JPS63254772A - Hybrid generator utilizing sunlight and heat - Google Patents

Hybrid generator utilizing sunlight and heat

Info

Publication number
JPS63254772A
JPS63254772A JP62088830A JP8883087A JPS63254772A JP S63254772 A JPS63254772 A JP S63254772A JP 62088830 A JP62088830 A JP 62088830A JP 8883087 A JP8883087 A JP 8883087A JP S63254772 A JPS63254772 A JP S63254772A
Authority
JP
Japan
Prior art keywords
power generation
thermoelectric element
solar cell
solar
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62088830A
Other languages
Japanese (ja)
Other versions
JPH084146B2 (en
Inventor
Moriaki Tsukamoto
守昭 塚本
Mitsuo Hayashibara
光男 林原
Masanori Chinen
正紀 知念
Kotaro Inoue
孝太郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62088830A priority Critical patent/JPH084146B2/en
Publication of JPS63254772A publication Critical patent/JPS63254772A/en
Publication of JPH084146B2 publication Critical patent/JPH084146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Abstract

PURPOSE:To make it possible to transduce solar energy into electric power at high efficiency, by constituting a generator with a condensing mirror and a generating part, facing a condensing mirror, and in which the heat receiving side of a thermoelectric element is closely attached to the non-light receiving surface of a solar cell through an electric insulating layer, and arranging the generating part in the vicinity of the focal position of the facing the condensing mirror. CONSTITUTION:A condensing mirror 1, which is also used as a heat radiating plate, tracks the sun and condenses sunlight 6. The light is inputted into a generating part 2. Part of the sunlight is transduced into electricity through a solar cell 4 in the generating part 2. The remaining sunlight is transduced into heat. The temperature of the solar cell 4 is increased. The temperature of the light receiving side of a thermoelectric element 5, which is closely attached to the solar cell 4 through an electric insulating layer 9, is increased. Meanwhile, the heat radiating side of the thermoelectric element 5 is closely attached to a condensing mirror 1', which is also used as a heat radiating plate, through an electric insulating layer 10. Therefore, a large temperature difference is yielded between the heat receiving side and the heat radiating side of the thermoelectric element. Electromotive force is generated between a P-type semiconductor 7 and an N-type semiconductor 8' owing to said temperature difference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は太陽エネルギーを電力に変換する装置に係り、
特に人工衛星の電源に好適な発電装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for converting solar energy into electric power,
In particular, the present invention relates to a power generation device suitable as a power source for an artificial satellite.

〔従来の技術〕[Conventional technology]

従来の人工衛星用電源は主として太陽電池を平板状に並
らべた平板型太陽電池パネルが用いられてきたが、人工
衛星の大電力化に伴い大面付の太陽電池パネルが必要と
なってきた。しかし、太陽電池の大面積化は大電力を供
給するためには必要であるが、空気抵抗も増大して人工
衛星の姿勢や軌道を乱す原因となる。また、軌道への打
上げコスト増加の原因ともなる。そのため、太陽電池パ
ネルの発電効率を高めることにより小形化するための開
発が進められている。
Conventional power supplies for satellites have mainly used flat solar panels in which solar cells are arranged in a flat plate, but as satellites have become more powerful, solar panels with large surfaces have become necessary. . However, while increasing the area of solar cells is necessary to supply large amounts of power, it also increases air resistance, causing disturbances in the attitude and orbit of artificial satellites. It also causes an increase in the cost of launching into orbit. Therefore, efforts are being made to make solar panels smaller by increasing their power generation efficiency.

上記の小形化を目的とした従来の装置では特開昭60−
3162号公報に記載のように、複数枚の太陽電池を受
光面を内側にして放物面上に並べ、その放物面の焦点に
は多数の熱電素子(熱電対)を配設して直列接続し、こ
の放物面を太陽追尾させることにより、太陽電池で発電
するとともに太陽電池で反射された太陽光を前記熱電素
子で電力に変換して発電効率を高めていた。
In the conventional device for the purpose of miniaturization mentioned above,
As described in Publication No. 3162, multiple solar cells are arranged on a paraboloid with the light-receiving surface inside, and a large number of thermoelectric elements (thermocouples) are arranged in series at the focal point of the paraboloid. By connecting the paraboloids and tracking the sun, the solar cells generate electricity, and the thermoelectric element converts sunlight reflected by the solar cells into electric power, increasing power generation efficiency.

他の従来の装置では、発電効率の高いガリウムヒ素(G
aAs)太陽電池を用いている。GaAs太陽電池は一
般に用いられているシリコン(Si)太陽電池の10倍
以上コストが高いため、集光装置と並用することにより
GaAs太陽電部の使用量を減少してコスト低減をはか
つていた。この集光型太陽光発電装置については、プロ
シーディング オブ ザ 19ス アイ・イー・シー・
イー・シー、8月19日−24日、1984.第1巻。
Other conventional devices use gallium arsenide (G), which has high power generation efficiency.
aAs) Solar cells are used. Since GaAs solar cells are more than 10 times more expensive than commonly used silicon (Si) solar cells, cost reductions have been achieved by reducing the amount of GaAs solar cells used by using them together with a concentrator. Regarding this concentrating solar power generation device, please refer to the Proceedings of the 19th I.C.
E.C., August 19-24, 1984. Volume 1.

第621頁から第624頁(Proceedings 
 of19th   lECEC,August  1
9−24゜1984、Voll、pp621−624)
において論じられている。本文献の装置では放熱板を兼
ねた種型放物面鏡を複数個平行に並べ、その種型放物面
鏡の非受光面に帯状の太陽電池を配設していた。このよ
うに構成したことにより、種型放物面鏡で反射した太陽
光を隣接する種型放物面鏡の非受光面に配置された帯状
の太陽電池上に集光し。
Pages 621 to 624 (Proceedings
of19th lECEC, August 1
9-24゜1984, Vol., pp621-624)
It is discussed in In the device of this document, a plurality of seed-shaped parabolic mirrors that also serve as heat sinks are arranged in parallel, and a strip-shaped solar cell is arranged on the non-light-receiving surface of the seed-shaped parabolic mirror. With this configuration, the sunlight reflected by the seed parabolic mirror is concentrated onto the strip-shaped solar cell arranged on the non-light receiving surface of the adjacent seed parabolic mirror.

発電していた。太陽電池の排熱は熱伝導により種型放物
面に伝え、輻射によって放熱していた。
It was generating electricity. The waste heat from the solar cells was transferred to the seed paraboloid by thermal conduction, and was radiated by radiation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術の前者(特開昭60−3162号公報)に
おいては、太陽電池で反射されて熱電素子に集光され得
る太陽光は太陽電池に入射する太陽光の高さ10%と少
ないことが配慮されておらず、熱電素子の発電効率が1
0%としても1%程度の発電効率の向上にしかならない
という問題があった。
In the former of the above conventional techniques (Japanese Patent Application Laid-open No. 60-3162), the amount of sunlight that can be reflected by the solar cell and concentrated on the thermoelectric element is as small as 10% of the height of the sunlight that enters the solar cell. This is not taken into consideration, and the power generation efficiency of the thermoelectric element is 1.
There was a problem in that even if it was set to 0%, the power generation efficiency would only be improved by about 1%.

また、上記従来技術の後者(IECEC:文献)におい
ては、太陽電池の排熱をさらに発電に利用することは配
慮されておらず、集光によるGaAs太I’ll!池の
使用量低減は可能であるが、発電効率はGaAs太陽電
池の発電効率以上にはならないという問題があった。ま
た、種型放物面鏡を用いているため集光比(集光倍率)
は数十と低く、かつ太陽電池の冷却のみを考慮している
ため、さらに集光比を高めた時には放熱が困戴になると
いう問題があった。
In addition, in the latter of the above-mentioned conventional technologies (IECEC: literature), no consideration is given to further utilizing the waste heat of the solar cells for power generation, and GaAs thick I'll! by condensing light! Although it is possible to reduce the amount of pond usage, there is a problem in that the power generation efficiency cannot exceed that of a GaAs solar cell. In addition, since a seed-shaped parabolic mirror is used, the condensing ratio (condensing magnification)
is as low as several dozen, and only the cooling of the solar cells is considered, so there is a problem that heat dissipation becomes difficult when the light concentration ratio is further increased.

本発明の目的は上記した従来技術の問題点をなくし、太
陽エネルギーを高い効率で電力に変換するための発電装
置を提供することにある。
An object of the present invention is to eliminate the problems of the prior art described above and to provide a power generation device for converting solar energy into electric power with high efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は1発電装置を下記のように構成することによ
り達成される。すなわち、太陽電池の非受光面に熱電素
子の受熱側(高温接合部側)を電気絶縁層を介して密着
させ、その熱電素子の放熱側(低温接合部側)を電気絶
縁層を介して放電板兼用の集光鏡に密着させて発電部を
構成する。この発電部は、発電部が配置された集光鏡又
は隣接する集光鏡の焦点付近に配置される。
The above object is achieved by configuring one power generation device as follows. That is, the heat-receiving side (high-temperature junction side) of the thermoelectric element is brought into close contact with the non-light-receiving surface of the solar cell through an electrically insulating layer, and the heat-radiating side (low-temperature junction side) of the thermoelectric element is used to discharge electricity through the electrically insulating layer. The power generation section is configured by bringing it into close contact with a condensing mirror that also serves as a plate. This power generation section is arranged near the focal point of the condensing mirror on which the power generation section is disposed or an adjacent condensing mirror.

放熱板兼用の集光鏡は、その受光側が鏡面に、非受光側
は黒化処理され、かつその非受光側には細路のヒートパ
イプが配設されている。
The light-receiving side of the condensing mirror that also serves as a heat sink has a mirror surface, the non-light-receiving side is blackened, and a narrow heat pipe is disposed on the non-light-receiving side.

〔作用〕[Effect]

以上のように構成した本発明の太陽光・熱ハイブリッド
発電装置は以下のように動作する。
The solar/thermal hybrid power generation device of the present invention configured as described above operates as follows.

放熱板兼用の集光鏡は太陽を追尾して太陽光を集光し、
集光した光を発電部の太陽電池受光面に入射させる。こ
れによって、発電部の受光面積を減少させることができ
るのでコストを低減できる。
A condensing mirror that also serves as a heat sink tracks the sun and collects sunlight.
The collected light is made to enter the solar cell light-receiving surface of the power generation section. This allows the light receiving area of the power generation section to be reduced, thereby reducing costs.

発電部の太pII電池は入射した光の一部分を電気に変
換し、残りの光は熱に変換するので、太陽電池の温度が
上昇する。そのため太陽電池と放熱板兼用の集光鏡との
間に温度差が生じ、その結果、太陽電池で発生した熱が
熱電素子を介して放熱板兼用の集光鏡に流れ、輻射によ
り宇宙空間に放熱される。この時、熱電素子の受熱側と
放熱側に発生する温度差によって熱電素子に起電力が生
じ、熱電素子は、熱を電力に変換する。これにより、太
陽光は従来技術と同様に太陽電池により電気に変換され
ると同時に、従来利用されていなかった太陽電池の排熱
の大部分を利用して熱電素子により発電可能となるので
、全体の発電効率を大巾に向上できる。
The large pII battery in the power generation section converts a portion of the incident light into electricity and the remaining light into heat, which increases the temperature of the solar cell. As a result, a temperature difference occurs between the solar cells and the collector mirror that also serves as a heat sink, and as a result, the heat generated by the solar cells flows through the thermoelectric element to the collector mirror that also serves as a heat sink, and is radiated into space. Heat is dissipated. At this time, an electromotive force is generated in the thermoelectric element due to the temperature difference between the heat receiving side and the heat dissipating side of the thermoelectric element, and the thermoelectric element converts the heat into electric power. As a result, sunlight is converted into electricity by solar cells as in conventional technology, and at the same time, most of the waste heat from solar cells, which had not been used in the past, can be used to generate electricity using thermoelectric elements. The power generation efficiency can be greatly improved.

放熱板兼用の集光鏡の非受光面における黒化処理は輻射
による放熱能力を高め、さらに同非受光面に配置された
ヒートパイプはフィン効率を高めることにより放熱能力
を高めるので、集光鏡の集光比を高めても放熱板兼用の
集光鏡の温度を低温にできる。そのため太陽電池の温度
を必要以上に高めることなく熱電素子の温度差を大きく
とれるので、熱電素子による発電量をさらに大きくでき
る。
The blackening treatment on the non-light-receiving surface of the condenser mirror, which also serves as a heat sink, increases the heat dissipation ability by radiation, and the heat pipe placed on the non-light-receiving surface increases the heat dissipation ability by increasing the fin efficiency. Even if the condensing ratio is increased, the temperature of the condensing mirror, which also serves as a heat sink, can be kept low. Therefore, the temperature difference between the thermoelectric elements can be increased without increasing the temperature of the solar cell more than necessary, so the amount of power generated by the thermoelectric elements can be further increased.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図乃至第5図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図は本発明の太陽光・熱ハイブリッド発電装置の平
面図であり、第2図は第1図のA−A断面図である。第
1図および第2図において、複数の放熱板兼集光鏡1が
配置され、各集光鏡1の焦点位置が隣接する集光鏡1′
の非受光面(裏面)になるように各集光鏡が配置されて
いる。各集光鏡の非受光面は黒化処理され、輻射による
放熱能力を高めている。保持枠3は各集光鏡の相対位置
を保持している。前記焦点位置には発電部2が配置され
集光鏡1とともに発電ユニットを構成している。この発
電部2は太電池4と熱電素子5とより構成される。
FIG. 1 is a plan view of the solar/thermal hybrid power generation device of the present invention, and FIG. 2 is a sectional view taken along the line AA in FIG. In FIG. 1 and FIG. 2, a plurality of heat dissipating plate-cum-condensing mirrors 1 are arranged, and the focal position of each condensing mirror 1 is adjacent to the condensing mirror 1'.
Each condenser mirror is arranged so as to be on the non-light-receiving surface (back surface) of the light-receiving surface. The non-light-receiving surface of each condenser mirror is blackened to enhance its ability to dissipate heat through radiation. The holding frame 3 holds the relative positions of the respective condensing mirrors. A power generation section 2 is arranged at the focal point position and together with the condensing mirror 1 constitutes a power generation unit. This power generation section 2 is composed of a large battery 4 and a thermoelectric element 5.

発電部2の構造を第3図に示す。第3図において、発電
部2は太陽電池4の非受光面に熱電素子5の受熱側(高
温接合部側)を電気絶縁層9を介して密着させて構成し
、この発電部2を電気絶縁層10を介して放熱用の集光
鏡に密着されている。
The structure of the power generation section 2 is shown in FIG. In FIG. 3, the power generation section 2 is constructed by bringing the heat receiving side (high temperature junction side) of a thermoelectric element 5 into close contact with the non-light receiving surface of the solar cell 4 via an electrically insulating layer 9. It is closely attached to a condensing mirror for heat radiation via a layer 10.

熱電素子5はP型半導体7,7′とn型半導体8.8′
とより構成させている。
The thermoelectric element 5 includes P-type semiconductors 7 and 7' and n-type semiconductors 8 and 8'.
It is structured more like this.

)一本実施例では、太陽電池4の出力は(+)側電極1
1と(−)側電極12とより取り出され、かつ(+)側
電極11は熱電素子5を構成するP型半導体7の放熱側
で接続された後、共通の電極11′に接続されている。
) In this embodiment, the output of the solar cell 4 is the (+) side electrode 1.
1 and the (-) side electrode 12, and the (+) side electrode 11 is connected to the heat radiation side of the P-type semiconductor 7 constituting the thermoelectric element 5, and then connected to the common electrode 11'. .

一方、(−)側電極12はn型半導体8′の放熱側に接
続された後、共通の電極12′に接続されている。すな
わち、本実施例では発電部2を構成する太陽電池4と熱
電素子5の出力は並列に接続されている。
On the other hand, the (-) side electrode 12 is connected to the heat radiation side of the n-type semiconductor 8' and then connected to the common electrode 12'. That is, in this embodiment, the outputs of the solar cell 4 and the thermoelectric element 5 that constitute the power generation section 2 are connected in parallel.

太陽電池4及び熱電素子5が単独のときと並列に接続し
たときのそれぞれ電圧−電流特性(V−■特性)と出力
特性を第4図に示す。同図において、実線20が熱電素
子5のV−I特性、破線22が出力特性であり、熱電素
子5は解放電圧vOの1/2付近の電圧V2においてそ
の最大出力Poをとる。一方、太陽電池に関しては実線
21がそのV−I特性、破線23がその出力特性であり
、電圧Vx’においてその最大出力Psをとる。したが
って1本実施例では運用条件下において、電圧v2と電
圧Vz’  がほぼ一致するように太陽電池4と熱電素
子の特性を組み合わせている。
FIG. 4 shows voltage-current characteristics (V-■ characteristics) and output characteristics when the solar cell 4 and the thermoelectric element 5 are used alone and when they are connected in parallel. In the figure, a solid line 20 is the VI characteristic of the thermoelectric element 5, a broken line 22 is the output characteristic, and the thermoelectric element 5 takes its maximum output Po at a voltage V2 around 1/2 of the open voltage vO. On the other hand, regarding the solar cell, the solid line 21 is its VI characteristic, and the broken line 23 is its output characteristic, and its maximum output Ps is taken at voltage Vx'. Therefore, in this embodiment, the characteristics of the solar cell 4 and the thermoelectric element are combined so that the voltage v2 and the voltage Vz' substantially match under operating conditions.

そのため、並列に接線した時の出力は破線24で示され
るように電圧V2 (:V2’ )において、最大量ガ
Pi(= Po+ P t)が得られる。
Therefore, as shown by the broken line 24, when the lines are connected in parallel, the maximum amount Pi (=Po+Pt) is obtained at the voltage V2 (:V2').

発電部2は第5図に示すように必要とする電圧及び電流
に応じて直列及び並列に接続される。
The power generation units 2 are connected in series or in parallel depending on the required voltage and current, as shown in FIG.

以下1本実施例の動作について説明する。The operation of this embodiment will be explained below.

放熱板兼用の集光鏡1の太陽を追尾して太陽光6を集光
し、集光した太陽光を発電部2に入射させる。この入射
した太陽光は発電部2の太陽電池4でその一部が電気に
変換される。電気に変換されなかった残りの太陽光は熱
に変換され、太陽電池4の温度を上界させる。そのため
、太陽電池4に電気絶縁層9を介して密着されている熱
電素子5の受熱側の温度が上昇する。一方、熱電素子5
の放熱側は電気絶縁層10を介して放熱板兼用の集光鏡
1′に密着されているので、放電素子5の受熱側と放熱
側との間に大きな温度差が発生する。
A condensing mirror 1 that also serves as a heat sink tracks the sun, collects sunlight 6, and makes the collected sunlight enter a power generation section 2. A portion of this incident sunlight is converted into electricity by the solar cell 4 of the power generation unit 2. The remaining sunlight that has not been converted into electricity is converted into heat, raising the temperature of the solar cell 4. Therefore, the temperature on the heat receiving side of the thermoelectric element 5, which is in close contact with the solar cell 4 via the electrical insulating layer 9, increases. On the other hand, thermoelectric element 5
Since the heat dissipation side of the discharge element 5 is in close contact with the condensing mirror 1' which also serves as a heat dissipation plate via the electrical insulating layer 10, a large temperature difference occurs between the heat receiving side and the heat dissipation side of the discharge element 5.

この温度差により熱電素子5のP型半導体7とn型半導
体8′との間に起電力が発生し、熱を電気に変換する。
This temperature difference generates an electromotive force between the P-type semiconductor 7 and the N-type semiconductor 8' of the thermoelectric element 5, converting heat into electricity.

太陽電池4と熱電素子5は並列に接続され、それぞれの
最大出力PoとPiの和である出力P2を発電部2より
出力する。発電部2はさらに直列及び並列に接続されて
いるので、必要な電圧及び電流を取り出すことができる
The solar cell 4 and the thermoelectric element 5 are connected in parallel, and the power generation unit 2 outputs an output P2 that is the sum of their respective maximum outputs Po and Pi. Since the power generation section 2 is further connected in series and parallel, it is possible to extract the necessary voltage and current.

なお、集光鏡1の材料としてはアルミニウム(Al1)
等の軽量でかつ熱伝導度の高いものが適している。太陽
電池としては、発電効率が高≦、かつ150〜250℃
の高温で使用可能なガリウム・ヒ素(GaAs)太陽電
池等が適している。
Note that the material of the condenser mirror 1 is aluminum (Al1).
Materials that are lightweight and have high thermal conductivity are suitable. As a solar cell, power generation efficiency is high ≦ and 150-250℃
Gallium arsenide (GaAs) solar cells that can be used at high temperatures are suitable.

さらに熱電素子としてはB1−Te、Pb−Te、Ge
−3i、 F e−5i等の熱電素子が使用可能である
Furthermore, as a thermoelectric element, B1-Te, Pb-Te, Ge
Thermoelectric elements such as -3i and Fe-5i can be used.

本実施例では、集光鏡として非受光面を黒化処理したA
Q鏡を、太陽電池としてG a A s太陽電池を、熱
電素子としてFe−8i熱電素子を用いることにより、
従来の集光型GaAs太陽電池の発電効率約15%に対
して、はとんどコストを高めることなく、発電効率約2
0%を達成することができる。
In this example, the non-light-receiving surface of A is treated with blackening as a condensing mirror.
By using a Q mirror, a GaAs solar cell as a solar cell, and a Fe-8i thermoelectric element as a thermoelectric element,
While the power generation efficiency of conventional concentrating GaAs solar cells is approximately 15%, the power generation efficiency is approximately 2% without increasing costs.
0% can be achieved.

また、本実施例では、発電部の太陽電池と熱電素子を並
列に接続しているため、どちらか一方に断線等の故障が
発生しても、他方がバイパス回路となるので冗長性があ
り、信頼性が高いという効果がある。さらに、集光鏡に
よる反射回数は1回のみであるので、反射損失による太
陽光の利用率の低下が少ないという効果もある。
In addition, in this embodiment, the solar cell and thermoelectric element in the power generation section are connected in parallel, so even if a failure such as disconnection occurs in either one, the other becomes a bypass circuit, providing redundancy. This has the effect of being highly reliable. Furthermore, since the number of reflections by the condensing mirror is only one, there is also the effect that there is little reduction in the utilization rate of sunlight due to reflection loss.

本発明の太陽光・熱ハイブリッド発電装置の放熱板兼集
光鏡に関する他の実施例を第6図に示す。
Another embodiment of the heat sink and collector mirror of the solar/thermal hybrid power generation device of the present invention is shown in FIG.

第6図において、放熱板兼用集光鏡14の非受光面に発
電部15が配置され、かつ複数本のヒートパイプ16が
放射状に配置されている。この集光鏡14は第1図と同
様に配置される。本実施例において、ヒートパイプ16
は、発電部15からの熱を集光鏡14の各部に分配し、
集光鏡14のフィン効率を高める。そのため、集光鏡1
4の放熱能力が高まるので、さらに集光比を高めても発
電部15の太陽電池の温度を必要に高めることなく熱電
索子の温度差を大きくとれるので、発電量をさらに大き
くすることが可能となる。
In FIG. 6, a power generation section 15 is arranged on the non-light receiving surface of the condensing mirror 14 which also serves as a heat dissipation plate, and a plurality of heat pipes 16 are arranged radially. This condensing mirror 14 is arranged in the same manner as in FIG. In this embodiment, the heat pipe 16
distributes the heat from the power generation unit 15 to each part of the condensing mirror 14,
To increase the fin efficiency of the condenser mirror 14. Therefore, condenser mirror 1
Since the heat dissipation capacity of 4 is increased, even if the light concentration ratio is further increased, the temperature difference between the thermoelectric cables can be increased without increasing the temperature of the solar cells in the power generation unit 15, so the amount of power generation can be further increased. becomes.

本発明の太陽光・熱ハイブリッド発電装置の放熱板兼集
光鏡に関するさらに他の実施例を第7図に示す。同図に
おいて、放熱板兼集光鏡17の受光面に鋸歯状の反射面
18が設けられている。これにより集光鏡17の実効的
な曲率が増加することになる。そのため、集光鏡17を
薄くすることが可能となるという効果がある。
FIG. 7 shows still another embodiment of the heat sink and collector mirror of the solar/thermal hybrid power generation device of the present invention. In the figure, a sawtooth-shaped reflective surface 18 is provided on the light receiving surface of a heat dissipating plate/collecting mirror 17. This increases the effective curvature of the condenser mirror 17. Therefore, there is an effect that the condensing mirror 17 can be made thinner.

第8図は、本発明の他の実施例を示す発電ユニット部分
の断面図である。同図において、太陽光は放熱板兼集光
鏡31によって反射された後、副集光鏡33によってさ
らに反射され、集光鏡31に密着された発電部32に集
光される。このように構成することにより、単一発電ユ
ニットで集光及び発電が可能となり、光学系の調整が容
易となるという効果がある。
FIG. 8 is a sectional view of a power generating unit portion showing another embodiment of the present invention. In the figure, sunlight is reflected by a heat dissipating plate/concentrating mirror 31, further reflected by a sub-concentrating mirror 33, and concentrated on a power generation section 32 that is in close contact with the condensing mirror 31. With this configuration, it is possible to collect light and generate electricity with a single power generation unit, and the optical system can be easily adjusted.

第9図は、本発明の他の実施例を示す発電部及び発電部
間の配線図である。同図に示すように本実施例では1発
電部43の太陽電池41と熱電素子42は直列に接続さ
れている。このときは第4図において太陽電池の最大電
力を与える電流Iz’と熱電素子の最大電力を与える電
流I2とがほぼ一致するように太陽電池41と熱電素子
42の特性を組み合わせている。これにより、最大出力
Pzを得ると同時に熱電素子の電圧v2と太陽電池の電
圧VZ’の和を発電部43から取り出すことができる。
FIG. 9 is a power generation section and a wiring diagram between the power generation sections showing another embodiment of the present invention. As shown in the figure, in this embodiment, the solar cell 41 and thermoelectric element 42 of one power generation section 43 are connected in series. At this time, in FIG. 4, the characteristics of the solar cell 41 and the thermoelectric element 42 are combined so that the current Iz' which provides the maximum power of the solar cell and the current I2 which provides the maximum power of the thermoelectric element almost match. Thereby, the sum of the voltage v2 of the thermoelectric element and the voltage VZ' of the solar cell can be extracted from the power generation section 43 at the same time as obtaining the maximum output Pz.

そのため、発電部の直列接続数が少なくても高い電圧を
取り出すことができるという効果がある。
Therefore, there is an effect that high voltage can be extracted even if the number of power generation units connected in series is small.

本発明の他の実施例を示す要素部分の外i図を第10図
に示す。同図において、アルミ板等の軽量薄板の表面に
鋸歯状の溝をつけたフレネル式集光鏡51の裏面上部に
発電部52が設けられている。フレネル式集光鏡51で
反射された太陽光はこの発電部52に集光される。フレ
ネル式集光鏡51の下端はスプリングとストッパ(図示
せず)を内蔵する蝶番53によってフレーム54に接続
されている。これにより、発電時には第10図のように
フレネル式集光鏡51を所定の位置に開き、運搬時には
第11図に示すように折りたたむことができる。なお、
第10図のフレネル式集光鏡51の下部に設けた穴55
は、第11図のように折りたたんだ時に発電部52を収
納するためものである。
FIG. 10 shows an external view of an element showing another embodiment of the present invention. In the figure, a power generation section 52 is provided at the upper part of the back surface of a Fresnel type condenser mirror 51, which is made of a lightweight thin plate such as an aluminum plate with sawtooth grooves formed on the surface. Sunlight reflected by the Fresnel condensing mirror 51 is focused on the power generation section 52. The lower end of the Fresnel condenser mirror 51 is connected to a frame 54 by a hinge 53 containing a spring and a stopper (not shown). Thereby, the Fresnel condenser mirror 51 can be opened to a predetermined position as shown in FIG. 10 during power generation, and folded as shown in FIG. 11 during transportation. In addition,
Hole 55 provided at the bottom of the Fresnel condenser mirror 51 in FIG.
is for storing the power generation section 52 when folded as shown in FIG.

本実施例では、折りたたみ可能としたため、運搬時には
折りたたむことによって、運搬が容易になるという効果
がある。
In this embodiment, since the device is foldable, the device can be folded during transportation, thereby facilitating transportation.

本発明の他の実施例を第10図、第13図、第14図に
示す。第12図は本発明の太陽光・熱ハイブリッド発電
装置の平面図であり、第13図は第12図の発電ユニッ
トの外観図であり、第14図は、第13図の発電ユニッ
トを折りたたんだ時の外観図である。
Other embodiments of the present invention are shown in FIGS. 10, 13, and 14. Figure 12 is a plan view of the solar/thermal hybrid power generation device of the present invention, Figure 13 is an external view of the power generation unit in Figure 12, and Figure 14 is a folded view of the power generation unit in Figure 13. It is an external view at the time.

第12図において、フレネル式集光鏡61、発電部62
、放熱板63より構成される発電ユニット64が平面状
に配置され、発電パネル65が構成されている。第13
図に示す発電ユニットにおいて、太陽電池と熱電素子よ
り構成される発電部62はヒートパイプ等の良熱伝導材
で作られた支柱66を介して放熱板63の上部に接合さ
れ、放熱板63はその下端でスプリングとストッパ(図
示せず)を内蔵した蝶番67により、フレネル式集光鏡
61に接続されている。フレネル式集光鏡61には蝶番
67からの距離が発電部62とほぼ等しい位置に六68
が設けられている。放熱板63を第13図に示すように
開いた状態において。
In FIG. 12, a Fresnel type condenser mirror 61, a power generation section 62
, a power generation unit 64 composed of a heat dissipation plate 63 is arranged in a plane to form a power generation panel 65. 13th
In the power generation unit shown in the figure, a power generation section 62 composed of a solar cell and a thermoelectric element is connected to the upper part of a heat sink 63 via a support 66 made of a heat conductive material such as a heat pipe. At its lower end, it is connected to a Fresnel type condenser mirror 61 by a hinge 67 containing a spring and a stopper (not shown). The Fresnel type condenser mirror 61 has a lens 668 located at a position approximately equal to the distance from the hinge 67 to the power generation section 62.
is provided. With the heat sink 63 in an open state as shown in FIG.

発電部62はフレネル式集光鏡の焦点位置にほぼ一致す
るように配置されている。
The power generation unit 62 is arranged so as to substantially coincide with the focal position of the Fresnel condenser mirror.

このように構成することにより、第14図に示すように
、運搬時には折りたたむことによって運搬が容易になる
という効果がある。さらに、本実施では、放熱板と集光
鏡をそれぞれ別に設けているため、集光鏡が熱歪によっ
て変形することはなく、高い精度で集光できるという効
果もある。
With this configuration, as shown in FIG. 14, there is an effect that transportation can be facilitated by folding the container. Furthermore, in this embodiment, since the heat dissipation plate and the condensing mirror are provided separately, the condensing mirror is not deformed by thermal strain, and there is an effect that the light can be condensed with high precision.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、太陽光は従来技術と同様に太陽電池に
より効率よく電力に変換されると同時に、従来利用され
ていなかった太陽電池の排熱の大部分を利用して熱電素
子により効率よく発電可能となるので、従来の集光型G
 a A s太陽電池の発電効率約15%に対して、は
とんどコストを高めることなく、発電効率約20%を達
成できる効果がある。また、太陽電池と熱電素子を用い
ているので、冗長度増加による信頼性の向上や出力電圧
を高めることができるという効果もある。
According to the present invention, sunlight is efficiently converted into electricity by solar cells as in the conventional technology, and at the same time, most of the waste heat of solar cells, which has not been used in the past, is efficiently converted into electricity by thermoelectric elements. Since it is possible to generate electricity, conventional concentrating G
Compared to the power generation efficiency of the aAs solar cell, which has a power generation efficiency of about 15%, this method has the effect of achieving a power generation efficiency of about 20% without increasing costs. Furthermore, since solar cells and thermoelectric elements are used, reliability can be improved by increasing redundancy and output voltage can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す太陽光・熱ハイブリッ
ド発電装置の平面図、第2図は第1図のA−A断面図、
第3図は第2図の発電部詳細を示す構造図、第4図は発
電部の特性を示す説明図。 第5図及び第9図は発電部内及び発電部間の電気接続方
法を示す配線図、第6図は放熱能力を高めるための実施
例を示す集光fi裏面の平面図、第7図は集光鏡を薄く
するための実施例を示す集光鏡の断面図、第8図は本発
明の他の実施例を示す発電ユニット部の断面図、第10
図は本発明の他の実施例を示す発電ユニットの外観図、
第11図は第10図の発電ユニットを折りたたんだ時の
断面図、第12図は本発明の他の実施例を示す平面図、
第13図は第12図の発電ユニットの外観図、第14図
は第13図の発電ユニットを折りたたんだ時の外観図で
ある。 1.14.31・・・放熱板兼集光鏡、2,15゜32
.43,52,62・・・発電部、4・・・太陽電池、
5・・・熱電素子、7・・・P型半導体、・・・n型半
導体。 16・・・ヒートバイブ、18・・・鋸歯状反射面、3
3・・・副集光鏡、51.61・・・フレネル式集光鏡
。 53.67・・・蝶番。 峯Zの 箒3の ゲ +z、(−)−Iシぎコ[−憂ゼi【 −5m 第60 茅70 11、発電!P 第30 0午 第110 547L/−* 55 六 $IZの 乙21発電発電 子140
FIG. 1 is a plan view of a solar/thermal hybrid power generation device showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG.
FIG. 3 is a structural diagram showing details of the power generation section in FIG. 2, and FIG. 4 is an explanatory diagram showing the characteristics of the power generation section. Figures 5 and 9 are wiring diagrams showing the method of electrical connection within and between the power generation units, Figure 6 is a plan view of the back side of the condenser fi showing an example for increasing heat dissipation capacity, and Figure 7 is the FIG. 8 is a cross-sectional view of a condensing mirror showing an embodiment for making the light mirror thinner; FIG. 8 is a cross-sectional view of a power generation unit section showing another embodiment of the present invention; FIG.
The figure is an external view of a power generation unit showing another embodiment of the present invention.
FIG. 11 is a sectional view when the power generation unit of FIG. 10 is folded, and FIG. 12 is a plan view showing another embodiment of the present invention.
FIG. 13 is an external view of the power generating unit shown in FIG. 12, and FIG. 14 is an external view of the power generating unit shown in FIG. 13 when it is folded. 1.14.31... Heat sink and condensing mirror, 2.15°32
.. 43,52,62...Power generation section, 4...Solar cell,
5...Thermoelectric element, 7...P-type semiconductor,...n-type semiconductor. 16... Heat vibe, 18... Serrated reflective surface, 3
3...Sub-condensing mirror, 51.61...Fresnel type condensing mirror. 53.67...Hinge. Mine Z's broom 3 no ge + z, (-) -I Shigiko [-Yuuzei [-5m 60th Mocha 70 11. Power generation! P 30th 0pm 110th 547L/-* 55 6$IZ Otsu 21 Generator 140

Claims (1)

【特許請求の範囲】 1、少なくとも1つ以上の集光鏡と、太陽電池の非受光
面に熱電素子の受熱側を電気絶縁層を介して密着させた
上記集光鏡に対応する発電部とより構成され、上記発電
部を対応する上記集光鏡の焦点位置付近に配置したこと
を特徴とする太陽光・熱ハイブリッド発電装置。 2、特許請求の範囲第1項記載の装置において、上記集
光鏡を複数個配置し、各々の上記集光鏡の焦点位置を隣
接する集光鏡の非受光面と一致させ、上記焦点位置に上
記発電部を配置したことを特徴とする太陽光・熱ハイブ
リッド発電装置。 3、特許請求の範囲第1項記載の装置において、上記太
陽電池の最大出力を得るための太陽電池電圧を上記熱電
素子の解放電圧の1/2に概略一致させ、かつ、上記太
陽電池の出力と上記熱電素子の出力を並列に接続したこ
とを特徴とする太陽光・熱ハイブリッド発電装置。 4、特許請求の範囲第1項記載の装置において、上記太
陽電池の最大出力を得るための太陽電池電流と上記熱電
素子の最大出力を得るための熱電素子電流を概略一致さ
せ、かつ上記太陽電子の出力と上記熱電素子の出力を直
列に接続したことを特徴とする太陽光・熱ハイブリッド
発電装置。 5、特許請求の範囲第1項記載の装置において、上記集
光鏡を平板状のフレネル式集光鏡とし、上記フレネル式
集光鏡の端部又はフレームに蝶番を介して放熱板を設け
、上記放熱板に該発電部を設け、上記放熱板を折り折り
たたみ可能としたことを特徴とする太陽光・熱ハイブリ
ッド発電装置。 6、特許請求の範囲第2項記載の装置において、該集光
鏡の非受光面にヒートパイプを配置したことを特徴とす
る太陽光・熱ハイブリッド発電装置。 7、特許請求の範囲第2項記載の装置において、上記集
光鏡を平板状のフレネル式集光鏡とし、上記フレネル式
集光鏡の一部に蝶番を設けてフレームに接続することに
より、上記フレネル式集光鏡を折りたたみ可能としたこ
とを特徴とする太陽光・熱ハイブリッド発電装置。
[Scope of Claims] 1. At least one or more condensing mirrors, and a power generation section corresponding to the condensing mirrors in which the heat receiving side of a thermoelectric element is brought into close contact with the non-light receiving surface of a solar cell via an electrical insulating layer. 1. A solar/thermal hybrid power generation device comprising: the power generation unit disposed near the focal point of the corresponding condensing mirror. 2. In the apparatus according to claim 1, a plurality of the above-mentioned condensing mirrors are arranged, and the focal position of each of the above-mentioned condensing mirrors is made to coincide with the non-light-receiving surface of the adjacent condensing mirror, and the above-mentioned focal position A solar/thermal hybrid power generation device characterized in that the above-mentioned power generation section is arranged in. 3. The device according to claim 1, wherein the solar cell voltage for obtaining the maximum output of the solar cell is approximately equal to 1/2 of the open voltage of the thermoelectric element, and the output of the solar cell is and the output of the thermoelectric element described above are connected in parallel. 4. The device according to claim 1, wherein the solar cell current for obtaining the maximum output of the solar cell and the thermoelectric element current for obtaining the maximum output of the thermoelectric element are made to approximately match, and A solar/thermal hybrid power generation device characterized in that the output of the thermoelectric element and the output of the thermoelectric element are connected in series. 5. The apparatus according to claim 1, wherein the condenser mirror is a flat Fresnel condenser mirror, and a heat sink is provided at the end or frame of the Fresnel condenser mirror via a hinge, A solar/thermal hybrid power generation device characterized in that the power generation section is provided on the heat sink, and the heat sink is foldable. 6. A solar/thermal hybrid power generation device according to claim 2, characterized in that a heat pipe is disposed on the non-light receiving surface of the condensing mirror. 7. In the device according to claim 2, the condenser mirror is a flat Fresnel condenser mirror, and a part of the Fresnel condenser mirror is provided with a hinge and connected to the frame, A solar/thermal hybrid power generation device characterized in that the Fresnel type condenser mirror described above is foldable.
JP62088830A 1987-04-13 1987-04-13 Solar / thermal hybrid power generator Expired - Lifetime JPH084146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088830A JPH084146B2 (en) 1987-04-13 1987-04-13 Solar / thermal hybrid power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088830A JPH084146B2 (en) 1987-04-13 1987-04-13 Solar / thermal hybrid power generator

Publications (2)

Publication Number Publication Date
JPS63254772A true JPS63254772A (en) 1988-10-21
JPH084146B2 JPH084146B2 (en) 1996-01-17

Family

ID=13953860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088830A Expired - Lifetime JPH084146B2 (en) 1987-04-13 1987-04-13 Solar / thermal hybrid power generator

Country Status (1)

Country Link
JP (1) JPH084146B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005769A1 (en) * 1997-01-18 2000-02-03 Btg International Ltd A differential voltage cell
WO2000034124A1 (en) * 1998-11-20 2000-06-15 Swales Aerospace, Inc. Method and apparatus for improved solar concentrator arrays
GB2354637A (en) * 1998-07-21 2001-03-28 Btg Int Ltd A differential voltage cell
GB2321338B (en) * 1997-01-18 2002-02-13 Peter King A differential voltage cell
JP2008130801A (en) * 2006-11-21 2008-06-05 Masataka Murahara Solar photovoltaic/thermal power generation system
JP2009533841A (en) * 2006-04-07 2009-09-17 サンサイクル・インターナショナル・ゲーエムベーハー Device for converting solar energy
ITMI20090298A1 (en) * 2009-02-27 2010-08-28 Itec Srl SYSTEM FOR THE CONVERSION OF SOLAR ENERGY
WO2010040957A3 (en) * 2008-10-09 2010-09-02 Cabarbaye Andre Optimal solar concentrator device and sensor comprising a plurality of such concentrator devices
JP2010212534A (en) * 2009-03-12 2010-09-24 Fujikura Ltd Cooling device for concentrating power generation system
JP2014123710A (en) * 2012-11-26 2014-07-03 Kyocera Corp Component for photoelectric conversion device, photoelectric conversion device, and photoelectric conversion system
CN104734566A (en) * 2015-03-26 2015-06-24 广州市香港科大霍英东研究院 Trough type light-condensing solar thermoelectric generator
JP2016077085A (en) * 2014-10-07 2016-05-12 株式会社アクトリー Photovoltaic power generation system
JP2017525324A (en) * 2014-06-02 2017-08-31 カリフォルニア インスティチュート オブ テクノロジー Large-scale space solar power plant: efficient power generation tiles
US10454565B2 (en) 2015-08-10 2019-10-22 California Institute Of Technology Systems and methods for performing shape estimation using sun sensors in large-scale space-based solar power stations
US10696428B2 (en) 2015-07-22 2020-06-30 California Institute Of Technology Large-area structures for compact packaging
US10992253B2 (en) 2015-08-10 2021-04-27 California Institute Of Technology Compactable power generation arrays
US11128179B2 (en) 2014-05-14 2021-09-21 California Institute Of Technology Large-scale space-based solar power station: power transmission using steerable beams
US11634240B2 (en) 2018-07-17 2023-04-25 California Institute Of Technology Coilable thin-walled longerons and coilable structures implementing longerons and methods for their manufacture and coiling
US11772826B2 (en) 2018-10-31 2023-10-03 California Institute Of Technology Actively controlled spacecraft deployment mechanism

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485916B1 (en) * 2012-01-10 2015-01-26 한양대학교 에리카산학협력단 Hybrid type device for generating electricity
WO2013105796A1 (en) * 2012-01-10 2013-07-18 한양대학교 에리카산학협력단 Hybrid type power generating device
NL2015387B1 (en) 2015-09-02 2017-03-22 Airbus Defence And Space Netherlands B V Solar Panel with Flexible Optical Elements.
CN106533328B (en) * 2015-09-11 2018-05-25 博立码杰通讯(深圳)有限公司 Integrated solar utilizes apparatus and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112075U (en) * 1974-02-20 1975-09-12
JPS57169276A (en) * 1981-03-23 1982-10-18 Hughes Aircraft Co Method and device for annealing solar battery
JPS5878066A (en) * 1981-11-04 1983-05-11 日本電信電話株式会社 Solar cell endothermic and exothermic device
JPS5997457A (en) * 1982-11-26 1984-06-05 Shinenerugii Sogo Kaihatsu Kiko Solar heat utilizing device
JPS61165702A (en) * 1985-01-17 1986-07-26 Nec Corp Solar generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112075U (en) * 1974-02-20 1975-09-12
JPS57169276A (en) * 1981-03-23 1982-10-18 Hughes Aircraft Co Method and device for annealing solar battery
JPS5878066A (en) * 1981-11-04 1983-05-11 日本電信電話株式会社 Solar cell endothermic and exothermic device
JPS5997457A (en) * 1982-11-26 1984-06-05 Shinenerugii Sogo Kaihatsu Kiko Solar heat utilizing device
JPS61165702A (en) * 1985-01-17 1986-07-26 Nec Corp Solar generator

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005769A1 (en) * 1997-01-18 2000-02-03 Btg International Ltd A differential voltage cell
GB2321338B (en) * 1997-01-18 2002-02-13 Peter King A differential voltage cell
GB2354637A (en) * 1998-07-21 2001-03-28 Btg Int Ltd A differential voltage cell
WO2000034124A1 (en) * 1998-11-20 2000-06-15 Swales Aerospace, Inc. Method and apparatus for improved solar concentrator arrays
KR101443302B1 (en) * 2006-04-07 2014-09-23 썬싸이클 인터내셔널 게엠베하 Device for converting solar energy
US8944047B2 (en) 2006-04-07 2015-02-03 Suncycle International Gmbh Device for converting solar energy
JP2009533841A (en) * 2006-04-07 2009-09-17 サンサイクル・インターナショナル・ゲーエムベーハー Device for converting solar energy
JP2008130801A (en) * 2006-11-21 2008-06-05 Masataka Murahara Solar photovoltaic/thermal power generation system
WO2010040957A3 (en) * 2008-10-09 2010-09-02 Cabarbaye Andre Optimal solar concentrator device and sensor comprising a plurality of such concentrator devices
ITMI20090298A1 (en) * 2009-02-27 2010-08-28 Itec Srl SYSTEM FOR THE CONVERSION OF SOLAR ENERGY
JP2010212534A (en) * 2009-03-12 2010-09-24 Fujikura Ltd Cooling device for concentrating power generation system
JP2014123710A (en) * 2012-11-26 2014-07-03 Kyocera Corp Component for photoelectric conversion device, photoelectric conversion device, and photoelectric conversion system
US11128179B2 (en) 2014-05-14 2021-09-21 California Institute Of Technology Large-scale space-based solar power station: power transmission using steerable beams
US11362228B2 (en) 2014-06-02 2022-06-14 California Institute Of Technology Large-scale space-based solar power station: efficient power generation tiles
JP2017525324A (en) * 2014-06-02 2017-08-31 カリフォルニア インスティチュート オブ テクノロジー Large-scale space solar power plant: efficient power generation tiles
JP2016077085A (en) * 2014-10-07 2016-05-12 株式会社アクトリー Photovoltaic power generation system
CN104734566A (en) * 2015-03-26 2015-06-24 广州市香港科大霍英东研究院 Trough type light-condensing solar thermoelectric generator
US10696428B2 (en) 2015-07-22 2020-06-30 California Institute Of Technology Large-area structures for compact packaging
US10749593B2 (en) 2015-08-10 2020-08-18 California Institute Of Technology Systems and methods for controlling supply voltages of stacked power amplifiers
US10992253B2 (en) 2015-08-10 2021-04-27 California Institute Of Technology Compactable power generation arrays
US10454565B2 (en) 2015-08-10 2019-10-22 California Institute Of Technology Systems and methods for performing shape estimation using sun sensors in large-scale space-based solar power stations
US11634240B2 (en) 2018-07-17 2023-04-25 California Institute Of Technology Coilable thin-walled longerons and coilable structures implementing longerons and methods for their manufacture and coiling
US11772826B2 (en) 2018-10-31 2023-10-03 California Institute Of Technology Actively controlled spacecraft deployment mechanism

Also Published As

Publication number Publication date
JPH084146B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JPS63254772A (en) Hybrid generator utilizing sunlight and heat
US6515217B1 (en) Solar cell having a three-dimensional array of photovoltaic cells enclosed within an enclosure having reflective surfaces
US7208674B2 (en) Solar cell having photovoltaic cells inclined at acute angle to each other
US5936193A (en) Nighttime solar cell
US4002031A (en) Solar energy converter with waste heat engine
US5897715A (en) Interdigitated photovoltaic power conversion device
US7545011B2 (en) Semiconductor mount
US4710588A (en) Combined photovoltaic-thermoelectric solar cell and solar cell array
US4004210A (en) Reversible thermoelectric converter with power conversion of energy fluctuations
US8736108B1 (en) Photovoltaic system
US20080029151A1 (en) Terrestrial solar power system using III-V semiconductor solar cells
EP2264785A2 (en) Receiver for photovoltaic concentrator system comprising III-V semiconductor solar cells
US20080115823A1 (en) Curved focal plane receiver for concentrating light in a photovoltaic system
BRMU9100797U2 (en) a solar cell receiver for use in a concentrated photovoltaic system using iii-v semiconductor solar cells
EP2660880A2 (en) Concentrated photovoltaic/quantum well thermoelectric power source
US20100037931A1 (en) Method and Apparatus for Generating Electric Power Using Solar Energy
KR100893508B1 (en) Complex generator using thermoelectric element and solar cell for solar generator of electric power
CN104348402B (en) Utilize the solar-electricity Force system for being used for spacecraft or satellite for inverting metamorphic multijunction solar cells
US20090178705A1 (en) Multi-cores stack solar thermal electric generator
KR102023697B1 (en) Solar panel apparatus for multiple generation using a solar energy
KR101015608B1 (en) Multistage-type thermoelectric generator which using solar heat
JPH0523554U (en) Power generator using sunlight
US10230012B2 (en) Concentrator photovoltaic cells bonded to flat-plate solar cells for direct and off-axis light collection
RU154084U1 (en) ELECTRIC POWER GENERATOR
WO2009035507A1 (en) Multi-cores stack solar thermal electric generator