JPS5997457A - Solar heat utilizing device - Google Patents

Solar heat utilizing device

Info

Publication number
JPS5997457A
JPS5997457A JP57205953A JP20595382A JPS5997457A JP S5997457 A JPS5997457 A JP S5997457A JP 57205953 A JP57205953 A JP 57205953A JP 20595382 A JP20595382 A JP 20595382A JP S5997457 A JPS5997457 A JP S5997457A
Authority
JP
Japan
Prior art keywords
water pipe
hot water
energy
cold water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57205953A
Other languages
Japanese (ja)
Other versions
JPS612850B2 (en
Inventor
Takashi Horigome
堀米 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINENERUGII SOGO KAIHATSU KIKO
Original Assignee
SHINENERUGII SOGO KAIHATSU KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINENERUGII SOGO KAIHATSU KIKO filed Critical SHINENERUGII SOGO KAIHATSU KIKO
Priority to JP57205953A priority Critical patent/JPS5997457A/en
Publication of JPS5997457A publication Critical patent/JPS5997457A/en
Publication of JPS612850B2 publication Critical patent/JPS612850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable to take out thermal energy and electrical energy in a balanced manner, by a method wherein thermoelectric converting elements are provided, and electrical energy is generated by utilizing a temperature difference between a hot water pipe and a cold water pipe. CONSTITUTION:The hot water pipe 2 attached with a plurality of solar cells 1 on an upper surface thereof and the cold water pipe 3 for passing water to be supplied into the pipe 2 are provided respectively on the upper and lower sides of a plurality of the thermoelectric converting elements 4, and a Flesnel lens 6 is arranged by a frame 5 so that sunlight rays L are focused on the solar cells 1. The solar cells 1 not only generate electric energy according to optical energy of the sunlight rays L but efficiently absorb the sunlight and convert it into heat, whereby cold water flowing into the pipe 2 is heated to be hot water. The solar cells 1 are cooled, so that efficiency of converting optical energy into electrical energy is not lowered. A considerable temperature difference is generated between the hot water pipe 2 and the cold water pipe 3, and the thermoelectric converting elements 4 generate electromotive forces according to the temperature difference.

Description

【発明の詳細な説明】 この発明は太陽エネルギーを電気エネルギー及び熱エネ
ルギーに変換して利用する太陽エネルギー利用装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar energy utilization device that converts solar energy into electrical energy and thermal energy.

近年、太陽エネルギー利用装置の研究開発が盛んに行な
われており、太陽熱利用の給湯システムや冷暖房システ
ムのように太陽エネルギーtJK%エネルギーに変換し
て利用する装置、及び太陽□電池のように太陽エネルギ
ーを直接電気エネルギーに変換して利用する装置、さら
に、太陽熱発電プラントのように、太陽熱によって蒸気
を発生させてタービン発電機を回し、間接的に電気エネ
ルギーに変換して利用するシステム等、種々の形態によ
る太陽エネルギーの利用が計られている。
In recent years, research and development of solar energy utilization devices has been actively conducted, including devices that convert solar energy into tJK% energy such as solar water heating systems and air conditioning systems, and devices that convert solar energy into tJK% energy such as solar batteries. There are various types of systems, such as devices that directly convert energy into electrical energy and utilize it, as well as systems such as solar thermal power generation plants, which use solar heat to generate steam to run a turbine generator and indirectly convert it into electrical energy. The use of solar energy in different forms is planned.

さらに、現在家庭等で使われているエネルギーは、熱と
電気であるから、その両方を太陽エネルギーによって賄
えるようにすることが望まれている。
Furthermore, since the energy currently used in homes and the like consists of heat and electricity, it is desired to be able to provide both of them with solar energy.

そのため、例えば太陽集熱器と太陽電池とヲ一体的に組
合わせて、1つの装置から熱も電気も取り出せるように
することが考えられている。
Therefore, for example, it is being considered to integrate a solar collector and a solar cell so that both heat and electricity can be extracted from one device.

しかしながら、現状では太陽電池・の変換効率(シリコ
ン結晶系で10%程度)は太陽集熱器の集熱効率に比べ
てかなシ低い、ため、同一集光面積から得られる熱エネ
ルギーと電気エネルギーのバランスが悪く、熱エネルギ
ーが必要なだけ得られるように設計しても電気エネルギ
ーが大幅に不足するという問題がある。
However, at present, the conversion efficiency of solar cells (about 10% for silicon crystal systems) is much lower than that of solar collectors, so there is a balance between thermal energy and electrical energy obtained from the same light-collecting area. However, even if they are designed to obtain the necessary amount of thermal energy, there is a problem that there is a significant shortage of electrical energy.

例を示すと、50倍集光でシリコン結晶系の太陽電池を
用いても、得られる電気エネルギーと熱エネルギーの比
は1:5程度になる。
For example, even if a silicon crystal solar cell is used with 50 times the light concentration, the ratio of electrical energy to thermal energy obtained will be about 1:5.

この発明は、このような問題を解決するためになされた
ものであり、1つの太陽エネルギー利用装置から熱エネ
ルギーと電気エネルギーをバランス良く取シ出せるよう
にすることを目的とする。
This invention was made to solve such problems, and aims to enable thermal energy and electrical energy to be extracted in a well-balanced manner from one solar energy utilization device.

そのため、この発明による太陽エネルギー利用装置は、
上面に太陽電池を貼着した温水管とこの温水管に供給す
る水を通す冷水管と全熱電変換素子を挾んで上下に重ね
て設け、太陽光線k ’Jニヤフレネルレンズによって
集光して上記太陽電池に当てるようにして、その太陽電
池によって電気エネルギーを発生させると共に、太陽電
池に吸収された熱を温水管内に流れる水に奪わせて熱エ
ネルギーとして取シ出し、さらに、温水管と冷水管の温
度差を利用して熱電変換素子からも電気エネルギーを発
生させるようにしたものである。
Therefore, the solar energy utilization device according to this invention,
A hot water pipe with a solar cell attached to the top surface, a cold water pipe that passes water to the hot water pipe, and a thermoelectric conversion element are stacked one on top of the other, and the sunlight is focused by a K'J near Fresnel lens. By exposing the solar cells to electricity, the solar cells generate electrical energy, and the heat absorbed by the solar cells is absorbed by the water flowing in the hot water pipes to be extracted as thermal energy. Electrical energy is also generated from the thermoelectric conversion element by utilizing the temperature difference between the two.

以下、この発明の実施例を添付図面を参照して説明する
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は、この発明の一実施例全模型的に示す斜視図で
ちゃ、第2図はその横断面図である。
FIG. 1 is a perspective view schematically showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view thereof.

この太陽エネルギー利用装置は、図示のように、上面に
多数のシリコン結晶系、アモルファスシリコン系、ガリ
ウム・ヒ素系等の太陽電池1を貼着した角筒状の温水管
2と、この温水管2に供給する水を通す角筒状の冷水管
6とを、多数の熱電変換素子4を挾んで上下に重ねて設
けている。この温水管2及び冷水管3は、例えばステン
レス製である。
As shown in the figure, this solar energy utilization device includes a rectangular cylindrical hot water pipe 2 on which a large number of solar cells 1 of silicon crystal type, amorphous silicon type, gallium arsenic type, etc. are attached to the upper surface; Rectangular cylindrical cold water pipes 6 through which water is supplied are stacked one on top of the other with a large number of thermoelectric conversion elements 4 in between. The hot water pipe 2 and the cold water pipe 3 are made of stainless steel, for example.

そして、下部に冷水管を嵌入させて一体的に固着し、両
側面が上方にテーパ状に拡開して延びるフレーム5によ
ってリニヤフレネルレンズ6を太陽電池1の上面に平行
に且つ長手方向に沿って支持し、このフレネルレンズ6
が太陽光線りを太陽電池5上に収束させるように相互の
位置関係を決めて配設している。
A cold water pipe is inserted into the lower part of the frame 5, which is fixed integrally with the frame 5, which extends upwardly in a tapered manner on both sides. This Fresnel lens 6
The solar cells 5 and 5 are arranged in such a manner that their mutual positional relationship is determined so that the sunlight rays are focused on the solar cells 5.

さらに、この実施例では温水管2の流出口と冷水管乙の
流入口とを、蓄熱・熱交換器7内を通る連通管8によっ
て接続し、冷水管乙の流出口と温水管2の流入口をU字
状の連通管9によって接続している。
Furthermore, in this embodiment, the outlet of the hot water pipe 2 and the inlet of the cold water pipe B are connected by a communication pipe 8 passing through the heat storage/heat exchanger 7, and the outlet of the cold water pipe B and the inlet of the hot water pipe B are connected. The inlets are connected by a U-shaped communication pipe 9.

なお、蓄熱・熱交換器7には、給水管10とそれによっ
て流入した水を湯にして流出する給湯管11が接続され
ている。12は電気出力を取り出すだめの電線である。
Note that the heat storage/heat exchanger 7 is connected to a water supply pipe 10 and a hot water supply pipe 11 through which the water that flows therein is turned into hot water and then flows out. Reference numeral 12 denotes an electric wire for extracting electrical output.

第6図は、熱電変換部の詳細を示し、熱電変換素子4は
、例えばビスマス−テルル(Bi −Te)系半導体の
P型素子41とN型素子42を温水管2及び冷水管乙の
長手方向に交互に間隔を置いて配列し、隣接するP型素
子41とN型素子42の上面同志及び下面同志金銅又は
アルミニウムの電極片46によって交互に千鳥状に接続
され、多数の熱電変換素子4が直列に接続された状態に
なって、温水管2及び冷水管の幅方向に間隔を置いて2
組並列に介装されている。
FIG. 6 shows the details of the thermoelectric conversion section, in which the thermoelectric conversion element 4 is configured such that a P-type element 41 and an N-type element 42 of, for example, bismuth-tellurium (Bi-Te) based semiconductors are connected to the hot water pipe 2 and the cold water pipe B. A large number of thermoelectric conversion elements 4 are arranged alternately at intervals in the direction and connected in a staggered manner by gold copper or aluminum electrode pieces 46 on the upper and lower surfaces of adjacent P-type elements 41 and N-type elements 42, respectively. are connected in series, and 2 are placed at intervals in the width direction of the hot water pipe 2 and the cold water pipe.
The pairs are interposed in parallel.

44は電気絶縁性があって伝熱性の良い接着剤であゃ、
上側の電極片46を温水管2の下面に、下側の電極片4
6を冷水管乙の上面にそれぞれ貼着している。
44 is an adhesive that is electrically insulating and has good heat conductivity.
The upper electrode piece 46 is placed on the lower surface of the hot water pipe 2, and the lower electrode piece 4
6 is pasted on the top of each cold water pipe B.

なお、温水管2および冷水管乙にアルミナ溶射処理によ
る絶縁を施せば、接着剤44は必ずしも電気絶縁性であ
る必要はない。
Note that the adhesive 44 does not necessarily have to be electrically insulating if the hot water pipe 2 and the cold water pipe B are insulated by alumina spraying.

このように構成した太陽エネルギー利用装置を長手方向
を東西方向にして、太陽光線りがなるべくリニヤフレネ
ルレンズ6に垂直に入射するように南側に幾分傾斜させ
て設置する。この傾斜全季節によって変化させ得るよう
にするとよい。
The solar energy utilization device configured as described above is installed with its longitudinal direction in the east-west direction and slightly inclined toward the south so that the sunlight enters the linear Fresnel lens 6 as perpendicularly as possible. It is preferable that this slope can be changed throughout the seasons.

それによって、リニヤフレネルレンズ6に入射した太陽
光線りが太陽電池1上に収束して当9、太陽電池1はそ
の光エネルギーに応じた起電力すなわち電気エネルギー
を発生する。
As a result, the sunlight incident on the linear Fresnel lens 6 converges on the solar cell 1, and the solar cell 1 generates an electromotive force, that is, electrical energy corresponding to the light energy.

この太陽電池1はまた、太陽光を効率よく吸収して熱に
かえ、温水管2かもの放熱は抑える選択吸収膜としての
作用もなしく特にシリコン系太陽電池の場合)、温水管
2に流入した冷水がこの太陽電池1の熱によって加熱さ
れて温水となる。それによシ、太陽電池1は冷却される
ことになるので、高温になυ過ぎて電気エネルギーへの
変換効率が低下することはない。
This solar cell 1 also efficiently absorbs sunlight and converts it into heat, and does not act as a selective absorption film to suppress heat radiation from the hot water pipes 2 (especially in the case of silicon solar cells), which flows into the hot water pipes 2. The cold water is heated by the heat of the solar cell 1 and becomes hot water. In addition, since the solar cell 1 is cooled, the temperature does not become too high and the conversion efficiency into electrical energy decreases.

温水管2を通過して加熱された温水は、連通管8によっ
て蓄熱・熱交換器7に導かれ、蓄熱材(水、油、砂等を
用いる)に熱交換して冷やされて冷水管乙に流入し、こ
の冷水管を通過して連通管9によって再び温水管2に循
環される。
The hot water heated through the hot water pipe 2 is led to the heat storage/heat exchanger 7 through the communication pipe 8, where it is cooled by exchanging heat with a heat storage material (using water, oil, sand, etc.) and then passed through the cold water pipe B. The water flows into the cold water pipe, passes through this cold water pipe, and is circulated back to the hot water pipe 2 via the communication pipe 9.

したがって、温水管2の下面と冷水管6の上面との間に
相当の温度差が生ずるため、熱電素子4はその熱電効果
(ゼーベツク効果)によって、この温度差に応じた起電
力を両端〒電極片46から発生する。
Therefore, since a considerable temperature difference occurs between the lower surface of the hot water pipe 2 and the upper surface of the cold water pipe 6, the thermoelectric element 4 uses its thermoelectric effect (Seebeck effect) to generate an electromotive force corresponding to this temperature difference between both ends of the electrode. It originates from piece 46.

このようにして、蓄熱・熱交換器に貯えられた熱エネル
ギーによって、給水管10かも流入する水を熱交換して
湯にして給湯管11から取シ出し、洗面所や浴室に給湯
したシ、暖房用等に利用することができる。
In this way, by using the thermal energy stored in the heat storage/heat exchanger, the water flowing into the water supply pipe 10 is heat-exchanged and turned into hot water, which is taken out from the hot water supply pipe 11 and supplied to the washroom or bathroom. It can be used for heating, etc.

また、太陽電池1及び熱電変換素子4によって発生した
電気エネルギーは、電線12かも取シ出され、図示しな
い蓄電池に貯えて、照明その他の電気器具用の電源とし
て利用することができる。
Further, the electric energy generated by the solar cell 1 and the thermoelectric conversion element 4 is also extracted from the electric wire 12, stored in a storage battery (not shown), and can be used as a power source for lighting and other electric appliances.

なお、蓄熱・熱交換器7を省略して、冷水管6の流入口
に給水管10を、温水管2の流出口に給湯管11を接続
し、温水管2内で加熱された温水を直接利用するように
してもよい。
In addition, the heat storage/heat exchanger 7 is omitted, and the water supply pipe 10 is connected to the inlet of the cold water pipe 6, and the hot water supply pipe 11 is connected to the outlet of the hot water pipe 2, and the hot water heated in the hot water pipe 2 is directly supplied. You may also use it.

また、温水管2等の長さ及び他の寸法は、必要とする温
水の温度及び量、電気エネルギーの発生量との関係によ
シ任意に選ぶことができるし、このようなユニットヲ複
数個直列又は並列に接続して使用することもできること
は勿論である。
Further, the length and other dimensions of the hot water pipe 2 etc. can be arbitrarily selected depending on the temperature and amount of hot water required and the amount of electrical energy generated. Of course, they can also be used by connecting them in parallel.

以上説明したように、こ・の発明による太陽エネルギー
利用装置は、リニヤフレネルレンズによって太陽光線を
集光して太陽電池に照射することにより・少ない太豐算
準で比較的大きな電気“ネ″ギーを発生させることがで
き、且つ残りの米エネルギーを熱エネルギーに変換し、
温水管内の水を加熱すると同時にその冷却効果によシ太
陽電池の温度上昇による効率低下を防止することができ
る。
As explained above, the solar energy utilization device according to this invention uses a linear Fresnel lens to condense sunlight and irradiates it onto the solar cells, thereby generating a relatively large amount of electrical energy with a small amount of energy. can be generated, and convert the remaining rice energy into heat energy,
At the same time as heating the water in the hot water pipe, its cooling effect can prevent a decrease in efficiency due to a rise in the temperature of the solar cell.

また、太陽電池としてシリコン系のものを用いると、そ
の選択吸収効果により放熱が少なくなる。
Furthermore, when a silicon-based solar cell is used, heat radiation is reduced due to its selective absorption effect.

さらに、温水管と冷水管との温度差を利用して熱電変換
素子によっても電気エネルギーを発生させるので、得ら
れる熱エネルギーと電気エネルギーとのバランスが改善
され、熱・電気組合せの総合変換効率が向上する。
Furthermore, since electrical energy is also generated by thermoelectric conversion elements using the temperature difference between hot water pipes and cold water pipes, the balance between the obtained thermal energy and electrical energy is improved, and the overall conversion efficiency of the heat and electricity combination is improved. improves.

したがって、高効率の熱・電気併給ソーラシステムを実
現することが可能になる。
Therefore, it becomes possible to realize a highly efficient combined heat and electricity solar system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を模型的に示す斜視図、 第2図は、同じくその横断面図、 第6図は、同じ(その熱電質−輌部の拡大縦断面図であ
る。 1・・・・・・太陽電池    2・・・・・・温−水
管゛ ・6・・・・・・冷水管    4・・・・・・
熱電変換素子6・・・・・・リニ−1”7レネルレンズ
7・・・・・・蓄熱・熱交換器
Fig. 1 is a perspective view schematically showing an embodiment of the present invention, Fig. 2 is a cross-sectional view thereof, and Fig. 6 is an enlarged longitudinal sectional view of the thermoelectric body part thereof. 1...Solar cell 2...Hot water pipe ・6...Cold water pipe 4...
Thermoelectric conversion element 6... Liney 1"7 Lenel lens 7... Heat storage/heat exchanger

Claims (1)

【特許請求の範囲】[Claims] 1 上面に太陽電池を貼着した温水管とこの温水管に供
給する水を通す冷水管とを熱電変換素子を挾んで上下に
重ねて設けると共に、太陽光線を前記太陽電池上に収束
させるようにリニヤフレネルレンズを配設してなる太陽
エネルギー利用装置。
1. A hot water pipe with a solar cell attached to the upper surface and a cold water pipe through which water is supplied to the hot water pipe are stacked one on top of the other with a thermoelectric conversion element in between, and solar rays are converged onto the solar cell. A solar energy utilization device equipped with a linear Fresnel lens.
JP57205953A 1982-11-26 1982-11-26 Solar heat utilizing device Granted JPS5997457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57205953A JPS5997457A (en) 1982-11-26 1982-11-26 Solar heat utilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57205953A JPS5997457A (en) 1982-11-26 1982-11-26 Solar heat utilizing device

Publications (2)

Publication Number Publication Date
JPS5997457A true JPS5997457A (en) 1984-06-05
JPS612850B2 JPS612850B2 (en) 1986-01-28

Family

ID=16515431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57205953A Granted JPS5997457A (en) 1982-11-26 1982-11-26 Solar heat utilizing device

Country Status (1)

Country Link
JP (1) JPS5997457A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254772A (en) * 1987-04-13 1988-10-21 Hitachi Ltd Hybrid generator utilizing sunlight and heat
JPH01501109A (en) * 1986-10-06 1989-04-13 ヒユーズ・エアクラフト・カンパニー Solar cells and solar cell arrays with both photovoltaic and thermoelectric effects
EP0659531A1 (en) * 1993-12-24 1995-06-28 Röhm GmbH Process for extrusion of plastic plates and Fresnel lenses produced therefrom
WO2000005769A1 (en) * 1997-01-18 2000-02-03 Btg International Ltd A differential voltage cell
GB2354637A (en) * 1998-07-21 2001-03-28 Btg Int Ltd A differential voltage cell
JP2004527723A (en) * 2001-05-29 2004-09-09 ザ サン トラスト エルエルシー Solar energy conversion
EP1661235A1 (en) * 2003-08-18 2006-05-31 Bsst, Llc Thermoelectric power generation systems
JP2007278669A (en) * 2006-04-11 2007-10-25 Hirase Ryuichi Solar power generation and heat absorption system
WO2007134825A2 (en) * 2006-05-19 2007-11-29 Ulrich Pilz Arrangement and method for obtaining energy from solar radiation
ITTO20090410A1 (en) * 2009-05-29 2009-08-28 In Ser S P A SOLAR CONCENTRATION SYSTEM FOR THE PRODUCTION OF ELECTRICITY.
JP2010529395A (en) * 2007-05-21 2010-08-26 ジーエムゼット・エナジー・インコーポレイテッド Solar thermoelectric and thermal cogeneration
EP2239787A1 (en) * 2008-01-25 2010-10-13 Xavier Cerón Parisi Thermoelectric solar plate
ITMO20090101A1 (en) * 2009-04-28 2010-10-29 Kaptor Light Srl GROUP OF CONVERSION OF SOLAR AND / OR THERMAL ENERGY IN ELECTRICITY
JP2010258031A (en) * 2009-04-21 2010-11-11 Sharp Corp Power generation system
KR101019352B1 (en) 2009-02-26 2011-03-07 충북대학교 산학협력단 Condensing Type Solar Heat And Ray Cogeneration System
KR101019275B1 (en) 2009-02-26 2011-03-07 충북대학교 산학협력단 Condensing Type Solar Heat And Ray Cogeneration System
KR101024452B1 (en) 2009-03-02 2011-03-23 김관우 Condensing Type Solar Heat And Ray Cogeneration System
WO2012072058A1 (en) * 2010-08-20 2012-06-07 Solar Real Contact Gmbh System for the generation of electricity from solar energy
WO2012172159A1 (en) * 2011-06-13 2012-12-20 Reijo Hautalahti Solar power plant
US8656710B2 (en) 2009-07-24 2014-02-25 Bsst Llc Thermoelectric-based power generation systems and methods
EP2705538A1 (en) * 2011-05-06 2014-03-12 Alpha Solar Pte Ltd Solar energy converter
KR101430864B1 (en) * 2013-02-28 2014-08-20 강원대학교산학협력단 A Compound System Using Solar Light Generation and Solar Heat Storage
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
EP4185091A1 (en) * 2021-11-23 2023-05-24 Rodolphe Bonin Electrical production system using seebeck cells
FR3129563A1 (en) * 2021-11-23 2023-05-26 Rodolphe Bonin POWER GENERATION SYSTEM USING SEEBECK CELLS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54184081U (en) * 1978-06-19 1979-12-27
JPS577341A (en) * 1980-06-13 1982-01-14 Koichi Baba Production of shino

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54184081U (en) * 1978-06-19 1979-12-27
JPS577341A (en) * 1980-06-13 1982-01-14 Koichi Baba Production of shino

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501109A (en) * 1986-10-06 1989-04-13 ヒユーズ・エアクラフト・カンパニー Solar cells and solar cell arrays with both photovoltaic and thermoelectric effects
JPS63254772A (en) * 1987-04-13 1988-10-21 Hitachi Ltd Hybrid generator utilizing sunlight and heat
EP0659531A1 (en) * 1993-12-24 1995-06-28 Röhm GmbH Process for extrusion of plastic plates and Fresnel lenses produced therefrom
US5870233A (en) * 1993-12-24 1999-02-09 Roehm Gmbh Chemische Fabrik Process for manufacture of fresnel lenses
WO2000005769A1 (en) * 1997-01-18 2000-02-03 Btg International Ltd A differential voltage cell
GB2354637A (en) * 1998-07-21 2001-03-28 Btg Int Ltd A differential voltage cell
JP2004527723A (en) * 2001-05-29 2004-09-09 ザ サン トラスト エルエルシー Solar energy conversion
EP1661235A1 (en) * 2003-08-18 2006-05-31 Bsst, Llc Thermoelectric power generation systems
JP2007278669A (en) * 2006-04-11 2007-10-25 Hirase Ryuichi Solar power generation and heat absorption system
WO2007134825A2 (en) * 2006-05-19 2007-11-29 Ulrich Pilz Arrangement and method for obtaining energy from solar radiation
WO2007134825A3 (en) * 2006-05-19 2008-06-26 Ulrich Pilz Arrangement and method for obtaining energy from solar radiation
JP2010529395A (en) * 2007-05-21 2010-08-26 ジーエムゼット・エナジー・インコーポレイテッド Solar thermoelectric and thermal cogeneration
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
EP2239787A1 (en) * 2008-01-25 2010-10-13 Xavier Cerón Parisi Thermoelectric solar plate
EP2239787A4 (en) * 2008-01-25 2011-08-17 Parisi Xavier Ceron Thermoelectric solar plate
US10473365B2 (en) 2008-06-03 2019-11-12 Gentherm Incorporated Thermoelectric heat pump
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
KR101019275B1 (en) 2009-02-26 2011-03-07 충북대학교 산학협력단 Condensing Type Solar Heat And Ray Cogeneration System
KR101019352B1 (en) 2009-02-26 2011-03-07 충북대학교 산학협력단 Condensing Type Solar Heat And Ray Cogeneration System
KR101024452B1 (en) 2009-03-02 2011-03-23 김관우 Condensing Type Solar Heat And Ray Cogeneration System
JP2010258031A (en) * 2009-04-21 2010-11-11 Sharp Corp Power generation system
EP2246914A1 (en) * 2009-04-28 2010-11-03 Solution e Partners S.r.l. A unit for converting solar energy and/or thermal energy into electric power
ITMO20090101A1 (en) * 2009-04-28 2010-10-29 Kaptor Light Srl GROUP OF CONVERSION OF SOLAR AND / OR THERMAL ENERGY IN ELECTRICITY
ITTO20090410A1 (en) * 2009-05-29 2009-08-28 In Ser S P A SOLAR CONCENTRATION SYSTEM FOR THE PRODUCTION OF ELECTRICITY.
US8656710B2 (en) 2009-07-24 2014-02-25 Bsst Llc Thermoelectric-based power generation systems and methods
WO2012072058A1 (en) * 2010-08-20 2012-06-07 Solar Real Contact Gmbh System for the generation of electricity from solar energy
EP2705538A1 (en) * 2011-05-06 2014-03-12 Alpha Solar Pte Ltd Solar energy converter
US9312419B2 (en) 2011-05-06 2016-04-12 Alpha Solar Pte. Ltd. Solar energy converter
EP2705538A4 (en) * 2011-05-06 2014-11-05 Alpha Solar Pte Ltd Solar energy converter
WO2012172159A1 (en) * 2011-06-13 2012-12-20 Reijo Hautalahti Solar power plant
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10784546B2 (en) 2013-01-30 2020-09-22 Gentherm Incorporated Thermoelectric-based thermal management system
KR101430864B1 (en) * 2013-02-28 2014-08-20 강원대학교산학협력단 A Compound System Using Solar Light Generation and Solar Heat Storage
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
EP4185091A1 (en) * 2021-11-23 2023-05-24 Rodolphe Bonin Electrical production system using seebeck cells
FR3129563A1 (en) * 2021-11-23 2023-05-26 Rodolphe Bonin POWER GENERATION SYSTEM USING SEEBECK CELLS

Also Published As

Publication number Publication date
JPS612850B2 (en) 1986-01-28

Similar Documents

Publication Publication Date Title
JPS5997457A (en) Solar heat utilizing device
Karthick et al. Evaluation of solar thermal system configurations for thermoelectric generator applications: A critical review
US4292579A (en) Thermoelectric generator
Chávez-Urbiola et al. Solar hybrid systems with thermoelectric generators
Ibrahim et al. Hybrid photovoltaic thermal (PV/T) air and water based solar collectors suitable for building integrated applications
KR100848809B1 (en) A three-dimensional cogeneration power module using solar heat and ray and generating method thereof
EP2239787A1 (en) Thermoelectric solar plate
Parthiban et al. An enhancement of the solar panel efficiency: a comprehensive review
Fadhel et al. Theoretical study of new configuration of photovoltaic/thermal solar collector (PV/T) design
Mustapha et al. Review on energy and exergy analysis of air and water based photovoltaic thermal (PVT) collector
Rawat et al. Comparative analysis of solar photovoltaic thermal (PVT) water and solar photovoltaic thermal (PVT) air systems
Mojumder et al. Study of hybrid photovoltaic thermal (PV/T) solar system with modification of thin metallic sheet in the air channel
Jha et al. Energy and exergy analysis of photovoltaic thermal air collector under climatic condition of north eastern India
KR100755505B1 (en) Photovoltaic-Thermal Energy Cogeneration System
JP2001153470A (en) Solar heat power generating system
WO2012076847A1 (en) Solar energy apparatus with a combined photovoltaic and thermal power generation system
KR20100108855A (en) Complex energy supply systems in solar cell and method of suppling complex energy using the systems
KR100893508B1 (en) Complex generator using thermoelectric element and solar cell for solar generator of electric power
CN207117533U (en) A kind of lighting system system
KR101221422B1 (en) Power generation system using solar energy
Lv et al. Experimental investigation of solar thermoelectric (STEG) co-generation system
Alktranee A review of performance hybrid photovoltaic/thermal system for general-applications
Zulakmal et al. Computational fluid dynamics analysis of thermoelectric generators performance under solar photovoltaic-thermal (PVT) system
Panjwani et al. Hybrid concentrated photovoltaic thermal technology for domestic water heating
Makki Innovative heat pipe-based photovoltaic/thermoelectric (PV/TEG) generation system