US8556038B2 - Lubricating device - Google Patents

Lubricating device Download PDF

Info

Publication number
US8556038B2
US8556038B2 US13/203,432 US200913203432A US8556038B2 US 8556038 B2 US8556038 B2 US 8556038B2 US 200913203432 A US200913203432 A US 200913203432A US 8556038 B2 US8556038 B2 US 8556038B2
Authority
US
United States
Prior art keywords
oil
pressure
suction
valve
engagement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/203,432
Other languages
English (en)
Other versions
US20110308912A1 (en
Inventor
Kenta Kimura
Yuji Hattori
Michio Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Assigned to TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment TOYOTA JIDOSHA KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HATTORI, YUJI, KIMURA, KENTA, YOSHIDA, MICHIO
Publication of US20110308912A1 publication Critical patent/US20110308912A1/en
Application granted granted Critical
Publication of US8556038B2 publication Critical patent/US8556038B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/123Details not specific to one of the before-mentioned types in view of cooling and lubrication

Definitions

  • the present invention relates to a lubricating device for lubricating a friction clutch of a transmission mounted on a vehicle.
  • a friction clutch of a transmission and the like is lubricated by a lubricating device.
  • a lubricating device using, for example, a jet pump is proposed as a lubricating device for lubricating a friction clutch.
  • the lubricating device using the jet pump as the lubricating device for lubricating the friction clutch includes a lubricating device for changing the flow rate of oil ejected from a jet pump to a friction clutch in response to the torque transmitted via the friction clutch, and Patent Document 1 shown below discloses an example of the lubricating device.
  • the flow rate of oil supplied to a drive nozzle of a jet pump is changed by a torque sensor in response to the torque transmitted via a friction clutch with a result that the flow rate of the oil ejected from the jet pump to the friction clutch is changed. That is, since the lubricating device of Patent Document 1 is configured such that the flow rate of the oil ejected from the jet pump to friction clutch is changed in response to the torque transmitted via the friction clutch, the torque sensor is indispensable.
  • a lubricating device when it is intended to lubricate a friction clutch using a jet pump in a drive force transmission device which does not include a torque/oil flow rate conversion mechanism for adjusting the flow rate of oil supplied to the jet pump in response to the torque transmitted from the friction clutch as, for example, a torque sensor, a lubricating device separately requires the torque/oil flow rate conversion mechanism to adjust the flow rate of the oil supplied to the jet pump. That is, when it is intended to lubricate the friction clutch using the jet pump, the lubricating device separately requires the torque/oil flow rate conversion mechanism which is not provided for the drive force transmission device to adjust the flow rate of the oil supplied to the jet pump. As a consequence, the number of components of the lubricating device increases, thus, the size of the lubricating device increases. Accordingly, it is difficult to make the lubricating device compact.
  • An object of the present invention which was made in view of the circumstances, is to obtain a lubricating device which can be made compact.
  • the flow rate adjusting valve is disposed to a suction oil path that communicates the suction portion with the oil reservoir and includes a valve case that communicates the oil reservoir side of the suction oil path with the suction portion side of the suction oil path inside the valve case, a spool capable of moving in an axial direction inside of the valve case, an adjustment valve urging means that urges the spool to one side in the axial direction, and an adjustment valve piston chamber that presses the spool to the other side in the axial direction when the adjustment valve piston chamber is introduced with the clutch engagement pressure, wherein the spool moves to the other side in the axial direction in response to an increase of the clutch engagement pressure, when the clutch engagement pressure reaches a pressure at which the friction clutch can be engaged, the oil reservoir side of the suction oil path is caused to communicate with the suction portion side of the suction oil path by the spool, and when the clutch engagement pressure is the minimum pressure, the communication between the oil reservoir side and the suction
  • the adjustment valve urging means is made from shape memory alloy having a spring constant which is reduced as a temperature increases.
  • the clutch engagement pressure is adjusted by a pressure regulating valve
  • the pressure regulating valve is disposed to an engagement oil path for causing the friction clutch to communicate with the hydraulic pressure control circuit
  • the flow rate adjusting valve and the pressure regulating valve are configured as a single flow rate/pressure adjustment association valve.
  • the flow rate/pressure adjustment association valve includes a valve case that causes the friction clutch side of the engagement oil path to communicate with the hydraulic pressure control circuit side of the engagement oil path inside the valve case, and a spool coupled with a shift lever and capable of moving in the axial direction inside the valve case in association with an operation of the shift lever performed by a driver, wherein when the shift lever is located at a neutral position, the communication between the friction clutch side and the hydraulic pressure control circuit side of the engagement oil path is shut off as well as the communication between the oil reservoir side and the suction portion side of the suction oil path that communicates the suction portion with the oil reservoir is shut off by the spool, and when the shift lever is located at an engagement position which is a position at which the friction clutch is engaged by the clutch engagement pressure, the friction clutch side of the engagement oil path is caused to communicate with the hydraulic pressure control circuit side of the engagement oil path as well as the oil reservoir side of the suction oil path is caused to communicate with the suction portion side of the
  • the flow rate/pressure adjustment association valve includes a valve case that causes the friction clutch side of the engagement oil path to communicate with the hydraulic pressure control circuit side of the engagement oil path inside the valve case, a spool capable of moving in the axial direction inside the valve case, an association valve urging means that urges the spool to one side in the axial direction, and an association valve piston chamber that presses the spool to the other side in the axial direction by being introduced with an instruction pressure from the hydraulic pressure control circuit, wherein the spool increases the clutch engagement pressure by moving to the other side in the axial direction in response to an increase of the instruction pressure, when the clutch engagement pressure reaches a pressure at which the friction clutch can be engaged, the oil reservoir side of the suction oil path is caused to communicate with the suction portion side of the suction oil path by the spool, and when the clutch engagement pressure is the minimum pressure, the communication between the oil reservoir side and suction portion side of the suction oil path is shut off by the spool.
  • a check valve is disposed to the oil reservoir side of the flow rate adjusting valve.
  • the degree of opening of a flow rate adjusting valve is mechanically increased.
  • the flow rate of oil sucked from an oil reservoir to a suction portion of a jet pump is increased. Therefore, as the clutch engagement pressure increases, the flow rate of the oil ejected from the jet pump is increased. That is, as the clutch engagement pressure increases, the flow rate of the oil for lubricating a lubrication portion of a friction clutch is increased. Accordingly, even if a torque/oil flow rate conversion mechanism, for example, a torque sensor, is not used, the flow rate of the oil ejected from the jet pump can be changed only by the flow rate adjusting valve. With the configuration, there can be achieved an effect that a device can be made compact.
  • the friction clutch shifts from a release state to an engagement state as the clutch engagement pressure increases, the heat amount generated in the friction clutch is increased.
  • the flow rate of the oil for lubricating the lubrication portion of the friction clutch is increased. That is, in the present invention, as the heat amount generated in the friction clutch increases, the flow rate of the oil for lubricating the lubrication portion of the friction clutch is increased.
  • FIG. 1 is a schematic view showing an outline of a lubricating device according to a first embodiment.
  • FIG. 2 is a schematic view showing an outline of a lubricating device according to a second embodiment.
  • FIG. 3 is a view showing characteristics of the urging force of an adjustment valve urging means, the degree of opening of a flow rate adjusting valve, a suction flow rate, and a lubrication flow rate to the temperature change in a table.
  • FIG. 4 is a schematic view showing an outline of a lubricating device according to a third embodiment.
  • FIG. 5 is a schematic view showing an outline of a lubricating device according to a fourth embodiment.
  • FIG. 6 is a schematic view showing an outline of a lubricating device according to a fifth embodiment.
  • FIG. 1 is a schematic view showing an outline of the lubricating device according to the first embodiment.
  • a lubricating device 1 - 1 supplies oil to a lubrication portion 20 a of a friction clutch 20 which can be engaged by a clutch engagement pressure.
  • the friction clutch 20 is disposed, for example, inside of a transmission mounted on a vehicle.
  • the lubricating device 1 - 1 includes a hydraulic pressure control circuit 10 , a jet pump 11 , an oil pan 12 , and a flow rate adjusting valve 13 .
  • the clutch engagement pressure is adjusted by a pressure regulating valve 21 .
  • the pressure regulating valve 21 is disposed to an engagement oil path 22 which causes the friction clutch 20 to communicate with the hydraulic pressure control circuit 10 having a function for making a generated source pressure to a constant pressure.
  • the pressure regulating valve 21 is disposed inside the hydraulic pressure control circuit 10 .
  • the degree of opening of the pressure regulating valve 21 is adjusted by, for example, a solenoid driven in response to an instruction from a controller for controlling a transmission of a vehicle.
  • the pressure regulating valve 21 mechanically adjusts the clutch source pressure generated by the hydraulic pressure control circuit 10 to be described later by, for example, the solenoid, generates a desired clutch engagement pressure within a pressure range from the minimum pressure to the maximum pressure at which the friction clutch 20 is engaged, in other words, from the minimum pressure to the clutch source pressure, and applies the clutch engagement pressure to the friction clutch 20 via an engagement oil path 22 . That is, the pressure regulating valve 21 controls the engagement of the friction clutch 20 by adjusting the clutch engagement pressure.
  • the hydraulic pressure control circuit 10 adjusts the pressure of oil supplied by an oil pump 14 and generates a source pressure which is to be appropriately applied to respective ejection destinations. To describe in detail, the hydraulic pressure control circuit 10 generates and supplies a certain clutch source pressure which is the source pressure at which the friction clutch 20 can be perfectly engaged to the pressure regulating valve 21 . Further, the hydraulic pressure control circuit 10 generates and supplies a high pressure oil having a constant pressure to a drive nozzle 11 a of the jet pump 11 . A supply side which is a side to which the oil of the hydraulic pressure control circuit 10 is supplied is connected to the oil pump 14 . The oil pump 14 is connected to an oil pan 15 via a strainer 141 and sucks an oil reserved in the oil pan 15 .
  • the oil sucked by the oil pump 14 is pressurized and ejected to the hydraulic pressure control circuit 10 . That is, the oil reserved in the oil pan 15 is pressurized by the oil pump 14 and supplied to the hydraulic pressure control circuit 10 .
  • the strainer 141 removes foreign substances from the oil sucked by the oil pump 14 .
  • an ejection side which is a side for supplying the high pressure oil of the hydraulic pressure control circuit 10 is connected to the drive nozzle 11 a of the jet pump 11 . That is, the hydraulic pressure control circuit 10 adjusts the pressure of the oil pressurized by the oil pump 14 , makes the oil the high pressure oil having a constant pressure and supplies the high pressure oil having the constant pressure to the drive nozzle 11 a of the jet pump 11 .
  • the jet pump 11 supplies mixed oil to the lubrication portion 20 a of the friction clutch 20 .
  • the jet pump 11 is composed of the drive nozzle 11 a , a suction portion 11 b , a mixing portion 11 c , and an ejection portion 11 d.
  • the drive nozzle 11 a drives the jet pump 11 by being supplied with the high pressure oil.
  • a supply port which is at the hydraulic pressure control circuit 10 side of the drive nozzle 11 a is connected to the hydraulic pressure control circuit 10 . That is, the drive nozzle 11 a is supplied with the high pressure oil having the constant pressure by the hydraulic pressure control circuit 10 . Further, an injection port of the drive nozzle 11 a located opposite to the hydraulic pressure control circuit 10 communicates with the mixing portion 11 c . Accordingly, the high pressure oil having the constant pressure and supplied to the drive nozzle 11 a by the hydraulic pressure control circuit 10 is injected to the mixing portion 11 c by the drive nozzle 11 a . That is, the drive nozzle 11 a supplies the high pressure oil having the constant pressure and supplied by the hydraulic pressure control circuit 10 to the mixing portion 11 c.
  • the suction portion 11 b is a portion for supplying low pressure oil whose pressure is lower than the high pressure oil to the mixing portion 11 c when the high pressure oil is supplied to the mixing portion 11 c by the drive nozzle 11 a .
  • the suction portion 11 b is formed so as to surround the injection port of the drive nozzle 11 a .
  • a supply side which is a side to which the low pressure oil of the suction portion 11 b is supplied, is connected to the oil pan 12 via a suction oil path 16 which causes the suction portion 11 b of the jet pump 11 to communicate with the oil pan 12 .
  • An ejection side of the suction portion 11 b located opposite to the oil pan 12 communicates with the mixing portion 11 c .
  • FIG. 1 shows two oil pans of the oil pan 12 and the oil pan 15 for the convenience of explanation, the two the oil pans 12 , 15 may communicate with each other and may be configured as a single oil pan.
  • the mixing portion 11 c mixes the high pressure oil supplied from the drive nozzle 11 a and the low pressure oil supplied from the suction portion 11 b .
  • the mixing portion 11 c is a hollow oil path whose diameter is increased to be larger than that of the injection port of the drive nozzle 11 a .
  • a supply side which is a side of the mixing portion 11 c to which the high pressure oil and the low pressure oil are supplied communicates with the drive nozzle 11 e and the suction portion 11 b .
  • an ejection side of the mixing portion 11 c located opposite to the drive nozzle 11 a and the suction portion 11 b communicates with the ejection portion 11 d .
  • the ejection side of the mixing portion 11 c is reduced in diameter than the supply side (illustration is omitted).
  • a negative pressure is generated in the vicinity of a boundary between the mixing portion 11 c and the drive nozzle 11 e , and the low pressure oil is sucked into the suction portion 11 b by the negative pressure.
  • the mixing portion 11 c mixes the high pressure oil supplied from the drive nozzle 11 a and the low pressure oil supplied from the suction portion 11 b and supplies the mixed oil as an oil obtained by mixing the high pressure oil and the low pressure oil to the ejection portion 11 d.
  • the ejection portion 11 d ejects the mixed oil which is the oil supplied from the mixing portion 11 c to the lubrication portion 20 a of the friction clutch 20 .
  • the ejection portion 11 d is a hollow oil path, a supply side which is the mixing portion 11 c side communicates with the ejection side of the mixing portion 11 c , whereas an ejection side which is the side opposite to the mixing portion 11 c communicates with the lubrication portion 20 a of the friction clutch 20 .
  • the ejection portion 11 d is formed so that the diameter of the hollow portion increases from, for example, its supply side toward its ejection side.
  • the jet pump 11 is driven by supplying the high pressure oil having the constant pressure to the drive nozzle 11 a , ejects the mixed oil, and supplies the mixed oil to the lubrication portion 20 a of the friction clutch 20 .
  • the mixed oil supplied to the lubrication portion 20 a of the friction clutch 20 returns to the oil pan 12 or to the oil pan 15 via a not shown oil path and the like. That is, the lubricating device 1 - 1 repeatedly uses the oil reserved in the oil pan 12 or in the oil pan 15 to lubricate the lubrication portion 20 a of the friction clutch 20 .
  • the oil pan 12 is an oil reservoir.
  • the oil pan 12 is connected to the suction portion 11 b of the jet pump 11 via the suction oil path 16 .
  • the oil in the suction portion 11 b is sucked into the mixing portion 11 c in the jet pump 11 , since a negative pressure is generated in the suction portion 11 b , the oil reserved in the oil pan 12 is sucked into the suction portion 11 b of the jet pump 11 by the negative pressure via the suction oil path 16 .
  • the oil supplied from the oil pan 12 to the suction portion lib of the jet pump 11 via the suction oil path 16 has the same pressure as that of the oil supplied from the suction portion 11 b to the mixing portion 11 c . That is, the oil pan 12 supplies the low pressure oil, which has the pressure lower than the high pressure oil supplied to the mixing portion 11 c by the drive nozzle 11 a in the jet pump 11 , to the suction portion 11 b.
  • the flow rate adjusting valve 13 increases the flow rate of the low pressure oil supplied from the oil pan 12 to the suction portion 11 b of the jet pump 11 .
  • the flow rate adjusting valve 13 is interposed between the suction portion 11 b of the jet pump 11 and the oil pan 12 .
  • the flow rate adjusting valve 13 is disposed to the suction oil path 16 .
  • the flow rate adjusting valve 13 includes a valve case 131 , a spool 132 , a coil spring 133 , and an adjustment piston chamber 134 .
  • the spool 132 and the coil spring 133 are intrinsically symmetrical up and down with respect to an axial direction to be described later.
  • the upper sides of the spool 132 and the coil spring 133 with respect to the axial direction show a state A in which the friction clutch 20 is engaged and the lower sides thereof show a state B in which the friction clutch 20 is released.
  • the valve case 131 causes the oil pan 12 side which is the upstream side of the suction oil path 16 to communicate with the suction portion 11 b side which is the downstream side thereof inside of the valve case 131 .
  • the valve case 131 is formed in an approximately cylindrical body and accommodates the spool 132 therein.
  • the spool 132 is formed in a columnar shape whose outer diameter is approximately the same as the inner diameter of the valve case 131 as well as the size of the spool 132 in the axial direction is formed shorter than the size inside of the valve case 131 in the axial direction. Therefore, the spool 132 can move inside the valve case 131 in the axial direction. It is assumed below that the axial direction of the valve case 131 and the axial direction of the spool 132 are simply called the axial direction.
  • the coil spring 133 is an adjustment valve urging means.
  • the coil spring 133 applies an urging force to the spool 132 in the axial direction.
  • the coil spring 133 is interposed between a wall portion in the axial direction of the valve case 131 and the spool 132 inside of the valve case 131 so as not to extend longer than a natural length at all. That is, the coil spring 133 is disposed in any of a state that the coil spring 133 is as long as the natural length or in a state that the coil spring 133 is compressed than the natural length, and when the coil spring 133 is compressed than the natural length, the coil spring 133 urges the spool 132 to one side in the axial direction.
  • the adjustment piston chamber 134 applies the clutch engagement pressure to the spool 132 .
  • the adjustment piston chamber 134 is a space formed inside of the valve case 131 on a side opposite to a side where the coil spring 133 is disposed with respect to the spool 132 .
  • the adjustment piston chamber 134 communicates with the engagement oil path 22 and can be introduced with the clutch engagement pressure applied to the engagement oil path 22 by being introduced with the oil inside of the engagement oil path 22 .
  • the adjustment piston chamber 134 applies the clutch engagement pressure to one side of the spool 132 in the axial direction and presses the spool 132 to the other side in the axial direction by a press force based on the clutch engagement pressure.
  • the spool 132 when the spool 132 receives the press force larger than the urging force of the coil spring 133 by the adjustment piston chamber 134 , the spool 132 moves to the other side in the axial direction against the urging force of the coil spring 133 until the received press force becomes equal to the urging force of the coil spring 133 . That is, the spool 132 moves to the other side in the axial direction in response to an increase of the clutch engagement pressure.
  • the spool 132 includes a suction open valve portion 132 a , a suction close valve portion 132 b , and an engagement close valve portion 132 c , and the suction close valve portion 132 b , the suction open valve portion 132 a , and the engagement close valve portion 132 c are sequentially disposed along the axial direction from the other side in the axial direction to the one side in the axial direction.
  • the diameter of an intermediate portion of the spool 132 in the axial direction is reduced than the other portion, and the reduced diameter portion is configured as the suction open valve portion 132 a and sandwiched between the suction close valve portion 132 b and the engagement close valve portion 132 c .
  • the suction open valve portion 132 a of the spool 132 after the outer diameter of the suction open valve portion 132 a of the spool 132 is gradually reduced along the axial direction from the other side of the axial direction toward the one side thereof until the outer diameter becomes a predetermined outer diameter from the same outer diameter as that of the suction close valve portion 132 b , the suction open valve portion 132 a continues to the engagement close valve portion 132 c in the uniform outer diameter.
  • the engagement close valve portion 132 c is separated from an inner wall of the valve case 131 on the one side in the axial direction, the suction open valve portion 132 a confronts both the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 , and the oil pan 12 side of the suction oil path 16 is caused to communicate with the suction portion 11 b side of the suction oil path 16 by the suction open valve portion 132 a of the spool 132 .
  • the engagement close valve portion 132 c approaches nearest to the inner wall of the valve case 131 on the one side in the axial direction, the suction close valve portion 132 b confronts both the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 , and the communication between the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 is shut off by the suction close valve portion 132 b of the spool 132 .
  • the spool 132 moves inside of the valve case 131 so as to cause the oil pan 12 side of the suction oil path 16 to communicate with the suction portion 11 b side of the suction oil path 16 in response to the increase of the clutch engagement pressure. That is, the degree of opening of the flow rate adjusting valve 13 is mechanically increased in response to the increase of the clutch engagement pressure.
  • the spool 132 moves inside of the valve case 131 in a direction where the suction open valve portion 132 a confronts both the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 . That is, as the clutch engagement pressure is increased by the pressure regulating valve 21 , the degree of opening of the flow rate adjusting valve 13 is mechanically increased.
  • the high pressure oil having the predetermined pressure is supplied to the drive nozzle 11 a of the jet pump 11 by the hydraulic pressure control circuit 10 , in the mixing portion 11 c , a predetermined negative pressure is generated in the vicinity of a boundary between the mixing portion 11 c and the drive nozzle 11 a . Accordingly, when the flow rate adjusting valve 13 opens, the low pressure oil inside of the suction portion 11 b is sucked into the mixing portion 11 c by the predetermined negative pressure generated in the mixing portion 11 c . With the operation, the low pressure oil reserved in the oil pan 12 is sucked into the suction portion 11 b via the suction oil path 16 .
  • the flow rate of the mixed oil which lubricates the lubrication portion 20 a of the friction clutch 20 is increased. Accordingly, the flow rate of the mixed oil ejected from the ejection portion 11 d of the jet pump 11 can be changed only by the flow rate adjusting valve 13 without using a torque/oil flow rate conversion mechanism, for example, a torque sensor for adjusting the flow rate of oil supplied to the jet pump in response to the torque transmitted from the friction clutch. With the configuration, the device can be made compact.
  • the compact oil pump 14 can be used. With the configuration, drive torque for driving the oil pump 14 can be reduced. Therefore, a load on an engine of a vehicle for generating drive torque for driving the oil pump 14 is reduced. Accordingly, a fuel consumption of the vehicle can be improved.
  • the friction clutch 20 shifts from the state B to the state A, i.e., from a release state to an engagement state. That is, in the lubricating device 1 - 1 , as the clutch engagement pressure is increased by the pressure regulating valve 21 , a heat amount generated in the friction clutch 20 is increased. In contrast, in the lubricating device 1 - 1 , as the clutch engagement pressure is increased by the pressure regulating valve 21 as described above, the flow rate of the mixed oil for lubricating the lubrication portion 20 a of the friction clutch 20 is increased.
  • the flow rate of the mixed oil for lubricating the lubrication portion 20 a of the friction clutch 20 is increased. That is, the mixed oil having a flow rate suitable for lubricating the lubrication portion 20 a of the friction clutch 20 is supplied to the lubrication portion 20 a of the friction clutch 20 by the lubricating device 1 - 1 according to an engagement state of the friction clutch 20 .
  • the friction clutch 20 When, for example, the friction clutch 20 is operated in a direction where the friction clutch 20 is engaged, although the heat amount generated in the friction clutch 20 increases, the lubrication portion 20 a of the friction clutch 20 is cooled by the mixed oil whose flow rate is increased. As a result, since an increase of temperature of the friction clutch 20 when the friction clutch 20 is moved in the direction where the friction clutch 20 is engaged can be suppressed, the seizure of the lubrication portion 20 a due to an insufficient supply of the mixed oil can be prevented.
  • the lubricating device 1 - 1 is configured such that the flow rate of the low pressure oil sucked into the suction portion 11 b of the jet pump 11 is adjusted without adjusting the flow rate of the high pressure oil supplied to the drive nozzle 11 a of the jet pump 11 , the efficiency of the jet pump 11 can be set to, for example, the vicinity of the highest point. That is, the efficiency of the jet pump 11 can be improved.
  • the mixed oil having a flow rate optimum to lubricate the lubrication portion 20 a of the friction clutch 20 can be ejected from the ejection portion 11 d of the jet pump 11 by effectively using the flow rate amplification function provided with the jet pump 11 , for example, seizure due to the insufficient flow rate of the mixed oil being supplied or an increase of the stirring loss due to the excessive flow rate of the mixed oil being supplied can be further suppressed to the lubrication portion 20 a of the friction clutch 20 .
  • FIG. 2 is a schematic view showing an outline of the lubricating device according to the second embodiment.
  • the coil spring 133 in the lubricating device 1 - 1 according to the first embodiment is composed of shape memory alloy so that, when an oil temperature changes even if a clutch engagement pressure does not change, the flow rate of a mixed oil supplied to a lubrication portion 20 a of a friction clutch 20 is increased as the temperature of the oil increases.
  • the same components as those of the first embodiment described above are denoted by the same reference numerals and explanation thereof is omitted. Further, in FIG.
  • a spool 132 and a coil spring 133 are intrinsically symmetrical up and down with respect to an axial direction to be described later.
  • the upper sides of a spool 132 and a coil spring 133 with respect to the axial direction show the state A and the lower sides thereof show the state B.
  • the symbol F shows the urging force of the coil spring 133 .
  • the symbol Av corresponds to the degree of opening of a flow rate adjusting valve 13 and shows the opening area of the flow rate adjusting valve 13 to a suction oil path 16 .
  • the symbol Q 1 shows a supply flow rate which is the flow rate of high pressure oil supplied from a hydraulic pressure control circuit 10 to a drive nozzle 11 a of a jet pump 11 .
  • the symbol Q 2 shows a suction flow rate which is the flow rate of low pressure oil sucked from an oil pan 12 to a suction portion 11 b of the jet pump 11 via the suction oil path 16 .
  • the symbol Q 3 shows a lubrication flow rate which is the flow rate of a mixed oil supplied from an ejection portion 11 d of the jet pump 11 to the lubrication portion 20 a of the friction clutch 20 .
  • the coil spring 133 of the second embodiment is composed of the shape memory alloy whose spring constant is reduced as a temperature increases. That is, the urging force F of the coil spring 133 of the second embodiment for urging the spool 132 to one side in the axial direction is weakened as the temperature of the coil spring 133 increases even if the length of the coil spring 133 is the same.
  • FIG. 3 is a view showing characteristics of the urging force of an adjustment valve urging means, the degree of opening of a flow rate adjusting valve, a suction flow rate, and a lubrication flow rate to the temperature change in a table. That is, FIG. 3 is a view showing the change of the urging force F to the temperature change of the flow rate adjusting valve 13 , the change of the opening area Av to the temperature change of the flow rate adjusting valve 13 , the change of the suction flow rate Q 2 to the temperature change of the flow rate adjusting valve 13 , and the change of the lubrication flow rate Q 3 to the temperature change of the flow rate adjusting valve 13 in the table.
  • the low pressure oil reserved in the oil pan 12 and an oil pan 15 is repeatedly used to lubricate the lubrication portion 20 a of the friction clutch 20 .
  • the temperature of the coil spring 133 is also increased via a valve case 131 or a spool 132 .
  • the opening area Av, the suction flow rate Q 2 , and the lubrication flow rate Q 3 are increased as the temperature of the oil increases.
  • the mixed oil having a flow rate suitable for lubricating the lubrication portion 20 a of the friction clutch 20 is supplied to the lubrication portion 20 a in response to the temperature change of the flow rate adjusting valve 13 .
  • a stirring loss due to the excessive supply of the mixed oil can be further suppressed to the lubrication portion 20 a of the friction clutch 20 as well as the seizure of the lubrication portion 20 a due to the insufficient supply of the mixed oil can be prevented.
  • FIG. 4 is a schematic view showing an outline of the lubricating device according to the third embodiment.
  • a lubricating device 1 - 3 according to the third embodiment is configured such that a manual valve 17 to be described later is disposed in place of the flow rate adjusting valve 13 and the pressure regulating valve 21 in the lubricating device 1 - 1 according to the first embodiment so that clutch engagement pressure is adjusted in association with the operation of a shift lever performed by a driver as well as the flow rate of an oil supplied from an oil pan 12 to a suction portion 11 b of a jet pump 11 is adjusted.
  • Note that the same components as those of the first embodiment described above are denoted by the same reference numerals and explanation thereof is omitted.
  • the manual valve 17 of the third embodiment is a single flow rate/pressure adjustment association valve in which the flow rate adjusting valve 13 is combined with the pressure regulating valve 21 .
  • the manual valve 17 is disposed in an engagement oil path 22 . Therefore, in the third embodiment, a pressure regulating valve is disposed to the engagement oil path 22 .
  • the manual valve 17 of the third embodiment includes a valve case 171 and a spool 172 . Note that, in FIG. 4 , the spool 172 is intrinsically symmetrical up and down with respect to an axial direction to be described later.
  • the upper side of the spool 172 to the axial direction shows a state when a shift lever is located at a neutral position and the lower side of the spool 172 shows a state when the shift lever is located at an engagement position which is a position where a friction clutch 20 is engaged by the clutch engagement pressure.
  • an advance position where a vehicle can travel forward is exemplified as the engagement position, the embodiment is not limited thereto and the engagement position may be a reverse position where the vehicle can travel backward.
  • the valve case 171 causes the friction clutch 20 side which is a downstream side of the engagement oil path 22 to communicate with a hydraulic pressure control circuit 10 side which is an upstream side of the engagement oil path 22 inside the valve case 171 .
  • the valve case 171 is composed of an approximately cylindrical body with its other side in the axial direction opened and one side of the spool 172 in the axial direction inserted inside of the valve case 171 .
  • the spool 172 is formed in a columnar shape whose outer diameter is approximately the same as the inner diameter of the valve case 171 . Further, the other side of the spool 172 in the axial direction is exposed from the valve case 171 , and the exposed portion is coupled with the not shown shift lever. Therefore, the spool 172 can move in the axial direction in the valve case 171 in association with the operation of the shift lever performed by the driver.
  • the spool 172 includes a suction open valve portion 172 a , a suction close valve portion 172 b , an engagement close valve portion 172 c , and an engagement open valve portion 172 d , and the engagement close valve portion 172 c , the engagement open valve portion 172 d , the suction close valve portion 172 b , and the suction open valve portion 172 a are sequentially disposed along the axial direction from the other side in the axial direction to the one side in the axial direction.
  • the suction open valve portion 172 a is a portion formed in a taper shape on the one side of the spool 172 in the axial direction and changes the degree of opening of the manual valve 17 as the flow rate adjusting valve, i.e., the opening area of the manual valve 17 to a suction oil path 16 in response to its position in the axial direction to the valve case 171 . It is assumed below that the axial direction of the valve case 171 and the axial direction of the spool 172 are simply called the axial direction.
  • the diameter of an intermediate portion of the spool 172 is reduced than the other portion and the reduced diameter portion is configured as the engagement open valve portion 172 d and sandwiched between the engagement close valve portion 172 c and the suction close valve portion 172 b .
  • the engagement open valve portion 172 d of the spool 172 is a portion whose diameter is reduced along the axial direction from the other side in the axial direction to the one side in the axial direction so that its outer diameter becomes uniform and continues to the engagement close valve portion 172 c and the suction close valve portion 172 b .
  • the engagement close valve portion 172 c confronts the friction clutch 20 side of the engagement oil path 22 as well as the suction close valve portion 172 b confronts both the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 and the communication between the friction clutch 20 side and the hydraulic pressure control circuit 10 side of the engagement oil path 22 is shut off by the engagement close valve portion 172 c of the spool 172 as well as the communication between the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 is shut off by the suction close valve portion 172 b of the spool 172 .
  • the engagement open valve portion 172 d confronts both the friction clutch 20 side and the hydraulic pressure control circuit 10 side of the engagement oil path 22 as well as the suction open valve portion 172 a confronts both the oil pan 12 side and the suction portion 11 b side of the suction oil path 16
  • the friction clutch 20 side of the engagement oil path 22 is caused to communicate with the hydraulic pressure control circuit 10 side of the engagement oil path 22 by the engagement open valve portion 172 d of the spool 172 as well as the oil pan 12 side of the suction oil path 16 is caused to communicate with the suction portion 11 b side of the suction oil path 16 by the suction open valve portion 172 a of the spool 172 .
  • the suction close valve portion 172 b of the spool 172 confronts both the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 and the communication between the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 is shut off by the suction close valve portion 172 b , the supply flow rate of a mixed oil supplied to a lubrication portion 20 a of the friction clutch 20 by an ejection portion 11 d of the jet pump 11 becomes the minimum flow rate.
  • the friction clutch 20 side of the engagement oil path 22 is caused to communicate with the hydraulic pressure control circuit 10 side of the engagement oil path 22 by the engagement open valve portion 172 d , the engagement pressure of the friction clutch 20 increases from the minimum pressure and finally becomes a clutch source pressure, and the friction clutch 20 is perfectly engaged. Therefore, when the shift lever is switched from the neutral position to the advance position, the heat amount generated in the friction clutch 20 is increased.
  • the suction open valve portion 172 a of the spool 172 confronts both the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 and the oil pan 12 side of the suction oil path 16 is caused to communicate with the suction portion 11 b side of the suction oil path 16 by the suction open valve portion 172 a .
  • the degree of opening of the manual valve 17 as the flow rate adjusting valve i.e., the opening area of the manual valve 17 to the suction oil path 16 is gradually increased by the suction open valve portion 172 a of the spool 172 .
  • the flow rate of low pressure oil supplied from the oil pan 12 to the suction portion 11 b of the jet pump 11 is increased.
  • the supply flow rate of the mixed oil supplied to the lubrication portion 20 a of the friction clutch 20 by the ejection portion 11 d of the jet pump 11 is increased from the minimum flow rate. That is, in the lubricating device 1 - 3 , when the shift lever is switched from the neutral position to the advance position, the flow rate of the mixed oil supplied to the lubrication portion 20 a of the friction clutch 20 can be increased to accelerate the cooling of the lubrication portion 20 a of the friction clutch 20 by the mixed oil as well as to prevent the seizure of the lubrication portion 20 a due to an insufficient supply of the mixed oil.
  • the lubricating device 1 - 3 can supply the mixed oil to the lubrication portion 20 a of the friction clutch 20 at a flow rate suitable for lubricating and cooling the friction clutch 20 during a period in which the friction clutch 20 shifts from a release state to an engagement state and the friction clutch 20 shifts from the engagement state to the release state in response to the operation of the shift lever performed by the driver.
  • the lubricating device 1 - 3 can be realized at a low cost by applying a modification, which permits the oil pan 12 side of the suction oil path 16 to communicate with the suction portion 11 b side of the suction oil path 16 by, for example, moving the spool in the axial direction, to a pressure regulating valve of an ordinary automatic transmission provided with a vehicle.
  • FIG. 5 is a schematic view showing an outline of the lubricating device according to the fourth embodiment.
  • a lubricating device 1 - 4 according to the fourth embodiment provides a clutch control valve 18 in place of the manual valve 17 in the lubricating device 1 - 3 according to the third embodiment and adjusts a clutch engagement pressure based on an instruction pressure generated by an electronic control of a vehicle as well as adjusts the flow rate of the low pressure oil supplied to a suction portion 11 b of a jet pump 11 .
  • a not shown instruction pressure regulating valve is disposed inside of a hydraulic pressure control circuit 10 and, for example, a solenoid is driven by the electronic control of the vehicle and the instruction pressure is generated by adjusting the degree of opening of the instruction pressure regulating valve.
  • a clutch source pressure is applied to an engagement oil path 22 inside of on the hydraulic pressure control circuit 10 side to a clutch control valve 18 by the hydraulic pressure control circuit 10 .
  • the clutch control valve 18 of the fourth embodiment is a single flow rate/pressure adjustment association valve in which the flow rate adjusting valve 13 and the pressure regulating valve 21 in the lubricating device 1 - 1 of the first embodiment are combined.
  • the clutch control valve 18 of the fourth embodiment includes a valve case 181 , a spool 182 , a coil spring 183 , and an association valve piston chamber 184 .
  • the spool 182 and the coil spring 183 are intrinsically symmetrical right and left with respect to an axial direction to be described later. For the convenience of explanation, it is assumed here that the right sides of the spool 182 and the coil spring 183 to the axial direction show the state B and the left sides thereof show the state A.
  • the valve case 181 causes a friction clutch 20 side as the downstream side of the engagement oil path 22 to communicate with the hydraulic pressure control circuit 10 side as the upstream side of the engagement oil path 22 inside the valve case 181 .
  • the valve case 181 is composed of an approximately cylindrical body and accommodates the spool 182 therein. In the opening portion of the valve case 181 to the engagement oil path 22 , since the opening portion on the friction clutch 20 side is positioned nearer to the one side in the axial direction than the opening portion on the hydraulic pressure control circuit 10 side is, when the spool 182 moves along the axial direction as described later, the opening area of the valve case 181 to the engagement oil path 22 can be changed.
  • the spool 182 is formed in a columnar shape whose outer diameter is approximately the same as the inner diameter of the valve case 181 as well as the size of the spool 182 in the axial direction is formed shorter than the size of the inside of the valve case 181 in the axial direction. Therefore, the spool 182 can move inside the valve case 181 in the axial direction.
  • the one side of the spool 182 in the axial direction receives the instruction pressure (a pilot pressure by the instruction pressure regulating valve) by oil introduced into the association valve piston chamber 184 . It is assumed below that the axial direction of the valve case 181 and the axial direction of the spool 182 are simply called the axial direction.
  • the coil spring 183 is an association valve urging means.
  • the coil spring 183 applies an urging force to the spool 182 in the axial direction.
  • the coil spring 183 is disposed inside the valve case 181 between a wall portion of the valve case 181 in the axial direction and the spool 182 so as not to expand more than a natural length at all. That is, the coil, spring 183 is disposed so as to be as long as the natural length or compressed from the natural length, and when the coil spring 183 is compressed from the natural length, the coil spring 183 urges the spool 182 to the one side in the axial direction.
  • the association valve piston chamber 184 applies the instruction pressure to the spool 182 .
  • the association valve piston chamber 184 is a space formed inside of the valve case 181 at a side opposite to the side where the coil spring 183 is disposed with respect to the spool 182 .
  • the association valve piston chamber 184 communicates with the hydraulic pressure control circuit 10 via an instruction oil path 184 a , and when the association valve piston chamber 184 is introduced with the oil inside of the instruction oil path 184 a , the association valve piston chamber 184 can introduce the instruction pressure applied to the instruction oil path by the hydraulic pressure control circuit 10 .
  • the association valve piston chamber 184 When the association valve piston chamber 184 is introduced with the instruction pressure from the hydraulic pressure control circuit 10 , the association valve piston chamber 184 applies the instruction pressure to the other side of the spool 182 in the axial direction and presses the spool 182 to the other side in the axial direction with an instruction press force which is a press force based on the instruction pressure. Therefore, when the spool 182 receives an instruction press force larger than the urging force of the coil spring 183 by the association valve piston chamber 184 , the spool 182 moves to the other side in the axial direction against the urging force of the coil spring 183 until the received instruction press force becomes equal to the urging force of the coil spring 183 . That is, the spool 182 moves to the other side in the axial direction in response to an increase of the instruction pressure.
  • the spool 182 includes a suction open valve portion 182 a , a suction close valve portion 182 b , an engagement close valve portion 182 c , and an engagement open valve portion 182 d , and an instruction close valve portion 182 e , and the suction close valve portion 182 b , the suction open valve portion 182 a , the engagement close valve portion 182 c , the engagement open valve portion 182 d , and the instruction close valve portion 182 e are sequentially disposed along the axial direction from the other side in the axial direction to the one side in the axial direction.
  • the diameter of an intermediate portion of the spool 182 in the axial direction is reduced than the other portion and the diameter reduced portion is configured as the engagement open valve portion 182 d and sandwiched between the engagement close valve portion 182 c and the instruction close valve portion 182 e .
  • the diameter of the spool 182 on the side opposite to the engagement open valve portion 182 d with respect to the engagement close valve portion 182 c is reduced than the outer diameter of the engagement close valve portion 182 c , and the reduced diameter portion is configured as the suction open valve portion 182 a .
  • the portion of the spool 182 on the other side in the axial direction with respect to the suction open valve portion 182 a is configured as the suction close valve portion 182 b .
  • the diameter of the engagement open valve portion 182 d is reduced along the axial direction from the other side in the axial direction to the one side in the axial direction so that its outer diameter becomes uniform, and the engagement open valve portion 182 d continues to the engagement close valve portion 182 c and the instruction close valve portion 182 e .
  • the suction open valve portion 182 a extends while increasing its diameter until the diameter becomes equal to the outer diameter of the suction close valve portion 182 b and continues to the suction close valve portion 182 b .
  • the suction close valve portion 182 b extends while keeping the outer diameter thereof which is the same as the outer diameter of the engagement close valve portion 182 d , and forms the end portion of the spool 182 on the other side in the axial direction.
  • the engagement open valve portion 182 d confronts both the friction clutch 20 side and the hydraulic pressure control circuit 10 side of the engagement oil path 22 , and the friction clutch 20 side of the engagement oil path 22 is caused to communicate with the hydraulic pressure control circuit 10 side of the engagement oil path 22 by the engagement open valve portion 182 d of the spool 182 .
  • the opening area of the clutch control valve 18 to the engagement oil path 22 is increased. That is, as the engagement open valve portion 182 d moves to the other side in the axial direction, the clutch engagement pressure is increased. Accordingly, as the engagement open valve portion 182 d moves to the other side in the axial direction, the clutch control valve 18 generates the clutch engagement pressure having a pressure capable of engaging the friction clutch 20 .
  • the clutch control valve 18 of the fourth embodiment when the one side of the spool 182 in the axial direction receives the instruction pressure having the minimum pressure, since the engagement close valve portion 182 c on the other side in the axial direction confronts the hydraulic pressure control circuit 10 side of the engagement oil path 22 , the communication between the friction clutch 20 side and the hydraulic pressure control circuit 10 side of the engagement oil path 22 is shut off by the engagement close valve portion 182 c of the spool 182 . Accordingly, when the engagement close valve portion 182 c confronts the hydraulic pressure control circuit 10 side of the engagement oil path 22 , the clutch control valve 18 generates the clutch engagement pressure having the minimum pressure.
  • the clutch control valve 18 of the fourth embodiment when the clutch engagement pressure reaches a pressure at which the friction clutch 20 can be engaged by applying the instruction pressure to the other side of the spool 182 in the axial direction, since the suction open valve portion 182 a confronts both the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 , the oil pan 12 side of the suction oil path 16 is caused to communicate with the suction portion 11 b side of the suction oil path 16 by the suction open valve portion 182 a of the spool 182 .
  • the suction close valve portion 182 b confronts both the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 , and thus the communication between the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 is shut off by the suction close valve portion 182 b of the spool 182 .
  • the spool 182 increases the clutch engagement pressure by moving to the other side in the axial direction in response to an increase of the instruction pressure
  • the spool 182 causes the oil pan 12 side of the suction oil path 16 to communicate with the suction portion 11 b side of the suction oil path 16 inside of the valve case 181 in response to the increase of the instruction pressure as well as moves in a direction to the place where the friction clutch 20 side of the engagement oil path 22 is caused to communicate with the hydraulic pressure control circuit 10 side of the engagement oil path 22 . That is, the degree of opening of the clutch control valve 18 as a flow rate adjusting valve and a pressure regulating valve is mechanically increased in response to the increase of the instruction pressure. In other words, the opening area of the clutch control valve 18 to the suction oil path 16 of the valve case 181 and the opening area thereof to the engagement oil path 22 are mechanically increased in response to the increase of the instruction pressure.
  • the instruction pressure generated by the hydraulic pressure control circuit 10 is applied to the other side of the spool 182 in the axial direction by the electronic control of the vehicle via the instruction oil path 184 a and the association valve piston chamber 184 . Therefore, as the instruction pressure generated by the hydraulic pressure control circuit 10 increases, the spool 182 is pressed to the other side in the axial direction against the urging force of the coil spring 183 by the oil in the association valve piston chamber 184 . With the operation, as the instruction pressure generated by the hydraulic pressure control circuit 10 increases, the spool 182 moves to the other side in the axial direction.
  • the spool 182 moves in a direction to the place where the engagement open valve portion 182 d confronts both the friction clutch 20 side and the hydraulic pressure control circuit 10 side of the engagement oil path 22 inside the valve case 181 as well as moves in a direction to the place where the suction open valve portion 182 a confronts both the oil pan 12 side and the suction portion 11 b side of the suction oil path 16 . That is, as the instruction pressure generated by the hydraulic pressure control circuit 10 increases, the degree of opening of the clutch control valve 18 as the flow rate adjusting valve and the pressure regulating valve, i.e., the opening area of the valve case 181 to the suction oil path 16 and the opening area of the valve case 181 to the engagement oil path 22 are mechanically increased.
  • the engagement pressure of the friction clutch 20 becomes the minimum pressure and the friction clutch 20 is released. Further, at that time, i.e., when the clutch engagement pressure is the minimum pressure, since the communication between the oil pan 12 side and the suction portion 11 b side of the engagement oil path 22 is shut off by the suction close valve portion 182 b of the spool 182 , the supply flow rate of a mixed oil supplied to the lubrication portion 20 a of the friction clutch 20 by the ejection portion 11 d of the jet pump 11 becomes the minimum flow rate.
  • the friction clutch 20 side of the engagement oil path 22 is caused to communicate with the hydraulic pressure control circuit 10 side of the engagement oil path 22 by the engagement open valve portion 182 d of the spool 182 as well as the oil pan 12 side of the suction oil path 16 is caused to communicate with the suction portion 11 b side of the suction oil path 16 by the suction open valve portion 182 a of the spool 182 .
  • the engagement pressure of the friction clutch 20 increases from the minimum pressure and finally becomes the clutch source pressure, and the friction clutch 20 is perfectly engaged. Therefore, when the clutch engagement pressure reaches a pressure at which the friction clutch 20 can be engaged from the minimum pressure, the heat amount generated in the friction clutch 20 is increased. Further, at that time, i.e., when the clutch engagement pressure reaches the pressure at which the friction clutch 20 can be engaged from the minimum pressure, as the suction close valve portion 182 b moves to the other side in the axial direction, the oil pan 12 side of the suction oil path 16 is caused to communicate with the suction portion 11 b side of the suction oil path 16 by the suction open valve portion 182 a .
  • the suction close valve portion 182 b moves to the other side in the axial direction, the supply flow rate of the mixed oil supplied to the lubrication portion 20 a of the friction clutch 20 by the ejection portion 11 d of the jet pump 11 is increased. That is, when the clutch engagement pressure reaches the pressure at which the friction clutch 20 can be engaged from the minimum pressure, as the suction close valve portion 182 b moves to the other side in the axial direction, the degree of opening the clutch control valve 18 as a flow rate adjusting valve, i.e., the opening area of the valve case 181 to the suction oil path 16 is increased by the suction open valve portion 182 a of the spool 182 .
  • the flow rate of the mixed oil supplied to the lubrication portion 20 a of the friction clutch 20 is increased to accelerate the cooling of the lubrication portion 20 a of the friction clutch 20 by the mixed oil and prevent the seizure of the lubrication portion 20 a due to an insufficient supply of the mixed oil.
  • FIG. 6 is a schematic view showing an outline of the lubricating device according to the fifth embodiment.
  • a lubricating device 1 - 5 according to the fifth embodiment disposes a check valve 19 to an oil pan 12 side of a flow rate adjusting valve 13 in the lubricating device 1 - 1 according to the first embodiment and prevents low pressure oil supplied from the oil pan 12 to a suction portion 11 b of a jet pump 11 from flowing backward.
  • the same components as those of the first embodiment described above are denoted by the same reference numerals and explanation thereof is omitted. Further, in FIG.
  • a spool 132 and a coil spring 133 are intrinsically symmetrical up and down with respect to an axial direction to be described later.
  • the upper sides of the spool 132 and the coil spring 133 to the axial direction show the state A and the left sides thereof show the state B.
  • the check valve 19 is disposed to the oil pan 12 side of the flow rate adjusting valve 13 .
  • the check valve 19 is disposed to an end of a suction oil path 16 on the oil pan 12 side.
  • the check valve 19 when the flow rate adjusting valve 13 is closed, since the check valve 19 is closed, it can be prevented that air is mixed in the suction oil path 16 by the check valve 19 . That is, when the low pressure oil is not sucked from the oil pan 12 to the suction portion 11 b of the jet pump 11 via the suction oil path 16 by the flow rate adjusting valve 13 , the check valve 19 can prevent air from being mixed on the oil pan 12 side with respect to the flow rate adjusting valve 13 of the suction oil path 16 . Therefore, even if the low pressure oil is sucked into the suction portion 11 b of the jet pump 11 by opening the flow rate adjusting valve 13 , air is not mixed inside of the jet pump 11 .
  • the mixed oil when the mixed oil starts to be supplied to a lubrication portion 20 a of a friction clutch 20 by an ejection portion 11 d of the jet pump 11 , the mixed oil can be promptly supplied. Further, since air is not mixed inside of the jet pump 11 by the check valve 19 , occurrence of abnormal sound caused by air sucked into the jet pump 11 can be prevented.
  • the invention is configured such that when the clutch engagement pressure is the minimum pressure, the suction oil path 16 is shut off by the spool, the invention is not limited to the configuration.
  • the invention may be configured such that, even if, for example, the clutch engagement pressure is the minimum pressure, the suction oil path 16 is not shut off by the spool.
  • the lubricating device according to the invention is useful to lubricate a lubrication portion of a friction clutch of a vehicle, and in particular, useful to lubricate a lubrication portion of a friction clutch which constitutes a transmission of a vehicle.
US13/203,432 2009-03-11 2009-03-11 Lubricating device Active 2029-11-19 US8556038B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/054661 WO2010103630A1 (ja) 2009-03-11 2009-03-11 潤滑装置

Publications (2)

Publication Number Publication Date
US20110308912A1 US20110308912A1 (en) 2011-12-22
US8556038B2 true US8556038B2 (en) 2013-10-15

Family

ID=42727938

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/203,432 Active 2029-11-19 US8556038B2 (en) 2009-03-11 2009-03-11 Lubricating device

Country Status (5)

Country Link
US (1) US8556038B2 (de)
JP (1) JP5177280B2 (de)
CN (1) CN102348904B (de)
DE (1) DE112009004497B4 (de)
WO (1) WO2010103630A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060117A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 蓄圧器を備えた油圧制御装置
US9334766B2 (en) * 2011-09-27 2016-05-10 GM Global Technology Operations LLC Method and apparatus for controlling oil flow in an internal combustion engine
US9739374B2 (en) 2013-02-06 2017-08-22 Honda Motor Co., Ltd. Hydraulic pressure supply apparatus for automatic transmission
WO2017090624A1 (ja) * 2015-11-26 2017-06-01 いすゞ自動車株式会社 作動油制御装置
TWI603020B (zh) 2016-11-04 2017-10-21 財團法人工業技術研究院 流體機械潤滑系統總成
JP2019044799A (ja) * 2017-08-30 2019-03-22 トヨタ自動車株式会社 車両の動力伝達装置
DE102021214356A1 (de) 2021-12-15 2023-06-15 Zf Friedrichshafen Ag Vorrichtung zum Befüllen eines hydrodynamischen Drehmomentwandlers

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557363A (en) 1983-12-12 1985-12-10 Caterpillar Tractor Co. Friction couple cooling system responsive to actuation thereof
JPH05149418A (ja) 1991-11-25 1993-06-15 Honda Motor Co Ltd 変速機の制御装置
JPH0754972A (ja) 1993-08-20 1995-02-28 Honda Motor Co Ltd 車両用油圧作動式変速機の潤滑油供給装置
JPH08219267A (ja) 1994-12-15 1996-08-27 Luk Getriebe Syst Gmbh 円錐プーリ形巻掛け伝動装置を備えた駆動ユニット
DE19826747A1 (de) 1997-07-14 1999-01-21 Luk Getriebe Systeme Gmbh Getriebe
US20050252326A1 (en) 2004-05-15 2005-11-17 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Device for driving a plurality of hydraulic shift cylinders and hydraulic supply system for a twin-clutch transmission
DE102005019516A1 (de) 2004-05-15 2005-12-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Vorrichtung zum Ansteuern einer Mehrzahl von hydraulischen Schaltzylindern sowie Hydraulikversorgungssystem für ein Doppelkupplungsgetriebe
JP2006308257A (ja) 2005-05-02 2006-11-09 Matsushita Electric Ind Co Ltd 蒸発器、冷媒混合器、およびこれらを用いたヒートポンプ
JP2009115266A (ja) 2007-11-08 2009-05-28 Toyota Motor Corp オイル潤滑装置
JP2009115066A (ja) 2007-11-09 2009-05-28 Toyota Motor Corp ジェットポンプ
JP2009115267A (ja) 2007-11-08 2009-05-28 Toyota Motor Corp 油圧制御装置および変速機
JP2009174644A (ja) 2008-01-24 2009-08-06 Toyota Motor Corp 流体伝動装置用の制御装置
JP2009250044A (ja) 2008-04-01 2009-10-29 Toyota Motor Corp ジェットポンプ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690734B1 (en) * 2000-06-02 2004-02-10 Qualcomm, Incorporated Method and apparatus for puncturing code symbols in a communications system
JP4248492B2 (ja) * 2004-12-28 2009-04-02 トヨタ自動車株式会社 軽油等燃料潤滑ディーゼルエンジン

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500683A (ja) 1983-12-12 1986-04-10 キヤタピラ− トラクタ− コムパニ− 作動に応答する摩擦連結装置の冷却装置
US4557363A (en) 1983-12-12 1985-12-10 Caterpillar Tractor Co. Friction couple cooling system responsive to actuation thereof
JPH05149418A (ja) 1991-11-25 1993-06-15 Honda Motor Co Ltd 変速機の制御装置
JPH0754972A (ja) 1993-08-20 1995-02-28 Honda Motor Co Ltd 車両用油圧作動式変速機の潤滑油供給装置
US5456129A (en) 1993-08-20 1995-10-10 Honda Giken Kogyo Kabushiki Kaisha Lubricating oil supply apparatus for hydraulically operated vehicular transmission
US6017286A (en) 1994-12-15 2000-01-25 Luk Getriebe-Systems Gmbh Power train
JPH08219267A (ja) 1994-12-15 1996-08-27 Luk Getriebe Syst Gmbh 円錐プーリ形巻掛け伝動装置を備えた駆動ユニット
US6129188A (en) 1997-07-14 2000-10-10 Luk Getriebe-Systeme Gmbh Transmission for motor vehicle
DE19826747A1 (de) 1997-07-14 1999-01-21 Luk Getriebe Systeme Gmbh Getriebe
US20050252326A1 (en) 2004-05-15 2005-11-17 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Device for driving a plurality of hydraulic shift cylinders and hydraulic supply system for a twin-clutch transmission
DE102005019516A1 (de) 2004-05-15 2005-12-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Vorrichtung zum Ansteuern einer Mehrzahl von hydraulischen Schaltzylindern sowie Hydraulikversorgungssystem für ein Doppelkupplungsgetriebe
JP2006308257A (ja) 2005-05-02 2006-11-09 Matsushita Electric Ind Co Ltd 蒸発器、冷媒混合器、およびこれらを用いたヒートポンプ
JP2009115266A (ja) 2007-11-08 2009-05-28 Toyota Motor Corp オイル潤滑装置
JP2009115267A (ja) 2007-11-08 2009-05-28 Toyota Motor Corp 油圧制御装置および変速機
JP2009115066A (ja) 2007-11-09 2009-05-28 Toyota Motor Corp ジェットポンプ
JP2009174644A (ja) 2008-01-24 2009-08-06 Toyota Motor Corp 流体伝動装置用の制御装置
JP2009250044A (ja) 2008-04-01 2009-10-29 Toyota Motor Corp ジェットポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report in International Application No. PCT/JP2009/054661; dated May 19, 2009 (with English-language translation).

Also Published As

Publication number Publication date
WO2010103630A1 (ja) 2010-09-16
DE112009004497B4 (de) 2014-01-23
CN102348904A (zh) 2012-02-08
US20110308912A1 (en) 2011-12-22
DE112009004497T5 (de) 2012-08-02
CN102348904B (zh) 2013-12-04
JP5177280B2 (ja) 2013-04-03
JPWO2010103630A1 (ja) 2012-09-10

Similar Documents

Publication Publication Date Title
US8556038B2 (en) Lubricating device
US8955316B2 (en) Drive train device
US8974347B2 (en) Fluid pressure control device for automatic transmission
JP5218303B2 (ja) 動力伝達装置
EP1471288A2 (de) Schmiersteuervorrichtung und -Methode für Automatikgetriebe
US9022191B2 (en) Hydraulic pressure control device
US8439805B2 (en) Hydraulic system of a gear box
JP2005090659A (ja) 駆動力伝達システム
US8714325B2 (en) Hydraulic pressure control device
US20110247443A1 (en) Hydraulic control apparatus for automatic transmission
CN109690113B (zh) 自动变速器
US20090249777A1 (en) Transmission device with at least one form-fit shifting element being hydraulically actuated via a hydraulic system
JP5262653B2 (ja) 自動変速機の油圧制御回路
KR102221185B1 (ko) 하이브리드 변속기의 윤활 유압제어장치
KR20080044057A (ko) 통합형 스위칭 윤활방향 밸브
JP6469156B2 (ja) 流体圧回路
US10724623B2 (en) Fluid pressure loop
KR100448825B1 (ko) 자동 변속기의 유압제어장치
JP2009174644A (ja) 流体伝動装置用の制御装置
JP2010121768A (ja) 流体制御弁および流体制御回路
JP2008518176A (ja) 制御装置を備える無段変速機
JP2007270862A (ja) トランスミッション付きトルクコンバータのバルブ装置
JP2007270985A (ja) トランスミッション付きトルクコンバータのクラッチ油圧制御装置
JP4719329B2 (ja) 無段変速機の油圧制御装置
JP2019019845A (ja) 動力伝達装置の潤滑構造

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIMURA, KENTA;HATTORI, YUJI;YOSHIDA, MICHIO;REEL/FRAME:026817/0832

Effective date: 20110806

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8