US20200035898A1 - Thermoelectric device having circuitry that facilitates manufacture - Google Patents
Thermoelectric device having circuitry that facilitates manufacture Download PDFInfo
- Publication number
- US20200035898A1 US20200035898A1 US16/377,125 US201916377125A US2020035898A1 US 20200035898 A1 US20200035898 A1 US 20200035898A1 US 201916377125 A US201916377125 A US 201916377125A US 2020035898 A1 US2020035898 A1 US 2020035898A1
- Authority
- US
- United States
- Prior art keywords
- electrically conductive
- plate
- thermoelectric
- portions
- conductive portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000004891 communication Methods 0.000 claims abstract description 64
- 238000000429 assembly Methods 0.000 claims abstract description 58
- 239000000463 material Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 5
- 230000003750 conditioning effect Effects 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 229910000679 solder Inorganic materials 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000001143 conditioned effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000012777 electrically insulating material Substances 0.000 description 3
- 239000011152 fibreglass Substances 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/81—Structural details of the junction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- H01L35/32—
-
- H01L35/34—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/13—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
Definitions
- thermoelectric devices and modules used for thermal management of components and/or systems, including but not limited to batteries.
- Power electronics and other electrical devices can be sensitive to overheating, cold temperatures, extreme temperatures, and operating temperature limits. The performance of such devices may be diminished, sometimes severely, when the devices are operated outside of recommended temperature ranges. In semiconductor devices, integrated circuit dies can overheat and malfunction. In batteries, including, for example, batteries used for automotive applications in electrified or electrical vehicles, battery cells and their components can degrade when overheated or overcooled. Such degradation can manifest itself in reduced battery storage capacity and/or reduced ability for the battery to be recharged over multiple duty cycles.
- high performance batteries for use in large systems include, for example, lithium based batteries used in electrical vehicles
- have certain properties e.g., charging characteristics
- safety-related events e.g., potential fires due to over-temperature conditions
- thermoelectric device comprises a thermally conductive first plate and a plurality of thermoelectric sub-assemblies.
- the first plate comprises a layer comprising a plurality of electrically conductive portions and a plurality of electrically insulating portions separating the electrically conductive portions from one another.
- Each thermoelectric sub-assembly of the plurality of thermoelectric sub-assemblies comprises a thermally conductive second plate and a plurality of thermoelectric elements in a region between the first plate and the second plate.
- the plurality of thermoelectric elements is in electrical communication with the electrically conductive portions of the first plate, in electrical communication with electrically conductive portions of the second plate, and in thermal communication with the first plate and the second plate.
- At least some of the electrically conductive portions of the first plate are positioned at least partially outside the region, in electrical communication with the plurality of thermoelectric sub-assemblies, and comprise a first electrically conductive portion and a second electrically conductive portion.
- the first electrically conductive portion is configured to be in electrical communication with an input electrical conduit and the second electrically conductive portion is configured to be in electrical communication with an output electrical conduit.
- the first electrically conductive portion and the second electrically conductive portion are positioned at a first edge of the first plate without a thermoelectric sub-assembly of the plurality of thermoelectric sub-assemblies between the first electrically conductive portion and the second electrically conductive portion.
- thermoelectric module for thermally conditioning a component.
- the module comprises the thermoelectric device as described herein and first and second heat spreaders spaced apart from one another and configured to respectively provide cold and hot sides and to be mechanically coupled together by at least one fastener.
- the first and second heat spreaders are operatively engaged with the thermoelectric device.
- the module further comprises a material arranged between the first and second heat spreaders.
- a method of fabricating a thermoelectric device comprises providing a first plate comprising an electrically conductive layer. The method further comprises removing portions of the electrically conductive layer to form a first electrically conductive portion, a second electrically conductive portion, and a plurality of third electrically conductive portions.
- the first electrically conductive portion is configured to be in electrical communication with an input electrical conduit and a series electrical circuit comprising a plurality of thermoelectric sub-assemblies.
- the second electrically conductive portion is configured to be in electrical communication with an output electrical conduit and the series electrical circuit.
- the plurality of third electrically conductive portions is configured to be in electrical communication and in thermal communication with a plurality of thermoelectric elements of the plurality of thermoelectric sub-assemblies.
- the first electrically conductive portion and the second electrically conductive portion are positioned at a first edge of the first plate without the plurality of electrically conductive portions between the first electrically conductive portion and the second electrically conductive portion.
- FIG. 1A schematically illustrates a top view of an example thermoelectric device in accordance with certain embodiments described herein.
- FIGS. 1B and 1C schematically illustrate two cross-sectional views of the example thermoelectric device of FIG. 1A .
- FIGS. 2A-2B schematically illustrate a perspective view and an exploded view, respectively, of an example thermoelectric device comprising a plurality of thermoelectric sub-assemblies in accordance with certain embodiments described herein.
- FIG. 3A schematically illustrates an example first plate in accordance with certain embodiments described herein.
- FIG. 3B schematically illustrates an example series electrical path in accordance with certain embodiments described herein.
- FIG. 4A schematically illustrates the example first plate of FIG. 3A with a solder mask layer in accordance with certain embodiments described herein.
- FIG. 4B schematically illustrates a magnified view of a corner of the first plate of FIG. 4A .
- FIG. 5 schematically illustrates a thermoelectric module for thermally conditioning a component in accordance with certain embodiments described herein.
- FIG. 6 is a flow diagram of an example method of fabricating a thermoelectric device in accordance with certain embodiments described herein.
- thermoelectric device having circuitry that facilitates manufacture of the thermoelectric device and/or of a thermoelectric module comprising the thermoelectric device.
- the electrical conduits of certain embodiments can be run parallel to one another through the other structures of the thermoelectric module, and the process of connecting the electrical conduits to the thermoelectric device can be easier than if the two electrical conduits were spaced further apart from one another.
- FIG. 1A schematically illustrates a top view of an example thermoelectric device 100 in accordance with certain embodiments described herein.
- FIGS. 1B and 1C schematically illustrate two cross-sectional views of the example thermoelectric device 100 of FIG. 1A .
- the thermoelectric device 100 of FIGS. 1A-1B comprises a thermally conductive first plate 110 and a plurality of thermoelectric sub-assemblies 114 , each thermoelectric sub-assembly 114 comprising a thermally conductive second plate 120 and a plurality of thermoelectric (“TE”) elements 130 .
- the first plate 110 comprises a layer 116 comprising a plurality of electrically conductive portions 118 and a plurality of electrically insulating portions 119 separating the electrically conductive portions 118 from one another.
- the plurality of TE elements 130 is in a region 132 bounded by and including (e.g., between) the first plate 110 and the second plate 120 and is in electrical communication with the electrically conductive portions 118 of the first plate 110 , in electrical communication with electrical conductive portions 122 of the second plate 120 , and in thermal communication with the first plate 110 and the second plate 120 .
- At least some of the electrically conductive portions 118 of the first plate 110 are positioned at least partially outside the regions 132 , are in electrical communication with the plurality of thermoelectric sub-assemblies 114 , and comprise a first electrically conductive portion 118 a configured to be in electrical communication with an input electrical conduit (not shown) and a second electrically conductive portion 118 b configured to be in electrical communication with an output electrical conduit (not shown).
- the first electrically conductive portion 118 a and the second electrically conductive portion 118 b are positioned at a first edge 112 of the first plate 110 without a thermoelectric sub-assembly 114 of the plurality of thermoelectric sub-assemblies 114 between the first electrically conductive portion 118 a and the second electrically conductive portion 118 b.
- each of the first plate 110 and the second plate 120 comprises a planar laminate structure (e.g., a printed circuit board or PCB) having one or more electrically conductive layers (e.g., copper; aluminum; metal; metal alloy or composite) and one or more electrically insulating layers (e.g., fiberglass; resin; polymer; fibrous material preimpregnated with a resin material such as epoxy).
- the one or more electrically conductive layers can be configured to provide electrical connections to the plurality of TE elements 130 .
- the layer 116 can comprises an electrically conductive layer of the first plate 110 wherein at least some of the electrically conductive portions 118 comprise electrically conductive pads on a surface of the first plate 110 in the region 132 .
- the pads can be configured to be coupled (e.g., soldered) to the TE elements 130 , and the pads can be in electrical communication with other pads of the first plate 110 (e.g., by electrically conductive lines formed by selective chemical etching of the electrically conductive layers and by electrically conductive vias formed through the electrically insulating layers).
- an electrically conductive layer of the second plate 120 can comprise electrically conductive pads on a surface of the second plate 120 in the region 132 which are configured to be coupled (e.g., soldered) to the TE elements 130 , and the pads can be in electrical communication with other pads of the second plate 120 (e.g., by electrically conductive lines formed by selective chemical etching of the electrically conductive layers and by electrically conductive vias formed through the electrically insulating layers).
- the first plate 110 has a planar parallelogram shape (e.g., rhombus shape; rectangular shape; square shape) with four edges (e.g., a rectangular shape with two shorter edges and two longer edges).
- the first plate 110 can have other planar shapes (e.g., polygonal) with other numbers of edges in accordance with certain embodiments described herein (e.g., triangular shapes with three edges; trapezoidal shapes with four edges; pentagonal shapes with five edges; hexagonal shapes with six edges; etc.).
- the second plate 120 has a planar parallelogram shape (e.g., rhombus shape; rectangular shape; square shape) with four edges 126 (e.g., a rectangular shape with two shorter edges and two longer edges).
- the second plate 120 can have other planar shapes (e.g., polygonal) with other numbers of edges 126 in accordance with certain embodiments described herein (e.g., triangular shapes with three edges; trapezoidal shapes with four edges; pentagonal shapes with five edges; hexagonal shapes with six edges; etc.).
- planar shapes e.g., polygonal
- edges 126 e.g., triangular shapes with three edges; trapezoidal shapes with four edges; pentagonal shapes with five edges; hexagonal shapes with six edges; etc.
- the plurality of TE elements 130 comprises p-type TE elements and n-type TE elements in electrical communication with one another through a plurality of shunts (e.g., electrically conductive pads of the first plate 110 and the second plate 120 ).
- the plurality of TE elements 130 can be arranged in a “stonehenge” configuration in which p-type and n-type TE elements alternate with one another and are in series electrical communication with one another by shunts (e.g., electrically conductive portions 118 of the first plate 110 and electrically conductive portions 122 of the second plate 120 ) which are alternately positioned on the first plate 110 and the second plate 120 such that electrical current can flow serially through the TE elements 130 and the shunts in a serpentine fashion.
- shunts e.g., electrically conductive portions 118 of the first plate 110 and electrically conductive portions 122 of the second plate 120
- the plurality of TE elements 130 are in thermal communication with the first plate 110 through the shunts (e.g., electrically conductive pads) on the surface of the first plate 110 and in thermal communication with the second plate 120 through the shunts (e.g., electrically conductive pads) on the surface of the second plate 120 .
- the region 132 containing the plurality of TE elements 130 is bounded by and includes (e.g., between) the first plate 110 and the second plate 120 and has a perimeter defined by the second plate 120 (e.g., the perimeter is coincident with the plurality of edges 126 of the second plate 120 ).
- a top surface of the first plate 110 (e.g., a surface of the first plate 110 closest to the second plate 120 ) has a first surface area and a top surface of the second plate 120 (e.g., a surface of the second plate 120 farthest from the first plate 110 ) has a second surface area less than the first surface area.
- each thermoelectric sub-assembly 114 of the plurality of thermoelectric sub-assemblies 114 can comprise a corresponding second plate 120 and a corresponding plurality of TE elements 130 (e.g., the plurality of second plates 120 are mounted to a common first plate 110 ), and the first plate 110 can have a surface area larger than the sum of the surface areas of the second plates 120 .
- the first plate 110 and the second plate 120 are spaced from one another by a gap having a gap height.
- the gap between the top surface of the first plate 110 and a bottom surface of the second plate 120 e.g., a surface of the second plate 120 closest to the first plate 110 ) is equal to the height of the TE elements 130 within the region 132 , as schematically illustrated by FIGS. 1B and 1C .
- the plurality of electrically conductive portions 118 of the layer 116 comprises an electrically conductive material, examples of which include but are not limited to: copper; aluminum; metal; metal alloy or composite, and the plurality of electrically insulating portions 119 of the layer 116 does not contain an electrically conductive material.
- the layer 116 can comprise a copper layer from which some of the copper has been removed (e.g., etched) such that the electrically conductive portions 118 comprise copper remaining after this removal (e.g., etching) from the layer 116 , and the electrically insulating portions 119 comprise portions of the layer 116 from which the electrically conductive material (e.g., copper) has been removed (e.g., etched), so the portions 119 comprise etched portions of the layer 116 .
- the electrically conductive portions 118 comprise copper remaining after this removal (e.g., etching) from the layer 116
- the electrically insulating portions 119 comprise portions of the layer 116 from which the electrically conductive material (e.g., copper) has been removed (e.g., etched)
- At least some of the electrically conductive portions 118 of the first plate 110 are positioned at least partially outside the regions 132 and are in electrical communication with the plurality of thermoelectric sub-assemblies 114 .
- electrically conductive portions 118 a, 118 b, 118 c are positioned partially outside the regions 132 of the thermoelectric sub-assemblies 114 and are in electrical communication with the TE elements 130 of the thermoelectric sub-assemblies 114 .
- the electrically conductive portions 118 a, 118 b of the layer 116 are separated from one another by an electrically insulating portion 119 of the layer 116 and are configured to be in electrical communication with an input electrical conduit (e.g., wire) and an output electrical conduit (e.g., wire), respectively.
- the electrically conductive portions 118 a, 118 b are positioned at the first edge 112 of the first plate 110 without a thermoelectric sub-assembly between the first electrically conductive portion 118 a and the second electrically conductive portion 118 b.
- the electrically conductive portion 118 c is in electrical communication with TE elements 130 of both thermoelectric sub-assemblies 114 of FIGS. 1A-1C .
- the TE elements 130 of the two thermoelectric sub-assemblies 114 are in series electrical communication with one another by being in electrical communication with the electrically conductive portion 118 c.
- the series electrical circuit comprises the electrically conductive portions 118 a, 118 b of the first plate 110 and the thermoelectric elements 130 of the thermoelectric sub-assemblies 114 with the first electrically conductive portion 118 a at a first end of the series electrical circuit and the second electrically conductive portion 118 b at a second end of the series electrical circuit.
- one or more of the thermoelectric sub-assemblies 114 comprises at least one material (e.g., an electrically insulating material; epoxy; polymer) along at least a first portion of a perimeter of the region 132 .
- the at least one material is in mechanical communication with the first plate 110 and the second plate 120 , and the at least one material extends over at least some of the electrically conductive portions of the first plate 110 (e.g., over the electrically conductive portions 118 a, 118 b, 118 c ).
- the at least one material can also extend over the at least some of the electrically insulating portions 119 of the first plate 110 .
- FIGS. 2A and 2B schematically illustrate a perspective view and an exploded view, respectively, of an example thermoelectric device 100 comprising a plurality of thermoelectric sub-assemblies 114 (e.g., four thermoelectric sub-assemblies 114 ) in accordance with certain embodiments described herein.
- the thermoelectric device 100 comprises a first plate 110 (e.g., PCB) having a rectangular shape with a length L 1 and a width W 1 .
- the first plate 110 further comprises a plurality of holes 160 (e.g., configured to mount the thermoelectric device 100 within a thermoelectric module) between the thermoelectric sub-assemblies 114 .
- thermoelectric sub-assemblies 114 of FIGS. 2A and 2B comprises a plurality of TE elements 130 , and a second plate 120 having a rectangular shape with a length L 2 and a width W 2 , and having a plurality of electrically conductive shunts (not shown) (e.g., solder pads) configured to be in electrical and thermal communication with the plurality of TE elements 130 .
- electrically conductive shunts not shown
- FIG. 2A also shows a pair of electrical conduits 162 a, 162 b (e.g., wires) configured to be in electrical communication with (e.g., soldered to) the first electrically conductive portion 118 a and the second electrically conductive portion 118 b, respectively, to transmit electrical power to and/or from the thermoelectric sub-assemblies 114 .
- the electrically conductive portions 118 c electrically connect the TE elements 130 of different thermoelectric sub-assemblies 114 in series with one another.
- the portions of the electrical conduits 162 a, 162 b that are coupled to (e.g., soldered onto) the electrically conductive portions 118 a, 118 b is covered by at least one electrically insulating material (e.g., epoxy; polymer) configured to provide electrical insulation and/or structural rigidity to the portions of the electrical conduits 162 a, 162 b that are coupled to the electrically conductive portions 118 a, 118 b.
- at least one electrically insulating material e.g., epoxy; polymer
- thermoelectric sub-assemblies 114 of FIGS. 2A and 2B are substantially equally spaced from one another (e.g., within ⁇ 5%; within ⁇ 1%) across the first plate 110 with a pair of holes 160 between the longer edges of the second plates 120 of adjacent thermoelectric sub-assemblies 114 .
- the thermoelectric sub-assemblies 114 are not substantially equally spaced from one another, and/or the number of holes 160 between the adjacent thermoelectric sub-assemblies 114 is not equal to two (e.g., one; more than two).
- thermoelectric device 100 is aligned (e.g., flush) with longer edges of the first plate 110 , and the two thermoelectric sub-assemblies 114 at opposite ends of the thermoelectric device 100 have one of the longer edges of the second plate 120 aligned (e.g., flush) with a respective shorter edge of the first plate 110 .
- other edges of the first plate 110 and other edges of the second plate 120 can be aligned (e.g., flush) with one another or can extend past one another.
- FIG. 3A schematically illustrates an example first plate 110 in accordance with certain embodiments described herein.
- the first plate 110 is configured to support four thermoelectric sub-assemblies 114 and for each thermoelectric sub-assembly 114 , the first plate 110 comprises a plurality of electrically conductive portions 118 and a plurality of electrically insulating portions 119 .
- at least some of the electrically conductive portions 118 a, 118 b, 118 c are positioned at least partially outside the regions 132 of the thermoelectric sub-assemblies 114 and are configured to form a series electrical circuit 164 with the TE elements 130 of the thermoelectric sub-assemblies 114 .
- FIG. 1 schematically illustrates an example first plate 110 in accordance with certain embodiments described herein.
- the first plate 110 is configured to support four thermoelectric sub-assemblies 114 and for each thermoelectric sub-assembly 114 , the first plate 110 comprises a plurality of electrically
- 3B schematically illustrates an example electrical current path of the series electrical circuit 164 among the various thermoelectric sub-assemblies 114 as a dashed arrowed line.
- the electrical current path begins at the first electrical conduit 162 a and extends in series through the following:
- FIG. 4A schematically illustrates the example first plate 110 of FIG. 3A (excluding the plurality of holes 160 ) with a solder mask layer 170 overlaying the plurality of electrically conductive portions 118 and the plurality of electrically insulating portions 119 in accordance with certain embodiments described herein.
- FIG. 4B schematically illustrates a magnified view of a corner of the first plate 110 of FIG. 4A , showing the solder mask layer 170 overlying peripheral regions 172 of the portions 118 and not overlying central regions 174 (e.g., solder pad regions) of the portions 118 .
- FIG. 4B also schematically illustrates that the example first plate 110 has a laminate structure with a metal base layer 180 (e.g., copper; aluminum; metal; metal alloy or composite), an electrically insulating layer 182 (e.g., fiberglass; resin; polymer; fibrous material preimpregnated with a resin material such as epoxy) overlying the metal base, the layer 116 overlaying the electrically insulating layer, and the solder mask layer overlaying the layer 116 .
- a metal base layer 180 e.g., copper; aluminum; metal; metal alloy or composite
- an electrically insulating layer 182 e.g., fiberglass; resin; polymer; fibrous material preimpregnated with a resin material such as epoxy
- FIG. 5 schematically illustrates a thermoelectric module 400 for thermally conditioning a component (e.g., an electronics component; a battery) in accordance with certain embodiments described herein.
- the module 400 comprises a first heat spreader 410 and a second heat spreader 420 spaced apart from one another and configured to respectively provide cold and hot sides.
- the module 400 further comprises a material 430 arranged between the first heat spreader 410 and the second heat spreader 420 .
- the module 400 further comprises a thermoelectric device 100 operatively engaged with the first heat spreader 410 and the second heat spreader 420 .
- the first heat spreader 410 and the second heat spreader 420 are configured to be mechanically coupled together by at least one fastener (e.g., bolt; screw; pin; rivet) (not shown).
- the thermoelectric device 100 comprises a thermally conductive first plate 110 in thermal communication with the first heat spreader 410 and a plurality of thermoelectric sub-assemblies 114 .
- the first plate 110 can comprise at least one hole 160 configured to have the at least one fastener extend therethrough and the plurality of thermoelectric sub-assemblies 114 can be arranged to have the at least one fastener between adjacent thermoelectric sub-assemblies 114 (see, e.g., FIG. 5 ).
- the first plate 110 comprises electrically conductive portions 118 and electrically insulating portions 119 in accordance with certain embodiments described herein (see, e.g., FIGS.
- Each thermoelectric sub-assembly 114 comprises a thermally conductive second plate 120 in thermal communication with the second heat spreader 420 and having a plurality of edges 126 , and a plurality of TE elements 130 in a region 132 bounded by and including (e.g., between) the first plate 110 and the second plate 120 and in thermal communication with the first plate 110 and the second plate 120 .
- the first heat spreader 410 and the second heat spreader 420 are configured to transfer heat away from the component to be thermally conditioned.
- the first heat spreader 410 can be configured to transfer heat to the thermoelectric device 100 from the component to be thermally conditioned
- the second heat spreader 420 can be configured to transfer heat away from the thermoelectric device 100 .
- the first heat spreader 410 can comprise at least one first surface 412 configured to be in thermal communication with the thermoelectric device 100 and at least one second surface 414 configured to be in thermal communication with the component to be thermally conditioned by the module 400
- the second heat spreader 420 can comprise at least one first surface 422 configured to be in thermal communication with the thermoelectric device 100 .
- At least one second surface 424 of the second heat spreader 420 can comprise at least one heat dissipation structure (e.g., at least one fin) configured to transfer heat from the second heat spreader 420 to the ambient surroundings.
- the second heat spreader 420 can be configured to have a fluid coolant (e.g., liquid; air; refrigerant) flow therethrough. While FIG.
- thermoelectric module 400 schematically illustrates an example thermoelectric module 400 in which the first heat spreader 410 provides at least one cold side that receives heat from the component to be thermally conditioned and in which the second heat spreader 420 provides at least one hot side that serves as a heat sink which receives heat from the thermoelectric device 100 , in certain other embodiments, the second heat spreader 420 provides the at least one cold side and the first heat spreader 410 provides the at least one hot side.
- the material 430 comprises a compressible material (e.g., polymer; plastic; rubber; fiberglass) and is configured to be at least partially compressed by the first heat spreader 410 and the second heat spreader 420 during assembly of the thermoelectric module 400 while keeping the first heat spreader 410 and the second heat spreader 420 from contacting one another.
- the material 430 generally surrounds the thermoelectric device 100 (e.g., as shown in FIG.
- thermoelectric device 100 comprises a plurality of thermoelectric sub-assemblies 114
- the material 430 does not extend between the thermoelectric sub-assemblies 114 .
- the material 430 provides thermal insulation between the first heat spreader 410 and the second heat spreader 420 .
- the material 430 can have a low thermal conductivity (e.g., less than 10 W/mK) and can be configured to reduce a thermal short between the first heat spreader 410 and the second heat spreader 420 (e.g., heat transfer along a thermal path between the first and second heat spreaders 410 , 420 that does not extend through the thermoelectric device 100 ).
- the material 430 provides hermetic sealing and/or a moisture barrier for the volume occupied by the thermoelectric device 100 .
- the material 430 can comprise an insulation ring configured to prevent dust, condensate, moisture, or other particulates and/or fluids from entering the volume occupied by the thermoelectric device 100 .
- the thermoelectric module 400 comprises at least one seal (e.g., hermetic seal) at least partially surrounding a volume containing the thermoelectric elements 130 of the thermoelectric device 100 .
- the at least one seal can comprise a material (e.g., an electrically insulating material; epoxy; polymer) along at least a portion of a perimeter of the region 132 containing the thermoelectric elements 130 .
- the at least one seal can comprise a material (e.g., epoxy; acrylic; polymer; silicone) between the first heat spreader 410 and the second heat spreader 420 and at least partially surrounding a volume containing the thermoelectric device 100 (e.g., potting a portion of the volume between the at least one first surface 412 of the first heat spreader 410 and the at least one first surface 422 of the second heat spreader 420 .
- the material can be sufficiently rigid to provide mechanical strength to the thermoelectric module 400 .
- additional material e.g., epoxy; acrylic; polymer; silicone
- additional material e.g., epoxy; acrylic; polymer; silicone
- FIG. 6 is a flow diagram of an example method 600 of fabricating a thermoelectric device 100 in accordance with certain embodiments described herein.
- the example method 600 of certain embodiments can also be used for fabricating a thermoelectric module 400 . While the method 600 is described by referring to the structures schematically illustrated in FIGS. 1A-1C, 2A-2B, 3A-3B, 4A-4B, and 5 , the method 600 is also compatible with other structures.
- the method 600 comprises providing a first plate 110 comprising an electrically conductive layer 116 .
- the method further comprises removing portions of the electrically conductive layer 116 to form a first electrically conductive portion 118 a, a second electrically conductive portion 118 b, and a plurality of third electrically conductive portions 118 c.
- the first electrically conductive portion 118 a is configured to be in electrical communication with an input electrical conduit 162 a and a series electrical circuit 164 comprising a plurality of thermoelectric sub-assemblies 114 .
- the second electrically conductive portion 118 b is configured to be in electrical communication with an output electrical conduit 162 b and the series electrical circuit 164 .
- the plurality of third electrically conductive portions 118 c is configured to be in electrical communication and in thermal communication with a plurality of thermoelectric elements 130 of the plurality of thermoelectric sub-assemblies 114 .
- the first electrically conductive portion 118 a and the second electrically conductive portion 118 b are positioned at a first edge 112 of the first plate 110 without the plurality of third electrically conductive portions 118 c between the first electrically conductive portion 118 a and the second electrically conductive portion 118 b.
- removing portions of the electrically conductive layer 116 comprises forming a plurality of electrically insulating portions 119 separating the first electrically conductive portion 118 a, the second electrically conductive portion 118 b, and the plurality of third electrically conductive portions 118 c from one another.
- removing portions of the electrically conductive layer 116 can comprise etching the electrically conductive layer 116 to form the plurality of electrically conductive portions 118 and the plurality of electrically insulating portions 119 .
- the method 600 further comprises forming the plurality of thermoelectric sub-assemblies 114 on the first plate 110 .
- forming the plurality of thermoelectric sub-assemblies can comprise connecting the plurality of TE elements 130 in electrical communication and in thermal communication with the plurality of electrically conductive portions 118 of the first plate 110 , and connecting a plurality of second plates 120 to the plurality of TE elements 130 .
- Each thermoelectric sub-assembly can comprise a corresponding portion of the plurality of thermoelectric elements 130 in a region 132 between the first plate 110 and the corresponding second plate 120 .
- the method 600 further comprises providing the second plates 120 .
- providing the second plates 120 can comprise etching an electrically conductive layer of the second plates to form the plurality of electrically conductive portions of the second plates 120 .
- connecting the plurality of TE elements 130 to the plurality of electrically conductive portions 118 of the first plate 110 and to the plurality of electrically conductive portions of the second plate 120 comprises applying solder to the electrically conductive portions 118 of the first plate 110 and to the electrically conductive portions of the second plate 120 and heating the solder to above a temperature above a melting temperature of the solder while the TE elements 130 are in contact with the solder.
- the method 600 further comprises applying a solder mask layer 170 over the first plate 110 such that the solder mask layer 170 does not overlie solder pad regions 174 of the electrically conductive first portions 118 , and the solder can be applied to the solder pad regions 174 .
- the method 600 further comprises depositing at least one material along at least a first a portion of a perimeter of the region 132 , the at least one material in mechanical communication with the first plate 110 and the second plate 120 (e.g., to hermetically seal the TE elements 130 ; to provide additional structural rigidity to the thermoelectric assembly 100 ).
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
A thermoelectric device includes a thermally conductive first plate and a plurality of thermoelectric sub-assemblies, each having a thermally conductive second plate and a plurality of thermoelectric elements in a region between the first plate and the second plate. At least some electrically conductive portions of the first plate are positioned at least partially outside the regions, in electrical communication with the plurality of thermoelectric sub-assemblies, and include a first electrically conductive portion and a second electrically conductive portion. The first electrically conductive portion is configured to be in electrical communication with an input electrical conduit and the second electrically conductive portion is configured to be in electrical communication with an output electrical conduit. The first electrically conductive portion and the second electrically conductive portion are positioned at a first edge of the first plate without a thermoelectric sub-assembly of the plurality of thermoelectric sub-assemblies between the first electrically conductive portion and the second electrically conductive portion.
Description
- Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are incorporated by reference and made a part of this specification.
- This application relates to thermoelectric devices and modules used for thermal management of components and/or systems, including but not limited to batteries.
- Power electronics and other electrical devices, such as batteries, can be sensitive to overheating, cold temperatures, extreme temperatures, and operating temperature limits. The performance of such devices may be diminished, sometimes severely, when the devices are operated outside of recommended temperature ranges. In semiconductor devices, integrated circuit dies can overheat and malfunction. In batteries, including, for example, batteries used for automotive applications in electrified or electrical vehicles, battery cells and their components can degrade when overheated or overcooled. Such degradation can manifest itself in reduced battery storage capacity and/or reduced ability for the battery to be recharged over multiple duty cycles. Furthermore, high performance batteries for use in large systems (including, for example, lithium based batteries used in electrical vehicles) have certain properties (e.g., charging characteristics) and/or safety-related events (e.g., potential fires due to over-temperature conditions) that make thermal management of the batteries and/or containment system desirable.
- In certain embodiments, a thermoelectric device is provided. The thermoelectric device comprises a thermally conductive first plate and a plurality of thermoelectric sub-assemblies. The first plate comprises a layer comprising a plurality of electrically conductive portions and a plurality of electrically insulating portions separating the electrically conductive portions from one another. Each thermoelectric sub-assembly of the plurality of thermoelectric sub-assemblies comprises a thermally conductive second plate and a plurality of thermoelectric elements in a region between the first plate and the second plate. The plurality of thermoelectric elements is in electrical communication with the electrically conductive portions of the first plate, in electrical communication with electrically conductive portions of the second plate, and in thermal communication with the first plate and the second plate. At least some of the electrically conductive portions of the first plate are positioned at least partially outside the region, in electrical communication with the plurality of thermoelectric sub-assemblies, and comprise a first electrically conductive portion and a second electrically conductive portion. The first electrically conductive portion is configured to be in electrical communication with an input electrical conduit and the second electrically conductive portion is configured to be in electrical communication with an output electrical conduit. The first electrically conductive portion and the second electrically conductive portion are positioned at a first edge of the first plate without a thermoelectric sub-assembly of the plurality of thermoelectric sub-assemblies between the first electrically conductive portion and the second electrically conductive portion.
- In certain embodiments, a thermoelectric module for thermally conditioning a component is provided. The module comprises the thermoelectric device as described herein and first and second heat spreaders spaced apart from one another and configured to respectively provide cold and hot sides and to be mechanically coupled together by at least one fastener. The first and second heat spreaders are operatively engaged with the thermoelectric device. The module further comprises a material arranged between the first and second heat spreaders.
- In certain embodiments, a method of fabricating a thermoelectric device is provided. The method comprises providing a first plate comprising an electrically conductive layer. The method further comprises removing portions of the electrically conductive layer to form a first electrically conductive portion, a second electrically conductive portion, and a plurality of third electrically conductive portions. The first electrically conductive portion is configured to be in electrical communication with an input electrical conduit and a series electrical circuit comprising a plurality of thermoelectric sub-assemblies. The second electrically conductive portion is configured to be in electrical communication with an output electrical conduit and the series electrical circuit. The plurality of third electrically conductive portions is configured to be in electrical communication and in thermal communication with a plurality of thermoelectric elements of the plurality of thermoelectric sub-assemblies. The first electrically conductive portion and the second electrically conductive portion are positioned at a first edge of the first plate without the plurality of electrically conductive portions between the first electrically conductive portion and the second electrically conductive portion.
-
FIG. 1A schematically illustrates a top view of an example thermoelectric device in accordance with certain embodiments described herein. -
FIGS. 1B and 1C schematically illustrate two cross-sectional views of the example thermoelectric device ofFIG. 1A . -
FIGS. 2A-2B schematically illustrate a perspective view and an exploded view, respectively, of an example thermoelectric device comprising a plurality of thermoelectric sub-assemblies in accordance with certain embodiments described herein. -
FIG. 3A schematically illustrates an example first plate in accordance with certain embodiments described herein. -
FIG. 3B schematically illustrates an example series electrical path in accordance with certain embodiments described herein. -
FIG. 4A schematically illustrates the example first plate ofFIG. 3A with a solder mask layer in accordance with certain embodiments described herein. -
FIG. 4B schematically illustrates a magnified view of a corner of the first plate ofFIG. 4A . -
FIG. 5 schematically illustrates a thermoelectric module for thermally conditioning a component in accordance with certain embodiments described herein. -
FIG. 6 is a flow diagram of an example method of fabricating a thermoelectric device in accordance with certain embodiments described herein. - Certain embodiments described herein advantageously provide a thermoelectric device having circuitry that facilitates manufacture of the thermoelectric device and/or of a thermoelectric module comprising the thermoelectric device. For example, by having the circuitry arranged such that the input electrical conduit and output electrical conduit are in close proximity (e.g., next) to one another, the electrical conduits of certain embodiments can be run parallel to one another through the other structures of the thermoelectric module, and the process of connecting the electrical conduits to the thermoelectric device can be easier than if the two electrical conduits were spaced further apart from one another.
-
FIG. 1A schematically illustrates a top view of an examplethermoelectric device 100 in accordance with certain embodiments described herein.FIGS. 1B and 1C schematically illustrate two cross-sectional views of the examplethermoelectric device 100 ofFIG. 1A . - The
thermoelectric device 100 ofFIGS. 1A-1B comprises a thermally conductivefirst plate 110 and a plurality ofthermoelectric sub-assemblies 114, eachthermoelectric sub-assembly 114 comprising a thermally conductivesecond plate 120 and a plurality of thermoelectric (“TE”)elements 130. As shown schematically inFIG. 1A , thefirst plate 110 comprises alayer 116 comprising a plurality of electricallyconductive portions 118 and a plurality of electrically insulatingportions 119 separating the electricallyconductive portions 118 from one another. The plurality ofTE elements 130 is in aregion 132 bounded by and including (e.g., between) thefirst plate 110 and thesecond plate 120 and is in electrical communication with the electricallyconductive portions 118 of thefirst plate 110, in electrical communication with electricalconductive portions 122 of thesecond plate 120, and in thermal communication with thefirst plate 110 and thesecond plate 120. At least some of the electricallyconductive portions 118 of thefirst plate 110 are positioned at least partially outside theregions 132, are in electrical communication with the plurality ofthermoelectric sub-assemblies 114, and comprise a first electricallyconductive portion 118 a configured to be in electrical communication with an input electrical conduit (not shown) and a second electricallyconductive portion 118 b configured to be in electrical communication with an output electrical conduit (not shown). The first electricallyconductive portion 118 a and the second electricallyconductive portion 118 b are positioned at afirst edge 112 of thefirst plate 110 without athermoelectric sub-assembly 114 of the plurality ofthermoelectric sub-assemblies 114 between the first electricallyconductive portion 118 a and the second electricallyconductive portion 118 b. - In certain embodiments, each of the
first plate 110 and thesecond plate 120 comprises a planar laminate structure (e.g., a printed circuit board or PCB) having one or more electrically conductive layers (e.g., copper; aluminum; metal; metal alloy or composite) and one or more electrically insulating layers (e.g., fiberglass; resin; polymer; fibrous material preimpregnated with a resin material such as epoxy). The one or more electrically conductive layers can be configured to provide electrical connections to the plurality ofTE elements 130. For example, thelayer 116 can comprises an electrically conductive layer of thefirst plate 110 wherein at least some of the electricallyconductive portions 118 comprise electrically conductive pads on a surface of thefirst plate 110 in theregion 132. The pads can be configured to be coupled (e.g., soldered) to theTE elements 130, and the pads can be in electrical communication with other pads of the first plate 110 (e.g., by electrically conductive lines formed by selective chemical etching of the electrically conductive layers and by electrically conductive vias formed through the electrically insulating layers). Similarly, at least someportions 122 of an electrically conductive layer of thesecond plate 120 can comprise electrically conductive pads on a surface of thesecond plate 120 in theregion 132 which are configured to be coupled (e.g., soldered) to theTE elements 130, and the pads can be in electrical communication with other pads of the second plate 120 (e.g., by electrically conductive lines formed by selective chemical etching of the electrically conductive layers and by electrically conductive vias formed through the electrically insulating layers). - In certain embodiments, the
first plate 110 has a planar parallelogram shape (e.g., rhombus shape; rectangular shape; square shape) with four edges (e.g., a rectangular shape with two shorter edges and two longer edges). Thefirst plate 110 can have other planar shapes (e.g., polygonal) with other numbers of edges in accordance with certain embodiments described herein (e.g., triangular shapes with three edges; trapezoidal shapes with four edges; pentagonal shapes with five edges; hexagonal shapes with six edges; etc.). In certain embodiments, thesecond plate 120 has a planar parallelogram shape (e.g., rhombus shape; rectangular shape; square shape) with four edges 126 (e.g., a rectangular shape with two shorter edges and two longer edges). Thesecond plate 120 can have other planar shapes (e.g., polygonal) with other numbers ofedges 126 in accordance with certain embodiments described herein (e.g., triangular shapes with three edges; trapezoidal shapes with four edges; pentagonal shapes with five edges; hexagonal shapes with six edges; etc.). - In certain embodiments, the plurality of
TE elements 130 comprises p-type TE elements and n-type TE elements in electrical communication with one another through a plurality of shunts (e.g., electrically conductive pads of thefirst plate 110 and the second plate 120). For example, the plurality ofTE elements 130 can be arranged in a “stonehenge” configuration in which p-type and n-type TE elements alternate with one another and are in series electrical communication with one another by shunts (e.g., electricallyconductive portions 118 of thefirst plate 110 and electricallyconductive portions 122 of the second plate 120) which are alternately positioned on thefirst plate 110 and thesecond plate 120 such that electrical current can flow serially through theTE elements 130 and the shunts in a serpentine fashion. In certain embodiments, the plurality ofTE elements 130 are in thermal communication with thefirst plate 110 through the shunts (e.g., electrically conductive pads) on the surface of thefirst plate 110 and in thermal communication with thesecond plate 120 through the shunts (e.g., electrically conductive pads) on the surface of thesecond plate 120. In certain embodiments, theregion 132 containing the plurality ofTE elements 130 is bounded by and includes (e.g., between) thefirst plate 110 and thesecond plate 120 and has a perimeter defined by the second plate 120 (e.g., the perimeter is coincident with the plurality ofedges 126 of the second plate 120). - In certain embodiments, a top surface of the first plate 110 (e.g., a surface of the
first plate 110 closest to the second plate 120) has a first surface area and a top surface of the second plate 120 (e.g., a surface of thesecond plate 120 farthest from the first plate 110) has a second surface area less than the first surface area. For example, eachthermoelectric sub-assembly 114 of the plurality ofthermoelectric sub-assemblies 114 can comprise a correspondingsecond plate 120 and a corresponding plurality of TE elements 130 (e.g., the plurality ofsecond plates 120 are mounted to a common first plate 110), and thefirst plate 110 can have a surface area larger than the sum of the surface areas of thesecond plates 120. In certain embodiments, thefirst plate 110 and thesecond plate 120 are spaced from one another by a gap having a gap height. For example, the gap between the top surface of thefirst plate 110 and a bottom surface of the second plate 120 (e.g., a surface of thesecond plate 120 closest to the first plate 110) is equal to the height of theTE elements 130 within theregion 132, as schematically illustrated byFIGS. 1B and 1C . - In certain embodiments, the plurality of electrically
conductive portions 118 of thelayer 116 comprises an electrically conductive material, examples of which include but are not limited to: copper; aluminum; metal; metal alloy or composite, and the plurality of electrically insulatingportions 119 of thelayer 116 does not contain an electrically conductive material. For example, thelayer 116 can comprise a copper layer from which some of the copper has been removed (e.g., etched) such that the electricallyconductive portions 118 comprise copper remaining after this removal (e.g., etching) from thelayer 116, and the electrically insulatingportions 119 comprise portions of thelayer 116 from which the electrically conductive material (e.g., copper) has been removed (e.g., etched), so theportions 119 comprise etched portions of thelayer 116. - In certain embodiments, at least some of the electrically
conductive portions 118 of thefirst plate 110 are positioned at least partially outside theregions 132 and are in electrical communication with the plurality ofthermoelectric sub-assemblies 114. For example, as schematically illustrated inFIGS. 1A-1C , electricallyconductive portions regions 132 of thethermoelectric sub-assemblies 114 and are in electrical communication with theTE elements 130 of thethermoelectric sub-assemblies 114. The electricallyconductive portions layer 116 are separated from one another by an electrically insulatingportion 119 of thelayer 116 and are configured to be in electrical communication with an input electrical conduit (e.g., wire) and an output electrical conduit (e.g., wire), respectively. The electricallyconductive portions first edge 112 of thefirst plate 110 without a thermoelectric sub-assembly between the first electricallyconductive portion 118 a and the second electricallyconductive portion 118 b. - The electrically
conductive portion 118 c is in electrical communication withTE elements 130 of boththermoelectric sub-assemblies 114 ofFIGS. 1A-1C . For example, theTE elements 130 of the twothermoelectric sub-assemblies 114 are in series electrical communication with one another by being in electrical communication with the electricallyconductive portion 118 c. As schematically illustrated inFIGS. 1A-1C , the series electrical circuit comprises the electricallyconductive portions first plate 110 and thethermoelectric elements 130 of thethermoelectric sub-assemblies 114 with the first electricallyconductive portion 118 a at a first end of the series electrical circuit and the second electricallyconductive portion 118 b at a second end of the series electrical circuit. - In certain embodiments, one or more of the
thermoelectric sub-assemblies 114 comprises at least one material (e.g., an electrically insulating material; epoxy; polymer) along at least a first portion of a perimeter of theregion 132. The at least one material is in mechanical communication with thefirst plate 110 and thesecond plate 120, and the at least one material extends over at least some of the electrically conductive portions of the first plate 110 (e.g., over the electricallyconductive portions portions 119 of thefirst plate 110. -
FIGS. 2A and 2B schematically illustrate a perspective view and an exploded view, respectively, of an examplethermoelectric device 100 comprising a plurality of thermoelectric sub-assemblies 114 (e.g., four thermoelectric sub-assemblies 114) in accordance with certain embodiments described herein. InFIGS. 2A and 2B , thethermoelectric device 100 comprises a first plate 110 (e.g., PCB) having a rectangular shape with a length L1 and a width W1. Thefirst plate 110 further comprises a plurality of holes 160 (e.g., configured to mount thethermoelectric device 100 within a thermoelectric module) between thethermoelectric sub-assemblies 114. Each of the fourthermoelectric sub-assemblies 114 ofFIGS. 2A and 2B comprises a plurality ofTE elements 130, and asecond plate 120 having a rectangular shape with a length L2 and a width W2, and having a plurality of electrically conductive shunts (not shown) (e.g., solder pads) configured to be in electrical and thermal communication with the plurality ofTE elements 130. -
FIG. 2A also shows a pair ofelectrical conduits conductive portion 118 a and the second electricallyconductive portion 118 b, respectively, to transmit electrical power to and/or from thethermoelectric sub-assemblies 114. The electricallyconductive portions 118 c electrically connect theTE elements 130 of differentthermoelectric sub-assemblies 114 in series with one another. In certain embodiments, the portions of theelectrical conduits conductive portions electrical conduits conductive portions - The
thermoelectric sub-assemblies 114 ofFIGS. 2A and 2B are substantially equally spaced from one another (e.g., within ±5%; within ±1%) across thefirst plate 110 with a pair ofholes 160 between the longer edges of thesecond plates 120 of adjacentthermoelectric sub-assemblies 114. In certain other embodiments, thethermoelectric sub-assemblies 114 are not substantially equally spaced from one another, and/or the number ofholes 160 between the adjacentthermoelectric sub-assemblies 114 is not equal to two (e.g., one; more than two). The two shorter edges of thesecond plates 120 of each of thethermoelectric sub-assemblies 114 ofFIGS. 2A and 2B are aligned (e.g., flush) with longer edges of thefirst plate 110, and the twothermoelectric sub-assemblies 114 at opposite ends of thethermoelectric device 100 have one of the longer edges of thesecond plate 120 aligned (e.g., flush) with a respective shorter edge of thefirst plate 110. In certain other embodiments, other edges of thefirst plate 110 and other edges of thesecond plate 120 can be aligned (e.g., flush) with one another or can extend past one another. -
FIG. 3A schematically illustrates an examplefirst plate 110 in accordance with certain embodiments described herein. Thefirst plate 110 is configured to support fourthermoelectric sub-assemblies 114 and for eachthermoelectric sub-assembly 114, thefirst plate 110 comprises a plurality of electricallyconductive portions 118 and a plurality of electrically insulatingportions 119. In addition, at least some of the electricallyconductive portions regions 132 of thethermoelectric sub-assemblies 114 and are configured to form a serieselectrical circuit 164 with theTE elements 130 of thethermoelectric sub-assemblies 114.FIG. 3B schematically illustrates an example electrical current path of the serieselectrical circuit 164 among the variousthermoelectric sub-assemblies 114 as a dashed arrowed line. The electrical current path begins at the firstelectrical conduit 162 a and extends in series through the following: -
- the electrically
conductive portion 118 a; - the
TE elements 130 of a firstthermoelectric sub-assembly 114 a; - an electrically
conductive portion 118 c extending from the firstthermoelectric sub-assembly 114 a to a secondthermoelectric sub-assembly 114 b; - a first set of
TE elements 130 of the secondthermoelectric sub-assembly 114 b; - an electrically
conductive portion 118 c extending from the secondthermoelectric sub-assembly 114 b to a thirdthermoelectric sub-assembly 114 c; - a first set of
TE elements 130 of the thirdthermoelectric sub-assembly 114 b; - an electrically
conductive portion 118 c extending from the thirdthermoelectric sub-assembly 114 c to a fourththermoelectric sub-assembly 114 d; - the TE elements of the fourth
thermoelectric sub-assembly 114 d; - an electrically
conductive portion 118 c extending from the fourththermoelectric sub-assembly 114 d to the thirdthermoelectric sub-assembly 114 c; - a second set of
TE elements 130 of the thirdthermoelectric sub-assembly 114 c; - an electrically
conductive portion 118 c extending from the thirdthermoelectric sub-assembly 114 c to the secondthermoelectric sub-assembly 114 b; - a second set of
TE elements 130 of the secondthermoelectric sub-assembly 114 b; and - the second electrically
conductive portion 118 b to the secondelectrical conduit 162 b.
Other configurations with other series electrical circuits, electrical current paths, thermoelectric sub-assemblies are also compatible with certain embodiments described herein.
- the electrically
-
FIG. 4A schematically illustrates the examplefirst plate 110 ofFIG. 3A (excluding the plurality of holes 160) with asolder mask layer 170 overlaying the plurality of electricallyconductive portions 118 and the plurality of electrically insulatingportions 119 in accordance with certain embodiments described herein.FIG. 4B schematically illustrates a magnified view of a corner of thefirst plate 110 ofFIG. 4A , showing thesolder mask layer 170 overlyingperipheral regions 172 of theportions 118 and not overlying central regions 174 (e.g., solder pad regions) of theportions 118. Thecentral regions 174 are configured to be used as shunts which provide electrical communication and thermal communication to theTE elements 130 of thethermoelectric sub-assemblies 114.FIG. 4B also schematically illustrates that the examplefirst plate 110 has a laminate structure with a metal base layer 180 (e.g., copper; aluminum; metal; metal alloy or composite), an electrically insulating layer 182 (e.g., fiberglass; resin; polymer; fibrous material preimpregnated with a resin material such as epoxy) overlying the metal base, thelayer 116 overlaying the electrically insulating layer, and the solder mask layer overlaying thelayer 116. -
FIG. 5 schematically illustrates athermoelectric module 400 for thermally conditioning a component (e.g., an electronics component; a battery) in accordance with certain embodiments described herein. Themodule 400 comprises afirst heat spreader 410 and asecond heat spreader 420 spaced apart from one another and configured to respectively provide cold and hot sides. Themodule 400 further comprises a material 430 arranged between thefirst heat spreader 410 and thesecond heat spreader 420. Themodule 400 further comprises athermoelectric device 100 operatively engaged with thefirst heat spreader 410 and thesecond heat spreader 420. In certain embodiments, thefirst heat spreader 410 and thesecond heat spreader 420 are configured to be mechanically coupled together by at least one fastener (e.g., bolt; screw; pin; rivet) (not shown). - The
thermoelectric device 100 comprises a thermally conductivefirst plate 110 in thermal communication with thefirst heat spreader 410 and a plurality ofthermoelectric sub-assemblies 114. For example, thefirst plate 110 can comprise at least onehole 160 configured to have the at least one fastener extend therethrough and the plurality ofthermoelectric sub-assemblies 114 can be arranged to have the at least one fastener between adjacent thermoelectric sub-assemblies 114 (see, e.g.,FIG. 5 ). Although not shown inFIG. 5 , thefirst plate 110 comprises electricallyconductive portions 118 and electrically insulatingportions 119 in accordance with certain embodiments described herein (see, e.g.,FIGS. 1A-1C, 2A-2B, and 3A-3B ). Eachthermoelectric sub-assembly 114 comprises a thermally conductivesecond plate 120 in thermal communication with thesecond heat spreader 420 and having a plurality ofedges 126, and a plurality ofTE elements 130 in aregion 132 bounded by and including (e.g., between) thefirst plate 110 and thesecond plate 120 and in thermal communication with thefirst plate 110 and thesecond plate 120. - In certain embodiments, the
first heat spreader 410 and thesecond heat spreader 420 are configured to transfer heat away from the component to be thermally conditioned. For example, as schematically illustrated byFIG. 5 , thefirst heat spreader 410 can be configured to transfer heat to thethermoelectric device 100 from the component to be thermally conditioned, and thesecond heat spreader 420 can be configured to transfer heat away from thethermoelectric device 100. Thefirst heat spreader 410 can comprise at least onefirst surface 412 configured to be in thermal communication with thethermoelectric device 100 and at least onesecond surface 414 configured to be in thermal communication with the component to be thermally conditioned by themodule 400, and thesecond heat spreader 420 can comprise at least onefirst surface 422 configured to be in thermal communication with thethermoelectric device 100. For example, at least onesecond surface 424 of thesecond heat spreader 420 can comprise at least one heat dissipation structure (e.g., at least one fin) configured to transfer heat from thesecond heat spreader 420 to the ambient surroundings. For another example, thesecond heat spreader 420 can be configured to have a fluid coolant (e.g., liquid; air; refrigerant) flow therethrough. WhileFIG. 5 schematically illustrates an examplethermoelectric module 400 in which thefirst heat spreader 410 provides at least one cold side that receives heat from the component to be thermally conditioned and in which thesecond heat spreader 420 provides at least one hot side that serves as a heat sink which receives heat from thethermoelectric device 100, in certain other embodiments, thesecond heat spreader 420 provides the at least one cold side and thefirst heat spreader 410 provides the at least one hot side. - In certain embodiments, the
material 430 comprises a compressible material (e.g., polymer; plastic; rubber; fiberglass) and is configured to be at least partially compressed by thefirst heat spreader 410 and thesecond heat spreader 420 during assembly of thethermoelectric module 400 while keeping thefirst heat spreader 410 and thesecond heat spreader 420 from contacting one another. In certain embodiments, thematerial 430 generally surrounds the thermoelectric device 100 (e.g., as shown inFIG. 5 ), and comprises conduits (e.g., holes; recesses; cut-out portions) (not shown) configured to accommodate one or more electrical conduits (e.g., wires) in electrical communication with thethermoelectric device 100 by allowing the one or more electrical conduits to extend from thethermoelectric device 100 to outside thethermoelectric module 400. In certain embodiments in which thethermoelectric device 100 comprises a plurality ofthermoelectric sub-assemblies 114, thematerial 430 does not extend between thethermoelectric sub-assemblies 114. In certain embodiments, thematerial 430 provides thermal insulation between thefirst heat spreader 410 and thesecond heat spreader 420. For example, thematerial 430 can have a low thermal conductivity (e.g., less than 10 W/mK) and can be configured to reduce a thermal short between thefirst heat spreader 410 and the second heat spreader 420 (e.g., heat transfer along a thermal path between the first andsecond heat spreaders material 430 provides hermetic sealing and/or a moisture barrier for the volume occupied by thethermoelectric device 100. For example thematerial 430 can comprise an insulation ring configured to prevent dust, condensate, moisture, or other particulates and/or fluids from entering the volume occupied by thethermoelectric device 100. - In certain embodiments, the
thermoelectric module 400 comprises at least one seal (e.g., hermetic seal) at least partially surrounding a volume containing thethermoelectric elements 130 of thethermoelectric device 100. For example, the at least one seal can comprise a material (e.g., an electrically insulating material; epoxy; polymer) along at least a portion of a perimeter of theregion 132 containing thethermoelectric elements 130. For another example, the at least one seal can comprise a material (e.g., epoxy; acrylic; polymer; silicone) between thefirst heat spreader 410 and thesecond heat spreader 420 and at least partially surrounding a volume containing the thermoelectric device 100 (e.g., potting a portion of the volume between the at least onefirst surface 412 of thefirst heat spreader 410 and the at least onefirst surface 422 of thesecond heat spreader 420. The material can be sufficiently rigid to provide mechanical strength to thethermoelectric module 400. In certain embodiments, additional material (e.g., epoxy; acrylic; polymer; silicone) is located and forms at least one seal between at least one screw head of the at least one fastener (not shown) and the at least onesecond surface 424 of thesecond heat spreader 420. -
FIG. 6 is a flow diagram of anexample method 600 of fabricating athermoelectric device 100 in accordance with certain embodiments described herein. Theexample method 600 of certain embodiments can also be used for fabricating athermoelectric module 400. While themethod 600 is described by referring to the structures schematically illustrated inFIGS. 1A-1C, 2A-2B, 3A-3B, 4A-4B, and 5 , themethod 600 is also compatible with other structures. - In an
operational block 610, themethod 600 comprises providing afirst plate 110 comprising an electricallyconductive layer 116. In anoperational block 620, the method further comprises removing portions of the electricallyconductive layer 116 to form a first electricallyconductive portion 118 a, a second electricallyconductive portion 118 b, and a plurality of third electricallyconductive portions 118 c. The first electricallyconductive portion 118 a is configured to be in electrical communication with an inputelectrical conduit 162 a and a serieselectrical circuit 164 comprising a plurality ofthermoelectric sub-assemblies 114. The second electricallyconductive portion 118 b is configured to be in electrical communication with an outputelectrical conduit 162 b and the serieselectrical circuit 164. The plurality of third electricallyconductive portions 118 c is configured to be in electrical communication and in thermal communication with a plurality ofthermoelectric elements 130 of the plurality ofthermoelectric sub-assemblies 114. The first electricallyconductive portion 118 a and the second electricallyconductive portion 118 b are positioned at afirst edge 112 of thefirst plate 110 without the plurality of third electricallyconductive portions 118 c between the first electricallyconductive portion 118 a and the second electricallyconductive portion 118 b. - In certain embodiments, removing portions of the electrically
conductive layer 116 comprises forming a plurality of electrically insulatingportions 119 separating the first electricallyconductive portion 118 a, the second electricallyconductive portion 118 b, and the plurality of third electricallyconductive portions 118 c from one another. For example, removing portions of the electricallyconductive layer 116 can comprise etching the electricallyconductive layer 116 to form the plurality of electricallyconductive portions 118 and the plurality of electrically insulatingportions 119. - In certain embodiments, the
method 600 further comprises forming the plurality ofthermoelectric sub-assemblies 114 on thefirst plate 110. For example, forming the plurality of thermoelectric sub-assemblies can comprise connecting the plurality ofTE elements 130 in electrical communication and in thermal communication with the plurality of electricallyconductive portions 118 of thefirst plate 110, and connecting a plurality ofsecond plates 120 to the plurality ofTE elements 130. Each thermoelectric sub-assembly can comprise a corresponding portion of the plurality ofthermoelectric elements 130 in aregion 132 between thefirst plate 110 and the correspondingsecond plate 120. In certain embodiments, themethod 600 further comprises providing thesecond plates 120. For example, providing thesecond plates 120 can comprise etching an electrically conductive layer of the second plates to form the plurality of electrically conductive portions of thesecond plates 120. - In certain embodiments, connecting the plurality of
TE elements 130 to the plurality of electricallyconductive portions 118 of thefirst plate 110 and to the plurality of electrically conductive portions of thesecond plate 120 comprises applying solder to the electricallyconductive portions 118 of thefirst plate 110 and to the electrically conductive portions of thesecond plate 120 and heating the solder to above a temperature above a melting temperature of the solder while theTE elements 130 are in contact with the solder. In certain embodiments, themethod 600 further comprises applying asolder mask layer 170 over thefirst plate 110 such that thesolder mask layer 170 does not overliesolder pad regions 174 of the electrically conductivefirst portions 118, and the solder can be applied to thesolder pad regions 174. In certain embodiments, themethod 600 further comprises depositing at least one material along at least a first a portion of a perimeter of theregion 132, the at least one material in mechanical communication with thefirst plate 110 and the second plate 120 (e.g., to hermetically seal theTE elements 130; to provide additional structural rigidity to the thermoelectric assembly 100). - Discussion of the various embodiments herein has generally followed the embodiments schematically illustrated in the figures. However, it is contemplated that the particular features, structures, or characteristics of any embodiments discussed herein may be combined in any suitable manner in one or more separate embodiments not expressly illustrated or described. In many cases, structures that are described or illustrated as unitary or contiguous can be separated while still performing the function(s) of the unitary structure. In many instances, structures that are described or illustrated as separate can be joined or combined while still performing the function(s) of the separated structures. Various features and aspects of the disclosed embodiments can be combined with or substituted for one another. Any methods disclosed herein need not be performed in the order recited.
- The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. With respect to the use of any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity. In general, terms used herein are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). If a specific number is intended, such an intent will be explicitly recited in the embodiment, and in the absence of such recitation, no such intent is present.
- Various embodiments have been described above. Although the inventions have been described with reference to these specific embodiments, the descriptions are intended to be illustrative and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the spirit and scope of the inventions as defined in the appended claims.
Claims (14)
1. A thermoelectric device comprising:
a thermally conductive first plate comprising:
a layer comprising a plurality of electrically conductive portions and a plurality of electrically insulating portions separating the electrically conductive portions from one another; and
a plurality of thermoelectric sub-assemblies, each thermoelectric sub-assembly of the plurality of thermoelectric sub-assemblies comprising:
a thermally conductive second plate; and
a plurality of thermoelectric elements in a region between the first plate and the second plate, the plurality of thermoelectric elements in electrical communication with the electrically conductive portions of the first plate, in electrical communication with electrically conductive portions of the second plate, and in thermal communication with the first plate and the second plate,
at least some of the electrically conductive portions of the first plate positioned at least partially outside the region, in electrical communication with the plurality of thermoelectric sub-assemblies, and comprising:
a first electrically conductive portion configured to be in electrical communication with an input electrical conduit; and
a second electrically conductive portion configured to be in electrical communication with an output electrical conduit, the first electrically conductive portion and the second electrically conductive portion positioned at a first edge of the first plate without a thermoelectric sub-assembly of the plurality of thermoelectric sub-assemblies between the first electrically conductive portion and the second electrically conductive portion.
2. The thermoelectric device of claim 1 , wherein the plurality of electrically conductive portions comprises copper.
3. The thermoelectric device of claim 1 , wherein the plurality of electrically insulating portions does not contain an electrically conductive material.
4. The thermoelectric device of claim 3 , wherein the plurality of electrically insulating portions comprises portions of the layer from which an electrically conductive material has been removed.
5. The thermoelectric device of claim 1 , further comprising a series electrical circuit comprising the at least some of the electrically conductive portions of the first plate and the thermoelectric elements of the thermoelectric sub-assemblies with the first electrically conductive portion at a first end of the series electrical circuit and the second electrically conductive portion at a second end of the series electrical circuit.
6. The thermoelectric device of claim 1 , further comprising at least one material along at least a first portion of a perimeter of the region, the at least one material in mechanical communication with the first plate and the second plate, wherein the at least one material extends over at least some of the electrically conductive portions of the first plate.
7. A thermoelectric module for thermally conditioning a component, the module comprising:
the thermoelectric device of claim 1 ;
first and second heat spreaders spaced apart from one another and configured to respectively provide cold and hot sides and to be mechanically coupled together by at least one fastener, the first and second heat spreaders operatively engaged with the thermoelectric device; and
a material arranged between the first and second heat spreaders.
8. The thermoelectric module of claim 7 , wherein the material has a thermal conductivity less than 10 W/mK and is configured to reduce heat transfer along a thermal path between the first and second heat spreaders that does not extend through the thermoelectric device.
9. The thermoelectric module of claim 7 , wherein the material provides hermetic sealing and/or a moisture barrier for the volume occupied by the thermoelectric device.
10. A method of fabricating a thermoelectric device, the method comprising:
providing a first plate comprising an electrically conductive layer; and
removing portions of the electrically conductive layer to form:
a first electrically conductive portion configured to be in electrical communication with an input electrical conduit and a series electrical circuit comprising a plurality of thermoelectric sub-assemblies;
a second electrically conductive portion configured to be in electrical communication with an output electrical conduit and the series electrical circuit; and
a plurality of third electrically conductive portions configured to be in electrical communication and in thermal communication with a plurality of thermoelectric elements of the plurality of thermoelectric sub-assemblies,
the first electrically conductive portion and the second electrically conductive portion positioned at a first edge of the first plate without the plurality of electrically conductive portions between the first electrically conductive portion and the second electrically conductive portion.
11. The method of claim 10 , wherein removing portions of the electrically conductive layer comprises forming a plurality of electrically insulating portions separating the first electrically conductive portion, the second electrically conductive portion, and the plurality of electrically conductive portions from one another.
12. The method of claim 10 , wherein removing portions of the electrically conductive layer comprises etching the electrically conductive layer.
13. The method of claim 10 , further comprising forming the plurality of thermoelectric sub-assemblies on the first plate, wherein said forming the plurality of thermoelectric sub-assemblies comprises:
connecting the plurality of thermoelectric elements in electrical communication and in thermal communication with the plurality of electrically conductive portions of the first plate; and
connecting a plurality of second plates to the plurality of thermoelectric elements, wherein each thermoelectric sub-assembly of the plurality of thermoelectric sub-assemblies comprises a corresponding portion of the plurality of thermoelectric elements in a region between the first plate and the corresponding second plate.
14. The method of claim 13 , further comprising depositing at least one material along at least a first portion of a perimeter of the region, the at least one material in mechanical communication with the first plate and the second plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/377,125 US20200035898A1 (en) | 2018-07-30 | 2019-04-05 | Thermoelectric device having circuitry that facilitates manufacture |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862712143P | 2018-07-30 | 2018-07-30 | |
US201862712131P | 2018-07-30 | 2018-07-30 | |
US201862712112P | 2018-07-30 | 2018-07-30 | |
US201862715709P | 2018-08-07 | 2018-08-07 | |
US16/377,125 US20200035898A1 (en) | 2018-07-30 | 2019-04-05 | Thermoelectric device having circuitry that facilitates manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200035898A1 true US20200035898A1 (en) | 2020-01-30 |
Family
ID=69178759
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/377,125 Abandoned US20200035898A1 (en) | 2018-07-30 | 2019-04-05 | Thermoelectric device having circuitry that facilitates manufacture |
US16/377,109 Active 2039-10-05 US11223004B2 (en) | 2018-07-30 | 2019-04-05 | Thermoelectric device having a polymeric coating |
US16/377,091 Active US10991869B2 (en) | 2018-07-30 | 2019-04-05 | Thermoelectric device having a plurality of sealing materials |
US16/377,134 Active 2039-05-05 US11075331B2 (en) | 2018-07-30 | 2019-04-05 | Thermoelectric device having circuitry with structural rigidity |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/377,109 Active 2039-10-05 US11223004B2 (en) | 2018-07-30 | 2019-04-05 | Thermoelectric device having a polymeric coating |
US16/377,091 Active US10991869B2 (en) | 2018-07-30 | 2019-04-05 | Thermoelectric device having a plurality of sealing materials |
US16/377,134 Active 2039-05-05 US11075331B2 (en) | 2018-07-30 | 2019-04-05 | Thermoelectric device having circuitry with structural rigidity |
Country Status (1)
Country | Link |
---|---|
US (4) | US20200035898A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10991869B2 (en) | 2018-07-30 | 2021-04-27 | Gentherm Incorporated | Thermoelectric device having a plurality of sealing materials |
US11033058B2 (en) | 2014-11-14 | 2021-06-15 | Gentherm Incorporated | Heating and cooling technologies |
US11152557B2 (en) | 2019-02-20 | 2021-10-19 | Gentherm Incorporated | Thermoelectric module with integrated printed circuit board |
US11240883B2 (en) | 2014-02-14 | 2022-02-01 | Gentherm Incorporated | Conductive convective climate controlled seat |
US11639816B2 (en) | 2014-11-14 | 2023-05-02 | Gentherm Incorporated | Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system |
US11857004B2 (en) | 2014-11-14 | 2024-01-02 | Gentherm Incorporated | Heating and cooling technologies |
US11993132B2 (en) | 2018-11-30 | 2024-05-28 | Gentherm Incorporated | Thermoelectric conditioning system and methods |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020072316A (en) * | 2018-10-30 | 2020-05-07 | ソニーセミコンダクタソリューションズ株式会社 | Electronic circuit, solid-state image sensor, and electronic circuit control method |
GB202005138D0 (en) * | 2020-04-07 | 2020-05-20 | United Tech Research Center Ireland Limited | Personal heating ventilation and air conditioning system in aircraft seat |
US11690295B2 (en) * | 2020-06-15 | 2023-06-27 | The United States Of America As Represented By The Secretary Of The Army | Sublimation protection coating for thermoelectric materials and devices |
US20210399186A1 (en) * | 2020-06-19 | 2021-12-23 | Embr Labs Inc. | Low power thermoelectric systems |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5409547A (en) * | 1992-10-05 | 1995-04-25 | Thermovonics Co., Ltd. | Thermoelectric cooling device for thermoelectric refrigerator, process for the fabrication of semiconductor suitable for use in the thermoelectric cooling device, and thermoelectric refrigerator using the thermoelectric cooling device |
JP2000244024A (en) * | 1999-02-23 | 2000-09-08 | Matsushita Electric Works Ltd | Thermoelectric element module |
US20020074646A1 (en) * | 2000-12-15 | 2002-06-20 | Smc Corporation | Non-rectangular thermo module wafer cooling device using the same |
US20070227158A1 (en) * | 2006-03-31 | 2007-10-04 | Kyocera Corporation | Thermoelectric Module |
US20120201008A1 (en) * | 2011-02-05 | 2012-08-09 | Laird Technologies, Inc. | Circuit assemblies including thermoelectric modules |
JP2014135455A (en) * | 2013-01-11 | 2014-07-24 | Fujitsu Ltd | Thermoelectric conversion element, electronic device, and method of manufacturing thermoelectric conversion element |
Family Cites Families (1037)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB817077A (en) | 1956-08-22 | 1959-07-22 | Gen Electric | Improvements in or relating to thermoelectric cooling units |
US2235620A (en) | 1941-03-18 | Temperature control system | ||
DE281459C (en) | 1912-04-03 | |||
FR599360A (en) | 1924-03-21 | 1926-01-11 | Heat exchanger device for air and other fluids | |
US1839156A (en) | 1930-02-21 | 1931-12-29 | Edwin K Lumpkin | Seat warmer |
US2363168A (en) | 1942-10-08 | 1944-11-21 | Eaton Mfg Co | Heater |
US2362259A (en) | 1943-03-27 | 1944-11-07 | Eaton Mfg Co | Heating apparatus and starting means therefor |
US2461432A (en) | 1944-05-22 | 1949-02-08 | Mitchell Co John E | Air conditioning device for beds |
US2462984A (en) | 1944-10-27 | 1949-03-01 | Horace P Maddison | Air-conditioned mattress |
US2512559A (en) | 1945-01-18 | 1950-06-20 | Alfred L W Williams | Comfort unit |
US2493067A (en) | 1945-09-08 | 1950-01-03 | Louis J Goldsmith | Mattress |
US2519241A (en) | 1946-07-05 | 1950-08-15 | Eaton Mfg Co | Thermoelectric generator and burner therefor |
US2499901A (en) | 1946-08-31 | 1950-03-07 | Brown Fintube Co | Fin tube assembly |
US2813708A (en) | 1951-10-08 | 1957-11-19 | Frey Kurt Paul Hermann | Devices to improve flow pattern and heat transfer in heat exchange zones of brick-lined furnaces |
US3030145A (en) | 1953-08-26 | 1962-04-17 | Kushion Kooler Corp | Ventilating seat pad |
US2791956A (en) | 1953-12-24 | 1957-05-14 | Maurice C Guest | Ventilated automobile seat pad |
US2782834A (en) | 1955-05-27 | 1957-02-26 | Vigo Benny Richard | Air-conditioned furniture article |
US2931286A (en) | 1956-09-13 | 1960-04-05 | Sr Walter L Fry | Fluid conduit article of manufacture and combination article of manufacture |
US2884956A (en) | 1957-03-12 | 1959-05-05 | Elgen Mfg Corp | Air guide device |
DE1071177B (en) | 1958-01-17 | |||
US2976700A (en) | 1958-05-14 | 1961-03-28 | William L Jackson | Seat structure |
US2975638A (en) | 1958-09-18 | 1961-03-21 | Honeywell Regulator Co | Electrical hygrometer device |
US2984077A (en) | 1958-10-24 | 1961-05-16 | Collins Radio Co | Method of using the peltier effect for cooling equipment |
GB874660A (en) | 1958-11-18 | 1961-08-10 | Gen Electric Co Ltd | Improvements in or relating to thermoelectric devices |
US2992538A (en) | 1959-02-13 | 1961-07-18 | Licentia Gmbh | Thermoelectric system |
US3006979A (en) | 1959-04-09 | 1961-10-31 | Carrier Corp | Heat exchanger for thermoelectric apparatus |
US2959017A (en) | 1959-04-09 | 1960-11-08 | Carrier Corp | Heat exchangers employing thermoelectric elements for heat pumping |
US2938357A (en) | 1959-05-08 | 1960-05-31 | Carrier Corp | Method and apparatus for mounting thermoelectric element |
US3039817A (en) | 1959-06-01 | 1962-06-19 | Don A Taylor | Air intake scoop for ventilating seat cushion |
US3129116A (en) | 1960-03-02 | 1964-04-14 | Westinghouse Electric Corp | Thermoelectric device |
US3004393A (en) | 1960-04-15 | 1961-10-17 | Westinghouse Electric Corp | Thermoelectric heat pump |
US3253649A (en) | 1960-04-26 | 1966-05-31 | Laing Vortex Inc | Apparatus for generating heated air |
US3090206A (en) | 1960-06-23 | 1963-05-21 | Frank W Anders | Thermoelectric devices and circuits therefor |
FR1280711A (en) | 1960-11-23 | 1962-01-08 | Csf | Improvements to thermoelectric refrigeration devices |
US3019609A (en) | 1960-12-21 | 1962-02-06 | Gen Electric | Thermoelectric air conditioning arrangement |
GB952678A (en) | 1961-01-23 | 1964-03-18 | Wfstinghouse Electric Corp | Composite thermoelectric elements and devices |
US3085405A (en) | 1961-04-06 | 1963-04-16 | Westinghouse Electric Corp | Thermoelectric air conditioning apparatus for a protective garment |
US3136577A (en) | 1961-08-02 | 1964-06-09 | Stevenson P Clark | Seat temperature regulator |
US3197342A (en) | 1961-09-26 | 1965-07-27 | Jr Alton Bayne Neild | Arrangement of thermoelectric elements for improved generator efficiency |
US3077079A (en) | 1961-11-13 | 1963-02-12 | Gen Electric | Control arrangement for thermoelectric apparatus |
GB978057A (en) | 1961-11-22 | 1964-12-16 | York Shipley Ltd | Thermoelectric circuits |
US3325312A (en) | 1962-06-14 | 1967-06-13 | Carrier Corp | Thermoelectric panels |
US3240628A (en) | 1962-06-14 | 1966-03-15 | Carrier Corp | Thermoelectric panel |
US3326727A (en) | 1962-07-11 | 1967-06-20 | Minnesota Mining & Mfg | Thermopile module with displacement permitting slotted thermojunction members |
US3137142A (en) | 1962-09-24 | 1964-06-16 | Borg Warner | Heat transfer system as it pertains to thermoelectrics |
US3186240A (en) | 1962-10-25 | 1965-06-01 | Jr Henry C Daubert | Thermoelectrically cooled gyroscope |
US3138934A (en) | 1962-11-19 | 1964-06-30 | Kysor Industrial Corp | Thermoelectric heating and cooling system for vehicles |
US3351498A (en) | 1963-03-29 | 1967-11-07 | Gen Electric | Separately cartridged thermoelectric elements and couples |
US3266064A (en) | 1963-03-29 | 1966-08-16 | Figman Murray | Ventilated mattress-box spring combination |
US3300649A (en) | 1963-04-25 | 1967-01-24 | Johnson Service Co | Lowest signal responsive control system |
CH413018A (en) | 1963-04-30 | 1966-05-15 | Du Pont | Thermoelectric generator |
US3137523A (en) | 1963-09-20 | 1964-06-16 | Karner Frank | Air conditioned seat |
GB1050798A (en) | 1963-10-30 | |||
US3178895A (en) | 1963-12-20 | 1965-04-20 | Westinghouse Electric Corp | Thermoelectric apparatus |
US3282267A (en) | 1964-05-05 | 1966-11-01 | Eidus William | Thermoelectric hypothermia instrument |
DE1904492A1 (en) | 1968-02-14 | 1969-09-18 | Westinghouse Electric Corp | Thermoelectric arrangement |
US3212275A (en) | 1964-08-20 | 1965-10-19 | American Radiator & Standard | Thermoelectric heat pump |
US3527621A (en) | 1964-10-13 | 1970-09-08 | Borg Warner | Thermoelectric assembly |
US3508974A (en) | 1964-11-12 | 1970-04-28 | Reinhard G Bressler | Thermoelectric device with fluid thermoelectric element |
FR1444177A (en) | 1965-05-19 | 1966-07-01 | Commissariat Energie Atomique | Thermoelectric generator |
US3298195A (en) | 1965-10-15 | 1967-01-17 | Nicholas M Raskhodoff | Module cooling system |
US3442718A (en) | 1965-10-23 | 1969-05-06 | Rca Corp | Thermoelectric device having a graphite member between thermoelement and refractory hot strap |
FR1469620A (en) | 1966-01-07 | 1967-02-17 | Renault | Peltier-effect rotary air conditioning device, for motor vehicles or others, and for machines |
US3366164A (en) | 1966-01-24 | 1968-01-30 | Borg Warner | Multi-room air conditioning system |
NL6709712A (en) | 1966-08-02 | 1969-01-14 | ||
US3486177A (en) | 1966-09-20 | 1969-12-30 | Califoam Corp Of America | Cushions |
GB1189660A (en) | 1966-10-17 | 1970-04-29 | Mining & Chemical Products Ltd | Improvements in or relating to Thermoelectric Devices |
DE1539330A1 (en) | 1966-12-06 | 1969-11-06 | Siemens Ag | Thermoelectric arrangement |
JPS458280Y1 (en) | 1967-02-03 | 1970-04-20 | ||
US3505728A (en) | 1967-09-01 | 1970-04-14 | Atomic Energy Authority Uk | Method of making thermoelectric modules |
SE329870B (en) | 1967-10-31 | 1970-10-26 | Asea Ab | |
US3767470A (en) | 1968-02-19 | 1973-10-23 | F Hines | Thermally compensated heat flow sensors |
CH491631A (en) | 1968-03-28 | 1970-06-15 | Olmo Giuseppe Superflexite | Ventilated padding |
GB1209018A (en) | 1968-06-20 | 1970-10-14 | Rheinisch Westfalisches Elek Z | A porous powder electrode framework for alkaline storage batteries |
US3615870A (en) | 1968-09-04 | 1971-10-26 | Rca Corp | Thermoelement array connecting apparatus |
US4211889A (en) | 1968-09-16 | 1980-07-08 | The United States Of America As Represented By The Department Of Energy | Thermoelectric module |
DE1816639A1 (en) | 1968-12-23 | 1970-09-03 | Schmiedeskamp Kg Maschinenfabr | Suction plate for clamping thin-walled workpieces |
US3550523A (en) | 1969-05-12 | 1970-12-29 | Irving Segal | Seat construction for automotive air conditioning |
US3870568A (en) | 1969-05-24 | 1975-03-11 | Siemens Ag | Heat generator |
US3819418A (en) | 1969-07-08 | 1974-06-25 | Siemens Ag | Thermoelectric generator and method of producing the same |
FR2056015A5 (en) | 1969-08-19 | 1971-05-14 | Peugeot & Renault | |
DE1944453B2 (en) | 1969-09-02 | 1970-11-19 | Buderus Eisenwerk | Peltier battery with heat exchanger |
SE337227B (en) | 1969-11-24 | 1971-08-02 | Asea Ab | |
DE1963023A1 (en) | 1969-12-10 | 1971-06-16 | Siemens Ag | Thermoelectric device |
US3626704A (en) | 1970-01-09 | 1971-12-14 | Westinghouse Electric Corp | Thermoelectric unit |
US3880674A (en) | 1970-01-20 | 1975-04-29 | Rockwell International Corp | Thermoelectric elements and devices and process therefor |
US3599437A (en) | 1970-03-03 | 1971-08-17 | Us Air Force | Thermoelectric cooling device |
US3648469A (en) | 1970-04-10 | 1972-03-14 | James E Chapman | Thermoelectric pillow |
US3640456A (en) | 1970-06-25 | 1972-02-08 | Clifford M Sturgis | Self-contained steam heating unit |
US3859143A (en) | 1970-07-23 | 1975-01-07 | Rca Corp | Stable bonded barrier layer-telluride thermoelectric device |
US3902923A (en) | 1970-12-28 | 1975-09-02 | Dow Chemical Co | Thermoelectric materials |
BE791951A (en) | 1971-12-10 | 1973-03-16 | Int Promotion Eng Sa | IMPROVEMENTS IN COLD PRODUCTION MEANS AND APPLICATIONS |
US3786230A (en) | 1971-12-14 | 1974-01-15 | F Brandenburg | Radiant heater |
US3839876A (en) | 1972-11-21 | 1974-10-08 | Int Promotion Eng Sa | Means for cold production |
US3779814A (en) | 1972-12-26 | 1973-12-18 | Monsanto Co | Thermoelectric devices utilizing electrically conducting organic salts |
FR2216526B1 (en) | 1973-02-01 | 1977-02-11 | Gachot Sa | |
US3876860A (en) | 1973-03-23 | 1975-04-08 | Matsushita Electric Ind Co Ltd | Tape heater |
US3894213A (en) | 1973-08-23 | 1975-07-08 | Everest & Jennings | Fluid circulating heating pad |
US3899054A (en) | 1974-02-08 | 1975-08-12 | Abex Corp | Disc brakes with cooling rods |
FR2261638B1 (en) | 1974-02-15 | 1976-11-26 | Cit Alcatel | |
US3927299A (en) | 1974-03-18 | 1975-12-16 | Clifford M Sturgis | Self-contained electric steam space heating unit |
US3926052A (en) | 1974-05-06 | 1975-12-16 | Johnson Service Co | Relative humidity computer |
US4002108A (en) | 1974-08-19 | 1977-01-11 | Mordeki Drori | Ventilated back-seat rest particularly for automotive vehicles |
US3928876A (en) | 1974-08-19 | 1975-12-30 | Louis J Starr | Bed with circulated air |
US4044824A (en) | 1974-12-30 | 1977-08-30 | Michael Eskeli | Heat exchanger |
GB1464843A (en) | 1975-01-09 | 1977-02-16 | Markman M A | Tubular thermoelectric generator module |
FR2315771A1 (en) | 1975-06-27 | 1977-01-21 | Air Ind | IMPROVEMENTS TO THERMO-ELECTRICAL INSTALLATIONS |
FR2316557A1 (en) | 1975-07-02 | 1977-01-28 | Air Ind | Thermoelectric equipment heat exchanger - has elements each with two rigid walls enclosing heat exchange surfaces |
US4125122A (en) | 1975-08-11 | 1978-11-14 | Stachurski John Z O | Direct energy conversion device |
US4055053A (en) | 1975-12-08 | 1977-10-25 | Elfving Thore M | Thermoelectric water cooler or ice freezer |
US4065936A (en) | 1976-06-16 | 1978-01-03 | Borg-Warner Corporation | Counter-flow thermoelectric heat pump with discrete sections |
US4124794A (en) | 1977-05-24 | 1978-11-07 | Eder Emil W | Electrical heater unit |
US4195687A (en) | 1977-12-12 | 1980-04-01 | Taziker Robert E | Space heating panels |
US4199953A (en) | 1978-01-19 | 1980-04-29 | Texaco Inc. | Temperature stabilization system |
FR2419479A1 (en) | 1978-03-07 | 1979-10-05 | Comp Generale Electricite | Heat pump for air conditioning system - has thermal semi-conductor units in contact with electrically conducting heat exchanger bodies |
GB2016699A (en) | 1978-03-15 | 1979-09-26 | Dow Chemical Co | Determining quantitatively the concentration of chemical compounds in afluid |
US4223205A (en) | 1978-05-30 | 1980-09-16 | Sturgis Clifford M | Central heating systems furnace having a self-contained electric steam heating unit |
US4224565A (en) | 1978-06-05 | 1980-09-23 | Bell Telephone Laboratories, Incorporated | Moisture level determination in sealed packages |
GB2027534B (en) | 1978-07-11 | 1983-01-19 | Air Ind | Thermoelectric heat exchangers |
US4242778A (en) | 1978-07-26 | 1981-01-06 | Kay Alan F | Press fit intelligent fasteners for random or lightly constrained assembly |
FR2452796A1 (en) | 1979-03-26 | 1980-10-24 | Cepem | THERMOELECTRIC HEAT TRANSFER DEVICE WITH LIQUID CIRCUIT |
US4297849A (en) | 1979-06-22 | 1981-11-03 | Air Industrie | Heat exchangers for thermo-electric installations comprising thermo-elements |
US4402188A (en) | 1979-07-11 | 1983-09-06 | Skala Stephen F | Nested thermal reservoirs with heat pumping therebetween |
US4297841A (en) | 1979-07-23 | 1981-11-03 | International Power Technology, Inc. | Control system for Cheng dual-fluid cycle engine system |
JPS5670868U (en) | 1979-11-06 | 1981-06-11 | ||
US4301658A (en) | 1979-12-11 | 1981-11-24 | Koolatron Industries, Ltd. | Control circuitry for thermoelectric cooler |
JPS5697416A (en) | 1979-12-29 | 1981-08-06 | Kenrou Motoda | Quiet sleep apparatus |
US4336444A (en) | 1980-01-14 | 1982-06-22 | Gust, Irish, Jeffers & Hoffman | Apparatus and method for converting electrical energy into heat energy |
US4315599A (en) | 1980-03-03 | 1982-02-16 | Biancardi Robert P | Apparatus and method for automatically watering vegetation |
FR2481786A1 (en) | 1980-04-30 | 1981-11-06 | Buffet Jean | Thermoelectric pump heat exchange sleeve - surrounds pipe containing working fluid and has built in expansion bellows with thermoelectric elements connected to it |
US4338944A (en) | 1980-06-16 | 1982-07-13 | The Kendall Company | Therapeutic device |
US4314008A (en) | 1980-08-22 | 1982-02-02 | General Electric Company | Thermoelectric temperature stabilized battery system |
US4391009A (en) | 1980-10-17 | 1983-07-05 | Huntleigh Medical Ltd. | Ventilated body support |
JPS601661Y2 (en) | 1980-12-22 | 1985-01-17 | アイシン精機株式会社 | Heat storage, air lumbar support seat cover |
EP0055175B1 (en) | 1980-12-23 | 1984-06-13 | Air Industrie | Thermo-electrical plants |
US4437702A (en) | 1981-04-06 | 1984-03-20 | Agosta A Richard | Adjustable patient corrective support apparatus |
US4423308A (en) | 1981-06-22 | 1983-12-27 | Simmons U.S.A. Corporation | Thermally controllable heating mattress |
US4518700A (en) | 1981-12-04 | 1985-05-21 | Beckman Instruments, Inc. | Method and apparatus for regulating the temperature of an analytical instrument reactor |
US4438070A (en) | 1981-12-04 | 1984-03-20 | Beckman Instruments, Inc. | Packed column thermal reactor for an analytical instrument |
US4554968A (en) | 1982-01-29 | 1985-11-26 | Carrier Corporation | Wrapped fin heat exchanger circuiting |
US4459428A (en) | 1982-04-28 | 1984-07-10 | Energy Conversion Devices, Inc. | Thermoelectric device and method of making same |
US4448028A (en) | 1982-04-29 | 1984-05-15 | Ecd-Anr Energy Conversion Company | Thermoelectric systems incorporating rectangular heat pipes |
US4491173A (en) | 1982-05-28 | 1985-01-01 | Temptronic Corporation | Rotatable inspection table |
FR2528321B1 (en) | 1982-06-10 | 1987-10-23 | Commissariat Energie Atomique | CONTINUOUS CONDENSATION DEVICE OF VAPORS CONTAINED IN THE ATMOSPHERE |
US4518847A (en) | 1982-11-02 | 1985-05-21 | Crockett & Kelly, Inc. | Electrically-powered portable space heater |
JPS5997457A (en) | 1982-11-26 | 1984-06-05 | Shinenerugii Sogo Kaihatsu Kiko | Solar heat utilizing device |
SU1142711A1 (en) | 1983-01-26 | 1985-02-28 | Институт технической теплофизики АН УССР | Non-stationary thermoelectric cooler |
US4497973A (en) | 1983-02-28 | 1985-02-05 | Ecd-Anr Energy Conversion Company | Thermoelectric device exhibiting decreased stress |
FR2542855B1 (en) | 1983-03-17 | 1985-06-28 | France Etat Armement | THERMOELECTRIC INSTALLATION |
FR2543275B1 (en) | 1983-03-23 | 1985-09-27 | Buffet Jean | IMPROVEMENTS IN THERMOELECTRICAL INSTALLATIONS WITH THERMOELEMENTS INTERPOSED BETWEEN HOT AND COLD CONDUITS |
FR2550324B1 (en) | 1983-08-05 | 1986-02-28 | Buffet Jean | IMPROVEMENTS IN THERMOELECTRICAL INSTALLATIONS WITH THERMOELEMENTS INTERPOSED BETWEEN HOT AND COLD CONDUITS |
US4567351A (en) | 1983-08-10 | 1986-01-28 | Matsushita Electric Works, Ltd. | Electric space heater employing a vaporizable heat exchange fluid |
JPS6042115A (en) | 1983-08-17 | 1985-03-06 | Takagi Kagaku Kenkyusho:Kk | Air conditioner of vehicle seat |
JPS6080044A (en) | 1983-10-07 | 1985-05-07 | Matsushita Electric Ind Co Ltd | Ventilating device |
JPS6085297A (en) | 1983-10-18 | 1985-05-14 | Matsushita Electric Ind Co Ltd | Heatexchange fan |
US4493939A (en) | 1983-10-31 | 1985-01-15 | Varo, Inc. | Method and apparatus for fabricating a thermoelectric array |
SU1170234A1 (en) | 1984-01-11 | 1985-07-30 | Институт технической теплофизики АН УССР | Method of non-stationary thermoelectric cooling |
US4494380A (en) | 1984-04-19 | 1985-01-22 | Bilan, Inc. | Thermoelectric cooling device and gas analyzer |
US4611089A (en) | 1984-06-11 | 1986-09-09 | Ga Technologies Inc. | Thermoelectric converter |
FR2570169B1 (en) | 1984-09-12 | 1987-04-10 | Air Ind | IMPROVEMENTS IN THERMOELECTRIC MODULES WITH MULTIPLE THERMOELEMENTS FOR THERMOELECTRIC INSTALLATION, AND THERMOELECTRIC INSTALLATION COMPRISING SUCH THERMOELECTRIC MODULES |
US4651019A (en) | 1984-11-16 | 1987-03-17 | Pennsylvania Power & Light Company | Dual fueled thermoelectric generator |
JPS61124859A (en) | 1984-11-22 | 1986-06-12 | Yamatake Honeywell Co Ltd | Humidity detection element |
US4639883A (en) | 1984-11-28 | 1987-01-27 | Rca Corporation | Thermoelectric cooling system and method |
JPS61176142A (en) | 1985-01-31 | 1986-08-07 | Toshiba Corp | Substrate structure |
US4634803A (en) | 1985-02-25 | 1987-01-06 | Midwest Research Institute | Method of obtaining optimum performance from a thermoelectric heating/cooling device |
DE3609095A1 (en) | 1985-03-28 | 1986-10-09 | Keiper Recaro GmbH & Co KG, 5630 Remscheid | Vehicle seat |
DE3677263D1 (en) | 1985-06-24 | 1991-03-07 | Adriano Antolini | COVER, IN PARTICULAR FOR VEHICLE SEATS. |
US4711294A (en) | 1985-08-14 | 1987-12-08 | Jacobs Alphonse F | Temperature and humidity control system |
US4665707A (en) | 1985-08-26 | 1987-05-19 | Hamilton A C | Protection system for electronic apparatus |
US5022462A (en) | 1986-04-30 | 1991-06-11 | International Business Machines Corp. | Flexible finned heat exchanger |
US4688390A (en) | 1986-05-27 | 1987-08-25 | American Standard Inc. | Refrigerant control for multiple heat exchangers |
US4671567A (en) | 1986-07-03 | 1987-06-09 | The Jasper Corporation | Upholstered clean room seat |
US4988847A (en) | 1986-09-02 | 1991-01-29 | Argos Harry J | Electrically heated air blower unit for defogging bathroom mirrors |
US4731338A (en) | 1986-10-09 | 1988-03-15 | Amoco Corporation | Method for selective intermixing of layered structures composed of thin solid films |
US4802929A (en) | 1986-12-19 | 1989-02-07 | Fairchild Industries, Inc. | Compliant thermoelectric converter |
JPH0777273B2 (en) | 1986-12-24 | 1995-08-16 | キヤノン株式会社 | Switching element and driving method thereof |
US4791274A (en) | 1987-03-04 | 1988-12-13 | Horst Paul V | Electric finned-tube baseboard space heater employing a vaporized working fluid |
IT1203852B (en) | 1987-04-03 | 1989-02-23 | Claudio Zarotti | STRUCTURE OF ARMCHAIR, SOFA AND SIMILAR |
JPS63262076A (en) | 1987-04-16 | 1988-10-28 | Yaskawa Electric Mfg Co Ltd | Optothermal rotary driving device |
US4823554A (en) | 1987-04-22 | 1989-04-25 | Leonard Trachtenberg | Vehicle thermoelectric cooling and heating food and drink appliance |
EP0288022B1 (en) | 1987-04-22 | 1995-11-15 | Sharp Kabushiki Kaisha | Superconductive apparatus |
US4777802A (en) | 1987-04-23 | 1988-10-18 | Steve Feher | Blanket assembly and selectively adjustable apparatus for providing heated or cooled air thereto |
US4907060A (en) | 1987-06-02 | 1990-03-06 | Nelson John L | Encapsulated thermoelectric heat pump and method of manufacture |
US4828627A (en) | 1987-09-02 | 1989-05-09 | Living Water Corporation | Thermoelectric module optimized for low temperature difference |
US4782664A (en) | 1987-09-16 | 1988-11-08 | Allied Products Corporation | Thermoelectric heat exchanger |
US4812733A (en) | 1987-10-27 | 1989-03-14 | Richard Tobey | Computer element performance enhancer |
JPH01131830A (en) | 1987-11-14 | 1989-05-24 | Matsushita Electric Works Ltd | Dehumidifier |
JPH01281344A (en) | 1988-02-02 | 1989-11-13 | Sanei Corp:Kk | Dehumidifying device |
JPH01200122A (en) | 1988-02-04 | 1989-08-11 | Fujita Corp | Local cooling heating device |
NL8800792A (en) | 1988-03-29 | 1989-10-16 | Redactron Bv | METHOD AND APPARATUS FOR EXTRACTING MOISTURE FROM ONE OR MORE BODIES |
US4825488A (en) | 1988-04-13 | 1989-05-02 | Bedford Peter H | Support pad for nonambulatory persons |
NL8801093A (en) | 1988-04-27 | 1989-11-16 | Theodorus Bijvoets | THERMO-ELECTRICAL DEVICE. |
US4947648A (en) | 1988-06-17 | 1990-08-14 | Microluminetics, Inc. | Thermoelectric refrigeration apparatus |
US4853992A (en) | 1988-07-22 | 1989-08-08 | Kaung M Yu | Air cooled/heated seat cushion |
US5029451A (en) | 1988-09-12 | 1991-07-09 | Mitsubishi Jukogyo Kabushiki Kaisha | Air conditioning apparatus |
JPH0814337B2 (en) | 1988-11-11 | 1996-02-14 | 株式会社日立製作所 | Opening / closing control valve and opening / closing control method for flow path using phase change of fluid itself |
US4923248A (en) | 1988-11-17 | 1990-05-08 | Steve Feher | Cooling and heating seat pad construction |
JPH02120977U (en) | 1989-03-16 | 1990-10-01 | ||
US5734122A (en) | 1989-04-15 | 1998-03-31 | Aspden; Harold | Thermoelectric energy conversion apparatus |
JPH03263382A (en) | 1989-04-17 | 1991-11-22 | Nippondenso Co Ltd | Thermoelectric conversion device |
KR910009003B1 (en) | 1989-05-29 | 1991-10-26 | 삼성전자 주식회사 | Portable refrigerator |
IT1232900B (en) | 1989-08-04 | 1992-03-05 | Fiat Auto Spa | SEAT FOR VEHICLES WITH AIR CONDITIONING |
DE3928883A1 (en) | 1989-08-31 | 1991-03-14 | Grammer Ag | UPHOLSTERY PART FOR A SEAT |
JPH03102219A (en) | 1989-09-14 | 1991-04-26 | Futaba Denki Kogyo Kk | Apparatus for packing measured quantity of meat |
US4981324A (en) | 1989-10-13 | 1991-01-01 | Law Ignace K | Ventilated back-seat support pad particularly for vehicles |
US5002336A (en) | 1989-10-18 | 1991-03-26 | Steve Feher | Selectively cooled or heated seat and backrest construction |
US5057490A (en) | 1989-10-26 | 1991-10-15 | Hughes Aircraft Company | Low-temperature thermoelectric refrigerating device using current-carrying superconducting mode/nonsuperconducting mode junctions |
US4997230A (en) | 1990-01-30 | 1991-03-05 | Samuel Spitalnick | Air conditioned cushion covers |
US5111025A (en) | 1990-02-09 | 1992-05-05 | Raychem Corporation | Seat heater |
US5012325A (en) | 1990-04-24 | 1991-04-30 | International Business Machines Corp. | Thermoelectric cooling via electrical connections |
US5088790A (en) | 1990-05-21 | 1992-02-18 | Lear Seating Corporation | Adjustable lumbar support mechanism for a vehicular seat |
JP2827461B2 (en) | 1990-06-18 | 1998-11-25 | 株式会社デンソー | Electronic refrigerator |
JP2510333B2 (en) | 1990-06-21 | 1996-06-26 | 株式会社日立製作所 | Air conditioner control device |
US5187349A (en) | 1990-08-22 | 1993-02-16 | Texas Instruments Incorporated | Defrost and passenger compartment heater system |
US5256857A (en) | 1990-08-22 | 1993-10-26 | Texas Instruments Incorporated | Finned PTC air heater assembly for heating an automotive passenger compartment |
US5171372A (en) | 1990-09-17 | 1992-12-15 | Marlow Industries, Inc. | Thermoelectric cooler and fabrication method |
US5077709A (en) | 1990-10-15 | 1991-12-31 | Steve Feher | Rotating timepiece dial face construction with included movable decorative objects |
US5119640A (en) | 1990-10-22 | 1992-06-09 | Conrad Richard H | Freeze-thaw air dryer |
JPH05168846A (en) | 1990-10-30 | 1993-07-02 | Nippondenso Co Ltd | Dehumidifier |
JPH04165234A (en) | 1990-10-30 | 1992-06-11 | Nippondenso Co Ltd | Thermoelectric conversion device |
JP3166228B2 (en) | 1990-10-30 | 2001-05-14 | 株式会社デンソー | Thermoelectric converter |
US5102189A (en) | 1990-12-28 | 1992-04-07 | Tachi-S Co., Ltd. | Ventilated seat |
AU670025B2 (en) | 1991-01-15 | 1996-07-04 | Hydrocool Pty Ltd | Improvements in thermoelectric refrigeration |
US5070937A (en) | 1991-02-21 | 1991-12-10 | American Standard Inc. | Internally enhanced heat transfer tube |
US5117638A (en) | 1991-03-14 | 1992-06-02 | Steve Feher | Selectively cooled or heated seat construction and apparatus for providing temperature conditioned fluid and method therefor |
US5125238A (en) | 1991-04-29 | 1992-06-30 | Progressive Dynamics, Inc. | Patient warming or cooling blanket |
US5232516A (en) | 1991-06-04 | 1993-08-03 | Implemed, Inc. | Thermoelectric device with recuperative heat exchangers |
JP2641186B2 (en) | 1991-07-18 | 1997-08-13 | 株式会社荏原製作所 | Low noise type air outlet |
US5228923A (en) | 1991-12-13 | 1993-07-20 | Implemed, Inc. | Cylindrical thermoelectric cells |
US5188286A (en) | 1991-12-18 | 1993-02-23 | International Business Machines Corporation | Thermoelectric piezoelectric temperature control |
US5278936A (en) | 1991-12-23 | 1994-01-11 | Steve Shao | Thermostatically controlled portable electric space heater with automatic temperature setback for energy saving |
US5296534A (en) | 1992-01-16 | 1994-03-22 | Nippon Unicar Company Limited | Flame retardant composition |
US5180293A (en) | 1992-03-20 | 1993-01-19 | Hewlett-Packard Company | Thermoelectrically cooled pumping system |
JPH05277020A (en) | 1992-03-30 | 1993-10-26 | Aisin Seiki Co Ltd | Seat for automobile |
GB2267338A (en) | 1992-05-21 | 1993-12-01 | Chang Pen Yen | Thermoelectric air conditioning |
US5954680A (en) | 1992-06-19 | 1999-09-21 | Augustine Medical, Inc. | Near hyperthermic heater wound covering |
WO1994001893A2 (en) | 1992-07-01 | 1994-01-20 | Technobeam Corporation | Thermoelectric device and method of fabrication and thermoelectric generator and vehicle |
CN2128076Y (en) | 1992-07-18 | 1993-03-17 | 辛立志 | Seat cushion with automatic temp lowering and dewetting functions |
JPH0689955A (en) | 1992-09-08 | 1994-03-29 | Fujitsu Ltd | Thermoelectric cooler |
JP2636119B2 (en) | 1992-09-08 | 1997-07-30 | 工業技術院長 | Thermoelectric element sheet and manufacturing method thereof |
US5265599A (en) | 1992-10-01 | 1993-11-30 | Progressive Dynamics, Inc. | Patient temperature control blanket with controlled air distribution |
US5255735A (en) | 1992-12-21 | 1993-10-26 | Ford Motor Company | Fuel vapor recovery device |
US5900071A (en) | 1993-01-12 | 1999-05-04 | Massachusetts Institute Of Technology | Superlattice structures particularly suitable for use as thermoelectric materials |
US5305483A (en) | 1993-03-08 | 1994-04-26 | Watkins Charles E | Infant body support and providing air flow for breathing |
JP2666902B2 (en) | 1993-03-10 | 1997-10-22 | 松下電器産業株式会社 | Dehumidifier |
GB9305149D0 (en) | 1993-03-12 | 1993-04-28 | Mars G B Ltd | Heating/cooling systems |
US5402542A (en) | 1993-04-22 | 1995-04-04 | Ssi Medical Services, Inc. | Fluidized patient support with improved temperature control |
US5367728A (en) | 1993-04-23 | 1994-11-29 | Chang; Ching-Lung | Adjustable ventilation mattress |
US5413166A (en) | 1993-05-07 | 1995-05-09 | Kerner; James M. | Thermoelectric power module |
JPH06342940A (en) | 1993-05-31 | 1994-12-13 | Mitsubishi Materials Corp | Thermoelectric generator and manufacture thereof |
JPH077187A (en) | 1993-06-17 | 1995-01-10 | Aisin Seiki Co Ltd | Thermoelectric converter |
JPH07202275A (en) | 1993-06-28 | 1995-08-04 | Kiyoshi Yanagimachi | Aggregate of electronic cooling element |
JPH0722549A (en) | 1993-06-30 | 1995-01-24 | Pioneer Electron Corp | Electronically cooled semiconductor device |
CA2103734C (en) | 1993-08-10 | 2003-07-08 | Randall Hillis Reid | Self-powered heat transfer fan |
CN2155318Y (en) | 1993-08-23 | 1994-02-09 | 许矴 | Water-cooling temperature-regulating seat cushion for automobile driver |
JP3446146B2 (en) | 1993-09-01 | 2003-09-16 | 株式会社アライドマテリアル | Thermoelectric generation method and device |
CA2148803C (en) | 1993-09-30 | 2001-08-28 | Robert H. Graebe | Ventilated access interface and cushion support system |
US5561981A (en) | 1993-10-05 | 1996-10-08 | Quisenberry; Tony M. | Heat exchanger for thermoelectric cooling device |
US5385382A (en) | 1993-10-06 | 1995-01-31 | Ford Motor Company | Combination seat frame and ventilation apparatus |
DE4334457C2 (en) | 1993-10-09 | 1997-08-14 | Wolfgang Markus | Method and device for extracting water |
JPH07111344A (en) | 1993-10-14 | 1995-04-25 | Matsushita Electric Ind Co Ltd | Thermoelectric power generating device |
US5382075A (en) | 1993-10-19 | 1995-01-17 | Champion Freeze Drying Co., Ltd. | Chair seat with a ventilation device |
US5434744A (en) | 1993-10-22 | 1995-07-18 | Fritz; Robert E. | Thermoelectric module having reduced spacing between semiconductor elements |
US5335381A (en) | 1993-11-12 | 1994-08-09 | Chang Chung Tai | Bed having a warming device |
US5429680A (en) | 1993-11-19 | 1995-07-04 | Fuschetti; Dean F. | Thermoelectric heat pump |
US5524439A (en) | 1993-11-22 | 1996-06-11 | Amerigon, Inc. | Variable temperature seat climate control system |
US5597200A (en) | 1993-11-22 | 1997-01-28 | Amerigon, Inc. | Variable temperature seat |
US5626021A (en) | 1993-11-22 | 1997-05-06 | Amerigon, Inc. | Variable temperature seat climate control system |
US5416935A (en) | 1993-11-29 | 1995-05-23 | Nieh; Rosa L. | Cushion surface air conditioning apparatus |
US5375421A (en) | 1993-12-06 | 1994-12-27 | Hsieh; Chi-Sheng | Portable thermoelectric dehumidifier |
GB2284545A (en) | 1993-12-09 | 1995-06-14 | Kuo Hung Chou | Air-cooled cushion |
JPH07226538A (en) | 1993-12-13 | 1995-08-22 | Nippondenso Co Ltd | Thermoelectric transducer |
JP3424692B2 (en) | 1993-12-28 | 2003-07-07 | 昭和電工株式会社 | Heat exchanger |
US5419489A (en) | 1994-01-18 | 1995-05-30 | Burd; Alexander L. | Mobile thermostat to control space temperature in the building |
AU1744695A (en) | 1994-02-08 | 1995-08-29 | Marlow Industries, Inc. | Fault tolerant thermoelectric device circuit |
US5584183A (en) | 1994-02-18 | 1996-12-17 | Solid State Cooling Systems | Thermoelectric heat exchanger |
US5660310A (en) | 1994-02-24 | 1997-08-26 | Legrow; Mary K. | Portable storage unit and a cooler for vehicles |
US5448788A (en) | 1994-03-08 | 1995-09-12 | Wu; Shuenn-Jenq | Thermoelectric cooling-heating mattress |
JPH07253264A (en) | 1994-03-17 | 1995-10-03 | Hitachi Ltd | Refrigerator |
US5456081A (en) | 1994-04-01 | 1995-10-10 | International Business Machines Corporation | Thermoelectric cooling assembly with optimized fin structure for improved thermal performance and manufacturability |
US5473783A (en) | 1994-04-04 | 1995-12-12 | Allen; Randall W. | Air percolating pad |
CN2192846Y (en) | 1994-04-23 | 1995-03-22 | 林伟堂 | Structure of thermoelectric cooling couple |
US5419780A (en) | 1994-04-29 | 1995-05-30 | Ast Research, Inc. | Method and apparatus for recovering power from semiconductor circuit using thermoelectric device |
US7550794B2 (en) | 2002-09-20 | 2009-06-23 | Idc, Llc | Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer |
JPH07307493A (en) | 1994-05-10 | 1995-11-21 | Kiyoshi Yanagimachi | Aggregate of thermoelectric elements |
US5493742A (en) | 1994-05-10 | 1996-02-27 | Lake Medical Products, Inc. | Ventilating air mattress with an inflating quilted pad |
US5822993A (en) | 1994-05-13 | 1998-10-20 | Hydrocool Pty Limited | Cooling apparatus |
US6222243B1 (en) | 1994-05-23 | 2001-04-24 | Seiko Instruments Inc. | Thermoelectric device |
CA2124281C (en) | 1994-05-25 | 2000-08-29 | Kevin Robert Michael Robinson | Heating system having increased air circulation |
US5761908A (en) | 1994-06-10 | 1998-06-09 | Air Quality Engineering | Apparatus suited for ventilating rooms contaminated with infectious disease organisms |
US5493864A (en) | 1994-06-14 | 1996-02-27 | On Demand Cooling Systems, Inc. | Apparatus for cooling or heating liquids and method of using same |
JPH0837322A (en) | 1994-07-21 | 1996-02-06 | Seiko Instr Inc | Thermoelectric module |
US5576512A (en) | 1994-08-05 | 1996-11-19 | Marlow Industries, Inc. | Thermoelectric apparatus for use with multiple power sources and method of operation |
US6085369A (en) | 1994-08-30 | 2000-07-11 | Feher; Steve | Selectively cooled or heated cushion and apparatus therefor |
US5497625A (en) | 1994-11-03 | 1996-03-12 | Spx Corporation | Thermoelectric refrigerant handling system |
US5505520A (en) | 1994-11-03 | 1996-04-09 | Ford Motor Company | Passenger seat with adjustable lumbar support |
US5584084A (en) | 1994-11-14 | 1996-12-17 | Lake Medical Products, Inc. | Bed system having programmable air pump with electrically interlocking connectors |
US5802855A (en) | 1994-11-21 | 1998-09-08 | Yamaguchi; Sataro | Power lead for electrically connecting a superconducting coil to a power supply |
US5606639A (en) | 1995-01-10 | 1997-02-25 | Lehoe; Michael C. | Stationary ceramic glass electric baseboard heater |
DE19503291C2 (en) | 1995-02-02 | 1998-06-10 | Mannesmann Sachs Ag | Heater cooling mat for a vehicle seat |
US5555732A (en) | 1995-02-09 | 1996-09-17 | Whiticar; John | Portable dehumidifier |
JPH08222771A (en) | 1995-02-10 | 1996-08-30 | Tokyo Gas Co Ltd | Thermoelectric power generation element and thermoelectric power generation equipment |
JP3064016B2 (en) | 1995-02-14 | 2000-07-12 | ヴェー イー テー オートモーティヴ システムズ アーゲー | Air conditioning sheet |
US5613730A (en) | 1995-03-29 | 1997-03-25 | Buie; Dan | Temperature controlled seat cover assembly |
US5637921A (en) | 1995-04-21 | 1997-06-10 | Sun Microsystems, Inc. | Sub-ambient temperature electronic package |
JPH08293627A (en) | 1995-04-25 | 1996-11-05 | Matsushita Electric Ind Co Ltd | Peltier element system |
US5542503A (en) | 1995-06-06 | 1996-08-06 | Kelsey-Hayes Company | Rotor for disc brake assembly |
US6052853A (en) | 1995-06-07 | 2000-04-25 | Halo Sleep Systems, Inc. | Mattress and method for preventing accumulation of carbon dioxide in bedding |
US5682748A (en) | 1995-07-14 | 1997-11-04 | Thermotek, Inc. | Power control circuit for improved power application and temperature control of low voltage thermoelectric devices |
JPH0942801A (en) | 1995-07-25 | 1997-02-14 | Hitachi Ltd | Cooling panel |
JPH0946938A (en) | 1995-07-26 | 1997-02-14 | Toshiba Corp | Spindle motor, and its manufacture, and magnetic disc device equipped with spindle motor |
JPH0997930A (en) | 1995-07-27 | 1997-04-08 | Aisin Seiki Co Ltd | Thermoelectric cooling module and manufacture thereof |
US5888261A (en) | 1995-08-03 | 1999-03-30 | Fortune; William S. | Rotating element fume collection apparatus |
US5704213A (en) | 1995-08-15 | 1998-01-06 | Raytheon E-Systems, Inc. | Method and apparatus for controlling the temperature of a device using independent multi-stage thermoelectric coolers |
US5653741A (en) | 1995-08-22 | 1997-08-05 | Grant; Edward F. | Heating and cooling pad |
US5667622A (en) | 1995-08-25 | 1997-09-16 | Siemens Aktiengesellschaft | In-situ wafer temperature control apparatus for single wafer tools |
SE504973C2 (en) | 1995-09-14 | 1997-06-02 | Walinov Ab | Fan unit included in a ventilated vehicle seat |
SE504942C2 (en) | 1995-09-14 | 1997-06-02 | Walinov Ab | Device for ventilating a vehicle seat |
US5645314A (en) | 1995-09-21 | 1997-07-08 | Liou; Yaw-Tyng | Ventilation cushion for chairs |
JPH0989284A (en) | 1995-09-27 | 1997-04-04 | Toshiba Corp | Electric cold/warm air fan |
US6097088A (en) | 1995-09-29 | 2000-08-01 | Morix Co., Ltd. | Thermoelectric element and cooling or heating device provided with the same |
US5721804A (en) | 1995-10-12 | 1998-02-24 | Heatech International, Inc. | Y-shaped portable electric space heater with value to reduce pressure within the boiler |
US5992154A (en) | 1995-10-18 | 1999-11-30 | Hitachi Ltd. | Drier for drying internal cooling gas of electric machine |
US6438775B1 (en) | 1995-11-01 | 2002-08-27 | J. Frank Koenig | Sleeping pad, bedding and bumpers to improve respiratory efficiency and environmental temperature of an infant and reduce the risks of sudden infant death syndrome (SIDS) and asphyxiation |
JPH09139526A (en) | 1995-11-13 | 1997-05-27 | Ngk Insulators Ltd | Thermoelectric conversion module and its manufacture |
JPH09199765A (en) | 1995-11-13 | 1997-07-31 | Ngk Insulators Ltd | Thermoelectric conversion module and manufacture thereof |
US5642539A (en) | 1995-11-22 | 1997-07-01 | Kuo; Shang-Tai | Multi-function healthful bed |
US5871151A (en) | 1995-12-12 | 1999-02-16 | Fiedrich; Joachim | Radiant hydronic bed warmer |
DE19651279B4 (en) | 1995-12-13 | 2004-09-16 | Denso Corp., Kariya | Air conditioning for a vehicle |
BR9612035A (en) | 1995-12-15 | 1999-12-28 | Climcon As | A heat exchanger device for an air conditioning system |
US5634342A (en) | 1995-12-22 | 1997-06-03 | Peeters; John P. | Electronic household plant watering device |
US5833321A (en) | 1995-12-22 | 1998-11-10 | Hoechst Celanese Corp | Vehicle seat having high air circulation and materials used therein |
US5613729A (en) | 1996-01-22 | 1997-03-25 | Summer, Jr.; Charlie B. | Ventilated seat cover apparatus |
US5692952A (en) | 1996-02-01 | 1997-12-02 | Chih-Hung; Ling | Air-conditioned seat cushion |
US5690849A (en) | 1996-02-27 | 1997-11-25 | Thermotek, Inc. | Current control circuit for improved power application and control of thermoelectric devices |
JPH09275692A (en) | 1996-04-04 | 1997-10-21 | Hiroshi Ko | Thermal power generation system |
US5623828A (en) | 1996-04-05 | 1997-04-29 | Harrington; Steven S. | Thermoelectric air cooling device |
JPH09276076A (en) | 1996-04-10 | 1997-10-28 | Matsushita Electric Ind Co Ltd | Temperature regulator |
KR100249352B1 (en) | 1996-04-18 | 2000-04-01 | 이재구 | Temperature controlling apparatus for bedding |
EP0808009A3 (en) | 1996-04-19 | 1998-10-28 | Kabushiki Kaisha Y.Y.L. | Superconducting system |
US5601399A (en) | 1996-05-08 | 1997-02-11 | Alliedsignal Inc. | Internally cooled gas turbine vane |
GB9610233D0 (en) | 1996-05-16 | 1996-07-24 | Kci Medical Ltd | Mattress cooling system |
JP3598660B2 (en) | 1996-05-28 | 2004-12-08 | 松下電工株式会社 | Thermoelectric unit |
EP0843366B1 (en) | 1996-05-28 | 2006-03-29 | Matsushita Electric Works, Ltd. | Method for manufacturing thermoelectric module |
JP3533826B2 (en) | 1996-05-29 | 2004-05-31 | アイシン精機株式会社 | Heat conversion device |
DE19634430A1 (en) | 1996-06-07 | 1997-12-11 | Wurz Dieter | Seat, back or couch upholstery |
RU2092753C1 (en) | 1996-06-13 | 1997-10-10 | Григорий Арамович Аракелов | Thermoelectric refrigerating unit |
JPH1012935A (en) | 1996-06-25 | 1998-01-16 | Matsushita Electric Works Ltd | Electrode bonding structure for thermoelectric conversion element, electrode bonding method therefor theremoelectric conversion module and production thereof |
JPH1074986A (en) | 1996-06-27 | 1998-03-17 | Natl Aerospace Lab | Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module |
CN1173654A (en) | 1996-07-16 | 1998-02-18 | 萨墨福尼克斯株式会社 | Temperature-controlled appliance |
US5626386A (en) | 1996-07-16 | 1997-05-06 | Atoma International, Inc. | Air cooled/heated vehicle seat assembly |
DE19628698C1 (en) | 1996-07-17 | 1997-10-09 | Daimler Benz Ag | Ventilated seat for use in vehicle |
JPH1035268A (en) | 1996-07-24 | 1998-02-10 | Zexel Corp | On-vehicle air conditioner |
JP3676504B2 (en) | 1996-07-26 | 2005-07-27 | 本田技研工業株式会社 | Thermoelectric module |
JP3459328B2 (en) | 1996-07-26 | 2003-10-20 | 日本政策投資銀行 | Thermoelectric semiconductor and method for manufacturing the same |
US5802856A (en) | 1996-07-31 | 1998-09-08 | Stanford University | Multizone bake/chill thermal cycling module |
JPH1044756A (en) | 1996-08-02 | 1998-02-17 | Zexel Corp | Seat temperature regulator |
US7267386B2 (en) | 1996-08-13 | 2007-09-11 | Rolf Hesch | Motor vehicle passenger compartment heat insulation and dissipation |
EP0944748A4 (en) | 1996-08-19 | 2000-11-29 | George H Miley | Flake-resistant multilayer thin-film electrodes and electrolytic cells incorporating same |
US5715695A (en) | 1996-08-27 | 1998-02-10 | Lord; Kevin F. | Air conditioned seat |
US6072924A (en) | 1996-09-02 | 2000-06-06 | Nippon Telegraph And Telephone Corporation | Optical switch and method for assembling the same |
JPH1084139A (en) | 1996-09-09 | 1998-03-31 | Technova:Kk | Thermoelectric conversion device |
WO1998011612A1 (en) | 1996-09-13 | 1998-03-19 | Komatsu Ltd. | Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same |
US6263530B1 (en) | 1996-09-24 | 2001-07-24 | Steve Feher | Selectively cooled or heated cushion and apparatus therefor |
US5827424A (en) | 1996-09-26 | 1998-10-27 | International Business Machines Corporation | Contaminant reduction system for disk drives |
AU702397B2 (en) | 1996-10-07 | 1999-02-18 | Jc Associates Co., Ltd. | Vehicle seat |
AU702395B2 (en) | 1996-10-07 | 1999-02-18 | Jc Associates Co., Ltd. | Ventilator for use with vehicle seat |
US6073998A (en) | 1996-10-15 | 2000-06-13 | Siarkowski; Bret | Seat warmer |
JPH10122208A (en) | 1996-10-18 | 1998-05-12 | Sharp Corp | Straightening device |
US5800490A (en) | 1996-11-07 | 1998-09-01 | Patz; Herbert Samuel | Lightweight portable cooling or heating device with multiple applications |
EP0842798B1 (en) | 1996-11-15 | 2005-10-05 | Calsonic Kansei Corporation | Automotive air conditioning system |
US5761909A (en) | 1996-12-16 | 1998-06-09 | The United States Of America As Represented By The Secretary Of The Navy | Breathing gas temperature modification device |
JPH10190071A (en) | 1996-12-20 | 1998-07-21 | Aisin Seiki Co Ltd | Multistage electronic cooling device |
US5772500A (en) | 1996-12-20 | 1998-06-30 | Symbios, Inc. | Compact ventilation unit for electronic apparatus |
WO1998034451A1 (en) | 1997-01-30 | 1998-08-06 | Space Electronics, Inc. | Methods and compositions for ionizing radiation shielding |
DE19703516C1 (en) | 1997-01-31 | 1998-05-07 | Daimler Benz Ag | Vehicle seat with upholstery heating and cooling |
US6178292B1 (en) | 1997-02-06 | 2001-01-23 | Denso Corporation | Core unit of heat exchanger having electric heater |
JPH10227508A (en) | 1997-02-18 | 1998-08-25 | Matsushita Electric Ind Co Ltd | Air conditioner |
JPH10238406A (en) | 1997-02-25 | 1998-09-08 | Suzuki Motor Corp | Engine cooling water circulation system |
EP0862901A1 (en) | 1997-03-05 | 1998-09-09 | Ohmeda Inc. | Thermoelectric infant mattress |
US6458319B1 (en) | 1997-03-18 | 2002-10-01 | California Institute Of Technology | High performance P-type thermoelectric materials and methods of preparation |
JP3926424B2 (en) | 1997-03-27 | 2007-06-06 | セイコーインスツル株式会社 | Thermoelectric conversion element |
JP3556799B2 (en) | 1997-03-28 | 2004-08-25 | 三菱重工業株式会社 | Thermoelectric generator |
JPH10290590A (en) | 1997-04-15 | 1998-10-27 | Honda Motor Co Ltd | Exhaust heat energy collector |
JP3705395B2 (en) | 1997-04-22 | 2005-10-12 | 本田技研工業株式会社 | Automotive seat structure |
JP3637395B2 (en) | 1997-04-28 | 2005-04-13 | 本田技研工業株式会社 | Vehicle air conditioner and seat heating / cooling device |
JP3982080B2 (en) * | 1997-12-05 | 2007-09-26 | 松下電工株式会社 | Thermoelectric module manufacturing method and thermoelectric module |
JPH1132492A (en) | 1997-05-14 | 1999-02-02 | Nissan Motor Co Ltd | Thermoelectric generation device and its drive method |
JPH10325561A (en) | 1997-05-23 | 1998-12-08 | Matsushita Electric Works Ltd | Peltier module unit, heat-exchanger, ventilation device |
JP4001305B2 (en) | 1997-05-30 | 2007-10-31 | 財団法人電力中央研究所 | Fast reactor primary coolant circulation system |
JP3633777B2 (en) | 1997-06-03 | 2005-03-30 | 株式会社デンソー | Vehicle seat air conditioner |
RU2142178C1 (en) | 1997-06-04 | 1999-11-27 | Ооо Мак-Бэт | Liquid heating and cooling apparatus |
AU8249498A (en) | 1997-06-04 | 1998-12-21 | Obschestvo S Ogranichennoi Otvetstvennostyu Mak-Bet | Thermo-electric battery, thermo-electric cooling unit and device for heating andcooling a liquid |
US5850741A (en) | 1997-06-09 | 1998-12-22 | Feher; Steve | Automotive vehicle steering wheel heating and cooling apparatus |
US5884486A (en) | 1997-06-19 | 1999-03-23 | Northern Telecom Limited | Thermoelectric humidity pump and method for dehumidfying of an electronic apparatus |
US5924289A (en) | 1997-07-01 | 1999-07-20 | Medical Products, Inc. | Controlled temperature cabinet system and method |
JP3347977B2 (en) | 1997-07-02 | 2002-11-20 | フリヂスター株式会社 | Liquid circulation type thermoelectric cooling / heating device |
US5887304A (en) | 1997-07-10 | 1999-03-30 | Von Der Heyde; Christian P. | Apparatus and method for preventing sudden infant death syndrome |
DE19830797B4 (en) | 1997-07-14 | 2007-10-04 | Denso Corp., Kariya | Vehicle seat air conditioner |
US6087638A (en) | 1997-07-15 | 2000-07-11 | Silverbrook Research Pty Ltd | Corrugated MEMS heater structure |
JPH1146021A (en) | 1997-07-25 | 1999-02-16 | Central Res Inst Of Electric Power Ind | Anisotropic heat conductivity pad, thermoelectric conversion system using the same, and peltier cooling system |
DE19733455B4 (en) | 1997-08-02 | 2012-03-29 | Curamik Electronics Gmbh | Heat exchanger assembly and cooling system with at least one such heat exchanger assembly |
JP3234178B2 (en) | 1997-08-04 | 2001-12-04 | 株式会社エスアイアイ・アールディセンター | Cooling system |
JP3794116B2 (en) | 1997-08-06 | 2006-07-05 | 株式会社デンソー | Heat exchanger for heating |
GB2333352B (en) | 1997-08-22 | 2000-12-27 | Icee Ltd | A heat exchange unit |
BR9702791A (en) | 1997-08-27 | 2000-05-16 | Eloir Fernando Protasiewytch | Automotive air conditioning generator with electronic refrigeration circuit |
US5927817A (en) | 1997-08-27 | 1999-07-27 | Lear Corporation | Ventilated vehicle seat assembly |
US5860472A (en) | 1997-09-03 | 1999-01-19 | Batchelder; John Samual | Fluid transmissive apparatus for heat transfer |
AU1141299A (en) | 1997-09-09 | 1999-03-29 | Schmitt, Klaus | P-doped silicon macromolecule with a multilayer structure, method for producing the same, device for carrying out said method, and a transistor constructed on the basis of the silicon macromolecule |
US5988568A (en) | 1997-09-22 | 1999-11-23 | Drews; Hilbert F. P. | Surface modification apparatus and method for decreasing the drag or retarding forces created by fluids flowing across a moving surface |
DE19745521C2 (en) | 1997-10-15 | 2001-12-13 | Daimler Chrysler Ag | Upholstery for a vehicle seat |
DE69816645T2 (en) | 1997-11-07 | 2004-04-15 | Hill-Rom Services, Inc., Batesville | THERMAL CONTROL SYSTEM FOR PATIENTS |
JPH11137371A (en) | 1997-11-10 | 1999-05-25 | Aisin Seiki Co Ltd | Air permeable seat device |
US6100463A (en) | 1997-11-18 | 2000-08-08 | The Boeing Company | Method for making advanced thermoelectric devices |
US5867990A (en) | 1997-12-10 | 1999-02-09 | International Business Machines Corporation | Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms |
US5966941A (en) | 1997-12-10 | 1999-10-19 | International Business Machines Corporation | Thermoelectric cooling with dynamic switching to isolate heat transport mechanisms |
JPH11182907A (en) | 1997-12-22 | 1999-07-06 | Matsushita Electric Works Ltd | Ventilator |
JP3238114B2 (en) | 1997-12-25 | 2001-12-10 | 株式会社エコ・トゥエンティーワン | Thermoelectric converter |
JP3997582B2 (en) | 1998-01-20 | 2007-10-24 | 松下電器産業株式会社 | Heat transfer device |
US6509704B1 (en) | 1998-01-23 | 2003-01-21 | Comair Rotron, Inc. | Low profile motor |
DE19804100C1 (en) | 1998-02-03 | 1999-05-12 | Daimler Chrysler Ag | Automobile seat with incorporated ventilation |
DE19804284C2 (en) | 1998-02-04 | 2002-03-14 | Daimler Chrysler Ag | vehicle seat |
JP3084521B2 (en) | 1998-02-05 | 2000-09-04 | セイコーインスツルメンツ株式会社 | Electronic equipment with generator |
DE19805173C1 (en) | 1998-02-10 | 1999-06-02 | Daimler Chrysler Ag | Motor vehicle seat with ventilation |
IL126783A0 (en) | 1998-03-05 | 1999-08-17 | M T R E Advanced Technology Lt | System and method for heat control of a living body |
GB9804896D0 (en) | 1998-03-10 | 1998-04-29 | Rover Group | A beverage vessel holder |
JP3622483B2 (en) | 1998-03-13 | 2005-02-23 | マツダ株式会社 | Vehicle air conditioner |
JPH11274575A (en) | 1998-03-20 | 1999-10-08 | Kubota Corp | Therm0electric power generating system |
JPH11274574A (en) | 1998-03-20 | 1999-10-08 | Kubota Corp | Manufacture of heat exchange block for thermoelectric power generating device |
US6000225A (en) | 1998-04-27 | 1999-12-14 | International Business Machines Corporation | Two dimensional thermoelectric cooler configuration |
DE19819247A1 (en) | 1998-04-29 | 1999-11-11 | Valeo Klimatech Gmbh & Co Kg | Vehicle heat exchanger and especially water/air heat exchanger or evaporator |
US5948303A (en) | 1998-05-04 | 1999-09-07 | Larson; Lynn D. | Temperature control for a bed |
US6169245B1 (en) | 1998-05-05 | 2001-01-02 | Marlow Industries, Inc. | Thermoelectric materials ternary penta telluride and selenide compounds |
JP4080593B2 (en) | 1998-05-11 | 2008-04-23 | 浜松ホトニクス株式会社 | Optical sensor |
US6606866B2 (en) | 1998-05-12 | 2003-08-19 | Amerigon Inc. | Thermoelectric heat exchanger |
US6119463A (en) | 1998-05-12 | 2000-09-19 | Amerigon | Thermoelectric heat exchanger |
DE19920451C2 (en) | 1998-05-18 | 2003-05-22 | Wet Automotive Systems Ag | Ventilated and heated seat |
US6127619A (en) | 1998-06-08 | 2000-10-03 | Ormet Corporation | Process for producing high performance thermoelectric modules |
US6086831A (en) | 1998-06-10 | 2000-07-11 | Mettler-Toledo Bohdan, Inc. | Modular reaction block assembly with thermoelectric cooling and heating |
US5924767A (en) | 1998-06-18 | 1999-07-20 | Pietryga; Zenon | Ventilated motor vehicle seat cushion |
US6179706B1 (en) | 1998-06-19 | 2001-01-30 | Denso Corporation | Seat air conditioner for vehicle |
US6103967A (en) | 1998-06-29 | 2000-08-15 | Tellurex Corporation | Thermoelectric module and method of manufacturing the same |
JP2000018095A (en) | 1998-06-30 | 2000-01-18 | Nissan Motor Co Ltd | Exhaust heat power generating set |
JP2000058930A (en) | 1998-08-06 | 2000-02-25 | Morikkusu Kk | Thermoelement, and its manufacture |
US6388185B1 (en) | 1998-08-07 | 2002-05-14 | California Institute Of Technology | Microfabricated thermoelectric power-generation devices |
US6072938A (en) | 1998-08-14 | 2000-06-06 | Lakewood Engineering And Manufacturing Company | Heater with medium-filled passive heating element |
JP2000060681A (en) | 1998-08-21 | 2000-02-29 | Calsonic Corp | Vehicular seat-cooling/heating appliance |
US6121539A (en) | 1998-08-27 | 2000-09-19 | International Business Machines Corporation | Thermoelectric devices and methods for making the same |
DE19842979C1 (en) | 1998-09-19 | 1999-12-02 | Daimler Chrysler Ag | heated seat for vehicle |
DE19844514C1 (en) | 1998-09-28 | 2000-01-05 | Volkswagen Ag | Heating method for automobile seat and/or steering wheel |
RU2154875C2 (en) | 1998-10-28 | 2000-08-20 | Общество с ограниченной ответственностью МАК-БЭТ | Gear to heat and cool liquid |
US6101815A (en) | 1998-11-09 | 2000-08-15 | General Electric Company | Thermo-electrical dehumidifier |
DE19851979C2 (en) | 1998-11-11 | 2000-08-31 | Daimler Chrysler Ag | Temperature sensor for an air-conditioned vehicle seat |
JP4121679B2 (en) | 1998-11-18 | 2008-07-23 | 株式会社小松製作所 | Temperature controller and manufacturing method thereof |
JP4127437B2 (en) | 1998-11-30 | 2008-07-30 | 小松エレクトロニクス株式会社 | Thermo module |
DE19851209C1 (en) | 1998-12-09 | 2000-04-13 | Daimler Chrysler Ag | Back rest for motor vehicle seat has lordosis support with fan blower connected by duct to porous ventilation cover layer |
US6161388A (en) | 1998-12-28 | 2000-12-19 | International Business Machines Corporation | Enhanced duty cycle design for micro thermoelectromechanical coolers |
FR2788123B1 (en) | 1998-12-30 | 2001-05-18 | Valeo Climatisation | EVAPORATOR, HEATING AND/OR AIR CONDITIONING DEVICE AND VEHICLE COMPRISING SUCH EVAPORATOR |
US6094919A (en) | 1999-01-04 | 2000-08-01 | Intel Corporation | Package with integrated thermoelectric module for cooling of integrated circuits |
JP2000208823A (en) | 1999-01-18 | 2000-07-28 | Nissan Motor Co Ltd | Thermoelectric generator |
US6583638B2 (en) | 1999-01-26 | 2003-06-24 | Trio-Tech International | Temperature-controlled semiconductor wafer chuck system |
US6196839B1 (en) | 1999-01-29 | 2001-03-06 | Robert Gregg Ross | Continuous use orthodontic cooling appliance |
JP4117429B2 (en) | 1999-02-01 | 2008-07-16 | 株式会社デンソー | Heat exchanger fins |
IT1309710B1 (en) | 1999-02-19 | 2002-01-30 | Pastorino Giorgio | SOLID STATE THERMOELECTRIC DEVICE |
FR2790430B1 (en) | 1999-03-01 | 2001-05-18 | Faure Bertrand Equipements Sa | VEHICLE SEAT THERMAL REGULATION METHOD AND SYSTEM |
US6116029A (en) | 1999-03-12 | 2000-09-12 | Krawec; Victor | Atmospheric control system for a humidor |
JP2000274871A (en) | 1999-03-19 | 2000-10-06 | Matsushita Refrig Co Ltd | Thermoelectric unit and thermoelectric manifold |
DE19912764A1 (en) | 1999-03-22 | 2000-09-28 | Guenther Diermann | Mobile heater for time-controlled heating of vehicle interior has portable housing, fan for delivering ambient air sucked in through inlet, heating energy source, control and regulating device |
JP2000274788A (en) | 1999-03-24 | 2000-10-06 | Hirayama Setsubi Kk | Heating device, cooling device, and air conditioner utilzing the cooling device |
JP2000274874A (en) | 1999-03-26 | 2000-10-06 | Yamaha Corp | Thermoelectric cooler |
US6606754B1 (en) | 1999-03-30 | 2003-08-19 | Gaymar Industries, Inc. | Supported hypo/hyperthermia pad |
US6171333B1 (en) | 1999-04-29 | 2001-01-09 | Merle D. Nelson | Heating and cooling comforter |
US6161241A (en) | 1999-05-06 | 2000-12-19 | Milton Zysman | Mattress vents |
US6263158B1 (en) | 1999-05-11 | 2001-07-17 | Watlow Polymer Technologies | Fibrous supported polymer encapsulated electrical component |
US6158224A (en) | 1999-05-14 | 2000-12-12 | Nestec S.A. | Beverage dispenser with a dehumidifier utilizing a thermoelectric cooler |
JP2000325384A (en) | 1999-05-18 | 2000-11-28 | Dream Project:Kk | Heat storage/cold storage sheet |
US6319744B1 (en) | 1999-06-03 | 2001-11-20 | Komatsu Ltd. | Method for manufacturing a thermoelectric semiconductor material or element and method for manufacturing a thermoelectric module |
KR20010053477A (en) | 1999-06-11 | 2001-06-25 | 글렌 에이치. 렌젠, 주니어 | Liquid Carbon Dioxide Cleaning Utilizing Natural and Modified Natural Solvents |
US6444893B1 (en) | 1999-06-15 | 2002-09-03 | Yamaha Corporation | High-converting efficiency large-mechanical strength thermoelectric module |
JP3054620B1 (en) | 1999-07-02 | 2000-06-19 | 一満 今井 | Mat used to prevent floor rubbing |
DE29911519U1 (en) | 1999-07-05 | 2000-11-23 | Tanski, Andreas, 45768 Marl | Air conditioning system for a motor vehicle and motor vehicle with an air conditioning system |
JP2001024240A (en) | 1999-07-07 | 2001-01-26 | Komatsu Ltd | Temperature regulating apparatus |
US6049655A (en) | 1999-07-08 | 2000-04-11 | Vazirani; Naresh K. | Dashboard mounted fan apparatus with pivotally mounted fans |
US6338251B1 (en) | 1999-07-22 | 2002-01-15 | International Business Machines Corporation | Mixed thermoelectric cooling apparatus and method |
US6053163A (en) | 1999-08-04 | 2000-04-25 | Hi-Z Technology, Inc. | Stove pipe thermoelectric generator |
US6164076A (en) | 1999-08-05 | 2000-12-26 | International Business Machines Corporation | Thermoelectric cooling assembly with thermal space transformer interposed between cascaded thermoelectric stages for improved thermal performance |
JP4386508B2 (en) | 1999-09-05 | 2009-12-16 | 本田技研工業株式会社 | Control method of hydrostatic continuously variable transmission |
EP1086852B1 (en) | 1999-09-21 | 2004-01-28 | Johnson Controls GmbH | Seat cushion for vehicle seats |
AU7726100A (en) | 1999-09-28 | 2001-04-30 | Henny Penny Corporation | Holding cabinet with closed-loop humidity control system and method for controlling humidity in a holding cabinet |
US6402470B1 (en) | 1999-10-05 | 2002-06-11 | United Technologies Corporation | Method and apparatus for cooling a wall within a gas turbine engine |
US6446442B1 (en) | 1999-10-07 | 2002-09-10 | Hydrocool Pty Limited | Heat exchanger for an electronic heat pump |
US6266962B1 (en) | 1999-10-07 | 2001-07-31 | International Business Machines Corporation | Highly reliable thermoelectric cooling apparatus and method |
US6619044B2 (en) | 1999-10-07 | 2003-09-16 | Hydrocool Pyt, Limited | Heat exchanger for an electronic heat pump |
US6233959B1 (en) | 1999-10-12 | 2001-05-22 | International Business Machines Corporation | Dehumidified cooling assembly for IC chip modules |
US6347521B1 (en) | 1999-10-13 | 2002-02-19 | Komatsu Ltd | Temperature control device and method for manufacturing the same |
US6189967B1 (en) | 1999-10-28 | 2001-02-20 | Edward J. Short | Portable air cooled seat cushion |
JP2001210879A (en) | 1999-11-17 | 2001-08-03 | Sumitomo Metal Ind Ltd | High-output porous thermoelectric conversion element |
JP2001174028A (en) | 1999-11-30 | 2001-06-29 | Matsushita Electric Ind Co Ltd | Air-conditioning system and air-conditioning method using the same |
US6282907B1 (en) | 1999-12-09 | 2001-09-04 | International Business Machines Corporation | Thermoelectric cooling apparatus and method for maximizing energy transport |
US6256996B1 (en) | 1999-12-09 | 2001-07-10 | International Business Machines Corporation | Nanoscopic thermoelectric coolers |
US6402775B1 (en) | 1999-12-14 | 2002-06-11 | Augustine Medical, Inc. | High-efficiency cooling pads, mattresses, and sleeves |
JP3479477B2 (en) | 1999-12-16 | 2003-12-15 | Smc株式会社 | Heat exchanger for temperature controller |
KR100344805B1 (en) | 1999-12-23 | 2002-07-20 | 엘지전자주식회사 | An air-conditioner for cooling and heating the personal environment |
KR100344593B1 (en) | 1999-12-27 | 2002-07-20 | 삼성전자 주식회사 | Air-conditioner |
US6613972B2 (en) | 2000-01-07 | 2003-09-02 | University Of Southern California | Microcombustor and combustion-based thermoelectric microgenerator |
EP1174996B1 (en) | 2000-01-07 | 2009-07-22 | Citizen Holdings Co., Ltd. | Thermoelectric system |
US6563039B2 (en) | 2000-01-19 | 2003-05-13 | California Institute Of Technology | Thermoelectric unicouple used for power generation |
US6840955B2 (en) | 2000-01-27 | 2005-01-11 | Robert J. Ein | Therapeutic apparatus |
US6793016B2 (en) | 2000-01-28 | 2004-09-21 | Denso Corporation | Vehicle air conditioning system with seat air conditioning unit |
JP2001208405A (en) | 2000-01-31 | 2001-08-03 | Daikin Ind Ltd | Remote control system for air conditioner |
US6407435B1 (en) | 2000-02-11 | 2002-06-18 | Sharp Laboratories Of America, Inc. | Multilayer dielectric stack and method |
US6664559B1 (en) | 2000-02-23 | 2003-12-16 | Semiconductor Research Corporation | Supermolecular structures and devices made from same |
EP1257688A4 (en) | 2000-02-25 | 2005-04-06 | Lattice Energy Llc | Electrical cells, components and methods |
DE10009128C1 (en) | 2000-02-26 | 2001-08-16 | Wet Automotive Systems Ag | Device for aerating a vehicle seat has one or more fans fitted in a vehicle seat to be controlled by a central seat control transmitting control signals through a data line to control electronics in a fan casing |
US6552256B2 (en) | 2000-03-06 | 2003-04-22 | The Regents Of The University Of California | Two-stage three-terminal thermionic/thermoelectric coolers |
SE522212C2 (en) | 2000-03-09 | 2004-01-20 | Stjernfjaedrar Ab | Ventilated bed with temperature control |
JP2001267642A (en) | 2000-03-14 | 2001-09-28 | Nissan Motor Co Ltd | Method of manufacturing thermoelectric conversion module |
FR2806666B1 (en) | 2000-03-21 | 2003-12-12 | Technicatome | PROCESS FOR AIR CONDITIONING A HYBRID SELF-PROPELLED VEHICLE AND VEHICLE USING SUCH A PROCESS |
US6297441B1 (en) | 2000-03-24 | 2001-10-02 | Chris Macris | Thermoelectric device and method of manufacture |
US6492585B1 (en) | 2000-03-27 | 2002-12-10 | Marlow Industries, Inc. | Thermoelectric device assembly and method for fabrication of same |
US6250083B1 (en) | 2000-04-05 | 2001-06-26 | Ching-Lung Chou | Dehumidifier |
JP2001292865A (en) | 2000-04-14 | 2001-10-23 | Yoshio Suzuki | Hot air blower in air control futon (japanese bedding) |
US6493888B1 (en) | 2000-04-18 | 2002-12-17 | Hill-Rom Services, Inc. | Pediatric mattress |
JP2001304778A (en) | 2000-04-18 | 2001-10-31 | Sanyo Electric Co Ltd | Heat-storing device |
US6336237B1 (en) | 2000-05-11 | 2002-01-08 | Halo Innovations, Inc. | Mattress with conditioned airflow |
US6378311B1 (en) | 2000-05-18 | 2002-04-30 | Raytheon Company | Thermoelectric dehumidifier |
DE10024880C1 (en) | 2000-05-19 | 2001-09-06 | Daimler Chrysler Ag | Actively-ventilated seat module for automobile passenger seat has ventilated cushion zone with mesh layer between 2 rubber fibre layers |
JP3685005B2 (en) | 2000-05-31 | 2005-08-17 | 理化工業株式会社 | Peltier device motion detection device |
US6487739B1 (en) | 2000-06-01 | 2002-12-03 | Crown Therapeutics, Inc. | Moisture drying mattress with separate zone controls |
US6967309B2 (en) | 2000-06-14 | 2005-11-22 | American Healthcare Products, Inc. | Personal warming systems and apparatuses for use in hospitals and other settings, and associated methods of manufacture and use |
DE20010905U1 (en) | 2000-06-20 | 2000-08-24 | Chao, Yu-Chao, Lu-Kang, Changhua | Ventilating bed pad |
JP2002013758A (en) | 2000-06-26 | 2002-01-18 | Daikin Ind Ltd | Air-conditioning device for toilet room |
US6700053B2 (en) | 2000-07-03 | 2004-03-02 | Komatsu Ltd. | Thermoelectric module |
US7134715B1 (en) | 2000-07-17 | 2006-11-14 | Kongsberg Automotive Ab | Vehicle seat heating arrangement |
SE0002690L (en) | 2000-07-19 | 2002-01-20 | Kongsberg Automotive Ab | Apparatus and method for temperature control and ventilation of a seat |
US6574979B2 (en) | 2000-07-27 | 2003-06-10 | Fakieh Research & Development | Production of potable water and freshwater needs for human, animal and plants from hot and humid air |
JP2004505795A (en) | 2000-08-04 | 2004-02-26 | ウッドブリッジ・フォーム・コーポレイション | Foamed member with molded gas passages and process for making the same |
JP2002059736A (en) | 2000-08-14 | 2002-02-26 | Nissan Motor Co Ltd | Cooling device |
GB0021393D0 (en) | 2000-08-31 | 2000-10-18 | Imi Cornelius Uk Ltd | Thermoelectric module |
US6385976B1 (en) | 2000-09-08 | 2002-05-14 | Ferrotec (Usa) Corporation | Thermoelectric module with integrated heat exchanger and method of use |
JP2002094131A (en) | 2000-09-13 | 2002-03-29 | Sumitomo Special Metals Co Ltd | Thermoelectric conversion element |
US6818817B2 (en) | 2000-09-18 | 2004-11-16 | Chris Macris | Heat dissipating silicon-on-insulator structures |
US6743972B2 (en) | 2000-09-18 | 2004-06-01 | Chris Macris | Heat dissipating IC devices |
US6727422B2 (en) | 2000-09-18 | 2004-04-27 | Chris Macris | Heat sink/heat spreader structures and methods of manufacture |
US6530231B1 (en) | 2000-09-22 | 2003-03-11 | Te Technology, Inc. | Thermoelectric assembly sealing member and thermoelectric assembly incorporating same |
US6511125B1 (en) | 2000-09-25 | 2003-01-28 | Timothy D. Gendron | Ventilated seat pad |
US6490879B1 (en) | 2000-09-27 | 2002-12-10 | Assist International Marketing, Inc. | Water generating machine |
US6345507B1 (en) * | 2000-09-29 | 2002-02-12 | Electrografics International Corporation | Compact thermoelectric cooling system |
DE10049458A1 (en) | 2000-10-06 | 2002-04-18 | Daimler Chrysler Ag | Upholstery for a vehicle seat |
DE10054009B4 (en) | 2000-11-01 | 2005-01-05 | Daimlerchrysler Ag | Wind protection device for an open motor vehicle |
DE10054008B4 (en) | 2000-11-01 | 2004-07-08 | Daimlerchrysler Ag | Automobile seat |
DE10054010C1 (en) | 2000-11-01 | 2002-01-03 | Daimler Chrysler Ag | Vehicle seat for open car; has air supply unit with fan and nozzles arranged in upper part of back rest to reduce undesired draughts, where height of fan can be adjusted with respect to back rest |
JP3472550B2 (en) | 2000-11-13 | 2003-12-02 | 株式会社小松製作所 | Thermoelectric conversion device and method of manufacturing the same |
US6519949B1 (en) | 2000-11-13 | 2003-02-18 | Jds Uniphase Corporation | Dual pulse width modulated driver for thermo-electric cooler |
US6578626B1 (en) | 2000-11-21 | 2003-06-17 | Thermal Corp. | Liquid cooled heat exchanger with enhanced flow |
US20020108380A1 (en) | 2000-11-24 | 2002-08-15 | Per Nielsen | Decondenser unit |
US6489551B2 (en) | 2000-11-30 | 2002-12-03 | International Business Machines Corporation | Electronic module with integrated thermoelectric cooling assembly |
US6548894B2 (en) | 2000-11-30 | 2003-04-15 | International Business Machines Corporation | Electronic module with integrated programmable thermoelectric cooling assembly and method of fabrication |
JP3613237B2 (en) | 2000-12-01 | 2005-01-26 | ヤマハ株式会社 | Thermoelectric module |
US6452740B1 (en) | 2000-12-11 | 2002-09-17 | International Business Machines Corporation | Multi-stage thermoelectric microcoolers for cooling write coils and GMR sensors in magnetic heads for disk drives |
US6427449B1 (en) | 2000-12-15 | 2002-08-06 | Solid State Cooling Systems | Compact volatile organic compound removal system |
US6725669B2 (en) | 2000-12-19 | 2004-04-27 | Nortel Networks Limited | Thermoelectric cooler temperature control |
DE10064771A1 (en) | 2000-12-22 | 2002-07-11 | Wet Automotive Systems Ag | Textile heating device |
WO2002058165A1 (en) | 2000-12-26 | 2002-07-25 | Cheolhyeon Choi | Coolness and warmth bed for using peltier's effect |
US7040710B2 (en) | 2001-01-05 | 2006-05-09 | Johnson Controls Technology Company | Ventilated seat |
US6786541B2 (en) | 2001-01-05 | 2004-09-07 | Johnson Controls Technology Company | Air distribution system for ventilated seat |
US6629724B2 (en) | 2001-01-05 | 2003-10-07 | Johnson Controls Technology Company | Ventilated seat |
US6493889B2 (en) | 2001-01-29 | 2002-12-17 | Project Cool Air, Inc. | Cooling cover apparatus |
US7075112B2 (en) | 2001-01-31 | 2006-07-11 | Gentex Corporation | High power radiation emitter device and heat dissipating package for electronic components |
JP2002227798A (en) | 2001-01-31 | 2002-08-14 | Matsushita Electric Ind Co Ltd | Blower device |
DE10105094B4 (en) | 2001-02-05 | 2004-07-08 | W.E.T. Automotive Systems Ag | vehicle seat |
US6625990B2 (en) | 2001-02-09 | 2003-09-30 | Bsst Llc | Thermoelectric power generation systems |
US7946120B2 (en) | 2001-02-09 | 2011-05-24 | Bsst, Llc | High capacity thermoelectric temperature control system |
US6959555B2 (en) | 2001-02-09 | 2005-11-01 | Bsst Llc | High power density thermoelectric systems |
US6637210B2 (en) | 2001-02-09 | 2003-10-28 | Bsst Llc | Thermoelectric transient cooling and heating systems |
US6672076B2 (en) | 2001-02-09 | 2004-01-06 | Bsst Llc | Efficiency thermoelectrics utilizing convective heat flow |
US7942010B2 (en) | 2001-02-09 | 2011-05-17 | Bsst, Llc | Thermoelectric power generating systems utilizing segmented thermoelectric elements |
US6598405B2 (en) | 2001-02-09 | 2003-07-29 | Bsst Llc | Thermoelectric power generation utilizing convective heat flow |
US7273981B2 (en) | 2001-02-09 | 2007-09-25 | Bsst, Llc. | Thermoelectric power generation systems |
US7231772B2 (en) | 2001-02-09 | 2007-06-19 | Bsst Llc. | Compact, high-efficiency thermoelectric systems |
US6539725B2 (en) | 2001-02-09 | 2003-04-01 | Bsst Llc | Efficiency thermoelectrics utilizing thermal isolation |
US6541743B2 (en) | 2001-02-14 | 2003-04-01 | Steve Chen | Electrical heater unit and heater |
US6827141B2 (en) | 2001-02-23 | 2004-12-07 | International Truck Intellectual Property Company, Llc | Vehicle heating and air conditioning modules |
US20020121094A1 (en) | 2001-03-02 | 2002-09-05 | Vanhoudt Paulus Joseph | Switch-mode bi-directional thermoelectric control of laser diode temperature |
US6617698B2 (en) | 2001-03-09 | 2003-09-09 | International Business Machines Corporation | Reworkable and thermally conductive adhesive and use thereof |
DE10115242B4 (en) | 2001-03-28 | 2005-10-20 | Keiper Gmbh & Co Kg | Vehicle seat with ventilation |
JP3792589B2 (en) | 2001-03-29 | 2006-07-05 | 富士通株式会社 | Manufacturing method of semiconductor device |
US6840305B2 (en) | 2001-04-04 | 2005-01-11 | Cannon Instrument Company | Cold cranking simulator having hybrid heat transfer system |
US7066306B2 (en) | 2001-05-10 | 2006-06-27 | Stephen Patrick Gavin | Self-ventilating disc brake rotor |
US6664520B2 (en) | 2001-05-21 | 2003-12-16 | Thermal Solutions, Inc. | Thermal seat and thermal device dispensing and vending system employing RFID-based induction heating devices |
US20040089336A1 (en) | 2001-06-11 | 2004-05-13 | Hunt Robert D. | Thermoelectric vaporizers, generators and heaters/coolers |
US6598251B2 (en) | 2001-06-15 | 2003-07-29 | Hon Technology Inc. | Body support system |
US20020195844A1 (en) | 2001-06-26 | 2002-12-26 | Lear Corporation | Headliner plastic welding |
US6578986B2 (en) | 2001-06-29 | 2003-06-17 | Permlight Products, Inc. | Modular mounting arrangement and method for light emitting diodes |
AU2002345858A1 (en) | 2001-07-03 | 2003-01-29 | Cci Thermal Technologies, Inc. | Corrugated metal ribbon heating element |
CA2385341A1 (en) | 2001-07-05 | 2003-01-05 | Alan Lebrun | Heat exchange system and method of use |
US6410971B1 (en) | 2001-07-12 | 2002-06-25 | Ferrotec (Usa) Corporation | Thermoelectric module with thin film substrates |
US6425527B1 (en) | 2001-07-17 | 2002-07-30 | Lewis T. Smole | Temperature control device for sleeping |
DE10135008B4 (en) | 2001-07-18 | 2006-08-24 | W.E.T. Automotive Systems Ag | Electrical circuit for controlling a climate seat |
DE20112473U1 (en) | 2001-07-28 | 2002-12-19 | Johnson Controls GmbH, 51399 Burscheid | Air-conditioned upholstery part for a vehicle seat |
US6580025B2 (en) | 2001-08-03 | 2003-06-17 | The Boeing Company | Apparatus and methods for thermoelectric heating and cooling |
US7426835B2 (en) | 2001-08-07 | 2008-09-23 | Bsst, Llc | Thermoelectric personal environment appliance |
US8490412B2 (en) | 2001-08-07 | 2013-07-23 | Bsst, Llc | Thermoelectric personal environment appliance |
US20030039298A1 (en) | 2001-08-22 | 2003-02-27 | Lear Corporation | System and method of vehicle climate control |
US6438964B1 (en) | 2001-09-10 | 2002-08-27 | Percy Giblin | Thermoelectric heat pump appliance with carbon foam heat sink |
US6855158B2 (en) | 2001-09-11 | 2005-02-15 | Hill-Rom Services, Inc. | Thermo-regulating patient support structure |
US6904968B2 (en) | 2001-09-14 | 2005-06-14 | Hewlett-Packard Development Company, L.P. | Method and apparatus for individually cooling components of electronic systems |
US6470696B1 (en) | 2001-09-18 | 2002-10-29 | Valerie Palfy | Devices and methods for sensing condensation conditions and for removing condensation from surfaces |
US6855880B2 (en) | 2001-10-05 | 2005-02-15 | Steve Feher | Modular thermoelectric couple and stack |
US20030066632A1 (en) | 2001-10-09 | 2003-04-10 | Charles J. Bishop | Corrosion-resistant heat exchanger |
JP2003124531A (en) | 2001-10-11 | 2003-04-25 | Komatsu Ltd | Thermoelectric module |
US6571564B2 (en) | 2001-10-23 | 2003-06-03 | Shashank Upadhye | Timed container warmer and cooler |
US6812395B2 (en) | 2001-10-24 | 2004-11-02 | Bsst Llc | Thermoelectric heterostructure assemblies element |
US6546576B1 (en) | 2001-11-05 | 2003-04-15 | Ku-Shen Lin | Structure of a ventilated mattress with cooling and warming effect |
US6700052B2 (en) | 2001-11-05 | 2004-03-02 | Amerigon Incorporated | Flexible thermoelectric circuit |
JP2003156297A (en) | 2001-11-16 | 2003-05-30 | Komatsu Ltd | Heat exchanger |
US6739138B2 (en) | 2001-11-26 | 2004-05-25 | Innovations Inc. | Thermoelectric modules and a heating and cooling apparatus incorporating same |
US20030150060A1 (en) | 2001-11-27 | 2003-08-14 | Chiu Kuang Hsing Co., Ltd. | Mattress assembly |
JP2003174203A (en) | 2001-12-07 | 2003-06-20 | Sony Corp | Thermoelectric conversion device |
US6914343B2 (en) | 2001-12-12 | 2005-07-05 | Hi-Z Technology, Inc. | Thermoelectric power from environmental temperature cycles |
US20030106677A1 (en) | 2001-12-12 | 2003-06-12 | Stephen Memory | Split fin for a heat exchanger |
US20030110779A1 (en) | 2001-12-14 | 2003-06-19 | Otey Robert W. | Apparatus and method for augmented cooling of computers |
DE20120516U1 (en) | 2001-12-19 | 2003-04-30 | Johnson Controls GmbH, 51399 Burscheid | Ventilation system for an upholstered part |
DE10163049C2 (en) | 2001-12-21 | 2003-11-13 | Daimler Chrysler Ag | Automotive seat |
JP4015435B2 (en) | 2002-01-08 | 2007-11-28 | 雅一 林 | Heating and cooling devices using thermoelectric elements |
JP3795401B2 (en) | 2002-01-11 | 2006-07-12 | エスアイアイ・プリンテック株式会社 | Temperature control apparatus, temperature control method, and ink jet recording apparatus |
EP1331674A1 (en) | 2002-01-24 | 2003-07-30 | PX Tech S.A. | Miniature thermoelectric converter with high integration |
US6557353B1 (en) | 2002-01-25 | 2003-05-06 | Michael A. Fusco | Apparatus and method for cooling an object |
US6711767B2 (en) | 2002-01-30 | 2004-03-30 | Thomas Klamm | Apparatus for warming a bed |
KR100455924B1 (en) | 2002-01-31 | 2004-11-06 | 삼성전자주식회사 | Cooling and Heating Apparatus Utlizing Thermoelectric Module |
US7036163B2 (en) | 2002-02-06 | 2006-05-02 | Halo Innovations, Inc. | Furniture cover sheet |
DE10207490C1 (en) | 2002-02-22 | 2003-06-18 | Daimler Chrysler Ag | Upholstery for motor vehicle seat has air permeable layers connected to upholstery layers at seams |
DE10207489B4 (en) | 2002-02-22 | 2005-06-09 | Daimlerchrysler Ag | Automotive seat |
US7089763B2 (en) | 2002-02-25 | 2006-08-15 | Worldwide Water, L.L.C. | Portable, potable water recovery and dispensing apparatus |
JP3634311B2 (en) | 2002-02-26 | 2005-03-30 | 株式会社エヌ・ティ・ティ ファシリティーズ | Power supply system |
JP4175000B2 (en) | 2002-02-28 | 2008-11-05 | 松下電器産業株式会社 | Temperature control device and seat incorporating this device |
CA2478170A1 (en) | 2002-03-11 | 2003-09-25 | Intier Automotive Inc. | Headliner ventilation system with headliner air duct integrated with pillar air duct |
US8840608B2 (en) | 2002-03-15 | 2014-09-23 | The General Hospital Corporation | Methods and devices for selective disruption of fatty tissue by controlled cooling |
US6695402B2 (en) | 2002-03-29 | 2004-02-24 | Paul H. Sloan, Jr. | Adjustable lumbar support |
US20030188382A1 (en) | 2002-04-03 | 2003-10-09 | Thomas Klamm | Sleeping bag with integral heating duct |
US6705089B2 (en) | 2002-04-04 | 2004-03-16 | International Business Machines Corporation | Two stage cooling system employing thermoelectric modules |
US6598403B1 (en) | 2002-04-11 | 2003-07-29 | International Business Machines Corporation | Nanoscopic thermoelectric refrigerators |
EP1495498B1 (en) | 2002-04-15 | 2013-04-10 | Nextreme Thermal Solutions, Inc. | Thermoelectric device utilizing double-sided peltier junctions |
JP2003332642A (en) | 2002-05-10 | 2003-11-21 | Komatsu Electronics Inc | Thermoelectric conversion element unit |
JP2003332644A (en) | 2002-05-16 | 2003-11-21 | Komatsu Ltd | Method and jig for manufacturing thermoelectric module |
JP2003338641A (en) | 2002-05-22 | 2003-11-28 | Toshiba Corp | Thermoelectric element |
US6718954B2 (en) | 2002-05-23 | 2004-04-13 | Lee S. Ryon | Apparatus for cooling fuel and fuel delivery components |
DE10226008B4 (en) | 2002-06-12 | 2006-02-02 | Daimlerchrysler Ag | Air supply device for a vehicle seat |
US20030234247A1 (en) | 2002-06-19 | 2003-12-25 | Stern Lessing S. | Methods and apparatus for a multi-zone blanket |
JP2004031696A (en) | 2002-06-26 | 2004-01-29 | Kyocera Corp | Thermoelectric module and method for manufacturing the same |
US6893086B2 (en) | 2002-07-03 | 2005-05-17 | W.E.T. Automotive Systems Ltd. | Automotive vehicle seat insert |
JP2004055621A (en) | 2002-07-16 | 2004-02-19 | Furukawa Electric Co Ltd:The | Thermomodule and semiconductor laser module employing the same |
DE10233506B4 (en) | 2002-07-24 | 2004-12-09 | Bayer Technology Services Gmbh | Mixer / heat exchanger |
GB0217524D0 (en) | 2002-07-29 | 2002-09-04 | Bookham Technology Plc | TEC drive control and monitoring |
US20050012204A1 (en) | 2002-07-31 | 2005-01-20 | Richard Strnad | High efficiency semiconductor cooling device |
JP2004073429A (en) | 2002-08-15 | 2004-03-11 | Nhk Spring Co Ltd | Air permeable seat |
JP2004079883A (en) | 2002-08-21 | 2004-03-11 | Citizen Watch Co Ltd | Thermoelement |
US20110209740A1 (en) | 2002-08-23 | 2011-09-01 | Bsst, Llc | High capacity thermoelectric temperature control systems |
US6857697B2 (en) | 2002-08-29 | 2005-02-22 | W.E.T. Automotive Systems Ag | Automotive vehicle seating comfort system |
US6904629B2 (en) | 2002-10-07 | 2005-06-14 | Wan-Ching Wu | Bed with function of ventilation |
US8464781B2 (en) | 2002-11-01 | 2013-06-18 | Cooligy Inc. | Cooling systems incorporating heat exchangers and thermoelectric layers |
JP2004161137A (en) | 2002-11-13 | 2004-06-10 | Denso Corp | Vehicular seat air conditioner |
DE20217645U1 (en) | 2002-11-14 | 2003-03-13 | Hsu, Chin-Cheng, Ping-Tung | Particularly comfortable cushion, comprising perforated base and second layer filled with minuscule foam rubber elements |
KR20050116362A (en) | 2002-11-25 | 2005-12-12 | 넥스트림 써멀 솔루션즈, 인크. | Trans-thermoelectric device |
JP2004174138A (en) | 2002-11-29 | 2004-06-24 | Sharp Corp | Environmental regulating device |
ITMI20022548A1 (en) | 2002-12-02 | 2004-06-03 | Peltech Srl | INTEGRATED THERMOELECTRIC MODULE |
DE10259648B4 (en) | 2002-12-18 | 2006-01-26 | W.E.T. Automotive Systems Ag | Air-conditioned seat and air conditioning device for a ventilated seat |
DE10259621B4 (en) | 2002-12-18 | 2005-12-01 | W.E.T. Automotive Systems Ag | Vehicle seat and associated air conditioning device |
US6981380B2 (en) | 2002-12-20 | 2006-01-03 | Intel Corporation | Thermoelectric cooling for microelectronic packages and dice |
JP4255691B2 (en) | 2002-12-27 | 2009-04-15 | 独立行政法人物質・材料研究機構 | Electronic component cooling device using thermoelectric conversion material |
DE10300570B4 (en) | 2003-01-10 | 2007-11-15 | Daimlerchrysler Ag | Method for controlling a seat temperature of a vehicle seat |
US7152412B2 (en) | 2003-01-14 | 2006-12-26 | Harvie Mark R | Personal back rest and seat cooling and heating system |
JP2004221504A (en) * | 2003-01-17 | 2004-08-05 | Aisin Seiki Co Ltd | Thermoelectric conversion device and its manufacturing method |
US6863130B2 (en) | 2003-01-21 | 2005-03-08 | Halliburton Energy Services, Inc. | Multi-layer deformable composite construction for use in a subterranean well |
SE0300280L (en) | 2003-02-04 | 2004-08-05 | Hilding Anders Internat Ab | Apparatus and method for regulating the physical properties of a bed |
DE10305411B4 (en) | 2003-02-06 | 2011-09-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Microelectromechanical device and method for its production |
US6739655B1 (en) | 2003-02-28 | 2004-05-25 | Polaris Industries Inc. | Recreational vehicle seat with storage pocket |
US6857954B2 (en) | 2003-02-28 | 2005-02-22 | Front-End Solutions, Inc. | Portable seat cooling apparatus |
EP1454790B1 (en) | 2003-03-06 | 2005-07-20 | W.L. GORE & ASSOCIATES GmbH | Air conditioning for cooling and heating surfaces, in particular of vehicle seats |
US6711904B1 (en) | 2003-03-06 | 2004-03-30 | Texas Instruments Incorporated | Active thermal management of semiconductor devices |
US20040177876A1 (en) | 2003-03-10 | 2004-09-16 | Enhanced Energy Systems, Inc. | Spatially optimized thermoelectric module |
US20040177877A1 (en) | 2003-03-10 | 2004-09-16 | Enhanced Energy Systems, Inc. | Geometrically optimized thermoelectric module |
US7000490B1 (en) | 2003-03-10 | 2006-02-21 | The United States Of America As Represented By The United States Department Of Energy | Thermoelectrically cooled water trap |
US6935122B2 (en) | 2003-03-18 | 2005-08-30 | Chiu Kuang Hsing Co., Ltd. | Air feeding apparatus |
US6845622B2 (en) | 2003-03-27 | 2005-01-25 | Intel Corporation | Phase-change refrigeration apparatus with thermoelectric cooling element and methods |
DE50303676D1 (en) | 2003-04-02 | 2006-07-20 | Catem Gmbh & Co Kg | Motor vehicle seat and fan module for such a motor vehicle seat |
US7655858B2 (en) | 2003-04-03 | 2010-02-02 | The University Of Vermont And State Agricultural College | Thermoelectric device having an energy storage device located between its hot and cold sides |
US6845788B2 (en) | 2003-04-15 | 2005-01-25 | Entegris, Inc. | Fluid handling component with ultraphobic surfaces |
US6923216B2 (en) | 2003-04-15 | 2005-08-02 | Entegris, Inc. | Microfluidic device with ultraphobic surfaces |
JP2006526089A (en) | 2003-04-16 | 2006-11-16 | ジェイ. レイディー,ジェームズ | Water generator |
DE10319148B3 (en) | 2003-04-29 | 2004-09-16 | Daimlerchrysler Ag | Vehicle seat comprises an air supply unit having an air outlet opening arranged in the upper region of the seat, and a fan assigned to the air supply unit |
US7100369B2 (en) | 2003-05-06 | 2006-09-05 | Denso Corporation | Thermoelectric generating device |
JP2004350479A (en) | 2003-05-26 | 2004-12-09 | Hitachi Powdered Metals Co Ltd | Thermoelectric conversion power generating unit and tunnel type furnace equipped with same |
JP4196737B2 (en) | 2003-06-03 | 2008-12-17 | トヨタ自動車株式会社 | Exhaust system |
US7168758B2 (en) | 2003-06-05 | 2007-01-30 | Igb Automotive Ltd. | Modular comfort assembly for occupant support |
US6954944B2 (en) | 2003-06-23 | 2005-10-18 | Steve Feher | Air conditioned helmet apparatus |
KR100513728B1 (en) | 2003-06-26 | 2005-09-08 | 삼성전자주식회사 | Opto-electric signal detector |
US6804966B1 (en) | 2003-06-26 | 2004-10-19 | International Business Machines Corporation | Thermal dissipation assembly employing thermoelectric module with multiple arrays of thermoelectric elements of different densities |
US20050011009A1 (en) | 2003-07-15 | 2005-01-20 | Hsiang-Ling Wu | Ventilation mattress |
DE602004032027D1 (en) | 2003-07-18 | 2011-05-12 | Thermotek Inc | THERMAL SYSTEM FOR A BLANKET |
KR20050011494A (en) | 2003-07-23 | 2005-01-29 | 현대자동차주식회사 | Device for cooling and heating the air of vehicle's room using thermoelectric couple element |
JP4488778B2 (en) | 2003-07-25 | 2010-06-23 | 株式会社東芝 | Thermoelectric converter |
US7082772B2 (en) | 2003-08-20 | 2006-08-01 | Directed Electronics, Inc. | Peltier temperature control system for electronic components |
JP2005072391A (en) | 2003-08-26 | 2005-03-17 | Kyocera Corp | N-type thermoelectric material, its manufacturing method and n-type thermoelectric element |
JP4296881B2 (en) | 2003-08-28 | 2009-07-15 | アイシン精機株式会社 | Thermoelectric converter |
US20050045702A1 (en) * | 2003-08-29 | 2005-03-03 | William Freeman | Thermoelectric modules and methods of manufacture |
US7124593B2 (en) | 2003-09-02 | 2006-10-24 | Steve Feher | Temperature conditioning apparatus for the trunk of a human body |
GB0320852D0 (en) | 2003-09-05 | 2003-10-08 | Creactive Design | Vehicle air conditioning device |
US6817197B1 (en) | 2003-09-10 | 2004-11-16 | Cummins, Inc. | Intake air dehumidification system for an internal combustion engine |
US8481843B2 (en) | 2003-09-12 | 2013-07-09 | Board Of Trustees Operating Michigan State University | Silver-containing p-type semiconductor |
DE10342653A1 (en) | 2003-09-15 | 2005-04-07 | Miliauskaite, Asta, Dr. | Device for generating electrical energy |
US7356912B2 (en) | 2003-09-25 | 2008-04-15 | W.E.T. Automotive Systems, Ltd. | Method for ventilating a seat |
GB2439093A (en) | 2003-09-30 | 2007-12-19 | Stefano Milazzo | Comestible Preparation Apparatus |
US7508671B2 (en) | 2003-10-10 | 2009-03-24 | Intel Corporation | Computer system having controlled cooling |
US7425034B2 (en) | 2003-10-17 | 2008-09-16 | W.E.T. Automotive Systems Ag | Automotive vehicle seat having a comfort system |
US7370911B2 (en) | 2003-10-17 | 2008-05-13 | W.E.T. Automotive Systems, Ag | Automotive vehicle seat insert |
US7224059B2 (en) | 2003-10-21 | 2007-05-29 | Intel Corporation | Method and apparatus for thermo-electric cooling |
US7363763B2 (en) | 2003-10-23 | 2008-04-29 | United Technologies Corporation | Combustor |
DE10350146B4 (en) | 2003-10-28 | 2006-05-04 | Daimlerchrysler Ag | Vehicle seat for a motor vehicle |
US7461892B2 (en) | 2003-12-01 | 2008-12-09 | W.E.T. Automotive Systems, A.C. | Valve layer for a seat |
US9281461B2 (en) | 2003-12-02 | 2016-03-08 | Battelle Memorial Institute | Thermoelectric devices and applications for the same |
US20050121065A1 (en) | 2003-12-09 | 2005-06-09 | Otey Robert W. | Thermoelectric module with directly bonded heat exchanger |
US7638705B2 (en) | 2003-12-11 | 2009-12-29 | Nextreme Thermal Solutions, Inc. | Thermoelectric generators for solar conversion and related systems and methods |
US7032389B2 (en) | 2003-12-12 | 2006-04-25 | Thermoelectric Design, Llc | Thermoelectric heat pump with direct cold sink support |
US6823678B1 (en) | 2003-12-22 | 2004-11-30 | Ferrotec (Usa) Corporation | Air conditioner system for flexible material-based devices |
KR100542269B1 (en) | 2004-01-26 | 2006-01-11 | 김태숙 | A buffer cushion for cars |
DE102004004387B4 (en) | 2004-01-29 | 2006-09-14 | Daimlerchrysler Ag | vehicle seat |
US7273490B2 (en) | 2004-06-08 | 2007-09-25 | Charles Arthur Lachenbruch | Heat wick for skin cooling |
US20050193742A1 (en) | 2004-02-10 | 2005-09-08 | Its Kool, Llc | Personal heat control devicee and method |
JP2005237171A (en) | 2004-02-23 | 2005-09-02 | Aisin Seiki Co Ltd | Thermoelectric conversion device |
US20050183763A1 (en) | 2004-02-24 | 2005-08-25 | Roger Christiansen | Thermoelectric generation system utilizing a printed-circuit thermopile |
ITMI20040079U1 (en) | 2004-03-02 | 2004-06-02 | Peltech Srl | IMPROVEMENTS TO THERMOELECTRIC HEAT PUMPS |
JP2005251950A (en) | 2004-03-03 | 2005-09-15 | Toshiba Corp | Thermoelectric conversion module including a plurality of electric circuits and thermoelectric conversion system |
US20050200166A1 (en) | 2004-03-09 | 2005-09-15 | Ki-Yeong Noh | Vehicle seat with cooling/heating device |
DE602005025089D1 (en) | 2004-03-09 | 2011-01-13 | Panasonic Corp | AIR CONDITIONED SEAT AND SELF-USING AIR CONDITIONING |
US20050257532A1 (en) | 2004-03-11 | 2005-11-24 | Masami Ikeda | Module for cooling semiconductor device |
US7141763B2 (en) | 2004-03-26 | 2006-11-28 | Tokyo Electron Limited | Method and apparatus for rapid temperature change and control |
US7736051B2 (en) | 2004-03-30 | 2010-06-15 | Yamatake Corporation | Thermoelectric device and mirror surface state detection device |
JP2005287537A (en) | 2004-03-31 | 2005-10-20 | T S Tec Kk | Car seat |
JP2005294478A (en) | 2004-03-31 | 2005-10-20 | Dainippon Printing Co Ltd | Thermoelectric transduction element |
JP4305252B2 (en) | 2004-04-02 | 2009-07-29 | 株式会社デンソー | Waste heat recovery device |
JP2005303183A (en) | 2004-04-15 | 2005-10-27 | Matsushita Electric Ind Co Ltd | Thermoelectric module |
JP2005317648A (en) | 2004-04-27 | 2005-11-10 | Sumitomo Metal Electronics Devices Inc | Thermoelectric conversion module |
US7469432B2 (en) | 2004-04-30 | 2008-12-30 | Hill-Rom Services, Inc. | Method and apparatus for improving air flow under a patient |
US8062797B2 (en) | 2004-05-07 | 2011-11-22 | Ardica Technologies, Inc. | Articles of clothing and personal gear with on-demand power supply for electrical devices |
US7380586B2 (en) | 2004-05-10 | 2008-06-03 | Bsst Llc | Climate control system for hybrid vehicles using thermoelectric devices |
US7340907B2 (en) | 2004-05-10 | 2008-03-11 | Computer Process Controls, Inc. | Anti-condensation control system |
WO2005112141A1 (en) | 2004-05-19 | 2005-11-24 | Central Research Institute Of Electric Power Industry | Thermoelectric conversion system and method of increasing efficiency of thermoelectric conversion system |
US7238101B2 (en) | 2004-05-20 | 2007-07-03 | Delphi Technologies, Inc. | Thermally conditioned vehicle seat |
JP4395733B2 (en) | 2004-05-21 | 2010-01-13 | パナソニック電工株式会社 | Thermoelectric conversion element module manufacturing method and electrode structure used in thermoelectric conversion element module manufacturing method |
US7114771B2 (en) | 2004-05-25 | 2006-10-03 | Amerigon, Inc. | Climate controlled seat |
WO2005117153A1 (en) | 2004-05-31 | 2005-12-08 | Denso Corporation | Thermoelectric converter and its manufacturing method |
US7480984B1 (en) | 2004-06-07 | 2009-01-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method of suppressing sublimation in advanced thermoelectric devices |
JP2006001392A (en) | 2004-06-17 | 2006-01-05 | Denso Corp | Seat air-conditioning device for vehicle |
US20050278863A1 (en) | 2004-06-22 | 2005-12-22 | Riverpark Incorporated | Comfort product |
US7299639B2 (en) | 2004-06-22 | 2007-11-27 | Intel Corporation | Thermoelectric module |
DE102004030707B4 (en) | 2004-06-25 | 2007-02-15 | Daimlerchrysler Ag | Method for operating an air supply device for a vehicle seat |
JP4141415B2 (en) | 2004-06-30 | 2008-08-27 | 義臣 近藤 | Integrated parallel Peltier Seebeck element chip and manufacturing method thereof, integrated Peltier Seebeck element panel or sheet, and direct energy conversion system and energy transfer system |
KR20070037583A (en) | 2004-07-01 | 2007-04-05 | 아르재 가부시키가이샤 | Thermoelectric conversion module |
US20060005944A1 (en) | 2004-07-06 | 2006-01-12 | Jack Wang | Thermoelectric heat dissipation device and method for fabricating the same |
US20060005873A1 (en) | 2004-07-06 | 2006-01-12 | Mitsuru Kambe | Thermoelectric conversion module |
JP2006021572A (en) | 2004-07-06 | 2006-01-26 | Denso Corp | Heating and cooling device for vehicle seat |
JP4446064B2 (en) | 2004-07-07 | 2010-04-07 | 独立行政法人産業技術総合研究所 | Thermoelectric conversion element and thermoelectric conversion module |
US6880346B1 (en) | 2004-07-08 | 2005-04-19 | Giga-Byte Technology Co., Ltd. | Two stage radiation thermoelectric cooling apparatus |
US20060005548A1 (en) | 2004-07-08 | 2006-01-12 | Keith Ruckstuhl | Countertop thermoelectric assembly |
US7886557B2 (en) | 2004-09-03 | 2011-02-15 | Everest Water, Ltd. | Water producing method and apparatus with additive control system |
JP2006076398A (en) | 2004-09-08 | 2006-03-23 | Denso Corp | Seat heating/cooling device |
ITPD20040236A1 (en) | 2004-09-30 | 2004-12-30 | Emmesteel Srl | ELECTRIC RADIATOR |
JP2008514895A (en) | 2004-10-01 | 2008-05-08 | ハイドロクール ピーティーワイ リミテッド | Reverse Peltier defrost system |
US20060075759A1 (en) | 2004-10-08 | 2006-04-13 | Vector Products, Inc. | Seat organizer |
KR100613170B1 (en) | 2004-10-12 | 2006-08-17 | 삼성전자주식회사 | Temperature measuring device, semiconductor package and cooling system using matrix switch |
JP4850070B2 (en) | 2004-10-18 | 2012-01-11 | 義臣 近藤 | Method for manufacturing Peltier element or Seebeck element |
US7523617B2 (en) | 2004-10-22 | 2009-04-28 | Nextreme Thermal Solutions, Inc. | Thin film thermoelectric devices for hot-spot thermal management in microprocessors and other electronics |
US8063298B2 (en) | 2004-10-22 | 2011-11-22 | Nextreme Thermal Solutions, Inc. | Methods of forming embedded thermoelectric coolers with adjacent thermally conductive fields |
US20060087160A1 (en) | 2004-10-25 | 2006-04-27 | Hanh Dong | Apparatus for providing fluid through a vehicle seat |
US20070262621A1 (en) | 2004-10-25 | 2007-11-15 | Hanh Dong | Apparatus for providing fluid through a vehicle seat |
US20060157101A1 (en) | 2004-10-29 | 2006-07-20 | Sakamoto Jeff S | System and method for fabrication of high-efficiency durable thermoelectric devices |
US7465871B2 (en) | 2004-10-29 | 2008-12-16 | Massachusetts Institute Of Technology | Nanocomposites with high thermoelectric figures of merit |
JP4686171B2 (en) | 2004-10-29 | 2011-05-18 | 株式会社東芝 | Thermal-electrical direct conversion device |
US20060158011A1 (en) | 2004-11-02 | 2006-07-20 | W.E.T. Automotive Systems Ag | Molded layer for a seat insert |
CN2783219Y (en) | 2004-11-24 | 2006-05-24 | 温耀生 | Thermoelectric refrigerating module |
DE102004057641A1 (en) | 2004-11-30 | 2006-06-01 | Daimlerchrysler Ag | Ventilation device in particular for seat of convertible, comprising heating unit for adjusting temperature of released air |
US7309830B2 (en) | 2005-05-03 | 2007-12-18 | Toyota Motor Engineering & Manufacturing North America, Inc. | Nanostructured bulk thermoelectric material |
TR200703485T1 (en) | 2004-12-15 | 2007-08-21 | Arçeli̇k Anoni̇m Şi̇rketi̇ | Thermoelectric cooling / heating device. |
US7587901B2 (en) | 2004-12-20 | 2009-09-15 | Amerigon Incorporated | Control system for thermal module in vehicle |
FR2879728B1 (en) | 2004-12-22 | 2007-06-01 | Acome Soc Coop Production | AUTONOMOUS HEATING AND REFRESHING MODULE |
US7293416B2 (en) | 2004-12-23 | 2007-11-13 | Nanocoolers, Inc. | Counterflow thermoelectric configuration employing thermal transfer fluid in closed cycle |
US7475551B2 (en) | 2004-12-23 | 2009-01-13 | Nanocoolers, Inc. | System employing temporal integration of thermoelectric action |
US7296417B2 (en) | 2004-12-23 | 2007-11-20 | Nanocoolers, Inc. | Thermoelectric configuration employing thermal transfer fluid flow(s) with recuperator |
US7272936B2 (en) | 2004-12-28 | 2007-09-25 | Steve Feher | Variable temperature cushion and heat pump |
US20060137099A1 (en) | 2004-12-28 | 2006-06-29 | Steve Feher | Convective cushion with positive coefficient of resistance heating mode |
US20070251016A1 (en) | 2004-12-28 | 2007-11-01 | Steve Feher | Convective seating and sleeping systems |
US20060157102A1 (en) | 2005-01-12 | 2006-07-20 | Showa Denko K.K. | Waste heat recovery system and thermoelectric conversion system |
GB2422109B (en) | 2005-01-13 | 2007-02-21 | Richard Mills | Apparatus for providing a heating and cooling effect |
US20070296251A1 (en) | 2005-01-18 | 2007-12-27 | W.E.T. Automotive Systems Ag | Device for conducting air in order to provide air conditioning for a body support device |
US7070231B1 (en) | 2005-01-24 | 2006-07-04 | Wong Peter H | Portable seat cooler |
US20060168969A1 (en) | 2005-02-03 | 2006-08-03 | Ligong Mei | Compact high-performance thermoelectric device for air cooling applications |
CN101115642B (en) | 2005-02-07 | 2011-01-05 | L&P产权管理公司 | Heat, cool, and ventilate system for automotive applications |
FR2882307B1 (en) | 2005-02-22 | 2007-05-25 | Cera | COMPRESSING ELEMENT OF A VENTILATED SEAT FOR A MOTOR VEHICLE FOR DRAINING IN THE COATING OF SAID SEAT |
US20060200398A1 (en) | 2005-03-03 | 2006-09-07 | Ronnie Botton | Accounting integrity verification method and apparatus |
US20060201162A1 (en) | 2005-03-11 | 2006-09-14 | Hsieh Hsin-Mao | Dehumidifying device |
US20060214480A1 (en) | 2005-03-23 | 2006-09-28 | John Terech | Vehicle seat with thermal elements |
US7827805B2 (en) | 2005-03-23 | 2010-11-09 | Amerigon Incorporated | Seat climate control system |
KR100716828B1 (en) | 2005-03-26 | 2007-05-09 | 삼성전기주식회사 | Flexible PCB with surplus bent for electronic equipments |
US20060244289A1 (en) | 2005-04-02 | 2006-11-02 | Johnson Controls Technology Company | Control system for seat |
JP4581802B2 (en) | 2005-04-05 | 2010-11-17 | 株式会社デンソー | Thermoelectric converter |
US7743614B2 (en) | 2005-04-08 | 2010-06-29 | Bsst Llc | Thermoelectric-based heating and cooling system |
US20060237166A1 (en) | 2005-04-22 | 2006-10-26 | Otey Robert W | High Efficiency Fluid Heat Exchanger and Method of Manufacture |
WO2006124835A1 (en) | 2005-05-16 | 2006-11-23 | Amerigon, Inc. | Ventilated headrest |
US8039726B2 (en) | 2005-05-26 | 2011-10-18 | General Electric Company | Thermal transfer and power generation devices and methods of making the same |
JP2007036178A (en) | 2005-06-24 | 2007-02-08 | Denso Corp | Thermoelectric converter and heating and cooling apparatus |
JP2008547370A (en) | 2005-06-28 | 2008-12-25 | ビーエスエスティー エルエルシー | Thermoelectric generator for fluctuating heat power |
US7360416B2 (en) | 2005-07-07 | 2008-04-22 | Ricoh Company, Ltd. | Non-contact condensation detecting apparatus |
TWI381399B (en) | 2005-07-12 | 2013-01-01 | Sulzer Metco Canada Inc | Enhanced performance conductive filler and conductive polymers made therefrom |
US7246496B2 (en) | 2005-07-19 | 2007-07-24 | Visteon Global Technologies, Inc. | Thermoelectric based heating and cooling system for a hybrid-electric vehicle |
US8783397B2 (en) | 2005-07-19 | 2014-07-22 | Bsst Llc | Energy management system for a hybrid-electric vehicle |
EP1747917B1 (en) | 2005-07-28 | 2009-10-21 | ebm-papst St. Georgen GmbH & Co. KG | Heating device |
US6990701B1 (en) | 2005-08-05 | 2006-01-31 | Vera Litvak | Sectional non-slip mattress |
US7478869B2 (en) | 2005-08-19 | 2009-01-20 | W.E.T. Automotive Systems, Ag | Automotive vehicle seat insert |
US20070040421A1 (en) | 2005-08-22 | 2007-02-22 | Lear Corporation | Seat assembly having an air plenum member |
JP2007150231A (en) | 2005-10-27 | 2007-06-14 | Denso Corp | Thermoelectric converter |
US7526879B2 (en) | 2005-11-04 | 2009-05-05 | Lg Electronics Inc. | Drum washing machine and clothes dryer using peltier thermoelectric module |
DE102006052935A1 (en) | 2005-11-10 | 2007-06-14 | W.E.T. Automotive Systems Ag | Temperature-conditioned motor vehicle seat, has insert comprising cushioning layer that is arranged between cushion and outer fabric surface, and airflow arrangement provided for heating, cooling and air-conditioning function |
JP2007139241A (en) | 2005-11-16 | 2007-06-07 | Hitachi Ltd | Air conditioner |
DE202006006326U1 (en) | 2005-11-23 | 2007-03-29 | Pfannenberg Gmbh | Control cabinet with a cooling unit, which is exposed to rotation, and a cooling device for this purpose |
FR2893826B1 (en) | 2005-11-25 | 2011-05-06 | Oniris | AIR CONDITIONING BED COMPRISING A MATTRESS HAVING A PERMEABLE LAYER |
US7794486B2 (en) | 2005-12-15 | 2010-09-14 | Kimberly-Clark Worldwide, Inc. | Therapeutic kit employing a thermal insert |
US7513273B2 (en) | 2005-12-23 | 2009-04-07 | Bioquiddity, Inc. | Fluid flow control device |
US7640753B2 (en) | 2006-01-10 | 2010-01-05 | Delphi Technologies, Inc. | Control method for thermal regulation of a vehicle seat |
CN101005053A (en) | 2006-01-16 | 2007-07-25 | 华硕电脑股份有限公司 | Heat radiation module |
US7862113B2 (en) | 2006-01-30 | 2011-01-04 | Igb Automotive Ltd. | Modular comfort assembly diffuser bag having integral air mover support |
ATE547285T1 (en) | 2006-01-30 | 2012-03-15 | Amerigon Inc | COOLING SYSTEM FOR A CONTAINER IN A VEHICLE |
EP1984956A2 (en) | 2006-01-31 | 2008-10-29 | Solid State Cooling, Inc. | Thermal diodic devices for high cooling rate applications and methods for manufacturing same |
TWI297182B (en) | 2006-02-10 | 2008-05-21 | Nanya Technology Corp | Semiconductor device having a trench gate the fabricating method of the same |
US7935882B2 (en) | 2006-02-14 | 2011-05-03 | Hi-Z Technology, Inc. | Self powered electric generating food heater |
JP3879769B1 (en) | 2006-02-22 | 2007-02-14 | 株式会社村田製作所 | Thermoelectric conversion module and manufacturing method thereof |
US20070200398A1 (en) | 2006-02-28 | 2007-08-30 | Scott Richard Wolas | Climate controlled seat |
JP2007240046A (en) | 2006-03-07 | 2007-09-20 | Denso Corp | Air conditioner |
US7870745B2 (en) | 2006-03-16 | 2011-01-18 | Bsst Llc | Thermoelectric device efficiency enhancement using dynamic feedback |
US7806961B2 (en) | 2006-03-17 | 2010-10-05 | Em Innovative Properties Company | Control interface for a variable speed fan device |
WO2008032225A2 (en) | 2006-03-21 | 2008-03-20 | Ranco Incorporated Of Delaware | Refrigeration monitor unit |
WO2007109368A2 (en) | 2006-03-22 | 2007-09-27 | Leonardo Technologies, Inc. | Improved electric current carrying substrate for a thermoelectric module |
KR20080114681A (en) | 2006-04-03 | 2008-12-31 | 몰레큘러 임프린츠 인코퍼레이티드 | Lithography imprinting system |
JP2007297034A (en) | 2006-04-07 | 2007-11-15 | Denso Corp | Heating/cooling device |
US7591507B2 (en) | 2006-04-13 | 2009-09-22 | Amerigon Incorporated | Tie strap for climate controlled seat |
US8540466B2 (en) | 2006-04-28 | 2013-09-24 | Ttx Company | Adjustable bulkhead for a railcar |
US7559204B2 (en) | 2006-05-02 | 2009-07-14 | Mehdi Hatamian | Peltier system with water purification means |
FI20065310A0 (en) | 2006-05-10 | 2006-05-10 | Abb Oy | Air dryer in a wind turbine |
JP2009536710A (en) | 2006-05-10 | 2009-10-15 | メタル テクスタイルズ コーポレイション | Insulating sleeve with wire mesh and wire cloth |
US7915516B2 (en) | 2006-05-10 | 2011-03-29 | The Boeing Company | Thermoelectric power generator with built-in temperature adjustment |
US7914611B2 (en) | 2006-05-11 | 2011-03-29 | Kci Licensing, Inc. | Multi-layered support system |
US8539624B2 (en) | 2006-05-31 | 2013-09-24 | Gentherm Incorporated | Structure based fluid distribution system |
CN100524866C (en) | 2006-06-28 | 2009-08-05 | 株式会社电装 | Thermoelectric conversion device and method for manufacturing same |
JP2008034791A (en) | 2006-06-28 | 2008-02-14 | Denso Corp | Thermoelectric converter and its manufacturing process |
WO2008005051A1 (en) | 2006-07-07 | 2008-01-10 | Massachusetts Institute Of Technology | Rapid cooling and heating of car seats with massaging effects |
EP2050148A2 (en) | 2006-07-28 | 2009-04-22 | Bsst, Llc | High capacity thermoelectric temperature control systems |
EP2378577A3 (en) | 2006-07-28 | 2012-12-05 | Bsst Llc | Thermoelectric power generating systems utilizing segmented thermoelectric elements |
US7788933B2 (en) | 2006-08-02 | 2010-09-07 | Bsst Llc | Heat exchanger tube having integrated thermoelectric devices |
US7779639B2 (en) | 2006-08-02 | 2010-08-24 | Bsst Llc | HVAC system for hybrid vehicles using thermoelectric devices |
US8222511B2 (en) | 2006-08-03 | 2012-07-17 | Gentherm | Thermoelectric device |
US20080028536A1 (en) | 2006-08-04 | 2008-02-07 | Charlesette Hadden-Cook | Mattress with cooling airflow |
KR100820029B1 (en) | 2006-08-24 | 2008-04-07 | 정상호 | Temperature control apparatus for seat of vehicles |
DE102006040855B3 (en) | 2006-08-31 | 2008-02-14 | Siemens Ag | Thermo-electric generator, to convert heat into electrical energy, has a cooler to prevent overheating |
DE102006040853B3 (en) | 2006-08-31 | 2008-02-14 | Siemens Ag | Thermoelectric device for a vehicle comprises a thermoelectric generator, a heat source and a heat sink thermally connected together and units for limiting the temperature in the generator |
US9132031B2 (en) | 2006-09-26 | 2015-09-15 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
CN101055110B (en) | 2006-09-29 | 2010-05-26 | 曹爱国 | Heat exchanger and indoor thermoelectric air conditioner possessing same |
US8378205B2 (en) | 2006-09-29 | 2013-02-19 | United Technologies Corporation | Thermoelectric heat exchanger |
US7708338B2 (en) | 2006-10-10 | 2010-05-04 | Amerigon Incorporated | Ventilation system for seat |
US20080087316A1 (en) | 2006-10-12 | 2008-04-17 | Masa Inaba | Thermoelectric device with internal sensor |
EP2567637B1 (en) | 2006-10-13 | 2014-08-06 | Gentherm Incorporated | Air conditioning bed |
JP2008108900A (en) | 2006-10-25 | 2008-05-08 | Toshiba Corp | Thermoelectric conversion module and thermoelectric conversion device |
WO2008143692A1 (en) | 2006-10-31 | 2008-11-27 | The Regents Of The University Of California | Graphite nano platelets for thermal and electrical applications |
WO2008057962A2 (en) | 2006-11-01 | 2008-05-15 | Amerigon Incorporated | Chair with air conditioning device |
US8658881B2 (en) | 2006-11-22 | 2014-02-25 | Kan K. Cheng | Resonant thermoelectric generator |
US7640754B2 (en) | 2006-12-14 | 2010-01-05 | Amerigon Incorporated | Insert duct piece for thermal electric module |
US7739876B2 (en) | 2006-12-27 | 2010-06-22 | Intel Corporation | Socket enabled current delivery to a thermoelectric cooler to cool an in-substrate voltage regulator |
US20080164733A1 (en) | 2007-01-08 | 2008-07-10 | Giffin Steven C | Clamp for climate control device |
US20080166224A1 (en) | 2007-01-09 | 2008-07-10 | Steve Craig Giffin | Blower housing for climate controlled systems |
EP2102564B1 (en) | 2007-01-10 | 2015-09-02 | Gentherm Incorporated | Thermoelectric device |
US8143554B2 (en) | 2007-03-16 | 2012-03-27 | Amerigon Incorporated | Air warmer |
KR101380752B1 (en) | 2007-03-21 | 2014-04-02 | 삼성전자 주식회사 | computer |
JP2008246196A (en) | 2007-03-22 | 2008-10-16 | Dynatherm Medical Inc | Method and apparatus for adjusting blood circulation |
JP2008274790A (en) | 2007-04-26 | 2008-11-13 | Toyota Motor Corp | Exhaust heat recovery device |
US20080263776A1 (en) | 2007-04-30 | 2008-10-30 | Span-America Medical Systems, Inc. | Low air loss moisture control mattress overlay |
US20080289677A1 (en) | 2007-05-25 | 2008-11-27 | Bsst Llc | Composite thermoelectric materials and method of manufacture |
WO2008148042A2 (en) | 2007-05-25 | 2008-12-04 | Bsst Llc | System and method for distributed thermoelectric heating and colling |
JP2008300465A (en) | 2007-05-30 | 2008-12-11 | Showa Denko Kk | Bonding method of thermoelectric element and electrode and manufacturing method of thermoelectric module |
JP4912964B2 (en) | 2007-06-07 | 2012-04-11 | 住友化学株式会社 | Thermoelectric conversion module |
US20090000778A1 (en) | 2007-06-26 | 2009-01-01 | Lear Corporation | Control scheme for an occupant environment conditioning system of a vehicle |
JP2009010138A (en) | 2007-06-27 | 2009-01-15 | Denso Corp | Thermoelectric conversion element circuit |
US20090000031A1 (en) | 2007-06-29 | 2009-01-01 | Steve Feher | Multiple convective cushion seating and sleeping systems and methods |
US20090033130A1 (en) | 2007-07-02 | 2009-02-05 | David Marquette | Fluid delivery systems for climate controlled seats |
WO2009013960A1 (en) | 2007-07-20 | 2009-01-29 | Aruze Corp. | Thermoelectric conversion module |
US9105809B2 (en) * | 2007-07-23 | 2015-08-11 | Gentherm Incorporated | Segmented thermoelectric device |
WO2009015235A1 (en) | 2007-07-23 | 2009-01-29 | Amerigon Incorporated | Radial thermoelectric device assembly |
JP2009033806A (en) | 2007-07-24 | 2009-02-12 | Toyota Motor Corp | Thermoelectric generator |
DE102007060312B4 (en) | 2007-08-24 | 2012-12-06 | W.E.T. Automotive Systems Ag | Electrothermal transducer and tempering device |
US7877827B2 (en) | 2007-09-10 | 2011-02-01 | Amerigon Incorporated | Operational control schemes for ventilated seat or bed assemblies |
US8181290B2 (en) | 2008-07-18 | 2012-05-22 | Amerigon Incorporated | Climate controlled bed assembly |
US9125497B2 (en) | 2007-10-15 | 2015-09-08 | Gentherm Incorporated | Climate controlled bed assembly with intermediate layer |
US20090108094A1 (en) | 2007-10-23 | 2009-04-30 | Yehuda Ivri | Synthetic jet air freshener |
WO2009091747A2 (en) | 2008-01-14 | 2009-07-23 | The Ohio State University Research Foundation | Thermoelectric figure of merit enhancement by modification of the electronic density of states |
CN101219025A (en) | 2008-01-17 | 2008-07-16 | 林智勇 | Self-control cool and warm water bed mattress |
US20090235969A1 (en) | 2008-01-25 | 2009-09-24 | The Ohio State University Research Foundation | Ternary thermoelectric materials and methods of fabrication |
US20100133883A1 (en) | 2008-01-29 | 2010-06-03 | Georgia Bell Walker | Infant and Toddler Car Seat with integral cooling system / humidifier |
CN114715003A (en) | 2008-02-01 | 2022-07-08 | 金瑟姆股份公司 | Condensation and humidity sensor for thermoelectric devices |
WO2009105709A1 (en) | 2008-02-21 | 2009-08-27 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
US20090211619A1 (en) | 2008-02-26 | 2009-08-27 | Marlow Industries, Inc. | Thermoelectric Material and Device Incorporating Same |
US20090218855A1 (en) | 2008-02-26 | 2009-09-03 | Amerigon Incorporated | Climate control systems and devices for a seating assembly |
DE102008011984B4 (en) | 2008-02-29 | 2010-03-18 | O-Flexx Technologies Gmbh | Thermogenerator and solar thermal system with thermogenerator |
US20090269584A1 (en) | 2008-04-24 | 2009-10-29 | Bsst, Llc | Thermoelectric materials combining increased power factor and reduced thermal conductivity |
CN102105757A (en) | 2008-06-03 | 2011-06-22 | Bsst有限责任公司 | Thermoelectric heat pump |
EP2397790A3 (en) | 2008-06-10 | 2014-03-05 | Phillip C. Watts | Integrated energy system for whole home or building |
JP5427462B2 (en) | 2008-07-02 | 2014-02-26 | 沖電気防災株式会社 | Thermoelectric conversion module |
WO2010014958A2 (en) | 2008-08-01 | 2010-02-04 | Bsst Llc | Enhanced thermally isolated thermoelectrics |
WO2010045650A1 (en) | 2008-10-17 | 2010-04-22 | Hoffman Enclosures, Inc. | Thermoelectric dehumidifier and enclosure vent drain assembly |
JP2010108958A (en) | 2008-10-28 | 2010-05-13 | Kyocera Corp | Thermoelectric module, and method of manufacturing the same |
US20100132380A1 (en) | 2008-12-02 | 2010-06-03 | Direct Equipment Solutions Gp, Llc | Thermoelectric heat transferring unit |
TWI351500B (en) | 2008-12-03 | 2011-11-01 | Ind Tech Res Inst | Low power dehumidifier |
EP2198968B1 (en) | 2008-12-16 | 2018-10-17 | F. Hoffmann-La Roche AG | Systems and methods for monitoring a thermoelectric heating and cooling device |
US20120103381A1 (en) | 2008-12-19 | 2012-05-03 | BASF SE and Hi-Z Technology, Inc. | Segmented thermoelectric module with bonded legs |
US8127798B2 (en) | 2008-12-23 | 2012-03-06 | Capital Hardware Supply Co., Inc. | Turning vane for air duct |
CN101447548B (en) | 2008-12-26 | 2011-03-30 | 中国科学院上海硅酸盐研究所 | Manufacturing method of thermo-electric device |
WO2010088405A1 (en) | 2009-01-28 | 2010-08-05 | Amerigon Incorporated | Convective heater |
US20100198322A1 (en) | 2009-02-05 | 2010-08-05 | Disney Enterprises, Inc. | Personal temperature regulator |
JP5282593B2 (en) | 2009-02-06 | 2013-09-04 | 宇部興産株式会社 | Thermoelectric conversion element and thermoelectric conversion module using the same |
SE534185C2 (en) | 2009-02-11 | 2011-05-24 | Bae Systems Haegglunds Ab | Device for thermally adjusting the temperature distribution of a surface |
EP2414650A1 (en) | 2009-03-31 | 2012-02-08 | Renault Trucks | Energy recovery system for an internal combustion engine arrangement, comprising thermoelectric devices |
US8893329B2 (en) | 2009-05-06 | 2014-11-25 | Gentherm Incorporated | Control schemes and features for climate-controlled beds |
CN102576232B (en) | 2009-05-18 | 2015-05-06 | Bsst有限责任公司 | Temperature control system with thermoelectric device |
US20100307168A1 (en) | 2009-06-04 | 2010-12-09 | Prince Castle, Inc. | Thermo-electric cooler |
DE102009033613A1 (en) | 2009-07-17 | 2011-01-20 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Thermoelectric device with tube bundles |
US8656710B2 (en) | 2009-07-24 | 2014-02-25 | Bsst Llc | Thermoelectric-based power generation systems and methods |
DE102009036332A1 (en) | 2009-08-06 | 2011-02-10 | Pütz, Otmar, Dipl.-Ing. (BA) | Method for regulating relative humidity in e.g. gas-tight room, involves tempering gas at certain temperature by tempering device, and determining temperature with respect to ambient temperature |
US20120174956A1 (en) | 2009-08-06 | 2012-07-12 | Laird Technologies, Inc. | Thermoelectric Modules, Thermoelectric Assemblies, and Related Methods |
DE102009039228A1 (en) | 2009-08-28 | 2011-03-03 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Thermoelectric device |
US8332975B2 (en) | 2009-08-31 | 2012-12-18 | Gentherm Incorporated | Climate-controlled topper member for medical beds |
BR112012005835A2 (en) | 2009-09-16 | 2019-09-24 | Univ Texas | change of temperature in a mammalian body |
JP5482063B2 (en) | 2009-09-29 | 2014-04-23 | 富士通株式会社 | Thermoelectric conversion element and manufacturing method thereof |
US8220869B2 (en) | 2009-10-30 | 2012-07-17 | Ford Global Technologies, Llc | Temperature-and-humidity-controlled head restraint |
WO2011050382A2 (en) | 2009-10-30 | 2011-05-05 | Peter Hagl | Sensor device |
JP2013510417A (en) | 2009-11-03 | 2013-03-21 | ビーエーエスエフ ソシエタス・ヨーロピア | Use of porous metal materials as contact connections for thermoelectric modules |
DE102010012629A1 (en) | 2010-03-24 | 2011-09-29 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Device comprising a catalyst carrier body and a thermoelectric generator arranged in a housing |
EP2381083A1 (en) | 2010-04-22 | 2011-10-26 | C.R.F. Società Consortile per Azioni | Unit for recovering and converting the thermal energy of the exhaust gases of an internal combustion engine of a vehicle |
US20110271994A1 (en) | 2010-05-05 | 2011-11-10 | Marlow Industries, Inc. | Hot Side Heat Exchanger Design And Materials |
US8544942B2 (en) | 2010-05-27 | 2013-10-01 | W.E.T. Automotive Systems, Ltd. | Heater for an automotive vehicle and method of forming same |
US9844277B2 (en) | 2010-05-28 | 2017-12-19 | Marlow Industries, Inc. | System and method for thermoelectric personal comfort controlled bedding |
US9849024B2 (en) | 2010-06-11 | 2017-12-26 | Oasis Medical Solutions | Apparatus for therapeutic cooling and warming of a body portion of a human or mammal |
US20120003510A1 (en) | 2010-06-30 | 2012-01-05 | Nissan Technical Center North America, Inc. | Vehicle battery temperature control system and method |
US20120017371A1 (en) | 2010-07-26 | 2012-01-26 | Pollard Jan M | Blanket having two independently controlled cooling zones |
US8392054B2 (en) | 2010-08-17 | 2013-03-05 | GM Global Technology Operations LLC | Automatic engine oil life determination adjusted for volume of oil exposed to a combustion event |
DE102010034708A1 (en) | 2010-08-18 | 2012-02-23 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Tubular thermoelectric module and method for its production |
DE102010035152A1 (en) | 2010-08-23 | 2012-02-23 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Semiconductor element and insulating material in ring form for a thermoelectric module |
US20120080911A1 (en) | 2010-08-27 | 2012-04-05 | Amerigon Incorporated | Fluid distribution features for climate controlled seating assemblies |
DE102010044461A1 (en) | 2010-09-06 | 2012-03-08 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Thermoelectric module and method for its production |
CA2810857A1 (en) | 2010-09-13 | 2012-03-22 | Tempronics, Inc. | Distributed thermoelectric string and insulating panel and applications for local heating, local cooling, and power generation from heat |
EP2439799B1 (en) | 2010-10-05 | 2015-04-15 | Siemens Aktiengesellschaft | Thermoelectric converter and heat exchanger tubes |
KR101180176B1 (en) | 2010-10-26 | 2012-09-05 | 주식회사 엘지실트론 | Compound semiconductor devices and methods of fabricating the same |
US9121414B2 (en) | 2010-11-05 | 2015-09-01 | Gentherm Incorporated | Low-profile blowers and methods |
WO2012061777A2 (en) | 2010-11-05 | 2012-05-10 | Amerigon Incorporated | Low-profile blowers and methods |
WO2012061763A2 (en) | 2010-11-05 | 2012-05-10 | Bsst Llc | Energy management systems and methods with thermoelectric generators |
TWI443883B (en) | 2010-11-29 | 2014-07-01 | Ind Tech Res Inst | Thermoelectric generator apparatus with high thermoelectric conversion efficiency |
KR20120066142A (en) * | 2010-12-14 | 2012-06-22 | 삼성전기주식회사 | Thermoelectric module and sealing method thereof |
JP5733678B2 (en) | 2010-12-24 | 2015-06-10 | 日立化成株式会社 | Thermoelectric conversion module and manufacturing method thereof |
TWI446603B (en) | 2010-12-29 | 2014-07-21 | Ind Tech Res Inst | Thermoelectric module and method of manufacturing the same |
DE102011008377A1 (en) | 2011-01-12 | 2012-07-12 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Thermoelectric material and method of manufacture |
US10722395B2 (en) | 2011-01-25 | 2020-07-28 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
US9045019B2 (en) | 2011-03-17 | 2015-06-02 | Honda Motor Co., Ltd. | Roof HVAC outlet |
US8690934B2 (en) | 2011-05-09 | 2014-04-08 | The Invention Science Fund I, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US20130255739A1 (en) | 2011-06-06 | 2013-10-03 | Gentherm, Inc. | Passively cooled thermoelectric generator cartridge |
JP5908975B2 (en) | 2011-06-06 | 2016-04-26 | ジェンサーム インコーポレイテッドGentherm Incorporated | Cartridge-based thermoelectric system |
US20120305043A1 (en) | 2011-06-06 | 2012-12-06 | Amerigon, Inc. | Thermoelectric devices with reduction of interfacial losses |
US9006557B2 (en) | 2011-06-06 | 2015-04-14 | Gentherm Incorporated | Systems and methods for reducing current and increasing voltage in thermoelectric systems |
JP2013008736A (en) | 2011-06-22 | 2013-01-10 | Toyota Industries Corp | Thermoelectric conversion module and method for manufacturing thermoelectric conversion module |
FR2977374B1 (en) | 2011-06-30 | 2014-04-18 | Michel Simonin | ELEMENT, MODULE AND THERMO ELECTRIC DEVICE, IN PARTICULAR FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE. |
EP2729039B1 (en) | 2011-07-06 | 2020-05-13 | Tempronics, Inc. | Integration of distributed thermoelectric heating and cooling |
GB2494880B (en) | 2011-09-21 | 2018-04-11 | Bae Systems Plc | Layer assembly for heat exchanger |
WO2013052823A1 (en) | 2011-10-07 | 2013-04-11 | Gentherm Incorporated | Thermoelectric device controls and methods |
JP6005754B2 (en) | 2011-11-17 | 2016-10-12 | ジェンサーム インコーポレイテッドGentherm Incorporated | Thermoelectric device having interface material and method for manufacturing the same |
KR101343736B1 (en) | 2011-11-22 | 2013-12-19 | 갑을오토텍(주) | Condensing water removing appatarus of airconditioner |
US20130186448A1 (en) | 2012-01-20 | 2013-07-25 | Gentherm, Inc. | Catalyst-thermoelectric generator integration |
US9989267B2 (en) | 2012-02-10 | 2018-06-05 | Gentherm Incorporated | Moisture abatement in heating operation of climate controlled systems |
US8397518B1 (en) | 2012-02-20 | 2013-03-19 | Dhama Innovations PVT. Ltd. | Apparel with integral heating and cooling device |
US8839632B2 (en) | 2012-03-09 | 2014-09-23 | Visteon Global Technologies, Inc. | Control strategy for a zonal heating, ventilating, and air conditioning system of a vehicle |
WO2013169774A2 (en) | 2012-05-07 | 2013-11-14 | Phononic Devices, Inc. | Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance |
US20130340802A1 (en) | 2012-06-26 | 2013-12-26 | Gentherm Incorporated | Thermoelectric generator for use with integrated functionality |
US9445524B2 (en) | 2012-07-06 | 2016-09-13 | Gentherm Incorporated | Systems and methods for thermoelectrically cooling inductive charging stations |
JP2014019270A (en) | 2012-07-17 | 2014-02-03 | Toyota Motor Corp | Air conditioner for vehicle |
DE102012023909B4 (en) | 2012-07-25 | 2021-08-19 | Gentherm Gmbh | Neck warmer |
DE202013000162U1 (en) | 2012-07-25 | 2013-10-30 | W.E.T. Automotive Systems Ag | Air conveyor |
WO2014022419A1 (en) | 2012-07-30 | 2014-02-06 | Marlow Industries, Inc. | Thermoelectric personal comfort controlled bedding |
WO2014022428A2 (en) | 2012-08-01 | 2014-02-06 | Gentherm Incorporated | High efficiency thermoelectric generation |
CN102801105A (en) | 2012-08-09 | 2012-11-28 | 无锡沃浦光电传感科技有限公司 | Package of quantum cascade laser with thermoelectric refrigerator |
DE102012023996A1 (en) | 2012-09-28 | 2014-06-12 | W.E.T. Automotive Systems Ag | Tempering device for handles, in particular of steering devices |
US20140096807A1 (en) | 2012-10-04 | 2014-04-10 | Gentherm Incorporated | Thermoelectric assembly using a cartridge support fixture |
US20140113536A1 (en) | 2012-10-23 | 2014-04-24 | Visteon Global Technologies, Inc. | Zonal airflow system for a vehicle |
US10247452B2 (en) | 2012-12-17 | 2019-04-02 | Yi-Ming Tseng | Device and method for supporting a person |
DE112013006109T5 (en) | 2012-12-21 | 2015-09-17 | W.E.T.Automotive Systems Ltd. | Apparatus and method for improving the reaction time of a temperature controller |
KR102046099B1 (en) | 2012-12-31 | 2019-11-19 | 삼성전자주식회사 | Thermoelectric material and thermoelectric device including the same |
DE102013010180A1 (en) | 2013-01-07 | 2014-07-10 | W.E.T. Automotive Systems Ag | Treatment device for the therapeutic temperature control of body parts |
KR102034337B1 (en) | 2013-01-14 | 2019-10-18 | 젠썸 인코포레이티드 | Thermoelectric-based thermal management of electrical devices |
CN108400410A (en) | 2013-01-30 | 2018-08-14 | 詹思姆公司 | Heat management system based on thermoelectricity |
WO2014164887A1 (en) | 2013-03-12 | 2014-10-09 | Gentherm Incorporated | Devices, systems and methods of cooling the skin |
DE112014001421T5 (en) | 2013-03-15 | 2016-03-03 | Gentherm Incorporated | Thermally conditioned drink holders and containers |
KR20150132209A (en) * | 2013-03-15 | 2015-11-25 | 베카리우스 인코포레이티드 | Thermoelectric device |
PL3063798T3 (en) | 2013-10-28 | 2017-11-30 | Phononic Devices, Inc. | A thermoelectric heat pump with a surround and spacer (sas) structure |
US9662962B2 (en) | 2013-11-05 | 2017-05-30 | Gentherm Incorporated | Vehicle headliner assembly for zonal comfort |
RU2562507C2 (en) | 2014-01-09 | 2015-09-10 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) | Thermoelectric device for cosmetic procedures on individual's face |
KR20160123356A (en) | 2014-02-18 | 2016-10-25 | 라이프 테크놀로지스 코포레이션 | Apparatuses, systems and methods for providing scalable thermal cyclers and isolating thermoelectric devices |
WO2015171453A1 (en) | 2014-05-06 | 2015-11-12 | Gentherm Incorporated | Liquid cooled thermoelectric device |
CN106458070B (en) | 2014-05-09 | 2020-10-16 | 金瑟姆股份公司 | Climate control assembly |
JP6394491B2 (en) * | 2014-06-03 | 2018-09-26 | 株式会社デンソー | Method for manufacturing thermoelectric conversion element sheet, method for manufacturing thermoelectric conversion device |
CN104282643B (en) | 2014-09-28 | 2017-01-11 | 武汉飞恩微电子有限公司 | Microsensor temperature control system based on TEC |
WO2016073939A1 (en) | 2014-11-06 | 2016-05-12 | Tempronics, Inc. | Functional and durable thermoelectric devices and systems |
US11639816B2 (en) | 2014-11-14 | 2023-05-02 | Gentherm Incorporated | Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system |
EP3726594B1 (en) | 2014-11-14 | 2022-05-04 | Gentherm Incorporated | Heating and cooling technologies |
WO2016113633A1 (en) | 2015-01-12 | 2016-07-21 | Laminaheat Holding Ltd. | Fabric heating element |
EP3344492B1 (en) | 2015-09-04 | 2020-03-04 | Magna Seating Inc. | Vehicle seat with improved thermal conductivity |
WO2017059256A1 (en) | 2015-10-02 | 2017-04-06 | Alphabet Energy, Inc. | Mechanical advantage in low temperature bond to a substrate in a thermoelectric package |
CA3001021A1 (en) | 2015-10-06 | 2017-04-13 | Magna Seating Inc. | Thermally conductive padding |
WO2017066261A2 (en) | 2015-10-13 | 2017-04-20 | Alphabet Energy, Inc. | Oxidation and sublimation prevention for thermoelectric devices |
JP6721317B2 (en) | 2015-11-18 | 2020-07-15 | 日東電工株式会社 | Method of manufacturing semiconductor device |
WO2017100718A1 (en) | 2015-12-10 | 2017-06-15 | Alphabet Energy, Inc. | Multi-layer thermoelectric generator |
WO2017136793A1 (en) | 2016-02-05 | 2017-08-10 | Alphabet Energy, Inc. | Electrode structure for magnesium silicide-based bulk materials to prevent elemental migration for long term reliability |
CN109219780A (en) | 2016-05-03 | 2019-01-15 | 美特瑞克斯实业公司 | Thermoelectric device and system |
JP6607448B2 (en) * | 2016-06-21 | 2019-11-20 | パナソニックIpマネジメント株式会社 | Thermoelectric converter |
US10618438B2 (en) | 2016-10-21 | 2020-04-14 | Faurecia Automotive Seating, Llc | Vehicle seat with a thermal device |
WO2018081783A1 (en) * | 2016-10-31 | 2018-05-03 | Phononic, Inc. | Metal core thermoelectric device |
EP3602641A4 (en) | 2017-03-20 | 2021-01-13 | Charles J. Cauchy | Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system |
CN106937799A (en) | 2017-03-27 | 2017-07-11 | 中山市元亨家居用品有限公司 | Office chair |
CN208355060U (en) | 2017-11-29 | 2019-01-11 | 合肥微晶材料科技有限公司 | A kind of flexible foldable heating cushion |
US11417817B2 (en) | 2018-03-08 | 2022-08-16 | Northwestern University | Flexible woven thermoelectric fabrics for thermal management |
US20200035898A1 (en) | 2018-07-30 | 2020-01-30 | Gentherm Incorporated | Thermoelectric device having circuitry that facilitates manufacture |
JP2022511801A (en) | 2018-11-30 | 2022-02-01 | ジェンサーム インコーポレイテッド | Thermoelectric adjustment system and method |
US11152557B2 (en) | 2019-02-20 | 2021-10-19 | Gentherm Incorporated | Thermoelectric module with integrated printed circuit board |
US20220169158A1 (en) | 2019-03-01 | 2022-06-02 | Gentherm Incorporated | Resistance heat assisted cooling and heating technology |
WO2021025663A1 (en) | 2019-08-02 | 2021-02-11 | Gentherm Incorporated | Thermally conductive layer |
-
2019
- 2019-04-05 US US16/377,125 patent/US20200035898A1/en not_active Abandoned
- 2019-04-05 US US16/377,109 patent/US11223004B2/en active Active
- 2019-04-05 US US16/377,091 patent/US10991869B2/en active Active
- 2019-04-05 US US16/377,134 patent/US11075331B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5409547A (en) * | 1992-10-05 | 1995-04-25 | Thermovonics Co., Ltd. | Thermoelectric cooling device for thermoelectric refrigerator, process for the fabrication of semiconductor suitable for use in the thermoelectric cooling device, and thermoelectric refrigerator using the thermoelectric cooling device |
JP2000244024A (en) * | 1999-02-23 | 2000-09-08 | Matsushita Electric Works Ltd | Thermoelectric element module |
US20020074646A1 (en) * | 2000-12-15 | 2002-06-20 | Smc Corporation | Non-rectangular thermo module wafer cooling device using the same |
US20070227158A1 (en) * | 2006-03-31 | 2007-10-04 | Kyocera Corporation | Thermoelectric Module |
US20120201008A1 (en) * | 2011-02-05 | 2012-08-09 | Laird Technologies, Inc. | Circuit assemblies including thermoelectric modules |
JP2014135455A (en) * | 2013-01-11 | 2014-07-24 | Fujitsu Ltd | Thermoelectric conversion element, electronic device, and method of manufacturing thermoelectric conversion element |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11240883B2 (en) | 2014-02-14 | 2022-02-01 | Gentherm Incorporated | Conductive convective climate controlled seat |
US11240882B2 (en) | 2014-02-14 | 2022-02-01 | Gentherm Incorporated | Conductive convective climate controlled seat |
US11033058B2 (en) | 2014-11-14 | 2021-06-15 | Gentherm Incorporated | Heating and cooling technologies |
US11639816B2 (en) | 2014-11-14 | 2023-05-02 | Gentherm Incorporated | Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system |
US11857004B2 (en) | 2014-11-14 | 2024-01-02 | Gentherm Incorporated | Heating and cooling technologies |
US10991869B2 (en) | 2018-07-30 | 2021-04-27 | Gentherm Incorporated | Thermoelectric device having a plurality of sealing materials |
US11075331B2 (en) | 2018-07-30 | 2021-07-27 | Gentherm Incorporated | Thermoelectric device having circuitry with structural rigidity |
US11223004B2 (en) | 2018-07-30 | 2022-01-11 | Gentherm Incorporated | Thermoelectric device having a polymeric coating |
US11993132B2 (en) | 2018-11-30 | 2024-05-28 | Gentherm Incorporated | Thermoelectric conditioning system and methods |
US11152557B2 (en) | 2019-02-20 | 2021-10-19 | Gentherm Incorporated | Thermoelectric module with integrated printed circuit board |
Also Published As
Publication number | Publication date |
---|---|
US20200035896A1 (en) | 2020-01-30 |
US11075331B2 (en) | 2021-07-27 |
US20200035897A1 (en) | 2020-01-30 |
US10991869B2 (en) | 2021-04-27 |
US11223004B2 (en) | 2022-01-11 |
US20200035899A1 (en) | 2020-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200035898A1 (en) | Thermoelectric device having circuitry that facilitates manufacture | |
US7190581B1 (en) | Low thermal resistance power module assembly | |
KR100836305B1 (en) | Thermoelectric module | |
US11152557B2 (en) | Thermoelectric module with integrated printed circuit board | |
US7745928B2 (en) | Heat dissipation plate and semiconductor device | |
US7675163B2 (en) | Carbon nanotubes for active direct and indirect cooling of electronics device | |
EP2738804B1 (en) | Flexible thermal transfer strips | |
KR20130122786A (en) | Circuit assemblies including thermoelectric modules | |
US20090194862A1 (en) | Semiconductor module and method of manufacturing the same | |
EP3580789B1 (en) | Thermoelectric module | |
US9412680B2 (en) | Semiconductor module and electrically-driven vehicle | |
BR112017013546B1 (en) | electronic set | |
JP4935220B2 (en) | Power module device | |
KR20140122185A (en) | Thermoelectric cooler/heater integrated in printed circuit board | |
CN105575954A (en) | System and Method | |
US20170325360A1 (en) | Power-Module Device, Power Conversion Device, and Method for Manufacturing Power-Module Device | |
JP2007165620A (en) | Semiconductor cooling structure | |
KR100620913B1 (en) | Thermoelectric module | |
WO2013055701A1 (en) | Diode cell modules | |
EP3098845B1 (en) | Package assembly | |
JP6069945B2 (en) | Thermoelectric unit | |
CN217544599U (en) | Integrated circuit packaging structure | |
JP6086033B2 (en) | Inverter device | |
JP2010021410A (en) | Thermo-module | |
JP2014120549A (en) | Insulation heat radiation substrate and circuit module using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |