2.10-2.50 (4H, m), 2.70-3.10 (4H, m), 3.41 (2H, t), 3.56 (2H, s), 7.60-8.10 (2H, br).
  • Example 115 1.33 (9H, s) 2.01 (3H, s), 2.15 (3H, s), 3.02 (2H, t), 3.41 (2H, t), 3.56 (2H, s), 4.30 (2H, s), 7.30 (5H, s) 7.60-8.10 (2H, br).
  • Example 116 0.70-1.10 (3H, br-t), 1.10-1.60 (15H, m), 134 (9H, s), 2.02 (3H, s), 2.90 (2H, t), 3.13 (2H, t), 3.38 (2H, t), 3.50 (2H, s), 4.12 (2H, q), 6.80 (1H, br), 6.85 (1H, s).
  • Example 117 0.70-1.10 (3H, br-t), 1.10-2.00 (5H, m), 1.23 (9H, s), 2.07 (3H, s), 2.24 (3H, s), 2.70-3.10 (4H, m), 3.39 (2H, t), 3.35 (2H, s), 6.60-7.50 (2H, br).
  • Example 118 0.70-1.10 (3H, br-t), 1.10-2.00 (12H, m), 1.23 (9H, s), 2.07 (3H, s), 2.24 (3H, s), 2.70-3.10 (4H, m), 3.39 (2H, t), 3.35 (2H, s), 6.60-7.50 (2H, br).
  • Example 119 0.70-1.10 (3H, br-t), 1.10-2.00 (16H, m), 1.23 (9H, s), 2.07 (3H, s), 2.24 (3H, s), 2.70-3.10 (4H, m), 3.39 (2H, t), 3.35 (2H, s), 6.60-7.50 (2H, br).
  • Example 121 0.91 (3H, br-t), 1.00-1.80 (12H, m), 1.37 (9H, s), 1.93 (3H, s), 2.06 (3H, s), 2.47 (4H, br-t), 3.00 (4H, br), 3.30-3.90 (4H, m), 8.60-9.90 (2H, br).
  • Example 122 0.90 (3H, br-t), 1.00-1.80 (6H, m), 2.08 (3H, s), 2.21 (3H, s), 2.48 (4H, br-t), 2.90-3.40 (4H, m), 3.40-3.80 (2H, m), 3.61 (2H, s), 7.34 (1H, br), 8.48 (1H, br).
  • Example 123 0.86 (3H, br-t), 1.00-150 (12H, m), 1.42 (9H, s), 2.00-2.90 (6H, m), 2.11 (3H, s), 2.23 (3H, s) 2.90-330 (4H, m), 3.70 (2H, br), 6.10 (1H, br), 9.21 (1H, br).
  • N-(1-octyl-6-ethoxycarbonylmethyl-5,7-dimethyl-1,2,3,4-tetrahydroquinolin-8-yl)-2,2-dimethylpropanamide 230 mg was dissolved in ethanol (5 ml), and a solution of NaOH (100 mg) in water (2 ml) was added, which was followed by stirring at 50° C. for 1 hr. The solvent of the reaction mixture was evaporated under reduced pressure. The residue was dissolved in water (50 ml) and washed with ethyl acetate (20 ml). The aqueous layer was adjusted to pH 1-2 with 2N sulfuric acid and extracted with chloroform. The chloroform layer was dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give 130 mg of powdery title compound.
  • Example 126 0.70-1.00 (3H, br-t), 1.10-1.70 (8H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 127 0.70-1.00 (6H, br-t), 1.10-1.70 (5H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 128 0.70-1.00 (3H, br-t), 1.10-1.70 (10H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 129 0.80-1.70 (11H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 130 0.70-1.00 (6H, br-t), 1.10-1.70 (7H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (21H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 131 0.70-1.10 (3H, br-t), 1.10-1.70 (4H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.30-3.60 (4H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 132 0.70-1.10,(3H, br-t), 1.10-1.70 (4H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.20-3.50 (4H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 133 0.80-1.70 (13H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 134 0.70-1.00 (6H, br-t), 1.10-1.70 (9H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 135 0.70-1.10 (3H, br-t), 1.10-1.70 (6H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.30-3.60 (4m, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 136 0.70-1.10 (3H, br-t), 1.10-1.70 (6H, m), 1.35 (9H, s), 1.80-2.l0 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.20-3.50 (4H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 137 0.70-1.10 (1H, br-t), 1.10-1.70 (14H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 138 0.70-1.10 (3H, br-t), 1.10-1.70 (16H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 139 0.70-1.10 (3H, br-t), 1.10-1.70 (14H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.40 (2H, q), 2.43 (2H, q), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 140 0.70-1.10 (3H, br-t), 1.10-1.70 (18H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.40 (2H, q), 2.43 (2H, q), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 141 0.70-1.10 (3H, br-t), 1.10-1.70 (22H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.40 (2H, q), 2.43 (2H, q), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 142 0.70-1.10 (3H, br-t), 1.10-1.70 (8H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.52 (2H, s), 3.73 (3H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 143 0.70-1.10 (3H, br-t), 1.10-1.70 (12H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.52 (2H, s), 3.73 (3H, s), 3.77 (3H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 144 0.70-1.10 (3H, br-t), 1.10-1.70 (16H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.52 (2H, s), 3.73 (3H, s), 3.77 (3H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 145 0.70-1.10 (3H, br-t), 1.10-1.70 (8H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.17 (3H, s), 2.23 (3H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 4.65 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 146 0.70-1.10 (3H, br-t), 1.10-1.70 (12H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.17 (3H, s), 2.23 (3H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 4.65 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 147 0.70-1.10 (3H, br-t), 1.10-1.70 (16H, m), 1.35 (9H, s), 1.80-2.10 (2H, m), 2.17 (3H, s), 2.23 (3H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 4.65 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 148 0.70-1.10 (6H, br-t), 1.10-1.70 (18H, m), 1.35 (6H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 149 0.70-1.10 (6H, br-t), 1.10-1.70 (22H, m), 1.35 (6H, s), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 150 0.70-1.10 (3H, br-t), 1.10-2.00 (27H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 151 0.70-1.10 (3H, br-t), 1.10-1.70 (12H, m), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.70 (4H, m), 2.80-2.90 (2H, m), 3.53 (2H, s), 3.68 (2H, s), 7.30 (5H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 152 0.70-1.10 (6H, br-t), 1.10-1.70 (12H, m), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.90 (8H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 153 0.70-1.10 (6H, br-t), 1.10-1.70 (16H, m), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.90 (8H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 154 0.70-1.10 (6H, br-t), 1.10-1.70 (20H, m), 1.80-2.10 (2H, m), 2.10 (6H, s), 2.40-2.90 (8H, m), 3.68 (2H, s), 7.35 (1H, br), 9.50 (2H, br).
  • Example 156 0.79 (3H, br-t), 0.80-1.80 (8H, m), 1.34 (9H, s), 2.38 (3H, s), 2.94 (2H, t), 3.27 (2H, t), 3.54 (2H, t), 6.80 (2H, br), 7.67 (1H, s).
  • Example 157 0.79 (3H, br-t), 0.80-1.80 (16H, m), 1.34 (9H, s), 2.38 (3H, s), 2.94 (2H, t), 3.27 (2H, t), 3.54 (2H, t), 6.80 (2H, br), 7.67 (1H, s).
  • Example 158 0.79 (3H, br-t), 0.80-1.80 (8H, m), 1.33 (9H, s), 2.40 (3H, s), 2.45 (3H, s), 2.95 (2H, t), 3.26 (2H, t), 3.54 (2H, t), 6.80 (2H, br).
  • Example 159 0.79 (3H, br-t), 0.80-1.80 (12H, m), 1.33 (9H, s), 2.40 (3H, s), 2.45 (3H, s), 2.95 (2H, t), 3.26 (2H, t), 3.54 (2H, t), 6.80 (2H, br).
  • Example 160 0.79 (3H, br-t), 0.80-1.80 (16H, m), 1.33 (9H, s), 2.40 (3H, s), 2.45 (3H, s), 2.95 (2H, t), 3.26 (2H, t), 3.54 (2H, t), 6.80 (2H, br).
  • ACAT inhibitory activity serum total cholesterol reducing effect, in vitro plasma lipoperoxidation inhibitory activity, ex vivo plasma lipoperoxidation inhibitory, activity, solubility in water at pH 6.8 and plasma concentration on oral administration were determined
  • a high cholesterol feed [a feed added with cholesterol (1%), Clea Japan, Inc.] was fed to male Japanese white rabbits weighing 2-2.5 kg at 100 g per day and the rabbits were bred for 4 weeks. The rabbits were killed by bleeding under anesthesia and small intestine was removed. The mucosal membrane of small intestine was peeled, collected and homogenated. The homogenate was centrifuged at 4° C. and 10,000 rpm for 15 min. The obtained supernatant was further centrifuged at 4° C. and 41,000 rpm for 30 minutes to give microsomal fractions.
  • microsomal suspension as an enzyme sample dimethyl sulfoxide (DMSO, 5 ⁇ l) or a test compound dissolved in DMSO (test compound solution 5 ⁇ l), and reaction substrate [1- 14 C] oleoyl CoA were added to 0.15M phosphate buffer to the total amount of 500 ⁇ l. After incubation at 37° C. for 7 minutes, a chloroform-methanol mixture was added to slop the reaction. Water was added thereto and mixed, and chloroform layer was separated. The solvent was evaporated to dryness, and the residue was it-dissolved in a-hexane. The mixture was subjected to thin layer chromatography using a silica gel plate.
  • the spots of cholesteryl oleate on the silica gel plate were scraped, and quantitatively assayed on a liquid scintillation counter.
  • the ACAT inhibitory activity of the test compound was expressed as a proportion (%) of inhibition of cholesterol oleate, namely, the proportion of inhibition of cholesteryl oleate production as compared to control, the results of which are shown in Table 14.
  • Mile Wister rats weighing 180-200 g were bred under free access to a high cholesterol feed [added with cholesterol (1%), cholic acid (0.5%) and coconut oil (10%), Clea Japan, Inc.] for 3 days, during which period a test compound (3 mg/kg and 10 mg/kg) suspended in 5% gum arabic solution was forcibly administered once a day orally for 3 days. Only 5% gum arabic solution was administered to control animals. After final administration, the test animals were fasted and blood was taken 5 hours later.
  • the serum total cholesterol level was determined using a commercially available assay lit (cholesterol-CII-Test Wako, Wako Pure Chemical Industries, Ltd.).
  • the activity of the test compound was expressed as a proportion (%) of reduction of serum total cholesterol level, namely, the proportion of reduction of serum total cholesterol as compared to control, the results of which are shown in Table 15.
  • DMSO (10 ⁇ l) or a test compound (final concentration 10 ⁇ 5 M) dissolved in DMSO (test compound solution 10 ⁇ l) was added to plasma (1.0 ml), and the mixture was incubated at 37° C. for 5 minutes.
  • Distilled water (10 ⁇ l) or aqueous solution (10 ⁇ l) of (copper sulfate (final concentration 1M) was added, followed by incubation at 37° C. for 4 minutes.
  • lipid peroxide in the sample was determined using a commercially available assay kit (Lipoperoxide Test Wako, Wako Pure Chemical industries, Ltd.). Specifically, lipid peroxide in the sample was allowed to develop color by thiobarbiturate method and assayed as malondialdehyde. The activity of the test compound was expressed as a proportion (%) of inhibition of malondialdehyde production, namely, the proportion of inhibition of malondialdehyde production as compared to control, the results of which are shown in Table 16.
  • Example 1 51.7
  • Example 3 49.2
  • Example 4 51.2
  • Example 11 44.5
  • Example 18 44.0
  • Example 25 63.5
  • Example 36 41.5
  • Example 71 48.1
  • Example 76 51.7
  • Example 81 47.1
  • Example 116 45.5
  • Example 121 41.6
  • Example 125 48.0
  • Example 155 47.7 Example 159 48.3
  • a test compound suspended in 5% gum arabic solution was forcibly administered orally to male Wister rats weighing 160-190 g that had been fasted for 16 hr. Only 5% gum arabic solution was administered to control animals. At 1 hour after administration, blood was taken under ether anesthesia and heparinized plasma was separated by conventional method. The plasma (1.0 ml) was processed in the same manner as in Experimental Example 3 and the amount of produced malondialdehyde was determined. The activity of the test compound was expressed as a proportion (%) of inhibition of malondialdehyde production, namely, the proportion of inhibition of malondialdehyde production as compared to control, the results of which are shown in Table 17.
  • a pulverized test compound (10 mg) was added to buffer (1 ml, pH 6.8), and the mixture was shaken for 1 br at 25° C. The mixture was passed through a membrane filter and the concentration of the test compound in the filtrate was determined by high performance liquid chromatography, the results of which are shown in Table 18.
  • test compound (30 mg)kg) suspended in 5% gum arabic solution was forcibly administered orally to male Wister rats weighing 200-250 g that had been fasted for 16 hr.
  • blood was taken and heparinized plasma was separated by conventional method.
  • concentration of the test compound in the plasma was determined by high performance liquid chromatography, the results of which are shown in Table 19.
  • test compound (30 mg/kg) suspended in 5% gum arabic solution was forcibly administered orally to male SD rats weighing 200-250 g that had been fasted for 16 hr. At 0.5, 1, 2, 4 and 6 hours after administration, blood was taken and heparinized plasma was separated by conventional method. The concentration of the test compound in the plasma was determined by high performance liquid chromatography, the results of which are shown in Table 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pyrrole Compounds (AREA)
US10/609,224 1995-10-05 1996-09-30 Indolyl or indolinyl derivatives and medicinal use thereof as ACAT or lipid peroxidation inhibitors Expired - Fee Related USRE38970E1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP25908295 1995-10-05
JP5801896 1996-03-14
JP19433196 1996-07-24
US09/051,202 US6063806A (en) 1995-10-05 1996-09-30 Indolyl or indolinyl derivatives and medicinal use thereof as ACAT or lipid peroxidation inhibitors
PCT/JP1996/002852 WO1997012860A1 (en) 1995-10-05 1996-09-30 Novel heterocyclic derivatives and medicinal use thereof

Publications (1)

Publication Number Publication Date
USRE38970E1 true USRE38970E1 (en) 2006-02-07

Family

ID=27296460

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/609,224 Expired - Fee Related USRE38970E1 (en) 1995-10-05 1996-09-30 Indolyl or indolinyl derivatives and medicinal use thereof as ACAT or lipid peroxidation inhibitors
US09/051,202 Ceased US6063806A (en) 1995-10-05 1996-09-30 Indolyl or indolinyl derivatives and medicinal use thereof as ACAT or lipid peroxidation inhibitors
US09/506,839 Expired - Fee Related US6200988B1 (en) 1995-10-05 2000-02-18 Heterocyclic derivatives and pharmaceutical use thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US09/051,202 Ceased US6063806A (en) 1995-10-05 1996-09-30 Indolyl or indolinyl derivatives and medicinal use thereof as ACAT or lipid peroxidation inhibitors
US09/506,839 Expired - Fee Related US6200988B1 (en) 1995-10-05 2000-02-18 Heterocyclic derivatives and pharmaceutical use thereof

Country Status (20)

Country Link
US (3) USRE38970E1 (cs)
EP (1) EP0866059B1 (cs)
KR (1) KR100388345B1 (cs)
CN (2) CN1097043C (cs)
AT (1) ATE210116T1 (cs)
BR (1) BR9610846A (cs)
CZ (1) CZ292632B6 (cs)
DE (1) DE69617731T2 (cs)
DK (1) DK0866059T3 (cs)
ES (1) ES2164920T3 (cs)
HK (1) HK1048989B (cs)
HU (1) HUP9900617A3 (cs)
IL (1) IL123939A (cs)
NO (1) NO310818B1 (cs)
NZ (1) NZ318874A (cs)
PL (1) PL190034B1 (cs)
PT (1) PT866059E (cs)
TR (1) TR199800655T2 (cs)
TW (1) TW429250B (cs)
WO (1) WO1997012860A1 (cs)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720395B2 (ja) 1994-09-20 2005-11-24 京都薬品工業株式会社 新規ヘテロ環誘導体、その製造方法およびその医薬用途
AR008331A1 (es) * 1997-01-23 1999-12-29 Smithkline Beecham Corp Compuestos antagonistas de un receptor de il-8, uso de los mismos para la fabricacion de medicamentos, procedimiento para su obtencion, composicionesfarmaceuticas que los contienen
US5929250A (en) * 1997-01-23 1999-07-27 Smithkline Beecham Corporation IL-8 receptor antagonists
AR015425A1 (es) * 1997-09-05 2001-05-02 Smithkline Beecham Corp Compuestos de benzotiazol, composicion farmaceutica que los contiene, su uso en la manufactura de un medicamento, procedimiento para su preparacion,compuestos intermediarios y procedimiento para su preparacion
WO1999052875A1 (en) * 1998-04-08 1999-10-21 Takeda Chemical Industries, Ltd. Amine compounds, their production and their use as somatostatin receptor antagonists or agonists
CA2338741A1 (en) * 1998-07-23 2000-02-03 Smithkline Beecham Corporation Il-8 receptor antagonists
FR2783519B1 (fr) 1998-09-23 2003-01-24 Sod Conseils Rech Applic Nouveaux derives d'amidines, leur preparation, leur application a titre de medicaments et les compositions pharmaceutiques les contenant
CZ2003593A3 (cs) * 2000-09-01 2003-05-14 Sankyo Company Limited Farmaceutický přípravek pro léčbu a prevenci xantomu a aterosklerózy
TW200600497A (en) * 2001-02-02 2006-01-01 Sankyo Co Preparation of indoline derivative
WO2002072147A1 (fr) * 2001-03-14 2002-09-19 Sankyo Company, Limited Compositions medicinales contenant un inhibiteur de transporteur d'acide biliaire
EP2335700A1 (en) * 2001-07-25 2011-06-22 Boehringer Ingelheim (Canada) Ltd. Hepatitis C virus polymerase inhibitors with a heterobicylic structure
WO2003020315A1 (fr) * 2001-08-28 2003-03-13 Sankyo Company, Limited Compositions medicinales contenant un antagoniste du recepteur d'angiotensine ii
BR0308871A (pt) * 2002-04-05 2005-01-04 Sankyo Co Composição farmacêutica
JP2004002365A (ja) * 2002-04-05 2004-01-08 Sankyo Co Ltd Acat阻害剤とインシュリン抵抗性改善剤とからなる医薬組成物
US20050119314A1 (en) * 2002-04-05 2005-06-02 Sankyo Company, Limited Pharmaceutical composition comprising an ACAT inhibitor and an insulin resistance reducing agent
NZ538226A (en) * 2002-07-17 2006-08-31 Kyoto Pharma Ind Indoline compounds having an acyl-coenzyme A: cholesterol acyl transferase (ACAT) and lipoperoxidation inhibitory activity and medicinal use thereof
US20050192245A1 (en) * 2002-07-18 2005-09-01 Sankyo Company, Limited Medicinal composition for treating arteriosclerosis
CA2493384A1 (en) * 2002-07-18 2004-01-29 Sankyo Company Limited Medicinal composition for treating arteriosclerosis
US7098231B2 (en) * 2003-01-22 2006-08-29 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US7223785B2 (en) * 2003-01-22 2007-05-29 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
BRPI0416639A (pt) 2003-11-19 2007-01-16 Metabasis Therapeutics Inc tiromiméticos contendo fósforo
WO2005077359A1 (ja) * 2004-02-17 2005-08-25 Sankyo Company, Limited インドリン化合物を含有する安定化された医薬組成物
PL1718608T3 (pl) * 2004-02-20 2013-11-29 Boehringer Ingelheim Int Inhibitory polimerazy wirusowej
US9164104B2 (en) 2004-10-06 2015-10-20 The Brigham And Women's Hospital, Inc. Relevance of achieved levels of markers of systemic inflammation following treatment
NZ555325A (en) * 2004-10-27 2009-07-31 Daiichi Sankyo Co Ltd Benzene compound having 2 or more substituents
JP5015154B2 (ja) * 2005-08-12 2012-08-29 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウイルスポリメラーゼインヒビター
WO2007146230A2 (en) * 2006-06-14 2007-12-21 Merck & Co., Inc. Non-nucleoside reverse transcriptase inhibitors
FR2918890A1 (fr) * 2007-07-19 2009-01-23 Galderma Res & Dev Utilisation du pactimibe pour la preparation d'un medicament destine a prevenir ou a traiter une maladie due a un dysfonctionnement des glandes sebacees chez l'homme ou l'animal
WO2010093601A1 (en) 2009-02-10 2010-08-19 Metabasis Therapeutics, Inc. Novel sulfonic acid-containing thyromimetics, and methods for their use
US8343706B2 (en) 2010-01-25 2013-01-01 International Business Machines Corporation Fluorine-free fused ring heteroaromatic photoacid generators and resist compositions containing the same
WO2011161964A1 (ja) * 2010-06-24 2011-12-29 興和株式会社 Acat阻害剤を有効成分とするインスリン抵抗性改善剤
US9650375B2 (en) 2013-03-14 2017-05-16 Merck Sharp & Dohme Corp. Indole derivatives useful as anti-diabetic agents
JP2018052818A (ja) * 2015-01-28 2018-04-05 武田薬品工業株式会社 スルホンアミド化合物
CN108440373B (zh) * 2018-03-23 2021-05-14 昆明学院 一种铁催化的氰烷基吲哚啉及其制备方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803218A (en) * 1982-09-29 1989-02-07 Mcneilab, Inc. 3-aminoalkyl-1H-indole-5-urea and amide derivatives
EP0325397A1 (en) 1988-01-20 1989-07-26 Yamanouchi Pharmaceutical Co. Ltd. Diurea derivatives useful as medicaments and processes for the preparation thereof
EP0354994A2 (en) 1988-07-12 1990-02-21 Takeda Chemical Industries, Ltd. Quinoline derivatives, their production and use
JPH02117651A (ja) * 1988-01-20 1990-05-02 Yamanouchi Pharmaceut Co Ltd ジウレア誘導体及びその製造法
EP0375113A2 (en) 1988-12-22 1990-06-27 Springs Industries Inc. Corespun yarn for fire resistant safety apparel and method
JPH037259A (ja) * 1988-07-12 1991-01-14 Takeda Chem Ind Ltd Acat阻害剤、キノリン誘導体及びその製造法
CA2029660A1 (fr) 1989-11-10 1991-05-11 Alex Junino Compositions tinctoriales pour fibres keratiniques contenant des precurseurs de colorants par oxydation et des coupleurs derives du 4-hydroxyindole, et procede de teinture les mettant en oeuvre
JPH03148247A (ja) * 1989-08-31 1991-06-25 Warner Lambert Co Acat阻害剤
EP0447116A1 (en) 1990-03-12 1991-09-18 Yamanouchi Pharmaceutical Co. Ltd. Urea derivatives, their production, and pharmaceutical compositions containing them
EP0472116A1 (en) 1990-08-17 1992-02-26 Takeda Chemical Industries, Ltd. Thienopyridine Derivatives, their production and use
JPH0466568A (ja) * 1990-06-29 1992-03-02 Takeda Chem Ind Ltd 中枢性抗酸化剤化合物
EP0512570A1 (en) 1991-05-10 1992-11-11 Fujisawa Pharmaceutical Co., Ltd. Urea derivatives, processes for the preparation thereof and pharmaceutical composition comprising the same
JPH04327564A (ja) * 1991-03-08 1992-11-17 Adir 新規アシルアミノフェノール化合物、それらの製造方法およびこれらの化合物を含有する医薬組成物
JPH0532666A (ja) * 1990-08-17 1993-02-09 Takeda Chem Ind Ltd チエノピリジン誘導体、その製造法およびacat阻害剤
JPH0597802A (ja) * 1991-03-26 1993-04-20 Lipha (Lyon Ind Pharmaceut) インドール誘導体、その調製方法及びそれを含む医薬生成物
US5356920A (en) 1990-11-28 1994-10-18 Farmitalia Carlo Erba Srl. Imidazol-2-yl derivatives of substituted bicyclic compounds
EP0622356A1 (en) * 1993-04-28 1994-11-02 Sumitomo Pharmaceuticals Company, Limited Indoloylguanidine derivatives as inhibitors of sodium-hydrogen exchange
EP0635501A1 (en) 1993-07-21 1995-01-25 American Home Products Corporation Tris carbamic acid esters: inhibitors of cholesterol absorption; inhibitors of ACAT and CEH
WO1996009287A1 (en) * 1994-09-20 1996-03-28 Kyoto Pharmaceutical Industries, Ltd. Novel heterocyclic derivatives, process for producing the same, and medicinal use thereof
EP0708091A1 (en) * 1994-10-18 1996-04-24 Sumitomo Pharmaceuticals Company, Limited Indoloylguanidine derivatives
JPH08208602A (ja) * 1994-10-18 1996-08-13 Sumitomo Pharmaceut Co Ltd インドロイルグアニジン誘導体
EP0793140A1 (en) * 1996-03-04 1997-09-03 Fuji Photo Film Co., Ltd. Processing composition for silver halide photographic light-sensitive material, developer and processing method using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956372A (en) * 1987-10-02 1990-09-11 Kyorin Pharmaceutical Co., Ltd. Cyclic anthranilic acid derivatives and process for their preparation
CN1068000A (zh) * 1991-06-27 1993-01-13 重庆人民广播电台 动平衡开关调幅浮动载波广播电视发射机
US5767129A (en) * 1995-08-24 1998-06-16 Warner-Lambert Company Substituted quinolines and isoquinolines as calcium channel blockers, their preparation and the use thereof

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803218A (en) * 1982-09-29 1989-02-07 Mcneilab, Inc. 3-aminoalkyl-1H-indole-5-urea and amide derivatives
EP0325397A1 (en) 1988-01-20 1989-07-26 Yamanouchi Pharmaceutical Co. Ltd. Diurea derivatives useful as medicaments and processes for the preparation thereof
JPH02117651A (ja) * 1988-01-20 1990-05-02 Yamanouchi Pharmaceut Co Ltd ジウレア誘導体及びその製造法
EP0354994A2 (en) 1988-07-12 1990-02-21 Takeda Chemical Industries, Ltd. Quinoline derivatives, their production and use
JPH037259A (ja) * 1988-07-12 1991-01-14 Takeda Chem Ind Ltd Acat阻害剤、キノリン誘導体及びその製造法
US5254565A (en) 1988-07-12 1993-10-19 Takeda Chemical Industries, Ltd. Quinoline derivatives, their production and use
EP0375113A2 (en) 1988-12-22 1990-06-27 Springs Industries Inc. Corespun yarn for fire resistant safety apparel and method
US5153226A (en) * 1989-08-31 1992-10-06 Warner-Lambert Company Acat inhibitors for treating hypocholesterolemia
JPH03148247A (ja) * 1989-08-31 1991-06-25 Warner Lambert Co Acat阻害剤
US5609649A (en) 1989-11-10 1997-03-11 L'oreal Tinctorial composition for keratinous fibers containing oxidation dye precursors and couplers derived from 4-hydroxyindole, and dyeing method using them
CA2029660A1 (fr) 1989-11-10 1991-05-11 Alex Junino Compositions tinctoriales pour fibres keratiniques contenant des precurseurs de colorants par oxydation et des coupleurs derives du 4-hydroxyindole, et procede de teinture les mettant en oeuvre
EP0447116A1 (en) 1990-03-12 1991-09-18 Yamanouchi Pharmaceutical Co. Ltd. Urea derivatives, their production, and pharmaceutical compositions containing them
JPH04234839A (ja) * 1990-03-12 1992-08-24 Yamanouchi Pharmaceut Co Ltd 尿素誘導体又はその塩
JPH0466568A (ja) * 1990-06-29 1992-03-02 Takeda Chem Ind Ltd 中枢性抗酸化剤化合物
EP0472116A1 (en) 1990-08-17 1992-02-26 Takeda Chemical Industries, Ltd. Thienopyridine Derivatives, their production and use
JPH0532666A (ja) * 1990-08-17 1993-02-09 Takeda Chem Ind Ltd チエノピリジン誘導体、その製造法およびacat阻害剤
US5356920A (en) 1990-11-28 1994-10-18 Farmitalia Carlo Erba Srl. Imidazol-2-yl derivatives of substituted bicyclic compounds
US5254590A (en) 1991-03-08 1993-10-19 Adir Et Compagnie Acylaminophenol compounds
JPH04327564A (ja) * 1991-03-08 1992-11-17 Adir 新規アシルアミノフェノール化合物、それらの製造方法およびこれらの化合物を含有する医薬組成物
JPH0597802A (ja) * 1991-03-26 1993-04-20 Lipha (Lyon Ind Pharmaceut) インドール誘導体、その調製方法及びそれを含む医薬生成物
US5219859A (en) * 1991-03-26 1993-06-15 Lipha, Lyonnaise Industrielle Pharmaceutique Indole derivatives, preparation processes and medicinal products containing them
EP0512570A1 (en) 1991-05-10 1992-11-11 Fujisawa Pharmaceutical Co., Ltd. Urea derivatives, processes for the preparation thereof and pharmaceutical composition comprising the same
JPH05140102A (ja) * 1991-05-10 1993-06-08 Fujisawa Pharmaceut Co Ltd 尿素誘導体およびその製造法
EP0622356A1 (en) * 1993-04-28 1994-11-02 Sumitomo Pharmaceuticals Company, Limited Indoloylguanidine derivatives as inhibitors of sodium-hydrogen exchange
EP0635501A1 (en) 1993-07-21 1995-01-25 American Home Products Corporation Tris carbamic acid esters: inhibitors of cholesterol absorption; inhibitors of ACAT and CEH
US5952354A (en) 1993-07-21 1999-09-14 American Home Products Corporation Tris carbamic acid esters: inhibitors of cholesterol absorption
EP0782986A1 (en) 1994-09-20 1997-07-09 Kyoto Pharmaceutical Industries, Ltd. Novel heterocyclic derivatives, process for producing the same, and medicinal use thereof
JPH0892210A (ja) * 1994-09-20 1996-04-09 Kyoto Yakuhin Kogyo Kk 新規ヘテロ環誘導体、その製造方法およびその医薬用途
WO1996009287A1 (en) * 1994-09-20 1996-03-28 Kyoto Pharmaceutical Industries, Ltd. Novel heterocyclic derivatives, process for producing the same, and medicinal use thereof
US5990150A (en) 1994-09-20 1999-11-23 Sankyo Company, Ltd. Heterocyclic derivatives, method of production thereof and pharmaceutical use thereof
US6127403A (en) 1994-09-20 2000-10-03 Sankyo Company, Ltd. Method for inhibiting acyl-CoA : cholesterol acyltransferase
JPH08208602A (ja) * 1994-10-18 1996-08-13 Sumitomo Pharmaceut Co Ltd インドロイルグアニジン誘導体
EP0708091A1 (en) * 1994-10-18 1996-04-24 Sumitomo Pharmaceuticals Company, Limited Indoloylguanidine derivatives
EP0793140A1 (en) * 1996-03-04 1997-09-03 Fuji Photo Film Co., Ltd. Processing composition for silver halide photographic light-sensitive material, developer and processing method using the same

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Potential Antiatheroscelerotic Agents. 5.<SUP>1 </SUP>An acyl-CoA:Cholesterol O-Acyltransferase Inhibitor with Hypocholesterolemic Activity", J. Med. Chem. vol. 29, pp. 1131-1133. 1986. *
"Potential Antiatheroscelerotic Agents. 5.1 An acyl-CoA:Cholesterol O-Acyltransferase Inhibitor with Hypocholesterolemic Activity", J. Med. Chem. vol. 29, pp. 1131-1133. 1986. *
Communications to the Editor, "Potential Antiatheroscelerotic Agents. 5.<SUP>1 </SUP>An acyl-CoA:Cholesterol O-Acyltransferase Inhibitor with Hypocholesterolemic Activity", J. Med. Chem. vol. 29, pp. 1131-1133 (1986).
Communications to the Editor, "Potential Antiatheroscelerotic Agents. 5.1 An acyl-CoA:Cholesterol O-Acyltransferase Inhibitor with Hypocholesterolemic Activity", J. Med. Chem. vol. 29, pp. 1131-1133 (1986).
F. Brown et al., "Evolution of a Series of Peptidoleukotriene Antagonists: Synthesis and Structure-Activity Relationships of 1,6-Disubstituted Indoles and Indazoles", Journal of Medicinal Chemistry, vol. 33, No. 6, pp. 1771-1781 (1990).
F. Brown et al., "Evolution of a Series of Peptidoleukotriene Antagonists: Synthesis and Structure-Activity Relationships of 1,6-Disubstituted Indoles and Indazoles", Journal of Medicinal Chemistry, vol. 33, No. 6, pp. 1771-1781, 1990. *
K. Yee et al., "Novel Series of Selective Leukotriene Antagonists: Exploration and Timization of the Acidic Region in 1,6-Disubstituted Indoles and Indazoles", Journal of Medicinal Chemistry, vol. 33, No. 9, pp. 2437-2451, 1990. *
Matassa et al., "Evolution of a Series of Peptidoleukotriene Antagonists: Synthesis and Structure/Activity Relationships of 1,3, 5-substituted Indoles and Indazoles", Journal of Medicinal Chemistry, vol. 33, No. 6, pp. 1781-1790 (1990).
V. Matassa et al., "Evolution of a Series of Peptidoleukotriene Antagonists: Synthesis and Structure/Activity Relationships of 1,3, 5-substituted Indoles and Indazoles", Journal of Medicinal Chemistry, vol. 33, No. 6, pp. 1781-1790, 1990. *
Yee et al., "A Novel Series of Selective Leukotriene Antagonists: Exploration and Timization of the Acidic Region in 1,6-Disubstituted Indoles and Indazoles", Journal of Medicinal Chemistry, vol. 33, No. 9, pp. 2437-2451 (1990).

Also Published As

Publication number Publication date
TR199800655T2 (xx) 1999-09-21
KR100388345B1 (ko) 2004-03-30
DE69617731D1 (de) 2002-01-17
CN1193018C (zh) 2005-03-16
NO981485D0 (no) 1998-04-01
PT866059E (pt) 2002-03-28
NO310818B1 (no) 2001-09-03
HK1048989A1 (en) 2003-04-25
ATE210116T1 (de) 2001-12-15
DK0866059T3 (da) 2002-03-25
CN1097043C (zh) 2002-12-25
KR19990063987A (ko) 1999-07-26
AU7097796A (en) 1997-04-28
EP0866059A4 (en) 1998-12-02
HK1048989B (zh) 2005-10-28
US6200988B1 (en) 2001-03-13
PL326000A1 (en) 1998-08-17
ES2164920T3 (es) 2002-03-01
AU708571B2 (en) 1999-08-05
EP0866059A1 (en) 1998-09-23
HUP9900617A2 (hu) 1999-06-28
HUP9900617A3 (en) 2001-12-28
WO1997012860A1 (en) 1997-04-10
HK1015781A1 (en) 1999-10-22
CN1361100A (zh) 2002-07-31
BR9610846A (pt) 1999-07-13
DE69617731T2 (de) 2002-08-08
TW429250B (en) 2001-04-11
CZ99698A3 (cs) 1998-08-12
EP0866059B1 (en) 2001-12-05
NO981485L (no) 1998-06-02
CZ292632B6 (cs) 2003-11-12
CN1203587A (zh) 1998-12-30
IL123939A (en) 2001-11-25
US6063806A (en) 2000-05-16
NZ318874A (en) 1999-09-29
PL190034B1 (pl) 2005-10-31

Similar Documents

Publication Publication Date Title
USRE38970E1 (en) Indolyl or indolinyl derivatives and medicinal use thereof as ACAT or lipid peroxidation inhibitors
US6489475B2 (en) Method of producing heterocyclic derivatives
HU193409B (en) Process for producing 2-square bracket -n-cyclohexyl-4-bracket-oxo-1,2,3,5-tetrahydro-imidazo-square bracket-2,1-b-square bracket closed-quinazolin-7-yl-bracket closed-oxy-alkqne-carboxamidyl-square bracket closed-alkan-acides
US4183858A (en) α-Vinyl tryptophanes
EP0402232A1 (fr) Dérivés de pyridobenzoindole, leur préparation et les compositions qui les contiennent
RU2173316C2 (ru) Новые гетероциклические производные и их фармацевтическое использование
JP2968050B2 (ja) 新規ヘテロ環誘導体およびその医薬用途
CA2233842C (en) Novel heterocyclic derivatives having indoline, indole or tetrahydroquinoline ring and pharmaceutical use thereof
US7429612B2 (en) Indoline compound and medicinal use thereof
MXPA98002729A (en) Heterociclic novedous derivatives and pharmaceutical use of mis
AU705798B2 (en) Novel heterocyclic derivatives
BE869191A (fr) Nouvelles imidazo-isoquinoleine-diones, procedes pour leur preparation et leur utilisation en tant que medicaments
HK1079204A (en) Novel indoline compound and medicinal use thereof

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees