US20200300241A1 - Electric oil pump - Google Patents

Electric oil pump Download PDF

Info

Publication number
US20200300241A1
US20200300241A1 US16/642,882 US201816642882A US2020300241A1 US 20200300241 A1 US20200300241 A1 US 20200300241A1 US 201816642882 A US201816642882 A US 201816642882A US 2020300241 A1 US2020300241 A1 US 2020300241A1
Authority
US
United States
Prior art keywords
housing
electric oil
oil pump
inner chamber
rotor assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/642,882
Other languages
English (en)
Inventor
JianGang Lu
Zhiwang WU
Bingjiu Yin
Kai Zhang
Yubin Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sanhua Intelligent Controls Co Ltd
Original Assignee
Hangzhou Sanhua Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Sanhua Research Institute Co Ltd filed Critical Hangzhou Sanhua Research Institute Co Ltd
Assigned to Hangzhou Sanhua Research Institute Co., Ltd. reassignment Hangzhou Sanhua Research Institute Co., Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, KAI, ZHOU, YUBIN, LU, JIANGANG, WU, ZHIWANG, YIN, Bingjiu
Publication of US20200300241A1 publication Critical patent/US20200300241A1/en
Assigned to ZHEJIANG SANHUA INTELLIGENT CONTROLS CO., LTD. reassignment ZHEJIANG SANHUA INTELLIGENT CONTROLS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Hangzhou Sanhua Research Institute Co., Ltd.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/008Enclosed motor pump units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0096Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • F16N13/20Rotary pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/14Lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the present application relates to the field of vehicles, and in particular to components of a vehicle lubrication system and/or a vehicle cooling system.
  • the electric oil pump mainly provides power for the vehicle lubrication system and/or the vehicle cooling system. How to design the structure of the electric oil pump to improve the structure and the performance of the electric oil pump is an urgent technical problem to be solved.
  • An object of the present application is to provide an electric oil pump.
  • the electric oil pump includes a pump housing, a first rotor assembly, a pump shaft, a second rotor assembly, a stator assembly and a circuit board assembly.
  • the pump housing at least includes a first housing, a second housing and a third housing.
  • the electric oil pump has a pump inner chamber, the pump inner chamber includes a first inner chamber and a second inner chamber, a sidewall forming the first inner chamber includes part of the first housing and part of the second housing, and a sidewall forming the second inner chamber includes part of the second housing and part of the third housing.
  • the first rotor assembly is accommodated in the first inner chamber.
  • the second rotor assembly, the stator assembly and the circuit board assembly are accommodated in the second inner chamber.
  • the electric oil pump includes a partition portion, the partition portion is located between the first housing and the third housing, and the first inner chamber and the second inner chamber are located on two sides of the partition portion.
  • the first inner chamber and the second inner chamber are separated by the partition portion; or the electric oil pump further includes a sealing portion, and the first inner chamber and the second inner chamber are separated by the partition portion and the sealing portion. Since a working medium in the first inner chamber of the electric oil pump is not in communication with a working medium in the second inner chamber, the working medium in the first inner chamber cannot enter the second inner chamber.
  • the second inner chamber does not need to be additionally provided with other structures to prevent the components in the second inner chamber from corrosion, and the electric oil pump has better sealing performance and a simpler structure, which helps to reduce costs.
  • FIG. 1 is a schematic perspective view of a first embodiment of an electric oil pump according to the present application
  • FIG. 2 a is a schematic sectional view of the electric oil pump shown in FIG. 1 taken along one direction;
  • FIG. 2 b is a schematic sectional view of a second embodiment of the electric oil pump according to the present application.
  • FIG. 2 c is a schematic sectional view of a third embodiment of the electric oil pump according to the present application.
  • FIG. 2 d is a schematic sectional view of a fourth embodiment of the electric oil pump according to the present application.
  • FIG. 3 is a schematic sectional view of the electric oil pump shown in FIG. 1 taken along another direction;
  • FIG. 4 is a schematic front view of the electric oil pump shown in FIG. 1 ;
  • FIG. 5 is a schematic front view of the electric oil pump that is not assembled with the first housing shown in FIG. 1 ;
  • FIG. 6 is a schematic perspective view of a first embodiment of the first housing shown in FIG. 1 viewed from one direction;
  • FIG. 7 is a schematic perspective view of the first embodiment of the first housing shown in FIG. 1 viewed from another direction;
  • FIG. 8 is a schematic front view of the first housing shown in FIG. 6 viewed from one direction;
  • FIG. 9 is a schematic front view of the first housing shown in FIG. 6 viewed from another direction;
  • FIG. 10 is a schematic sectional view of the first housing shown in FIG. 6 taken along one direction;
  • FIG. 11 is a schematic sectional view of the first housing shown in FIG. 6 taken along another direction;
  • FIG. 12 is a schematic sectional view of another embodiment of the first housing shown in FIG. 1 ;
  • FIG. 13 is a schematic perspective view of a first embodiment of the second housing shown in FIG. 1 or FIG. 2 a viewed from one direction;
  • FIG. 14 is a schematic perspective view of the first embodiment of the second housing shown in FIG. 1 or FIG. 2 a viewed from another direction;
  • FIG. 15 is a schematic sectional view of the second housing shown in FIG. 13 ;
  • FIG. 16 is a partially enlarged schematic view of portion B of the second housing shown in FIG. 15 ;
  • FIG. 17 is a schematic sectional view of a fifth embodiment of the electric oil pump according to the present application.
  • FIG. 18 is a schematic sectional view of the second housing shown in FIG. 17 ;
  • FIG. 19 is a schematic sectional view of a sixth embodiment of the electric oil pump according to the present application.
  • FIG. 20 is a schematic perspective view of the third housing shown in FIG. 1 viewed from one direction;
  • FIG. 21 is a schematic front view of the third housing shown in FIG. 19 ;
  • FIG. 22 is a schematic perspective view of the third housing shown in FIG. 1 viewed from another direction;
  • FIG. 23 is another schematic front view of the third housing shown in FIG. 19 ;
  • FIG. 24 is a schematic sectional view of the third housing shown in FIG. 19 ;
  • FIG. 25 is a schematic perspective view of the partition plate shown in FIG. 2 a to FIG. 3 viewed from one direction;
  • FIG. 26 is a schematic perspective view of the partition plate shown in FIG. 2 a to FIG. 3 viewed from another direction;
  • FIG. 27 is a schematic front view of the partition plate shown in FIG. 25 or FIG. 26 ;
  • FIG. 28 is a schematic sectional view of the partition plate shown in FIG. 25 or FIG. 26 ;
  • FIG. 29 is a schematic perspective view of a combination of a mounting bracket and a capacitor shown in FIG. 2 a to FIG. 3 ;
  • FIG. 30 is a schematic front view of the combination of the mounting bracket and the capacitor shown in FIG. 29 ;
  • FIG. 31 is a schematic perspective view of the mounting bracket shown in FIG. 2 a to FIG. 3 ;
  • FIG. 32 is a schematic front view of the mounting bracket shown in FIG. 31 ;
  • FIG. 33 is a partially enlarged schematic view of portion C of the mounting bracket shown in FIG. 31 .
  • An electric oil pump can be applied in a vehicle lubrication system and/or a vehicle cooling system to provide circulating power for the working medium in the vehicle lubrication system and/or the vehicle cooling system, and the vehicle lubrication system and/or the vehicle cooling system can provide lubricating oil and/or cooling oil for a transmission system.
  • an electric oil pump 100 includes a pump housing, a second rotor assembly 3 , a stator assembly 4 , a pump shaft 5 , a first rotor assembly 8 and a circuit board assembly 6 .
  • the first rotor assembly 8 , the second rotor assembly 3 and the circuit board assembly 6 are arranged along an axial direction of the electric oil pump 100 , so that the axial arrangement of the electric oil pump 100 can be more compact.
  • the second rotor assembly 3 is arranged between the first rotor assembly 8 and the circuit board assembly 6 .
  • the electric oil pump has a pump inner chamber.
  • the second rotor assembly 3 , the stator assembly 4 , the pump shaft 5 , the first rotor assembly 8 and the circuit board assembly 6 are accommodated in the pump inner chamber.
  • the circuit board assembly 6 controls the stator assembly 4 to generate a varying excitation magnetic field by controlling a current passing through the stator assembly 4 to change according to a certain rule
  • the second rotor assembly 3 rotates under the action of the excitation magnetic field
  • the second rotor assembly 3 drives the first rotor assembly 8 to rotate by the pump shaft 5 .
  • the first rotor assembly 8 rotates, the working medium is extruded out of a second flow port, thereby generating the power for flowing.
  • the pump housing at least includes a first housing, a second housing and a third housing.
  • the pump housing includes a first housing 1 , a second housing 2 and a third housing 7 .
  • the electric oil pump can form a pump inner chamber, and in the present embodiment, the pump inner chamber includes a first inner chamber 80 and a second inner chamber 90 .
  • the working medium can flow through the first inner chamber 80 , and the first rotor assembly 8 is arranged in the first inner chamber 80 . No working medium flows through the second inner chamber 90 .
  • the stator assembly 4 , the second rotor assembly 3 and the circuit board assembly 6 are arranged in the second inner chamber 90 .
  • a sidewall forming the first inner chamber 80 includes part of the first housing 1 and part of the second housing 20
  • a sidewall forming the second inner chamber 90 includes part of the second housing 20 and part of the third housing 7
  • the electric oil pump 100 includes a partition portion 22 .
  • the first inner chamber 80 and the second inner chamber 90 are located on two sides of the partition portion 22 , respectively.
  • the electric oil pump 100 further includes a sealing portion 50 .
  • the first inner chamber 80 is separated from the second inner chamber 90 by the partition portion 22 and the sealing portion 50 , so that the working medium in the first inner chamber 80 is not in communication with the working medium in the second inner chamber 90 through the separation by the partition portion 22 and the sealing portion 50 .
  • the first rotor assembly 8 is close to one end of the pump shaft 5 , the first rotor assembly 8 is connected with part of the pump shaft 5 , the second rotor assembly 3 is close to the other end of the pump shaft 5 , and the second rotor assembly 3 is connected with part of the pump shaft 5 , so that the second rotor assembly 3 can drive the first rotor assembly 8 to rotate by the pump shaft 5 .
  • the circuit board assembly 6 is close to one end of the pump shaft 5 mounted with the second rotor assembly 3 .
  • One end of the pump shaft 5 extends into the first inner chamber 80 , and the other end of the pump shaft 5 extends into the second inner chamber 90 .
  • one end of the pump shaft 5 close to the first rotor assembly 8 extends into the first inner chamber 80
  • the other end of the pump shaft 5 close to the second rotor assembly 3 extends into the second inner chamber 90 .
  • the electric oil pump includes the partition portion.
  • the first inner chamber and the second inner chamber are located on two sides of the partition portion, respectively.
  • the partition portion is located between the first housing and the second housing.
  • the first rotor assembly and the second rotor assembly are arranged on two sides of the partition portion, and the first inner chamber is separated from the second inner chamber through the partition portion.
  • FIG. 1 and FIG. 2 a are schematic structural views of a first embodiment of the electric oil pump.
  • the structure of the first embodiment of the electric oil pump is described below.
  • the pump housing includes the first housing 1 , the second housing 2 and the third housing 7 .
  • the second housing 2 is closer to the second rotor assembly 3 than the first housing 1 , the first housing 1 is detachably connected with the second housing 2 , and the second housing 2 is detachably connected with the third housing 7 , which facilitates the inspection and maintenance for the components arranged in the chamber compared with non-detachable housing connection.
  • the first housing 1 is detachably connected with the second housing 2 through a first connection portion
  • the second housing 2 is detachably connected with the third housing 7 through a second connection portion.
  • the first connection portion and the second connection portion are not arranged in the first inner chamber 80 or the second inner chamber 90 .
  • the first connection portion and the second connection portion are described in detail below.
  • the second housing 2 includes the partition portion 22 .
  • the partition portion 22 can support the first rotor assembly 8 .
  • the second housing 2 further includes a main body portion 21 , the main body portion 21 extends along an axial direction of the second housing 2 , the main body portion 21 is cylindrical, and an inner wall of the main body portion 21 can form at least part of the sidewall of the second inner chamber 90 shown in FIG. 2 a .
  • the first housing 1 is detachably connected with the main body portion 21
  • the main body portion 21 is detachably connected with the third housing 7 as well.
  • the partition portion 22 is circumferentially arranged along the inner wall of the main body portion 21 , that is, the partition portion 22 is fixed to the main body portion 21 .
  • the partition portion 22 is integrally formed with the main body portion 21 , and the partition portion 22 is arranged substantially perpendicular to the main body portion 21 , where the “substantially” refers to that the perpendicularity is within a range of 1 mm.
  • the partition portion 22 is arranged at a middle-upper portion of the second housing 2 , the second inner chamber 90 is formed between the partition portion 22 and the third housing 7 , and the first inner chamber 80 is formed between the first housing 1 and the partition portion 22 .
  • Such a structure can ensure the sealing of the connection between the partition portion 22 and the main body portion 21 , and can prevent the working medium in the first inner chamber 80 in FIG. 2 a from leaking through the connection between the main body portion 21 and the partition portion 22 , and the structure is simple.
  • FIG. 2 b is schematic structural view of a second embodiment of the electric oil pump.
  • the structure of the second embodiment of the electric oil pump is described below.
  • an electric oil pump 100 a includes a first housing 1 a , a second housing 2 a , a third housing 7 a and a fourth housing 40 a .
  • the first housing 1 a is detachably connected with the second housing 2 a and the fourth housing 40 a .
  • the third housing 7 a is detachably connected with the fourth housing 40 a .
  • the second housing 20 a includes a main body portion 21 a
  • the first housing 1 a is connected with the main body portion 21 a of the second housing 2 a through screws or bolts
  • the main body portion 21 a of the second housing 2 a is connected with the fourth housing 40 a through screws or bolts.
  • An electric oil pump 100 b includes a partition portion 22 a
  • the partition portion 22 a is integrally formed with the second housing 2 a
  • the partition portion 22 a is integrally formed with the main body portion of the second housing 20 a .
  • the electric oil pump further includes the fourth housing 40 a , and the structure of the second housing 20 a in the present embodiment is different from the structure of the second housing in the first embodiment of the electric oil pump.
  • the structure of the second housing in the present embodiment is equivalent to dividing the second housing in the first embodiment of the electric oil pump into two components, which is relatively advantageous for saving raw materials during component processing and is further advantageous for reducing material costs during processing.
  • FIG. 2 c is schematic structural view of a third embodiment of the electric oil pump.
  • the structure of the third embodiment of the electric oil pump is described below.
  • the partition portion is an individual component.
  • the electric oil pump 100 b includes a first housing 1 b , a second housing 2 b , a third housing 7 b and a fourth housing 40 b , the first housing 1 b is detachably connected with the second housing 2 b , and the third housing 7 b is detachably connected with the fourth housing 40 b .
  • the electric oil pump 100 b further includes a partition portion 22 b , and the partition portion 22 b is arranged between the second housing 2 b and the fourth housing 40 b .
  • the partition portion 22 b is detachably connected with the first housing 1 b and the second housing 2 b .
  • the first housing 1 b , the second housing 2 b , the partition portion 22 b and the fourth housing 40 b are detachably connected with each other through screws and bolts.
  • sealing rings can be provided at the connections.
  • the partition portion is an individual component, which is advantageous for relatively reducing the processing difficulty of the second housing and saving raw materials during the component processing, and is further advantageous for reducing the material costs during processing.
  • FIG. 2 d is schematic structural view of a fourth embodiment of the electric oil pump.
  • the structure of the fourth embodiment of the electric oil pump is described below.
  • an electric oil pump 100 c includes a first housing 1 c , a second housing 20 c , a third housing 7 c and a fourth housing 40 c .
  • the first housing 1 c is detachably connected with the second housing 2 c and the fourth housing 40 c
  • the third housing 7 c is detachably connected with the fourth housing 40 c .
  • the first housing 1 c is connected with the second housing 2 c and the fourth housing 40 c through screws or bolts
  • the fourth housing 40 c is connected with the third housing 7 c through screws or bolts.
  • the fourth housing 40 c includes a partition portion 22 c , and the partition portion 22 c can support the first rotor assembly.
  • the structure of the second housing in the present embodiment is equivalent to dividing the second housing in the first embodiment of the electric oil pump into two components, which is advantageous for saving raw materials during the component processing, and is further advantageous for reducing the material costs during processing.
  • the electric oil pump 100 includes the first rotor assembly 8 .
  • the first rotor assembly 8 includes a first rotor 81 and a second rotor 82 , the first rotor 81 includes multiple external teeth, and the second rotor 82 includes multiple internal teeth.
  • a hydraulic chamber 801 is formed between the internal teeth of the second rotor 82 and the external teeth of the first rotor 81 .
  • the second rotor 82 is sleeved on the circumference of the first rotor 81 , and part of the internal teeth of the second rotor 82 engage with part of the external teeth of the first rotor 81 .
  • the electric oil pump 100 includes a first flow port 11 and a second flow port 12 , the first flow port 11 is used for the inflow of the working medium, and the second flow port 12 is used for the outflow of the working medium.
  • the working medium can enter the hydraulic chamber 801 through the first flow port 11 , and can leave the hydraulic chamber 801 through the second flow port 12 . Since there is a certain eccentric distance between the first rotor 81 and the second 82 , when the first rotor 81 rotates, part of the external teeth of the first rotor 81 engage with part of the internal teeth of the second rotor 82 , thereby driving the second rotor 82 to rotate.
  • Volume of the hydraulic chamber 801 changes during one cycle of the rotation of the first rotor assembly 8 . Specifically, when the first rotor assembly 8 is rotated by a certain angle from a starting point, the volume of the hydraulic chamber 801 is gradually increased to form partial vacuum, and the working medium is sucked from the first flow port 11 into the hydraulic chamber 801 . When the first rotor assembly 8 continues rotating, the volume of the hydraulic chamber 801 filled with the working medium is gradually decreased, and the working medium is squeezed, so that the working medium entering the hydraulic chamber 801 is extruded out to the second flow port 12 , thereby generating the power for flowing.
  • the first inner chamber 80 is in communication with the first flow port 11 and the second flow port 12 , and the first inner chamber 80 is not in communication with the second inner chamber 90 . Since the first inner chamber of the electric oil pump is not in communication with the second inner chamber, the working medium cannot enter the second inner chamber. Thus, the second inner chamber does not need to be additionally provided with other structures to prevent the components in the second inner chamber from corrosion, and the electric oil pump has better sealing performance and a simpler structure, which helps to reduce costs.
  • a first communication cavity is provided between the first flow port 11 and the hydraulic chamber 801 , and a second communication cavity is arranged between the second flow port 12 and the hydraulic chamber 801 . Such a structure buffers the working medium through the first communication cavity and the second communication cavity, which is advantageous for damping vibration and noise. The specific structure is described below.
  • the first housing 1 is detachably connected with the second housing 2 through a first connection portion 123
  • the second housing 2 is detachably connected with the third housing 7 through a second connection portion 232 .
  • the first connection portion 124 and the second connection portion 234 are not arranged in the first inner chamber 80 or the second inner chamber 90 .
  • the first connection 124 includes first screws 1231 (as shown in FIG. 2 a ).
  • the first housing 1 includes a first flange portion 15 .
  • the first flange portion 15 extends along a radial direction of the electric oil pump, the first flange portion 15 is formed with first communication holes 13 , and the first communication holes 13 are close to an edge of the first flange portion 15 .
  • the second housing 2 is formed with first threaded holes 231 , and the first threaded holes 231 are formed along the main body portion 21 of the second housing 2 .
  • the first screws 1231 pass through the first communication holes 13 and are mounted from a side close to the first housing 1 , and are screwed to the second housing 2 .
  • the first housing 1 may be connected with the second housing 2 in other ways, for example, some detachable connection ways such as insertion and latching.
  • the first communication hole 13 includes a first counterbore 131 and a first through hole 132 .
  • a diameter of the first counterbore 131 is greater than a diameter of the first through hole 132 , and a depth of the first counterbore 131 is slightly greater than a height of a nut of the first screw 1231 , such that a top surface of the first screw 1231 is lower than an upper surface of the first flange portion 15 after the first screw 1231 is mounted, thereby preventing the first screw 1231 from interfering with other components.
  • a first screw avoidance portion is provide in a portion of the transmission system corresponding to the electric oil pump, it is not necessary to provide the first counterbore 131 for the first communication hole 13 , and only the first through hole 132 is needed, such that the first communication hole 13 can be allowed to be closer to the radial edge of the first flange portion 15 or a distance between the first communication hole 13 and the edge of the first flange portion 15 can be larger, which facilitates the layout of the first communication hole.
  • the second housing 2 a is detachably connected with the third housing 7 through the second connection portion 232 .
  • the second connection portion 232 includes second screws 2321 .
  • the third housing 7 is formed with second communication holes 73
  • the second housing 2 is formed with second threaded holes 241
  • the second threaded holes 241 are formed along the main body portion 21 of the second housing 2
  • the second screws 2321 are mounted from a side close to the third housing 7 and is screwed to the second housing 2 .
  • the third housing 7 may be formed with the second threaded hole
  • the second housing 2 may be formed with the second communication hole
  • the second screws 2321 may be mounted from a side close to the second housing 2 and may be screwed to the third housing 7 .
  • the specific structure can be designed according to requirements of the electric oil pump. Such an arrangement makes the disassembly of the electric oil pump more convenient, thereby facilitating the inspection and maintenance of the components in the electric oil pump such as the circuit board assembly.
  • the second housing 2 may be connected with the third housing 7 in other detachable connection ways such as insertion and latching.
  • a wall thickness of the third housing 7 at the second communication holes 73 is greater than a wall thickness of the third housing 7 at other portions.
  • the main body portion 21 of the second housing 2 includes a cylindrical portion 201 and a second flange portion 24 .
  • the cylindrical portion 201 forms at least part of the second inner chamber.
  • the second flange portion 24 is formed by the cylindrical portion 201 protruding toward the circumference of the cylindrical portion 201 .
  • the second flange portion 24 is formed with the second threaded holes 241 , and the wall thickness of the second flange portion 24 at the second threaded holes 241 is greater than the wall thickness of the second flange portion 24 at other portions.
  • the second housing 2 may not include the second flange portion, and the cylindrical portion 201 may be formed with the second threaded holes 241 .
  • the wall thickness of the cylindrical portion 201 at the second threaded holes is greater than or equal to the wall thickness of the cylindrical portion at other portions.
  • FIG. 6 to FIG. 11 are schematic structural views of a first embodiment of the first housing shown in FIG. 2 a .
  • the first housing 1 includes a first main body portion 14 and the first flange portion 15 , and a diameter of the first main body portion 14 is smaller than a diameter of the first flange portion 15 .
  • the first housing 1 at least includes two first communication holes 13 , and the first communication holes 13 are distributed in an array along a circumference of the first housing 1 .
  • the first communication holes 13 are formed on the first flange portion 15 , and the first communication hole 13 is a counterbore.
  • the first communication hole 13 is a cylindrical counterbore.
  • the first communication hole 13 includes the first counterbore 131 and the first through hole 132 , where the diameter of the first counterbore 131 is greater than the diameter of the first through hole 132 , and the depth of the first counterbore 131 is slightly greater than the height of a nut of the first screw 1231 , such that the top surface of the first screw 1231 is lower than the upper surface of the first flange portion 15 after the first screw 1231 is mounted, thereby preventing the first screw 1231 from interfering with other components.
  • the first communication hole 13 may be a tapered counterbore or an end face counterbore.
  • Such an arrangement can, on the one hand, ensure that the electric oil pump does not interfere with a mounting portion of a gearbox after the first screw 1231 is mounted, and on the other hand, makes the overall structure of the electric oil pump elegant.
  • a minimum distance between the edge of the first communication hole 13 and an outer circumferential surface of the first flange portion 15 of the first housing 1 is greater than or equal to 1 mm, such that it can be ensured that no gap is formed at the edge while processing the first communication hole 13 and no damage is done to the outer circumferential surface of the first flange portion 15 of the first housing 1 .
  • a minimum distance between the edge of the first communication hole 13 and an outer circumferential surface of the first main body portion 14 is greater than or equal to 1 mm, such that no damage is done to the outer circumferential surface of the first main body portion 14 of the first housing 1 while processing the first communication hole 13 .
  • the first housing 1 is further formed with the first flow port 11 , the second flow port 12 , the first communication cavity 112 and the second communication cavity 121 .
  • the first communication cavity 112 is arranged between the first flow port 11 and the hydraulic chamber 801 , the first communication cavity 112 is in communication with the first flow port 11 , the second communication cavity 121 is arranged between the second flow port 12 and the hydraulic chamber 801 , and the second communication cavity 121 is in communication with the second flow port 12 .
  • the first communication cavity 112 and the second communication cavity 121 are configured to buffer the working medium, which is advantageous for damping vibration and noise.
  • the first flow port 11 is formed at the first main body portion 14 of the first housing 1 , the first communication cavity 112 is arranged at the first flange portion 15 of the first housing 1 , and the first flow port 11 is substantially circular.
  • the “substantially circular” refers to that the roundness is within a range of 1 mm.
  • the first flow port 11 may also in other shapes such as an ellipse.
  • the first communication cavity 112 is substantially arc-shaped, the first communication cavity 112 includes a head portion 1121 and a tail portion 1122 , and a flow sectional area of the first communication cavity 112 gradually increases from the head portion 1121 to the tail portion 1122 .
  • an inner circumferential surface of the first communication cavity 112 is arc-shaped, and other features such as recess portions or protruding portions may be provided on the inner circumferential surface of the first communication cavity.
  • the first flow port 11 is arranged corresponding to the tail portion 1122 , which cooperates with the hydraulic chamber 801 in FIG. 5 to form a certain degree of vacuum at the tail portion 1122 , and is advantageous for the suction of the working medium.
  • the second communication cavity 121 and the first communication cavity 112 are substantially circumferentially distributed in the first housing 1 , and a line connecting a center of the first flow port 11 and a center of the second flow port 12 substantially passes through a center of the first housing 1 , which is advantageous for taking advantage of the entire circumference of the entire electric oil pump and improving the working pressure of the working medium passing through the electric oil pump.
  • a flow sectional area at the connection between the second flow port 12 and the second communication cavity 121 is greater than the flow sectional area at other portions of the second communication cavity 121 , which allows the working medium entering the second communication cavity 112 from the hydraulic chamber 801 in FIG. 5 to be discharged as soon as possible.
  • a fluid flow direction at the second flow port 12 and a fluid flow direction at the first flow port 11 are both arranged along the axial direction of the electric oil pump, that is, the fluid flow direction at the second flow port 12 and the fluid flow direction at the first flow port 11 are arranged in a same direction of the electric oil pump, and an inflow direction of the working medium is substantially parallel to an outflow direction thereof, such that only one sealing portion is required to be arranged between the electric oil pump and the transmission system and the structure is simple.
  • the fluid flow direction at the first flow port may be arranged perpendicular to the fluid flow direction at the second flow port
  • the second flow port may not be arranged in the first housing 1 , but be arranged in the second housing 2 , for example, such that the inflow direction of the working medium is arranged perpendicular to or at an angle to the outflow direction thereof, to facilitate the assembly of the electric oil pump and the transmission system or to hang the electric oil pump outside the transmission system.
  • FIG. 12 is a schematic structural view of a second embodiment of the first housing shown in FIG. 2 a .
  • a connection hole 13 ′ of a first housing 1 ′ is a through hole, which is advantageous for improving the connection strength between the first housing and the second housing.
  • the electric oil pump 100 includes an outer sealing portion, the outer sealing portion includes a first sealing ring 30 and a second sealing ring 32 sleeved on the outer circumferential surface of the second housing 2 , the first sealing ring 30 is close to the first housing 1 , and the second sealing ring 32 is close to the third housing 7 .
  • the first sealing ring 30 is sleeved on a second groove 271 of the second housing 2
  • the second sealing ring 32 is sleeved on a third groove 281 of the second housing 2 .
  • the electric oil pump further includes a third sealing ring 31 .
  • the first main body portion 14 is provided with a first groove 141
  • the third sealing ring 31 is arranged in the first groove 141 of the first housing 1 .
  • the main body portion 21 includes the cylindrical portion 201 and the second flange portion 24 , the cylindrical portion 201 includes a first end portion 23 and a second end portion 27 , the second flange portion 24 is integrally formed with the second end portion 27 , and the first end portion 23 is arranged away from the second flange portion 24 .
  • the first end portion 23 is formed with the first threaded holes 231 , the first threaded holes 231 are distributed in a circumferential array or uniformly distributed, the first communication holes 13 of the first housing 1 are arranged corresponding to the first threaded holes 231 of the second housing 2 , and the first housing 1 is connected with the second housing 2 through the first connection portion 123 .
  • the second flange portion 24 is formed with the second threaded holes 241 , and the second threaded holes 241 are arranged corresponding to the second communication holes 73 of the third housing 7 . Referring to FIG.
  • the second housing 2 is connected with the third housing 7 through the second connection portion 232 , wherein the first threaded holes 231 and the second threaded holes 241 are both blind holes.
  • the first housing 1 is connected with the second housing 2 through the first screws 1231
  • the second housing 2 is connected with the third housing 7 through the second screws 2321 .
  • the second flange portion 24 further includes a first protrusion 242
  • the second threaded holes 241 are formed on the first protrusion 242 .
  • a thickness of the second flange portion 24 at the first protrusion 242 is greater than the thickness of the second flange portion 24 at other portions, which is advantageous for improving the connection strength without increasing the overall thickness and weight of the second housing 2 , and is beneficial to reduce costs.
  • the second flange portion 24 may not be provided with the first protrusion 242 , where the “thick enough” refers to that the thickness of the second flange portion is greater than or equal to 3 mm.
  • the partition portion 22 further includes a first support portion 29 and a main body portion 221 of the partition portion, the main body portion 221 of the partition portion can support the first rotor assembly 8 , and the first support portion 29 protrudes from the main body portion 221 of the partition portion toward the second inner chamber 90 .
  • the first support portion 29 can directly or indirectly support the pump shaft 5 .
  • the first support portion 29 changes correspondingly with the position of the partition portion 22 , which will not be further described herein.
  • the second housing 2 is formed with an upper chamber 291 and a lower chamber 292 , the upper chamber 291 is separated from the lower chamber 292 through the partition portion 22 , and the partition portion 22 is integrally formed with the first support portion 29 .
  • FIG. 15 is a first embodiment of the second housing shown in FIG. 2 a .
  • the electric oil pump 100 includes a first bearing 60
  • the pump shaft 5 is supported on the first support portion 29 by the first bearing 60
  • an inner circumferential surface of the first bearing 60 is in contact with an outer circumferential surface of the pump shaft 5
  • an outer circumferential surface of the first bearing 60 is in contact with an inner circumferential surface of the first support portion 29 .
  • the first support portion 29 includes a first accommodating portion 290
  • the first accommodating portion 290 is formed with at least part of a first accommodating cavity, and at least part of an inner circumferential surface of the first accommodating portion 290 surrounds the first accommodating cavity.
  • the pump shaft 5 passes through the first accommodating cavity, and at least part of the outer circumferential surface of the pump shaft 5 is in a clearance fit with the inner circumferential surface of the first accommodating portion 290 ; or the first bearing 60 is provided in the first accommodating cavity, referring to FIG. 2 a or FIG. 3 , the pump shaft 5 passes through the first bearing 60 , and the outer circumferential surface of the first bearing 60 is in an interference fit with the inner circumferential surface of the first accommodating portion 290 .
  • the electric oil pump is provided with the first bearing 60 , the first bearing 60 is arranged in the first accommodating cavity, and the pump shaft 5 passes through the first bearing 60 , such that the first support portion 29 indirectly supports the pump shaft through the first bearing 60 .
  • FIG. 17 is a schematic structural view of a fifth embodiment of the electric oil pump.
  • FIG. 18 is the second embodiment of the second housing shown in FIG. 17 .
  • the pump shaft 5 is directly supported on a first support portion 29 ′.
  • the first support portion 29 ′ includes a first accommodating portion 290 ′, and the first accommodating portion 290 ′ can form at least part of the first accommodating cavity.
  • the first accommodating cavity is in communication with part of the first inner chamber 80 , the pump shaft 5 passes through the first accommodating cavity, and at least part of the outer circumferential surface of the pump shaft 5 is in a clearance fit with the inner circumferential surface of the first accommodating portion 290 ′.
  • the inner circumferential surface of the first support portion 29 ′ is provided with a lubrication groove 298 , which is helpful to lubricate the pump shaft and thereby facilitates the rotation of the pump shaft.
  • the first support portion 29 can directly support the pump shaft by the tolerance fit between the first accommodating portion 290 ′ and the pump shaft 5 without additionally providing the first bearing, thereby making the structure of the electric oil pump more compact.
  • the partition portion 22 is provided with a communication hole 2933 , and the communication hole 2933 communicates the upper chamber 291 with the lower chamber 292 .
  • the pump shaft 5 extends into the upper chamber 291 through the communication hole 2933 .
  • the first inner chamber 80 is isolated from the second inner chamber 90 .
  • the electric oil pump 100 includes the sealing portion, at least part of the sealing portion is supported by the first support portion 29 , the working medium in the first inner chamber 80 is not in communication with the working medium in the second inner chamber 90 due to the sealing portion 50 and the partition portion 22 .
  • the first support portion 29 includes a second accommodating portion 296 , the second accommodating portion 296 is formed with at least part of a second accommodating cavity, and at least part of the inner circumferential surface of the second accommodating portion 296 surrounds the second accommodating cavity.
  • the sealing portion 50 includes an oil seal, and the oil seal is provided in the second accommodating cavity.
  • the pump shaft 5 shown in FIG. 2 passes through the oil seal, and the inner circumferential surface of the oil seal is in contact with at least part of the outer circumferential surface of the pump shaft 5 .
  • the outer circumferential surface of the oil seal 50 is sealingly fitted to the inner circumferential surface of the second accommodating portion 296 , which can prevent the working medium in the first inner chamber from flowing into the second inner chamber and can thereby avoid damage to the circuit board assembly in the second inner chamber.
  • FIG. 19 is a schematic structural view of a sixth embodiment of the electric oil pump.
  • the pump shaft 5 passes through the second accommodating portion 296 in FIG. 15 .
  • a clearance is formed between the inner circumferential surface of the second accommodating portion 296 and at least part of the outer circumferential surface of the pump shaft 5 , and the clearance is small enough that the working medium in the first inner chamber 80 cannot flow through.
  • the clearance can prevent the working medium in the first inner chamber 80 in FIG. 2 from entering the second inner chamber 90 in FIG. 2 a through the clearance.
  • the specific size of the clearance is determined by parameters such as the roughness of the outer circumferential surface of the pump shaft 5 , the roughness of the inner circumferential surface of the second accommodating portion and the viscosity of the oil.
  • the working medium in the first inner chamber is not in communication with the working medium in the second inner chamber by the arrangement of the clearance.
  • the electric oil pump 100 further includes a second support portion 91 .
  • the pump shaft 5 can be directly or indirectly supported on the second support portion 91 .
  • the first support portion 29 and the second support portion 91 are coaxially arranged, which is advantageous for improving the stability of supporting the pump shaft 5 .
  • the electric oil pump 100 further includes a partition plate 9 .
  • the partition plate 9 is arranged in the second inner chamber 90
  • the second support portion 91 is integrally formed with the partition plate 9
  • the second support portion 91 is arranged protruding from the partition plate 9 toward the second inner chamber 90 .
  • the structure of the second support portion 91 is described in detail below.
  • the second support portion 91 can directly or indirectly provide support for the pump shaft 5 .
  • the partition plate 9 includes a third accommodating portion 911 , the third accommodating portion 911 is formed with at least part of a third accommodating cavity, and at least part of an inner circumferential surface of the third accommodating portion 911 surrounds the third accommodating cavity.
  • the electric oil pump includes a second bearing 70 , the second bearing 70 is provided in the third accommodating cavity, and the pump shaft 5 in FIG. 2 a passes through the second bearing 70 .
  • the inner circumferential surface of the second bearing 70 is in contact with at least part of the outer circumferential surface of the pump shaft 5 , and an outer circumferential surface of the second bearing 70 is in an interference fit with the inner circumferential surface of the third accommodating portion 911 , such that the first support portion 29 indirectly provides support for the pump shaft through the second bearing 70 .
  • the pump shaft 5 in FIG. 2 a passes through the third accommodating cavity, and at least part of the outer circumferential surface of the pump shaft 5 in FIG. 2 a is in a clearance fit with the inner circumferential surface of the third accommodating portion 911 , such that the second support portion 91 can directly provide support for the pump shaft by the tolerance fit between the third accommodating portion 911 and the pump shaft 5 in FIG.
  • the first bearing 60 and the second bearing 70 can be rolling bearings or sliding bearings.
  • the electric oil pump with the sliding bearing can meet the requirements of wear and rotation accuracy while reducing the cost.
  • wear, rotation accuracy and bearing capacity are key factors in bearing selection. In such cases, rolling bearings will be preferred.
  • the partition plate 9 includes the second support portion 91 , a first bottom portion 92 , a first annular protrusion 94 and reinforcing ribs 93 .
  • the reinforcing ribs 93 are distributed in the circumferential array or uniformly distributed. Specifically, the reinforcing ribs 93 connect the second support portion 91 with the first bottom portion 92 . Such an arrangement can ensure the mechanical strength of the second support portion 91 , such that the second support portion 91 is less likely to be deformed.
  • the reinforcing rib 91 has a substantially triangular shape. Apparently, the reinforcing rib may also have other shapes such as rectangular or trapezoidal.
  • the first annular protrusion 94 is arranged closer to the outer edge of the partition plate 9 .
  • a diameter of an outer wall of the first annular protrusion 94 is greater than that of the second support portion 91 .
  • the partition plate 9 is fixedly connected with the second housing 2 .
  • the first annular protrusion 94 is in an interference fit with the inner circumferential surface of the cylindrical portion of the second housing 2 .
  • the partition plate 9 may be connected with the second housing 2 by screws or bolts or by riveting.
  • the partition plate 9 further includes at least two third annular protrusions 95 , and the third annular protrusions 95 axially extend in a direction away from the second support portion 91 .
  • the partition plate 9 includes three third annular protrusions 95 , and the third annular protrusions 95 are substantially distributed in the circumferential array or uniformly distributed.
  • a threaded hole 951 is arranged at a center of each third annular protrusion 95 , which facilitates the fixation and installation of the subsequent components such as a mounting bracket 10 in FIG. 2 a.
  • the second housing 2 further includes a first stepped portion 294 .
  • the first stepped portion 294 includes a first position-limiting surface 2941 and a second position-limiting surface 2942 .
  • the first stepped portion 294 is arranged in the lower chamber 292 of the second housing 2 , and the first stepped portion 294 can serve as a position-limit for the stator assembly 4 in FIG. 2 a in the axial direction of the electric oil pump.
  • the second housing 2 further includes a second stepped portion 295 .
  • the second stepped portion 295 includes a third position-limiting surface 2951 and a fourth position-limiting surface 2952 , and the second stepped portion 295 is closer to the second flange portion 24 of the second housing 2 than the first stepped portion 294 .
  • the stator assembly 4 in FIG. 2 a is in an interference fit with the second housing 2 .
  • an outer wall of the stator assembly 4 is in an interference fit with at least part of the second position-limiting surface 2942 of the first stepped portion 294 of the second housing 2 .
  • the first position-limiting surface 2941 of the first stepped portion 294 abuts against the stator assembly 4 , thereby realizing the position-limiting of the stator assembly 4 in FIG. 1 by the first stepped portion 294 in the axial direction of the electric oil pump and facilitating the position-limiting of the stator assembly.
  • the third housing 7 includes a main body 71 and a connection portion 72 . Taking the main body 71 as a reference surface, the connection portion 72 is located below the main body 71 .
  • the third housing 7 is formed with the second communication holes 73 , the second communication holes 73 are arranged corresponding to the second threaded holes 241 of the second housing 2 in FIG. 14 .
  • the second housing 2 is connected with the third housing 7 through the second screws 2321 in FIG. 2 a .
  • the two may also be connected with each other by other connection ways such as insertion, latching or welding. Referring to FIG.
  • connection portion 72 includes a position-limiting portion 76 , and a height H 2 of the position-limiting portion 76 is substantially equal to a height H 1 of a position-limiting portion 243 of the second housing 2 in FIG. 15 where the “substantially equal” refers to that an absolute value of the height difference is within 0.3 mm.
  • the third housing 7 is further formed with mounting holes 77 , and the mounting holes 77 are configured to connect with the gearbox or the drive unit. Two mounting holes 77 are provided in the present embodiment.
  • the third housing 7 is further formed with protruding ribs 74 , the protruding ribs 74 are integrally formed with the third housing 7 , and the protruding ribs 74 protrude toward a direction away from the second housing 2 .
  • the protruding ribs 74 are arranged on the third housing 7 as much as possible to increase a heat dissipation area, which facilitates the heat dissipation of the circuit board.
  • the shape of a transverse section of the protruding rib 74 is rectangular. Apparently, the transverse section may also be in other shapes such as trapezoid, triangle, and arc-shaped.
  • the circuit board assembly 6 includes a circuit board 61 , electronic components and the mounting bracket 10 .
  • the mounting bracket 10 is arranged between the circuit board 61 and the partition plate 9 .
  • the mounting bracket 10 is fixedly connected with the partition plate 9 .
  • the mounting bracket 10 is connected with the partition plate 9 by screws and bolts.
  • the mounting bracket 10 may also be connected with the partition plate 9 by other connection ways such as riveting.
  • the mounting bracket 10 is electrically connected with the circuit board 61 , and the mounting bracket 10 can support large-volume electronic components.
  • the mounting bracket 10 includes an accommodating portion 102 .
  • the accommodating portion 102 is integrally formed with the mounting bracket 10 by injection molding.
  • the accommodating portion 102 includes a bottom supporting portion 1021 and a side portion 1022 , the bottom supporting portion 1021 and the side portion 1022 form the accommodating cavity.
  • the accommodating cavity is provided with a large-volume electronic component, and the large-volume electronic component is a capacitor 101 .
  • the bottom supporting portion 1021 is substantially arc-shaped, the bottom supporting portion 1021 is in contact with part of an outer circumferential surface of the capacitor 101 , and the bottom supporting portion 1021 and the side portion 1022 are provided to facilitate circumferential positioning of the capacitor 101 , thereby ensuring that the capacitor 101 do not move circumferentially.
  • the mounting bracket 10 further includes as least two latching portions 103 .
  • the mounting bracket includes two latching portions 103 , and the two latching portions 103 are arranged two sides of the capacitor 101 .
  • the latching portion 103 includes a first surface 1031 .
  • the capacitor 101 come into contact with the first surface 1031 of the latching portion 103 first, and at this time, the first inclined surface 1031 is tangent to the outer circumferential surface of the capacitor 101 .
  • the capacitor 101 is further mounted into the accommodating portion 102 , there will be a component force acting on the first surface 1031 , so that the latching portion 103 is opened outward.
  • the mounting bracket 10 further includes at least two through holes 104 , and the through holes 104 are substantially distributed in the circumferential array or uniformly distributed.
  • the number of the through holes 104 is substantially equal to the number of the threaded holes 951 of the third annular protrusions 95 of the partition plate 9 .
  • the mounting bracket 10 includes three through holes 104 , and the number of the through holes 104 is equal to the number of the threaded holes 951 of the third annular protrusions 95 of the partition plate 9 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)
US16/642,882 2017-08-31 2018-06-11 Electric oil pump Abandoned US20200300241A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710769833.8A CN109424539A (zh) 2017-08-31 2017-08-31 电子油泵
CN201710769833.8 2017-08-31
PCT/CN2018/090551 WO2019041959A1 (fr) 2017-08-31 2018-06-11 Pompe à huile électrique

Publications (1)

Publication Number Publication Date
US20200300241A1 true US20200300241A1 (en) 2020-09-24

Family

ID=65504629

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/642,882 Abandoned US20200300241A1 (en) 2017-08-31 2018-06-11 Electric oil pump

Country Status (6)

Country Link
US (1) US20200300241A1 (fr)
EP (1) EP3677779B1 (fr)
JP (1) JP2021501280A (fr)
CN (1) CN109424539A (fr)
PL (1) PL3677779T3 (fr)
WO (1) WO2019041959A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11530698B2 (en) * 2020-09-07 2022-12-20 Yamada Manufacturing Co., Ltd. Oil pump including resin pump cover
US11976658B2 (en) 2019-06-19 2024-05-07 Zhejiang Sanhua Intelligent Controls Co., Ltd. Electric pump with cooling channel arrangement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112112797B (zh) * 2019-06-19 2023-01-10 浙江三花智能控制股份有限公司 油泵
CN115638104A (zh) * 2021-07-19 2023-01-24 杭州奥科美瑞科技有限公司 流体驱动装置
CN117856511B (zh) * 2024-03-01 2024-06-18 科弛医疗科技(北京)有限公司 电机散热装置、器械驱动机构以及手术机器人设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150219097A1 (en) * 2012-08-28 2015-08-06 Aisin Aw Co., Ltd. Gear pump

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001056B2 (ja) * 2003-05-28 2007-10-31 アイシン精機株式会社 電動ポンプ
JP5418053B2 (ja) * 2009-08-05 2014-02-19 株式会社ジェイテクト トランスミッション用電動ポンプユニット
JP5131304B2 (ja) * 2010-04-13 2013-01-30 三菱電機株式会社 モータ、換気扇、熱交換ユニット
JP5622033B2 (ja) * 2010-07-20 2014-11-12 アイシン精機株式会社 流体ポンプ
CN102457130A (zh) * 2010-10-20 2012-05-16 吴江市新申铝业科技发展有限公司 电机外壳
JP2012097583A (ja) * 2010-10-29 2012-05-24 Hitachi Automotive Systems Ltd 電動ポンプ
JP5755497B2 (ja) * 2011-05-18 2015-07-29 日本電産トーソク株式会社 電動式歯車ポンプ
JP6108590B2 (ja) * 2012-01-17 2017-04-05 アスモ株式会社 電動ポンプ
US9810223B2 (en) * 2012-09-20 2017-11-07 Asmo Co., Ltd. Electric pump
US9624929B2 (en) * 2012-12-21 2017-04-18 Lg Innotek Co., Ltd. Electric pump
JP6306320B2 (ja) * 2013-03-06 2018-04-04 アスモ株式会社 電動オイルポンプ及び油圧供給装置
CN103312107A (zh) * 2013-06-19 2013-09-18 浙江三星机电股份有限公司 一种无刷直流的工业电机
CN103390957A (zh) * 2013-08-01 2013-11-13 湘潭电机股份有限公司 一种电机机壳及电机
CN203883614U (zh) * 2014-04-12 2014-10-15 宁波腾隆户外用品有限公司 电机与油泵的连接结构
JP2016008526A (ja) * 2014-06-23 2016-01-18 アイシン精機株式会社 電動ポンプ
JP6369194B2 (ja) * 2014-07-23 2018-08-08 株式会社ジェイテクト 電動ポンプユニット
CN204068455U (zh) * 2014-07-28 2014-12-31 瑞安市屹立东森汽车部件制造厂 大排量柴油泵
JP6682769B2 (ja) * 2015-05-29 2020-04-15 日本電産トーソク株式会社 ポンプ装置
CN105179232B (zh) * 2015-10-23 2018-01-26 泊头市广腾机械设备制造有限公司 盘式磁力连接化工滑片泵
CN205955993U (zh) * 2016-08-05 2017-02-15 北京朗禾科技有限公司 一种复合转子真空泵
CN207701348U (zh) * 2017-08-31 2018-08-07 杭州三花研究院有限公司 电子油泵
CN207363873U (zh) * 2017-08-31 2018-05-15 杭州三花研究院有限公司 电子油泵
CN207420851U (zh) * 2017-08-31 2018-05-29 杭州三花研究院有限公司 油泵
CN207363874U (zh) * 2017-08-31 2018-05-15 杭州三花研究院有限公司 电子油泵

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150219097A1 (en) * 2012-08-28 2015-08-06 Aisin Aw Co., Ltd. Gear pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11976658B2 (en) 2019-06-19 2024-05-07 Zhejiang Sanhua Intelligent Controls Co., Ltd. Electric pump with cooling channel arrangement
US11530698B2 (en) * 2020-09-07 2022-12-20 Yamada Manufacturing Co., Ltd. Oil pump including resin pump cover

Also Published As

Publication number Publication date
EP3677779A1 (fr) 2020-07-08
JP2021501280A (ja) 2021-01-14
EP3677779B1 (fr) 2023-09-06
EP3677779A4 (fr) 2021-07-07
WO2019041959A1 (fr) 2019-03-07
CN109424539A (zh) 2019-03-05
PL3677779T3 (pl) 2024-02-26

Similar Documents

Publication Publication Date Title
US20200300241A1 (en) Electric oil pump
US10337513B2 (en) Electric-motor-driven liquid pump
CN109563828B (zh) 驱动装置
EP3150857B1 (fr) Pompe électrique
US11221013B2 (en) Centrifugal compressor
US20220333597A1 (en) Integrated screw-spindle coolant pump
US20200355187A1 (en) Electric pump
US11286944B2 (en) Centrifugal compressor and method for manufacturing centrifugal compressor
US10844759B2 (en) Variable speed cooling compressor including lubricating oil pumping system
CN207363874U (zh) 电子油泵
US20220209626A1 (en) Motor
AU2020348637A1 (en) High-efficiency and low-noise automobile electronic water pump
CN111313616A (zh) 一种电机壳内循环集成冷却系统
CN109565223B (zh) 驱动装置
KR100756528B1 (ko) 엘피지 차량용 연료펌프의 윤활냉각장치
CN110131163B (zh) 电动泵
US20200200168A1 (en) Oil pump
CN114001036B (zh) 一种微型水力悬浮机械泵及其装配方法
WO2022048364A1 (fr) Dispositif de pompe et véhicule
CN212063778U (zh) 一种电机壳内循环集成冷却系统
CN111033971B (zh) 驱动装置
CN110857689B (zh) 电动泵
CN215860804U (zh) 一种径向剖分式单级离心泵
CN109424538A (zh) 电子油泵
CN220337086U (zh) 一种多级管中泵

Legal Events

Date Code Title Description
AS Assignment

Owner name: HANGZHOU SANHUA RESEARCH INSTITUTE CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LU, JIANGANG;WU, ZHIWANG;YIN, BINGJIU;AND OTHERS;SIGNING DATES FROM 20200219 TO 20200224;REEL/FRAME:052137/0382

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: ZHEJIANG SANHUA INTELLIGENT CONTROLS CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HANGZHOU SANHUA RESEARCH INSTITUTE CO., LTD.;REEL/FRAME:056100/0665

Effective date: 20210422

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION