JP2016077085A - Photovoltaic power generation system - Google Patents

Photovoltaic power generation system Download PDF

Info

Publication number
JP2016077085A
JP2016077085A JP2014206048A JP2014206048A JP2016077085A JP 2016077085 A JP2016077085 A JP 2016077085A JP 2014206048 A JP2014206048 A JP 2014206048A JP 2014206048 A JP2014206048 A JP 2014206048A JP 2016077085 A JP2016077085 A JP 2016077085A
Authority
JP
Japan
Prior art keywords
solar cell
conversion module
power generation
solar
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014206048A
Other languages
Japanese (ja)
Other versions
JP6255553B2 (en
Inventor
増井 芽
Megumi Masui
芽 増井
水越 裕治
Yuji Mizukoshi
裕治 水越
丈紫 豊田
Takeshi Toyoda
丈紫 豊田
泰至 橘
Yasushi Tachibana
泰至 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefecture
ACTREE Corp
Original Assignee
Ishikawa Prefecture
ACTREE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefecture, ACTREE Corp filed Critical Ishikawa Prefecture
Priority to JP2014206048A priority Critical patent/JP6255553B2/en
Publication of JP2016077085A publication Critical patent/JP2016077085A/en
Application granted granted Critical
Publication of JP6255553B2 publication Critical patent/JP6255553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Abstract

PROBLEM TO BE SOLVED: To provide a concentrating photovoltaic power generation system for maximizing conversion efficiency by maximally using heat energy of a sunlight component.SOLUTION: A photovoltaic power generation system includes: a solar cell; concentration means disposed in front of the solar cell; and a thermoelectric conversion module disposed on the back surface side of the solar cell. The concentration means has a concentrating magnification equal to or larger than 10.SELECTED DRAWING: Figure 1

Description

本発明は、太陽光発電システムに関し、特に集光型であって熱電変換モジュールを組み合せた複合発電システムに係る。   The present invention relates to a photovoltaic power generation system, and more particularly to a combined power generation system that is a concentrating type and combined with a thermoelectric conversion module.

例えば、特許文献1には、太陽電池素子と熱電変換手段とを、ヒートパイプ及び蓄熱手段を介して配置した技術を開示する。
また、フレネルレンズで集光する例を開示しているが、集光倍率について言及がなく、ヒートパイプを用いて熱輸送するものであることから、集光倍率は低いものと思われる。
For example, Patent Document 1 discloses a technique in which a solar cell element and a thermoelectric conversion unit are arranged via a heat pipe and a heat storage unit.
Moreover, although the example which condenses with a Fresnel lens is disclosed, since there is no mention about a condensing magnification and it heat-transports using a heat pipe, it seems that a condensing magnification is low.

特開2003−70273号公報JP 2003-70273 A

本発明は、太陽光成分の熱エネルギーを最大限利用することで、変換効率を最大化する集光式太陽光発電システムを提供することを目的とする。   An object of this invention is to provide the concentrating solar power generation system which maximizes conversion efficiency by utilizing the thermal energy of a sunlight component to the maximum.

本発明に係る太陽光発電システムは、太陽電池と、当該太陽電池の前方に配置した集光手段と、当該太陽電池背面側に配置した熱電変換モジュールを有し、前記集光手段は集光倍率が10倍以上であることを特徴とする。
詳細は後述するが、本発明は集光倍率が高くなると熱電変換モジュールによる熱電の出力が二次曲線的に増加することに着目したものである。
その効果は、集光倍率が10倍以上、好ましくは30倍以上にて顕著に現れる。
The solar power generation system according to the present invention includes a solar cell, a light collecting unit disposed in front of the solar cell, and a thermoelectric conversion module disposed on the back side of the solar cell, and the light collecting unit has a light collecting magnification. Is 10 times or more.
Although details will be described later, the present invention pays attention to the fact that the thermoelectric output from the thermoelectric conversion module increases in a quadratic curve when the condensing magnification increases.
The effect is conspicuous when the condensing magnification is 10 times or more, preferably 30 times or more.

本発明においては、太陽電池と熱電変換モジュールとの間に熱流平準化手段を設けるのが好ましく、太陽電池は、禁制帯幅の異なる複数の太陽電池セルで構成される多接合型太陽電池であるのが好ましい。
具体的には、集光手段は、太陽電池の分光感度外の波長帯も集光することが可能なレンズであり、前記熱流平準化手段は、蓄熱機能を有するセラミックス絶縁体である例が挙げられる。
In the present invention, it is preferable to provide a heat flow leveling means between the solar cell and the thermoelectric conversion module, and the solar cell is a multi-junction solar cell composed of a plurality of solar cells having different forbidden bandwidths. Is preferred.
Specifically, the light collecting means is a lens capable of collecting a wavelength band outside the spectral sensitivity of the solar cell, and the heat flow leveling means is a ceramic insulator having a heat storage function. It is done.

本発明においては、太陽電池と熱電変換モジュールとを単に組み合せるだけでなく、集光倍率を10倍以上にしたので、太陽光に有する光エネルギーと熱エネルギーを有効に利用できる。   In the present invention, not only the solar cell and the thermoelectric conversion module are simply combined, but also the light condensing magnification is set to 10 times or more, so that the light energy and heat energy possessed by sunlight can be used effectively.

本発明に係る太陽光発電システムの構成例を示す。The structural example of the solar energy power generation system which concerns on this invention is shown. 各集光倍率における太陽電池と熱電変換モジュールの出力ら求めた変換効率を示す。The conversion efficiency calculated | required from the output of the solar cell and thermoelectric conversion module in each condensing magnification is shown. 集光倍率を変化させた場合の(a)は太陽電池の電圧・電流曲線、(b)は熱電変換モジュールの電圧・電流曲線を示す。(A) at the time of changing a condensing magnification shows the voltage-current curve of a solar cell, (b) shows the voltage-current curve of a thermoelectric conversion module. 集光倍率と出力の関係をグラフに示す。The graph shows the relationship between the concentration factor and the output.

本実施形態の太陽光発電システム1について説明する。
図1は、太陽光発電システム1の模式図である。
図1に例示するように、太陽光発電システム1は、太陽電池3の前方に配置した集光手段2を有し、太陽電池3の背面は熱流平準化手段4を間に挟み込むようにして熱電変換モジュール5を配置してある。
太陽電池3は、結晶系シリコン電池でもよく、禁制帯幅の異なる複数の太陽電池セルで構成される多接合型太陽電池でもよい。
多接合型太陽電池は、例えば、GE基板に、ガリウムヒ素半導体、あるいはガリウムヒ素半導体の上にインジウムガリウムリン半導体を積層する構造を有する。
具体的な半導体形成方法として、MOCVD法やMBE法で積層するセルがある。
タンデム型セル、トリプル型セルの各々はトンネル接合を用いて電気的に接続されている。
The photovoltaic power generation system 1 of this embodiment is demonstrated.
FIG. 1 is a schematic diagram of a solar power generation system 1.
As illustrated in FIG. 1, the solar power generation system 1 includes a light collecting unit 2 disposed in front of the solar cell 3, and the back surface of the solar cell 3 has a heat flow leveling unit 4 interposed therebetween. A conversion module 5 is arranged.
The solar battery 3 may be a crystalline silicon battery or a multi-junction solar battery composed of a plurality of solar cells having different forbidden bandwidths.
The multi-junction solar cell has, for example, a structure in which a GE substrate is laminated with a gallium arsenide semiconductor or an indium gallium phosphide semiconductor on the gallium arsenide semiconductor.
As a specific semiconductor formation method, there is a cell stacked by MOCVD method or MBE method.
Each of the tandem cell and the triple cell is electrically connected using a tunnel junction.

この太陽電池の背面には、日射時における熱流の方向に沿うように、熱流平準化手段4を有するプレートを介して熱電変換モジュール5が配置されている。
また、太陽電池と熱流平準化手段が接触する反対側には、低温部6を形成するためにヒートシンクや水冷熱交換器による放熱手段が配置されている。
A thermoelectric conversion module 5 is disposed on the back surface of the solar cell through a plate having heat flow leveling means 4 so as to follow the direction of heat flow during solar radiation.
Further, on the opposite side where the solar cell and the heat flow leveling means are in contact, a heat radiating means such as a heat sink or a water-cooled heat exchanger is disposed to form the low temperature portion 6.

この集光手段2としては、従来のフレネルレンズ式を用いた屈折光学系、あるいは、放物曲面の反射鏡を用いた反射光学系、もしくはその両方を用いた複合光学系が例として挙げられる。
ここでレンズ等の焦点距離を考慮し、集光倍率10倍以上にする。
Examples of the condensing means 2 include a conventional refractive optical system using a Fresnel lens type, a reflective optical system using a parabolic curved mirror, or a composite optical system using both.
Here, in consideration of the focal length of the lens or the like, the light condensing magnification is set to 10 times or more.

平準化手段とは、上記太陽電池で発生した熱エネルギーを効率良く熱輸送すると共に、変動する熱流を適度に蓄熱・放熱することで一定熱量を熱電変換モジュールへ供給する機能を意味する。
使用する物質は、比熱が大きく絶縁性を有する物質であれば使用可能であり、アルミナ、窒化アルミ、窒化ケイ素、炭化ケイ素などのセラミックスが有効である。
The leveling means means a function of efficiently transporting heat energy generated in the solar cell and supplying a constant amount of heat to the thermoelectric conversion module by appropriately storing and radiating the fluctuating heat flow.
Any substance can be used as long as it has a large specific heat and is insulative, and ceramics such as alumina, aluminum nitride, silicon nitride, and silicon carbide are effective.

熱電変換モジュールは、通常ゼーベック効果を利用した半導体素子であって、ビスマス-テルル系合金、鉛-テルル合金、シリコン-ゲルマニウム系合金、鉄-シリサイド系合金やコバルト酸化物系やマンガン酸化物系が提案されている。
これらの物質を用いた熱電変換モジュールは、いずれも本発明に利用することが可能であり、比較的中低温域で良好な性能を示すビスマス-テルル系合金は有効である。
また、熱電変換モジュールは複数の熱電素子を絶縁性基板で挟み込んであり、その起電力は温度差以外に素子の対の数に比例するため、一定の面積が必要である。
また、集光された太陽光は太陽電池層で電気に変換されるものと熱に変換されるものに分かれ、熱は放射状に放熱される。
更に平準化手段を経ることで太陽電池の面積よりも熱が広がるため、最大で太陽電池の面積の最大4倍の熱電素子が利用できる。
これよりも大きい面積の熱電素子では熱電素子の数による起電力の増加分に比べて温度差が得られなくなるため、熱電発電による出力が得られなくなる。
Thermoelectric conversion modules are semiconductor elements that normally use the Seebeck effect, and include bismuth-tellurium alloys, lead-tellurium alloys, silicon-germanium alloys, iron-silicide alloys, cobalt oxides, and manganese oxides. Proposed.
Any thermoelectric conversion module using these materials can be used in the present invention, and a bismuth-tellurium-based alloy that exhibits good performance in a relatively medium to low temperature range is effective.
The thermoelectric conversion module has a plurality of thermoelectric elements sandwiched between insulating substrates, and the electromotive force thereof is proportional to the number of element pairs other than the temperature difference, and therefore requires a certain area.
Moreover, the condensed sunlight is divided into a solar cell layer that is converted into electricity and a heat that is converted into heat, and the heat is radiated radially.
Furthermore, since the heat spreads more than the area of the solar cell through the leveling means, a thermoelectric element having a maximum of 4 times the area of the solar cell can be used.
In a thermoelectric element having a larger area than this, a temperature difference cannot be obtained as compared with an increase in electromotive force due to the number of thermoelectric elements, and thus an output by thermoelectric power generation cannot be obtained.

以上の構成により、日射時に太陽電池に到達する太陽光エネルギーのうち光電変換されなかった大部分が熱エネルギーに変わり、上記熱エネルギーは平準化手段に蓄積され、日射時の変動において継続して熱電変換モジュールの安定した発電を実現する。
また、太陽電池で発生する多大な熱エネルギーによる温度上昇が懸念されるが、安定した冷却効果により温度上昇を90℃以下に抑制することが可能であり、太陽電池の温度上昇による変換効率低下を抑制でき、全体として太陽光エネルギーからの電気エネルギーへの変換効率の向上に寄与できる。
With the above configuration, most of the solar energy that reaches the solar cell during solar radiation, which has not been photoelectrically converted, is converted into thermal energy, and the thermal energy is accumulated in the leveling means, and the thermoelectric power is continuously changed due to fluctuations during solar radiation. Realize stable power generation of the conversion module.
Moreover, although there is a concern about the temperature rise due to the great heat energy generated in the solar cell, it is possible to suppress the temperature rise to 90 ° C. or less due to the stable cooling effect, and the conversion efficiency decline due to the temperature rise of the solar cell is reduced. As a whole, it can contribute to the improvement of conversion efficiency from solar energy to electric energy.

以上は、本発明における好適な材料及び構成を用いて説明したが、本発明の概念は上述の材料や構成に限定されない。
また、単一の手段で複数の機能を兼務させるように構成できることは勿論である。
Although the above was demonstrated using the suitable material and structure in this invention, the concept of this invention is not limited to the above-mentioned material and structure.
Of course, a single unit can be configured to serve a plurality of functions.

以下に本発明の実施例を実験結果に基づいて説明するが、本発明はこれらの実施例になんら限定されるものではない。   Examples of the present invention will be described below based on experimental results, but the present invention is not limited to these examples.

図1に示した太陽光発電システム1において、集光手段2の例として焦点距離400mmのフレネルレンズ(CF400B)を用いて実験した。
具体的には、レンズと太陽電池との距離を変化させて、集光倍率を調整した。
In the photovoltaic power generation system 1 shown in FIG. 1, an experiment was performed using a Fresnel lens (CF400B) having a focal length of 400 mm as an example of the light collecting means 2.
Specifically, the light collection magnification was adjusted by changing the distance between the lens and the solar cell.

太陽電池3は、多接合型セル(10×10mm)を用いた。
多接合型セルを用いた太陽電池モジュールをソーラーシミュレータ(ブライテック製、BXE−F−1000−KEI)で評価したところ出力が24.5mW(変換効率24.5%)であった。
このことから光エネルギーの残りの約75%は太陽電池層で熱エネルギーとして残ることになる。
このようにして発生した熱エネルギーは太陽電池の裏面に設置される熱平準化手段4を通って熱電変換モジュール5に到達する。
As the solar cell 3, a multi-junction cell (10 × 10 mm) was used.
When the solar cell module using the multi-junction cell was evaluated with a solar simulator (manufactured by BREITEC, BXE-F-1000-KEI), the output was 24.5 mW (conversion efficiency 24.5%).
Therefore, the remaining 75% of the light energy remains as thermal energy in the solar cell layer.
The heat energy generated in this way reaches the thermoelectric conversion module 5 through the heat leveling means 4 installed on the back surface of the solar cell.

熱電変換モジュール5は、大きさが17×17mmで65対の熱電素子で構成され、高温部と低温部の温度差から生じ熱流が素子内を通過する際に、その一部を電気エネルギーとして取り出すことが可能である。
そのため、熱電素子の裏面には放熱用のヒートシンクがあり、熱電素子の低温部6を室温近辺に保ち、熱電素子の温度差を大きく保つ構造にて実験した。
The thermoelectric conversion module 5 is composed of 65 pairs of thermoelectric elements having a size of 17 × 17 mm, and a part of the thermoelectric conversion module 5 is taken out as electric energy when the heat flow caused by the temperature difference between the high temperature part and the low temperature part passes through the element. It is possible.
For this reason, there was a heat sink for heat dissipation on the back surface of the thermoelectric element, and an experiment was conducted with a structure in which the low temperature portion 6 of the thermoelectric element is kept near room temperature and the temperature difference of the thermoelectric element is kept large.

実験に用いた熱流平準化手段4は、アルミナ基板上に鉄フィルムを貼り付けたものである。
熱流平準化手段4は、太陽電池が加熱された場合、鉄フィルムによってすばやく熱エネルギーを移動させ、比熱が大きいアルミナ板に熱が吸収される。
吸収した熱はヒートシンクにより温度勾配が大きくなっている熱電変換モジュール5を通過してヒートシンクに勢い良く流れ着く。
The heat flow leveling means 4 used in the experiment is obtained by attaching an iron film on an alumina substrate.
When the solar cell is heated, the heat flow leveling means 4 quickly moves the heat energy by the iron film, and the heat is absorbed by the alumina plate having a large specific heat.
The absorbed heat passes through the thermoelectric conversion module 5 where the temperature gradient is increased by the heat sink and flows to the heat sink vigorously.

非日射時の熱流は、平準化手段に残る熱がヒートシンク側への熱流として働くことで電気を発電し続けることから、日射強度の変動があっても熱電変換モジュールを通じて効率良く電気エネルギーを取り出すことが可能となる。   The heat flow during non-sunlight continues to generate electricity by the heat remaining in the leveling means acting as a heat flow toward the heat sink, so that electric energy can be efficiently extracted through the thermoelectric conversion module even if there is fluctuations in the solar radiation intensity. Is possible.

各集光倍率における太陽電池と熱電変換モジュールの出力から求めた変換効率を図2に示す。
集光倍率が10倍未満の場合は太陽電池の温度上昇が小さく、太陽電池の変換効率の減少は少なく、また熱電変換モジュールの出力も極わずかである。
一方、集光倍率が10倍以上では太陽電池は温度上昇による変換効率が大きく減少するが熱電変換の出力増加が太陽電池の減少幅を上回ることで、総発電量が増加することが明らかになった。
The conversion efficiency calculated | required from the output of the solar cell and thermoelectric conversion module in each condensing magnification is shown in FIG.
When the condensing magnification is less than 10 times, the temperature rise of the solar cell is small, the decrease in conversion efficiency of the solar cell is small, and the output of the thermoelectric conversion module is very small.
On the other hand, when the condensing magnification is 10 times or more, the conversion efficiency of solar cells greatly decreases due to temperature rise, but it becomes clear that the total power generation increases because the increase in output of thermoelectric conversion exceeds the reduction range of solar cells. It was.

標準光から4倍集光まで変換させた場合の太陽電池と熱電変換モジュールの電流−電圧のグラフをそれぞれ図3(a)と図3(b)に示す。
最大出力は四角形の面積で示した部分に相当し、太陽電池の場合は集光倍率に比例して出力が増加することがわかる。
一方、熱電変換モジュールは標準光の0.5mWに対して、2倍集光では1.5mW(3倍)、3倍集光では3.0mW(6倍)、4倍集光では5.4mW(11倍)と二次曲線的に増大することが明らかとなった。
FIGS. 3 (a) and 3 (b) show current-voltage graphs of the solar cell and the thermoelectric conversion module, respectively, when the standard light is converted to four times the condensed light.
It can be seen that the maximum output corresponds to the area indicated by the square area, and in the case of a solar cell, the output increases in proportion to the light collection magnification.
On the other hand, the thermoelectric module is 1.5 mW (3 times) for 2 times condensing, 3.0 mW (6 times) for 3 times condensing, and 5.4 mW for 4 times condensing. (11 times) and a quadratic curve increase.

集光倍率を70倍として平準化システムを用いた場合と用いない場合の熱電変換モジュールの出力を比較した。
その結果、平準化手段を用いた場合は125.5mWで変換効率約2%であり、熱効果で低下した太陽電池の変換効率(23.1%)と合わせることで、効率低下前の24.5%以上の総合効率を示すのに対し、平準化手段を用いない場合、熱電変換モジュールの出力は79.9mWで変換効率約1.25%となり、総合効率は24.35%と効率低下前の変換効率を下回ることが明らかとなった。
The output of the thermoelectric conversion module was compared with and without using the leveling system with a light collection magnification of 70 times.
As a result, when the leveling means is used, the conversion efficiency is about 2% at 125.5 mW. By combining with the conversion efficiency (23.1%) of the solar cell, which has been reduced by the thermal effect, 24. Although the overall efficiency of 5% or more is shown, when the leveling means is not used, the output of the thermoelectric conversion module is 79.9mW, the conversion efficiency is about 1.25%, and the overall efficiency is 24.35% before the efficiency decline. It became clear that the conversion efficiency was lower.

集光倍率70倍で太陽電池セル面積(100mm)の9倍となる30×30mm(素子数127対)の大きさからなる面積の熱電変換モジュールを太陽電池背面に平準化手段を用いて配置した場合の評価を実施した。
その結果、熱電変換モジュールの出力は59.4mWで変換効率では0.93%であった。
17×17mm(素子数65対)の大きさからなる面積の熱電変換モジュールの場合、太陽電池セル面積の2.89倍と小さいにも関わらず同条件での出力が125.5mW(変換効率2%)となり、2倍以上の出力が得られることがわかった。
このように、熱電変換モジュールの面積を4倍以上に大きくすると投入される熱エネルギーが分散され、結果として素子の温度差が小さくなったために出力が低下したと考えられる。
A thermoelectric conversion module having an area of 30 × 30 mm (127 pairs of elements), which is 9 times the solar cell area (100 mm 2 ) at a condensing magnification of 70 times, is arranged on the back surface of the solar cell using leveling means. Evaluation was performed.
As a result, the output of the thermoelectric conversion module was 59.4 mW and the conversion efficiency was 0.93%.
In the case of a thermoelectric conversion module having an area of 17 × 17 mm (65 pairs of elements), the output under the same condition is 125.5 mW (conversion efficiency 2) despite being as small as 2.89 times the solar cell area. %), And it was found that an output twice or more was obtained.
Thus, it is considered that when the area of the thermoelectric conversion module is increased four times or more, the input thermal energy is dispersed, and as a result, the temperature difference between the elements is reduced, so that the output is reduced.

図4に熱電変換効率測定装置(アルバック理工製、PEM−2)から求めた17×17mmの熱電変換モジュールの出力と開放電圧値から、各集光倍率で測定した熱電変換モジュールの予想発電量と実測値を示す。
集光倍率が大きくなると素子の受光部分に温度むらが生じることで熱電変換の効率低下が懸念されるが、集光倍率70倍で約−12.3%であり、この低下分を考慮しても熱電変換モジュールの面積が太陽電池セルの4倍以下であれば出力の増加の方が大きいことが分かる。
FIG. 4 shows the expected power generation amount of the thermoelectric conversion module measured at each condensing magnification from the output and open-circuit voltage value of the 17 × 17 mm thermoelectric conversion module obtained from the thermoelectric conversion efficiency measuring device (manufactured by ULVAC-RIKO, PEM-2). The actual measurement value is shown.
There is a concern that the efficiency of thermoelectric conversion may decrease due to temperature unevenness in the light receiving portion of the element when the light condensing magnification increases, but it is about -12.3% at a light condensing magnification of 70 times, and this decrease is taken into consideration. It can be seen that the increase in output is larger when the area of the thermoelectric conversion module is 4 times or less that of the solar battery cell.

1 太陽光発電システム
2 集光手段
3 太陽電池
4 熱流平準化手段
5 熱電変換モジュール
6 低温部
DESCRIPTION OF SYMBOLS 1 Photovoltaic power generation system 2 Condensing means 3 Solar cell 4 Heat flow leveling means 5 Thermoelectric conversion module 6 Low temperature part

Claims (5)

太陽電池と、当該太陽電池の前方に配置した集光手段と、当該太陽電池背面側に配置した熱電変換モジュールを有し、
前記集光手段は集光倍率が10倍以上であることを特徴とする太陽光発電システム。
A solar cell, condensing means disposed in front of the solar cell, and a thermoelectric conversion module disposed on the back side of the solar cell;
The condensing unit has a condensing magnification of 10 times or more.
前記太陽電池と熱電変換モジュールとの間に熱流平準化手段を有することを特徴とする請求項1記載の太陽光発電システム。   The solar power generation system according to claim 1, further comprising a heat flow leveling unit between the solar cell and the thermoelectric conversion module. 前記太陽電池は、禁制帯幅の異なる複数の太陽電池セルで構成される多接合型太陽電池であることを特徴とする請求項1又は2に記載の太陽光発電システム。   The solar power generation system according to claim 1 or 2, wherein the solar battery is a multi-junction solar battery including a plurality of solar cells having different forbidden bandwidths. 前記熱電変換モジュールは、複数の熱電素子を絶縁性基板で挟み込んだものであり、当該熱電変換モジュールの大きさは、太陽電池セル面積の4倍以下の大きさであることを特徴とする請求項1〜3のいずれかに記載の太陽光発電システム。   The thermoelectric conversion module is obtained by sandwiching a plurality of thermoelectric elements between insulating substrates, and the size of the thermoelectric conversion module is not more than four times the solar cell area. The solar power generation system in any one of 1-3. 前記集光手段は、太陽電池の分光感度外の波長帯も集光することが可能なレンズであり、
前記熱流平準化手段は、蓄熱機能を有するセラミックス絶縁体であることを特徴とする請求項2に記載の太陽光発電システム。
The condensing means is a lens capable of condensing a wavelength band outside the spectral sensitivity of the solar cell,
The photovoltaic power generation system according to claim 2, wherein the heat flow leveling means is a ceramic insulator having a heat storage function.
JP2014206048A 2014-10-07 2014-10-07 Solar power system Active JP6255553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206048A JP6255553B2 (en) 2014-10-07 2014-10-07 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206048A JP6255553B2 (en) 2014-10-07 2014-10-07 Solar power system

Publications (2)

Publication Number Publication Date
JP2016077085A true JP2016077085A (en) 2016-05-12
JP6255553B2 JP6255553B2 (en) 2018-01-10

Family

ID=55951844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206048A Active JP6255553B2 (en) 2014-10-07 2014-10-07 Solar power system

Country Status (1)

Country Link
JP (1) JP6255553B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631697A (en) * 2018-05-30 2018-10-09 新奥泛能网络科技有限公司 Combined generating system
CN115806035A (en) * 2022-12-20 2023-03-17 深圳市上古光电有限公司 Topological structure of concentrating solar sightseeing boat

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254772A (en) * 1987-04-13 1988-10-21 Hitachi Ltd Hybrid generator utilizing sunlight and heat
JPH01501109A (en) * 1986-10-06 1989-04-13 ヒユーズ・エアクラフト・カンパニー Solar cells and solar cell arrays with both photovoltaic and thermoelectric effects
JP2003070273A (en) * 2001-08-29 2003-03-07 Canon Inc Solarlight power generating system
US20100037931A1 (en) * 2008-08-18 2010-02-18 Chin-Kuang Luo Method and Apparatus for Generating Electric Power Using Solar Energy
JP2010114349A (en) * 2008-11-10 2010-05-20 Konica Minolta Holdings Inc Hybrid power generating device
JP2012038980A (en) * 2010-08-09 2012-02-23 Fujitsu Ltd Thermoelectric conversion module and manufacturing method of the same
JP2012508466A (en) * 2008-11-04 2012-04-05 イートン コーポレーション Combined heat and power system (CHP) for residential and industrial buildings

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501109A (en) * 1986-10-06 1989-04-13 ヒユーズ・エアクラフト・カンパニー Solar cells and solar cell arrays with both photovoltaic and thermoelectric effects
JPS63254772A (en) * 1987-04-13 1988-10-21 Hitachi Ltd Hybrid generator utilizing sunlight and heat
JP2003070273A (en) * 2001-08-29 2003-03-07 Canon Inc Solarlight power generating system
US20100037931A1 (en) * 2008-08-18 2010-02-18 Chin-Kuang Luo Method and Apparatus for Generating Electric Power Using Solar Energy
JP2012508466A (en) * 2008-11-04 2012-04-05 イートン コーポレーション Combined heat and power system (CHP) for residential and industrial buildings
JP2010114349A (en) * 2008-11-10 2010-05-20 Konica Minolta Holdings Inc Hybrid power generating device
JP2012038980A (en) * 2010-08-09 2012-02-23 Fujitsu Ltd Thermoelectric conversion module and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631697A (en) * 2018-05-30 2018-10-09 新奥泛能网络科技有限公司 Combined generating system
CN115806035A (en) * 2022-12-20 2023-03-17 深圳市上古光电有限公司 Topological structure of concentrating solar sightseeing boat

Also Published As

Publication number Publication date
JP6255553B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
EP2345087B1 (en) Combined solar/thermal (chp) heat and power for residential and industrial buildings
Yang et al. Maximum efficiency and parametric optimum selection of a concentrated solar spectrum splitting photovoltaic cell-thermoelectric generator system
Chávez-Urbiola et al. Solar hybrid systems with thermoelectric generators
Würfel Thermodynamic limitations to solar energy conversion
Zimmermann et al. A high-efficiency hybrid high-concentration photovoltaic system
Elzouka et al. Towards a near-field concentrated solar thermophotovoltaic microsystem: Part I–Modeling
Narducci et al. Challenges and perspectives in tandem thermoelectric–photovoltaic solar energy conversion
US20130291919A1 (en) Concentrated photovoltaic/quantum well thermoelectric power source
US20110259386A1 (en) Thermoelectric generating module
Li et al. Conversion efficiency gain for concentrated triple-junction solar cell system through thermal management
EP2150990A2 (en) Solar cell
US9331258B2 (en) Solar thermoelectric generator
KR102050335B1 (en) Method and apparatus for measuring efficiency of solar photovoltaic-thermoelectric fusion device
JP6255553B2 (en) Solar power system
Tobias et al. Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux
Omair et al. Experimental demonstration of 28.2% thermophotovoltaic conversion efficiency
JP2015186412A (en) Photovoltaic power generation system
RU2399118C1 (en) Photoelectric converter based on nonplanar semiconductor structure
US10559738B2 (en) Pin coupling based thermoelectric device
Makki Innovative heat pipe-based photovoltaic/thermoelectric (PV/TEG) generation system
Yazawa et al. Material optimization for concentrated solar photovoltaic and thermal co-generation
KR101650442B1 (en) Hybride solar cell device
RU154084U1 (en) ELECTRIC POWER GENERATOR
Mertia et al. Solar Photovoltaic-Thermoelectric Generator Hybrid System: A Brief Review
Wang et al. A Review of Current Development in Photovoltaic-Thermoelectric Hybrid Power Systems

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171020

R150 Certificate of patent or registration of utility model

Ref document number: 6255553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250