JP2012038980A - Thermoelectric conversion module and manufacturing method of the same - Google Patents

Thermoelectric conversion module and manufacturing method of the same Download PDF

Info

Publication number
JP2012038980A
JP2012038980A JP2010179014A JP2010179014A JP2012038980A JP 2012038980 A JP2012038980 A JP 2012038980A JP 2010179014 A JP2010179014 A JP 2010179014A JP 2010179014 A JP2010179014 A JP 2010179014A JP 2012038980 A JP2012038980 A JP 2012038980A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
electrically insulating
conversion elements
conversion element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010179014A
Other languages
Japanese (ja)
Other versions
JP5598152B2 (en
Inventor
Katsuharu Hida
勝春 肥田
Kazunori Yamanaka
一典 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010179014A priority Critical patent/JP5598152B2/en
Publication of JP2012038980A publication Critical patent/JP2012038980A/en
Application granted granted Critical
Publication of JP5598152B2 publication Critical patent/JP5598152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module capable of suppressing heat movement from a high temperature side to a low temperature side without passing through a thermoelectric conversion element.SOLUTION: The thermoelectric conversion module comprises: a plurality of thermoelectric conversion elements 3 held between a pair of electrically insulating substrates 1 and 11; connection wiring 2 and 12 on the surface facing the pair of electrically insulating substrates to connect the plurality of thermoelectric conversion elements; and porous isolation layers 5 and 14 to fill regions among the plurality of thermoelectric conversion elements between the pair of electrically insulating substrates.

Description

本発明はp型とn型の熱電変換素子を電気的に接続して構成した熱電変換モジュールおよびその製造方法に関する。   The present invention relates to a thermoelectric conversion module configured by electrically connecting p-type and n-type thermoelectric conversion elements and a method for manufacturing the same.

近年、廃棄されている熱エネルギを電気エネルギに変換する熱電変換装置が関心を集めている。熱電変換材料で形成した熱電変換素子中の電荷担体(電子または正孔)は温度に依存する熱エネルギを有する。材料中に温度差を形成すると、高温側の電荷担体の熱エネルギは低温側の電荷担体の熱エネルギよりも高く、高温側から低温側に電荷担体が拡散し、電荷(起電力)を発生する現象を示す。1つの熱電変換素子においては、両端に電荷の不足と過剰が生じることになる。   In recent years, thermoelectric conversion devices that convert waste heat energy into electrical energy have attracted attention. Charge carriers (electrons or holes) in a thermoelectric conversion element formed of a thermoelectric conversion material have thermal energy that depends on temperature. When a temperature difference is formed in the material, the heat energy of the charge carrier on the high temperature side is higher than the heat energy of the charge carrier on the low temperature side, and the charge carrier diffuses from the high temperature side to the low temperature side to generate charge (electromotive force). Demonstrate the phenomenon. In one thermoelectric conversion element, shortage and excess of charge occur at both ends.

p型熱電変換素子とn型熱電変換素子を並列に配置し、1端で接続し、両端間に温度差を形成すると、接続端では正電荷と負電荷が相殺し、他端に逆極性の電荷(起電力)が生じることになる。このような、p型熱電素子とn型熱電素子が温度差方向と並列に配置され、直列に接続された構造が、π型(熱電変換)構造と呼ばれ、広く用いられている。多数のπ型構造をさらにp型熱電素子とn型熱電素子が直列に接続されるように直列接続していくと、両端に生じる電位差は増大していく。発生する起電力は、直列接続された素子数と温度差に依存する。   When a p-type thermoelectric conversion element and an n-type thermoelectric conversion element are arranged in parallel and connected at one end and a temperature difference is formed between both ends, the positive and negative charges cancel at the connection end, and the other end has a reverse polarity. Electric charge (electromotive force) is generated. Such a structure in which a p-type thermoelectric element and an n-type thermoelectric element are arranged in parallel with the temperature difference direction and connected in series is called a π-type (thermoelectric conversion) structure and is widely used. When a large number of π-type structures are further connected in series such that a p-type thermoelectric element and an n-type thermoelectric element are connected in series, the potential difference generated at both ends increases. The generated electromotive force depends on the number of elements connected in series and the temperature difference.

熱電変換モジュールは、セラミック等の電気的絶縁基板を用い、p型とn型の熱電変換素子を温度差方向と並列に配置し、熱電変換素子の上下の接続配線によって複数の熱電変換素子を電気的に直列に接続し、直列接続の終端からリード線を引き出したものが一般的である。例えば、1対の電気的絶縁基板上に接続配線を形成し、複数の熱電変換素子を1対の絶縁基板間に保持し、直列に接続する。   The thermoelectric conversion module uses an electrically insulating substrate such as ceramic, p-type and n-type thermoelectric conversion elements are arranged in parallel with the temperature difference direction, and a plurality of thermoelectric conversion elements are electrically connected by upper and lower connection wirings of the thermoelectric conversion elements. In general, they are connected in series and lead wires are drawn from the end of the series connection. For example, connection wiring is formed on a pair of electrically insulating substrates, and a plurality of thermoelectric conversion elements are held between a pair of insulating substrates and connected in series.

電気的絶縁基板上にマトリックス状に熱電変換素子を配置し、高温部と低温部の間に設置すると、高温部と低温部の間には熱電変換素子と共に熱電変換素子間の空隙も配置される。熱は、高温部から低温部へ、伝導、輻射、対流によって伝達される。熱電変換素子は固体で形成されるので、主として伝導によって熱を伝達する。熱電変換素子周囲の空隙は、通常空気で構成されるので、伝導、輻射、対流によって熱を伝達する性質を有する。一般的に、気体である空気の熱伝導率は、固体である熱電変換素子の熱伝導率より低い。輻射、対流による熱の移動が熱の移動の主要素となる。熱電変換素子間の領域における輻射、対流によって高温側から低温側に伝達される熱は、熱電変換には寄与しない。高効率の熱電変換を実現する為には、熱電変換素子を経由しない熱の移動を抑制することが望まれる。   When thermoelectric conversion elements are arranged in a matrix on an electrically insulating substrate and installed between a high temperature part and a low temperature part, a gap between the thermoelectric conversion elements is also arranged between the high temperature part and the low temperature part. . Heat is transferred from the hot part to the cold part by conduction, radiation and convection. Since the thermoelectric conversion element is formed of a solid, it transfers heat mainly by conduction. Since the air gap around the thermoelectric conversion element is usually composed of air, it has the property of transferring heat by conduction, radiation, and convection. Generally, the thermal conductivity of air, which is a gas, is lower than the thermal conductivity of a thermoelectric conversion element, which is a solid. Heat transfer due to radiation and convection is the main element of heat transfer. Heat transferred from the high temperature side to the low temperature side by radiation and convection in the region between the thermoelectric conversion elements does not contribute to thermoelectric conversion. In order to realize high-efficiency thermoelectric conversion, it is desired to suppress the movement of heat that does not pass through the thermoelectric conversion element.

特開2001−119076号は、Bi−Te系のn型の熱電変換素子とSb−Te系のp型の熱電変換素子とを交互に配列すると共に電気的に接続することでπ型配置として、これら熱電変換素子を直列接続して熱電変換モジュールを構成し、熱電変換素子間をエポキシ樹脂等の絶縁性樹脂で埋めて、絶縁性樹脂によって全熱電変換素子を固定することを記載する。熱電変換素子の周囲を絶縁性樹脂で補強することで、熱応力による熱電変換素子のクラック発生を防止する、各熱電変換素子の側面をポリイミド樹脂で被覆すると、絶縁性樹脂による熱電変換素子の固定力を高くすることができると記載する。   Japanese Patent Laid-Open No. 2001-119076 discloses a π-type arrangement by alternately arranging and electrically connecting Bi-Te type n-type thermoelectric conversion elements and Sb-Te type p-type thermoelectric conversion elements. It describes that these thermoelectric conversion elements are connected in series to form a thermoelectric conversion module, and the thermoelectric conversion elements are filled with an insulating resin such as an epoxy resin, and the entire thermoelectric conversion elements are fixed with the insulating resin. Reinforce the periphery of the thermoelectric conversion element with an insulating resin to prevent cracking of the thermoelectric conversion element due to thermal stress. When the side surface of each thermoelectric conversion element is covered with polyimide resin, the thermoelectric conversion element is fixed with the insulating resin. It is stated that the power can be increased.

熱電素子間を電気的絶縁樹脂で埋めることは、対流による熱移動が防止されることを意味し、空気に代わってエポキシ樹脂等の電気的絶縁性樹脂が存在することは、伝導による熱移動の増加を意味するであろう。特開2001−119076号は、熱移動の効率化については言及しない。   Filling between thermoelectric elements with electrically insulating resin means that heat transfer due to convection is prevented, and the presence of electrically insulating resin such as epoxy resin instead of air means that heat transfer due to conduction It will mean an increase. Japanese Patent Application Laid-Open No. 2001-119076 does not mention efficiency improvement of heat transfer.

特開2005−79347号は、熱電変換モジュール内部を、輻射、対流により熱電変換素子を通過しない熱量を低減させるために、熱損失防止構造に形成すると記載し、熱損失防止構造として、モジュール内部の露出表面に形成された銀、白金、金、銅等の熱反射率の高い材料の被膜や、高温部と低温部の間の空間を仕切り、ステンレス鋼、Niメッキした鉄、アルミ等で形成され、熱電変換素子が貫通する輻射防止板を設けることを記載する。熱反射率の高い被膜により輻射熱、対流が生じるのを大幅に低減でき、輻射防止板により輻射や対流による熱量移動を低減させると記載する。電気的導電性被膜による熱起電力の短絡を如何に防止するか、導電性輻射防止板による熱電素子間の電気的短絡を如何に防止するかについては何も記載しない。また、空間を上下方向で分割すると、分割された各空間内で対流は生じると思料されるが、対流は生じないかのごとく記載する。   Japanese Patent Application Laid-Open No. 2005-79347 describes that the thermoelectric conversion module is formed in a heat loss prevention structure in order to reduce the amount of heat that does not pass through the thermoelectric conversion element due to radiation and convection. Formed on stainless steel, Ni-plated iron, aluminum, etc., with a coating of material with high heat reflectivity such as silver, platinum, gold, copper, etc. formed on the exposed surface, and the space between the hot and cold parts. And providing a radiation preventing plate through which the thermoelectric conversion element penetrates. It is described that the generation of radiant heat and convection can be greatly reduced by the coating film having high heat reflectivity, and the amount of heat transfer due to radiation and convection is reduced by the radiation prevention plate. Nothing is described about how to prevent a short circuit of thermoelectromotive force due to the electrically conductive film and how to prevent an electrical short circuit between thermoelectric elements due to the conductive radiation prevention plate. In addition, when the space is divided in the vertical direction, convection is considered to occur in each divided space, but it is described as if convection does not occur.

特開2001−119076号公報Japanese Patent Laid-Open No. 2001-119076 特開2005−79347号JP 2005-79347 A

熱電変換素子間の領域で、高温側から低温側に伝達される熱を抑制できる熱電変換モジュールを提供する。   A thermoelectric conversion module capable of suppressing heat transmitted from a high temperature side to a low temperature side in a region between thermoelectric conversion elements is provided.

1観点によれば、
一対の電気的絶縁性基板と、
前記一対の電気的絶縁性基板間に挟持された複数の熱電変換素子と、
前記一対の電気的絶縁性基板の対向面上に形成され、前記複数の熱電変換素子を接続する接続配線と、
前記一対の電気的絶縁性基板間で、前記複数の熱電変換素子間の領域を充填するポーラス絶縁層と、
を有する熱電変換モジュール
が提供される。
According to one aspect,
A pair of electrically insulating substrates;
A plurality of thermoelectric conversion elements sandwiched between the pair of electrically insulating substrates;
A connection wiring that is formed on opposing surfaces of the pair of electrically insulating substrates and connects the plurality of thermoelectric conversion elements;
A porous insulating layer filling a region between the plurality of thermoelectric conversion elements between the pair of electrically insulating substrates;
A thermoelectric conversion module is provided.

他の観点によれば、
接続配線を形成した一方の電気的絶縁性基板上に複数の熱電変換素子の底面を接続し、
接続配線を形成した他方の電気的絶縁性基板を前記複数の熱電変換素子の頂面に接続し、
前記一対の電気的絶縁性基板間で、前記複数の熱電変換素子間の領域にポーラス絶縁層を射出成形する、
熱電変換モジュールの製造方法
が提供される。
From another perspective,
Connecting the bottom surfaces of a plurality of thermoelectric conversion elements on one electrically insulating substrate on which connection wiring is formed,
Connecting the other electrically insulating substrate on which the connection wiring is formed to the top surfaces of the plurality of thermoelectric conversion elements;
Between the pair of electrically insulating substrates, a porous insulating layer is injection molded in a region between the plurality of thermoelectric conversion elements;
A method for manufacturing a thermoelectric conversion module is provided.

熱損失を低減できる。   Heat loss can be reduced.

と、When, 図1A〜1Jは、実施例1による熱電変換モジュールを示す概略断面図、およびその製造方法の主要工程を示す概略斜視図である。1A to 1J are a schematic cross-sectional view showing a thermoelectric conversion module according to Example 1, and a schematic perspective view showing main steps of a manufacturing method thereof. 図2A〜2Dは、実施例1の変形例による熱電変換モジュールを示す斜視図、および断面図である。2A to 2D are a perspective view and a cross-sectional view showing a thermoelectric conversion module according to a modification of the first embodiment. 図3A,3Bは、実施例2による熱電変換モジュールの要部を示す平面図および断面図、図3C,3Dは、実施例2の変形例による熱電変換モジュールの要部を示す平面図および断面図である。3A and 3B are a plan view and a cross-sectional view showing the main part of the thermoelectric conversion module according to the second embodiment, and FIGS. 3C and 3D are a plan view and a cross-sectional view showing the main part of the thermoelectric conversion module according to a modification of the second embodiment. It is.

図1Aは、実施例1による熱電変換モジュールを示す概略断面図である。一対の電気的絶縁性基板1,11の間に複数のp型熱電素子3p、n型熱電素子3n(まとめて熱電素子3と呼ぶことがある)が挟持され、熱電素子3間の空隙をポーラス絶縁層5,14が埋め込んだ構成を有する。電気的絶縁性基板1,11上には接続配線(局所配線)2,12が形成され、銀ペーストを介して熱電変換素子3を直列に接続している。ポーラス絶縁層5,14は、ポーラス絶縁層5を中間に配置し、その上下両側にポーラス絶縁層14が配置された構成である。ポーラス絶縁層5の上面には反射金属層7が形成されている。反射金属層7は熱電変換素子3から20μm〜200μm、例えば100μm離れて配置され、間にポーラス絶縁層14が入り込んで電気的絶縁状態を形成している。   1A is a schematic cross-sectional view illustrating a thermoelectric conversion module according to Embodiment 1. FIG. A plurality of p-type thermoelectric elements 3p and n-type thermoelectric elements 3n (sometimes collectively referred to as thermoelectric elements 3) are sandwiched between a pair of electrically insulating substrates 1 and 11, and the gap between the thermoelectric elements 3 is porous. The insulating layers 5 and 14 are embedded. Connection wirings (local wirings) 2 and 12 are formed on the electrically insulating substrates 1 and 11, and the thermoelectric conversion elements 3 are connected in series via a silver paste. The porous insulating layers 5 and 14 have a configuration in which the porous insulating layer 5 is disposed in the middle and the porous insulating layers 14 are disposed on both upper and lower sides thereof. A reflective metal layer 7 is formed on the upper surface of the porous insulating layer 5. The reflective metal layer 7 is disposed 20 μm to 200 μm, for example, 100 μm away from the thermoelectric conversion element 3, and the porous insulating layer 14 enters between them to form an electrically insulating state.

電気的絶縁性基板1,11は、例えばアルミナセラミックスで形成される。アルミナセラミックスは、1000℃以上の高温にも耐える。アルミナに換えてAlNを用いることもできる。200℃程度以下の使用温度ならガラスエポキシ基板、ガラス基板等も使用できる。電気的絶縁性基板は、全体が電気的絶縁性でなくてもよい。例えば絶縁層を表面に形成した銅等の金属基板を電気的敵絶縁性基板として用いることもできる。銅は一般的な電気的絶縁体より熱容量が大きい。熱容量の大きな基板を用いることにより、熱浴の機能を持たせ、温度差を維持しやすいようにすることもできる。   The electrically insulating substrates 1 and 11 are made of alumina ceramics, for example. Alumina ceramics withstand high temperatures of 1000 ° C. or higher. AlN can be used instead of alumina. A glass epoxy substrate, a glass substrate, or the like can be used at an operating temperature of about 200 ° C. or lower. The electrically insulating substrate may not be entirely electrically insulating. For example, a metal substrate such as copper having an insulating layer formed on the surface can be used as the electrically insulative insulating substrate. Copper has a larger heat capacity than common electrical insulators. By using a substrate having a large heat capacity, it is possible to provide a function of a heat bath and easily maintain a temperature difference.

熱電変換材料は、特に制限されないが、例えば、p型熱電変換素子3pはCaCoで形成され、n型熱電変換素子3nはCa0.9La0.1MnOで形成される。n型熱電変換材料のLa組成は厳密に0.1である必要はなく、0.1付近の値であればよい。p型半導体熱電変換素子3pがCaCoを主成分とするセラミックス、n型半導体熱電変換素子3nが、Ca0.9La0.1MnOを主成分とするセラミックスである場合、熱電能力を示すゼーベック係数は0.2mV/℃〜0.3mV/℃となる。n型半導体熱電変換素子6の材料は、Ca0.9La0.1MnOに限らず、R1−Mn(R1:アルカリ土類、アルカリ金属)の酸化物である、ペロブスカイト型酸化物であればよいであろう。n型電熱変換材料として、ストロンチウム酸化物とバリウム酸化物あるいはストロンチウム酸化物、バリウム酸化物、チタン酸化物の複合酸化物を主構成成分とするペロブスカイト型酸化物を用いることもできよう。これらをまとめて、R2−Ti(R2:アルカリ土類、アルカリ金属)の酸化物である、ペロブスカイト型酸化物と呼ぶ。p型半導体熱電変換素子5の材料は、CaCoに限らず、R3−Co(R3:アルカリ土類、アルカリ金属)の酸化物である、ペロブスカイト型酸化物であればよいであろう。 The thermoelectric conversion material is not particularly limited. For example, the p-type thermoelectric conversion element 3p is formed of Ca 3 Co 4 O 9 and the n-type thermoelectric conversion element 3n is formed of Ca 0.9 La 0.1 MnO 3. . The La composition of the n-type thermoelectric conversion material does not have to be strictly 0.1, and may be a value around 0.1. When the p-type semiconductor thermoelectric conversion element 3p is a ceramic mainly composed of Ca 3 Co 4 O 9 and the n-type semiconductor thermoelectric conversion element 3n is a ceramic mainly composed of Ca 0.9 La 0.1 MnO 3 , The Seebeck coefficient indicating the thermoelectric capacity is 0.2 mV / ° C. to 0.3 mV / ° C. The material of the n-type semiconductor thermoelectric conversion element 6 is not limited to Ca 0.9 La 0.1 MnO 3 but may be a perovskite oxide that is an oxide of R1-Mn (R1: alkaline earth, alkali metal). I'll do it. As the n-type electrothermal conversion material, a perovskite oxide mainly composed of a strontium oxide and barium oxide or a composite oxide of strontium oxide, barium oxide, and titanium oxide may be used. These are collectively referred to as a perovskite oxide, which is an oxide of R2-Ti (R2: alkaline earth, alkali metal). The material of the p-type semiconductor thermoelectric conversion element 5 is not limited to Ca 3 Co 4 O 9 but may be a perovskite oxide that is an oxide of R 3 -Co (R 3: alkaline earth, alkali metal). .

各熱電変換素子3の寸法は、特に限定されないが、例えば0.5mm〜3mm平方、高さ2mm〜20mm程度である。電気的絶縁性基板1,11上の接続配線2,12は、銅又はアルミニウムで形成される。クロム等の金属層を組み合わせることもできる。   Although the dimension of each thermoelectric conversion element 3 is not specifically limited, For example, 0.5 mm-3 mm square and height are about 2 mm-20 mm. The connection wirings 2 and 12 on the electrically insulating substrates 1 and 11 are made of copper or aluminum. A metal layer such as chromium can also be combined.

ポーラス絶縁層は、空孔(ポア)の体積割合が40vol%以上、例えば約50vol%程度のエポキシ樹脂層、アクリル樹脂等のポーラス有機樹脂で形成できる。ポーラスシリカ等を用いる可能性もある。反射金属層7は、銅、アルミニウム、銀等の光学的反射率の高い金属、例えば銅で形成される。   The porous insulating layer can be formed of a porous organic resin such as an epoxy resin layer or an acrylic resin having a volume ratio of pores (pores) of 40 vol% or more, for example, about 50 vol%. There is a possibility of using porous silica or the like. The reflective metal layer 7 is made of a metal having a high optical reflectivity such as copper, aluminum, silver, or the like, for example, copper.

熱電変換素子3間の空隙をポーラス絶縁層5,14で埋め込むことにより、気体の対流による熱移動が防止される。ポーラスエポキシ樹脂層は、ポア径5μm〜50μm程度の多数のポアを含み、各ポア内では原理的に気体の対流が可能であるが、ポアの径を小さく制限することにより、対流による熱の移動は制限される。   By filling the gaps between the thermoelectric conversion elements 3 with the porous insulating layers 5 and 14, heat transfer due to gas convection is prevented. The porous epoxy resin layer includes a large number of pores having a pore diameter of about 5 μm to 50 μm. In each pore, convection of gas is possible in principle, but heat transfer by convection is limited by limiting the pore diameter to a small size. Is limited.

樹脂材料が熱輻射に対して透明であると、樹脂層を透過する輻射による熱の移動が可能である。反射金属層7は熱輻射を反射することにより、高温部・低温部間での輻射による熱の移動を制限する。反射金属層7は、熱電変換素子3とは電気的に絶縁された状態であり、熱起電力に対して悪影響は与えない。以下、図1Aに示す熱電変換モジュールの製造方法を概略的に説明する。   If the resin material is transparent to heat radiation, heat can be transferred by radiation that passes through the resin layer. The reflective metal layer 7 reflects heat radiation, thereby restricting heat transfer due to radiation between the high temperature portion and the low temperature portion. The reflective metal layer 7 is electrically insulated from the thermoelectric conversion element 3 and does not adversely affect the thermoelectromotive force. Hereinafter, the manufacturing method of the thermoelectric conversion module shown to FIG. 1A is demonstrated roughly.

図1Bに示すように、表面に接続配線2を形成した下側電気的絶縁性基板1を準備する。配線パターンは異なるが上側電気的絶縁性基板11も同様の構成を有する。接続配線2、12は、熱電変換素子間を電気的に接続するための配線パターンであり、厚さ0.5μm〜10μm程度の銅層である。銅層付きアルミナ基板の銅層をマスクを用いてエッチングしても、アルミナ基板の上にマスクを形成し、銅層をメッキ、蒸着、スパッタリング等で形成し、マスクを除去してその上の銅層をリフトオフしてもよい。また、銅の代わりに銀等を用いてもよく、形成方法も印刷法で行うことも可能である。   As shown in FIG. 1B, a lower electrically insulating substrate 1 having a connection wiring 2 formed on the surface is prepared. Although the wiring pattern is different, the upper electrically insulating substrate 11 has the same configuration. The connection wirings 2 and 12 are wiring patterns for electrically connecting the thermoelectric conversion elements, and are copper layers having a thickness of about 0.5 μm to 10 μm. Even if the copper layer of the alumina substrate with a copper layer is etched using a mask, the mask is formed on the alumina substrate, the copper layer is formed by plating, vapor deposition, sputtering, etc. The layer may be lifted off. Further, silver or the like may be used instead of copper, and the forming method can also be performed by a printing method.

図1Cに示すように、銀ペースト等の導電性接着剤により、熱電変換素子3を接続配線2上に接続する。例えば、フリットガラスレスのAgペーストを用いる。1つの局所配線2上に、1つのp型熱電変換素子3pと1つのn型熱電変換素子3nが接続される。後に接続される、上側電気的絶縁性基板11上の接続配線12が、これらの熱電変換素子対を直列に接続する。   As shown in FIG. 1C, the thermoelectric conversion element 3 is connected onto the connection wiring 2 with a conductive adhesive such as silver paste. For example, a frit glass-less Ag paste is used. On one local wiring 2, one p-type thermoelectric conversion element 3p and one n-type thermoelectric conversion element 3n are connected. A connection wiring 12 on the upper electrically insulating substrate 11 to be connected later connects these thermoelectric conversion element pairs in series.

図1Dに示すように、エポキシ樹脂等のポーラス樹脂層5を準備する。   As shown in FIG. 1D, a porous resin layer 5 such as an epoxy resin is prepared.

図1Eに示すように、ポーラス樹脂層5の上にホトレジストパターン6を形成する。ホトレジストパターン6は、熱電変換素子3と反射金属層7との間に絶縁領域を残すためのパターンであり、熱電変換素子の断面形状を外側に所定距離、20μm〜200μm、例えば100μm張り出した平面形状を有する。後に、各パターン6の中央部は、矩形ないし円形の平面形状に打ち抜かれて、熱電変換素子用貫通孔を形成する。従って、各パターン6の周辺部は必須であるが、打ち抜かれる部分は、パターン6が有っても無くてもよい。   As shown in FIG. 1E, a photoresist pattern 6 is formed on the porous resin layer 5. The photoresist pattern 6 is a pattern for leaving an insulating region between the thermoelectric conversion element 3 and the reflective metal layer 7, and is a planar shape in which the cross-sectional shape of the thermoelectric conversion element protrudes outside by a predetermined distance of 20 μm to 200 μm, for example, 100 μm. Have Later, the central portion of each pattern 6 is punched into a rectangular or circular planar shape to form a through hole for a thermoelectric conversion element. Accordingly, the peripheral portion of each pattern 6 is essential, but the portion to be punched may or may not have the pattern 6.

図1Fに示すように、スパッタリング、真空蒸着等により、ポーラス樹脂層5の上に、厚さ80nm〜150nm程度の銅製反射金属層7を形成する。銅の変わりにアルミニウムや銀等を用いることもできる。ホトレジストパターン6を除去することにより、ホトレジストパターン6上の反射金属層7をリフトオフする。反射金属層7に開口部8が形成される。   As shown in FIG. 1F, a copper reflective metal layer 7 having a thickness of about 80 nm to 150 nm is formed on the porous resin layer 5 by sputtering, vacuum deposition, or the like. Aluminum, silver, or the like can be used instead of copper. By removing the photoresist pattern 6, the reflective metal layer 7 on the photoresist pattern 6 is lifted off. An opening 8 is formed in the reflective metal layer 7.

図1Gに示すように、開口8内に露出したポーラス樹脂層5に、熱電変換素子通過用の貫通孔9をプレス加工で打ち抜く。その後、樹脂材料の硬化処理を行ってもよい。なお、プレス加工による孔開けに換え、レーザ加工による孔開け等を行うこともできる。レーザ加工の場合は、熱電変換素子の平面形状を角のない円形等とすることが好ましい。   As shown in FIG. 1G, a through hole 9 for passing a thermoelectric conversion element is punched into the porous resin layer 5 exposed in the opening 8 by press working. Thereafter, the resin material may be cured. It should be noted that drilling by laser processing or the like can be performed instead of drilling by pressing. In the case of laser processing, it is preferable that the planar shape of the thermoelectric conversion element is a circle with no corners.

図1Hに示すように、図1Cに示した熱電変換素子3を接続した下側電気的絶縁性基板1上方に貫通孔9を形成したポーラス樹脂層5を位置決めし、降下させて、貫通孔9に熱電変換素子3を通す。スペーサ13又は保持具により高さを固定する。   As shown in FIG. 1H, the porous resin layer 5 in which the through hole 9 is formed is positioned above the lower electrically insulating substrate 1 connected to the thermoelectric conversion element 3 shown in FIG. Pass the thermoelectric conversion element 3 through. The height is fixed by the spacer 13 or the holder.

図1Iに示すように、上側電気的絶縁性基板11の接続配線を銀ペースト等の導電性接着剤を介して、熱電変換素子の頂面に接続する。この段階では、上側絶縁運基板11と下側電気的絶縁性基板1の間に熱電変換素子が接続され、熱電変換素子の高さ方向の中間に反射金属層7を形成したポーラス樹脂層5が配置された状態である。各熱電変換素子3の側面とポーラス樹脂層5の間にはギャップが存在し、ポーラス樹脂層の上下には空隙が存在する。   As shown in FIG. 1I, the connection wiring of the upper electrically insulating substrate 11 is connected to the top surface of the thermoelectric conversion element through a conductive adhesive such as silver paste. At this stage, a thermoelectric conversion element is connected between the upper insulating substrate 11 and the lower electrically insulating substrate 1, and a porous resin layer 5 having a reflective metal layer 7 formed in the middle in the height direction of the thermoelectric conversion element is provided. It is in a state of being arranged. There is a gap between the side surface of each thermoelectric conversion element 3 and the porous resin layer 5, and there are voids above and below the porous resin layer.

図1Jに示すように、図1Iに示す構造体をインジェクションモールド装置の金型内に配置し、ポーラスエポキシ樹脂を注入する。注入されたポーラスエポキシ樹脂は、ポーラス樹脂層5の上下の空隙および各熱電変換素子3の側面とポーラス樹脂層5の間のギャップを埋める樹脂層14となる。必要に応じて、樹脂材料の硬化処理を行う。   As shown in FIG. 1J, the structure shown in FIG. 1I is placed in a mold of an injection mold apparatus, and a porous epoxy resin is injected. The injected porous epoxy resin becomes a resin layer 14 that fills the gaps between the upper and lower gaps of the porous resin layer 5 and the side surfaces of the thermoelectric conversion elements 3 and the porous resin layer 5. If necessary, the resin material is cured.

このようにして、図1Aに示す熱電変換モジュールを作成することができる。熱電変換素子間の空間がポーラス樹脂層5,14、反射金属層7で埋め込まれるため、対流は生じない。樹脂層はポーラスであり、樹脂の体積比率を低減すると共に、伝導による熱移動はポアを迂回するため、樹脂層の熱抵抗を高くすることができる。反射金属層7が輻射線を反射するので、高温部から低温部への輻射による熱の移動が防止される。   In this way, the thermoelectric conversion module shown in FIG. 1A can be created. Since the space between the thermoelectric conversion elements is filled with the porous resin layers 5 and 14 and the reflective metal layer 7, no convection occurs. Since the resin layer is porous and reduces the volume ratio of the resin, heat transfer by conduction bypasses the pore, so that the thermal resistance of the resin layer can be increased. Since the reflective metal layer 7 reflects radiation, the movement of heat due to radiation from the high temperature portion to the low temperature portion is prevented.

図2A〜2Dは、実施例1の変形例を示す。   2A to 2D show a modification of the first embodiment.

図2Aは、図1Eに示すホトレジストパターンを内実の矩形パターンから中空の矩形ループ状パターンに変更した場合を示す。上述のように、矩形の中央部は熱電変換素子を通過させるために打ち抜くので、反射金属層はなくてもあってもよい。ホトレジストパターンの幅が狭くなるので、リフトオフ工程が確実に、且つ短時間になる。本変形例では、矩形内部に反射金属層が形成されるが孔の打ち抜き加工により除去される。ホトレジストパターンにより、反射金属層が形成されない絶縁領域が孔の全周に亘り、所定幅、例えば20μm以上残るようにする。   FIG. 2A shows a case where the photoresist pattern shown in FIG. 1E is changed from a solid rectangular pattern to a hollow rectangular loop pattern. As described above, the central portion of the rectangle is punched to allow the thermoelectric conversion element to pass therethrough, and therefore the reflective metal layer may be omitted. Since the width of the photoresist pattern is narrowed, the lift-off process can be performed reliably and in a short time. In this modification, a reflective metal layer is formed inside the rectangle, but is removed by punching a hole. By the photoresist pattern, an insulating region in which no reflective metal layer is formed is left over a predetermined width, for example, 20 μm or more, over the entire circumference of the hole.

図2Bは、図1Cに示す熱電変換素子の接続に先立ち、下側電気的絶縁性基板1上方に、スペーサ13を介して、熱電変換素子通過用孔9を形成した、図1Gに示すポーラス樹脂層5を接着剤などにより接続する場合を示す。熱電素子接着に際して、ポーラス樹脂層5がガイドとして機能する。   2B shows a porous resin shown in FIG. 1G in which a thermoelectric conversion element passage hole 9 is formed above the lower electrically insulating substrate 1 through a spacer 13 prior to connection of the thermoelectric conversion element shown in FIG. 1C. The case where the layer 5 is connected by an adhesive or the like is shown. When the thermoelectric element is bonded, the porous resin layer 5 functions as a guide.

図2Cは、樹脂層にポアを含まない樹脂層15とし、その上下両面に反射金属層7,17を形成する場合を示す。2層の反射金属層7,17により、高温部からの輻射線をより確実に反射する。なお、ポーラス樹脂層の両面に反射金属層を形成することもできる。ポアを含まない樹脂層15の1面に反射金属層を形成することもできる。   FIG. 2C shows a case where the resin layer 15 does not include pores in the resin layer and the reflective metal layers 7 and 17 are formed on both upper and lower surfaces thereof. The two reflective metal layers 7 and 17 more reliably reflect the radiation from the high temperature part. A reflective metal layer can also be formed on both sides of the porous resin layer. A reflective metal layer can also be formed on one surface of the resin layer 15 that does not contain pores.

図2Dは、反射金属層7を省略し、上下の電気的絶縁性基板1,11間の、熱電変換素子間領域をポーラス樹脂層19で充填する構成を示す。ポアは、内部の気体と周囲の樹脂との間に光学界面を形成する。ポアの径を小さく、その数を多くすることにより、ポーラス樹脂層19は散乱体が分布した電気的絶縁性媒体となり、高温部から低温部に向かう輻射線を散乱し、低温部に到達することを抑制する。また、ポアが熱伝導を抑制する。   FIG. 2D shows a configuration in which the reflective metal layer 7 is omitted and the region between the thermoelectric conversion elements between the upper and lower electrically insulating substrates 1 and 11 is filled with the porous resin layer 19. The pore forms an optical interface between the internal gas and the surrounding resin. By reducing the pore diameter and increasing the number thereof, the porous resin layer 19 becomes an electrically insulating medium in which scatterers are distributed, and scatters radiation rays from the high temperature portion toward the low temperature portion and reaches the low temperature portion. Suppress. Moreover, the pore suppresses heat conduction.

図3A、3Bは、実施例2による熱電変換モジュールの概略的な平面図、断面図である。熱電変換素子3を囲む樹脂層5の表面に峰上の勾配を形成する。格子状の樹脂層5は、その中央部が高く、熱電変換素子3に向かって降下する傾斜面を有する。図3Bに示すように樹脂層5の周辺を除いた領域に、反射金属層7が形成されている。上方より入射する輻射線は、反射金属層7で反射される。反射金属層7が熱電変換素子3に向かって倒れこむ傾きを有するので、全体として反射した輻射線は熱電変換素子3の上部を照射し、温度を上昇させる機能を果たす。温度差を維持し、さらに強調する可能性を持つ。熱電変換素子間の間隔が狭い場合、樹脂層5の表面に複雑な形状を転写することは容易でない場合もある。   3A and 3B are a schematic plan view and a cross-sectional view of the thermoelectric conversion module according to the second embodiment. A ridged gradient is formed on the surface of the resin layer 5 surrounding the thermoelectric conversion element 3. The lattice-shaped resin layer 5 has a high central portion and an inclined surface that descends toward the thermoelectric conversion element 3. As shown in FIG. 3B, a reflective metal layer 7 is formed in a region excluding the periphery of the resin layer 5. Radiation rays incident from above are reflected by the reflective metal layer 7. Since the reflective metal layer 7 has an inclination that falls toward the thermoelectric conversion element 3, the reflected radiation as a whole irradiates the upper part of the thermoelectric conversion element 3 and functions to increase the temperature. Maintains the temperature difference and has the potential for further emphasis. When the interval between the thermoelectric conversion elements is narrow, it may not be easy to transfer a complicated shape to the surface of the resin layer 5.

図3C,3Dは、勾配を有する表面形状を簡略化できる変形例を示す平面図、断面図である。熱電変換素子3x、3yがそれぞれ千鳥格子状に分布し、合わせて正方格子状の分布を形成する。隣接する熱電変換素子3x、3y間で、樹脂層5は熱電変換素子3xに向かって倒れこむ傾斜を有する。樹脂層5において、熱電変換素子3xを囲む4つの矩形部分、4つの三角部分が熱電変換素子3xに向かって倒れこむ傾斜を有する。従って上方より入射する輻射線は、反射金属層7で反射され、全体として熱電変換素子3xの上部を照射する。   3C and 3D are a plan view and a cross-sectional view showing a modified example that can simplify the surface shape having a gradient. The thermoelectric conversion elements 3x and 3y are each distributed in a staggered pattern, and a square lattice distribution is formed together. Between the adjacent thermoelectric conversion elements 3x and 3y, the resin layer 5 has an inclination that falls toward the thermoelectric conversion element 3x. In the resin layer 5, four rectangular portions surrounding the thermoelectric conversion element 3 x and four triangular portions have inclinations that collapse toward the thermoelectric conversion element 3 x. Accordingly, the radiation rays incident from above are reflected by the reflective metal layer 7 and irradiate the upper part of the thermoelectric conversion element 3x as a whole.

垂直入射し、反射した輻射線は、熱電変換素子3yにはほとんど入射しない。n型熱電変換素子とp型熱電変換素子を直列接続する場合、隣接する熱電変換素子は導電型が逆になる配置が一般的である。n型熱電変換材料と、p型熱電変換材料とは、一般的に熱電変換効率に差がある。本変形例の構成により、熱電変換効率が小さい方の熱電変換素子に反射輻射線を集中させ、バランスを改善することができる。   The incident radiation that is perpendicularly incident and reflected hardly enters the thermoelectric conversion element 3y. When an n-type thermoelectric conversion element and a p-type thermoelectric conversion element are connected in series, the adjacent thermoelectric conversion elements are generally arranged so that their conductivity types are reversed. Generally, there is a difference in thermoelectric conversion efficiency between an n-type thermoelectric conversion material and a p-type thermoelectric conversion material. With the configuration of this modification, the reflected radiation can be concentrated on the thermoelectric conversion element having the smaller thermoelectric conversion efficiency, and the balance can be improved.

以上、実施例および変形例に沿って本発明を説明したが、本発明はこれらに限定されるものではない。例えば平面形状が矩形の熱電変換素子を示したが、熱電変換素子の平面形状は円形等他の形状でもよい。熱電変換素子間の空間をポーラス樹脂で充填する場合を説明したが、ポーラス樹脂はエポキシ、アクリルに限らず、他の有機材料を用いることもできる。ポーラスシリカ等無機系のポーラス絶縁体を用いることもできる。反射金属層はCu,Al,Agなどの他、光学的反射率の高い金属で形成することができる。その他種々の変形、置換、改良、組み合わせ等が可能なことは、当業者に自明であろう。   As mentioned above, although this invention was demonstrated along the Example and the modification, this invention is not limited to these. For example, although a thermoelectric conversion element having a rectangular planar shape is shown, the planar shape of the thermoelectric conversion element may be other shapes such as a circle. Although the case where the space between the thermoelectric conversion elements is filled with the porous resin has been described, the porous resin is not limited to epoxy and acrylic, and other organic materials can also be used. An inorganic porous insulator such as porous silica can also be used. The reflective metal layer can be formed of a metal having high optical reflectivity other than Cu, Al, Ag, or the like. It will be apparent to those skilled in the art that other various modifications, substitutions, improvements, combinations, and the like are possible.

1、11 電気的絶縁性基板、
2、12 接続配線(局所配線)、
3 熱電変換素子、
5,14 ポーラス絶縁層、
6 フォトレジストマスク、
7、17 反射金属層、
8 (反射金属層の)開口、
9 (絶縁層5の)貫通孔、
13 スペーサ、
15 絶縁層、
19 ポーラス絶縁層、
1,11 Electrically insulating substrate,
2, 12 Connection wiring (local wiring),
3 thermoelectric conversion elements,
5,14 porous insulating layer,
6 photoresist mask,
7, 17 Reflective metal layer,
8 opening (of reflective metal layer),
9 Through hole (of insulating layer 5),
13 spacer,
15 insulating layer,
19 porous insulating layer,

Claims (6)

一対の電気的絶縁性基板と、
前記一対の電気的絶縁性基板間に挟持された複数の熱電変換素子と、
前記一対の電気的絶縁性基板の対向面上に形成され、前記複数の熱電変換素子を接続する接続配線と、
前記一対の電気的絶縁性基板間で、前記複数の熱電変換素子間の領域を充填するポーラス絶縁層と、
を有する熱電変換モジュール。
A pair of electrically insulating substrates;
A plurality of thermoelectric conversion elements sandwiched between the pair of electrically insulating substrates;
A connection wiring that is formed on opposing surfaces of the pair of electrically insulating substrates and connects the plurality of thermoelectric conversion elements;
A porous insulating layer filling a region between the plurality of thermoelectric conversion elements between the pair of electrically insulating substrates;
A thermoelectric conversion module.
前記ポーラス絶縁層の高さ方向中間部に配置され、前記熱電変換素子からは電気的に絶縁された反射金属層をさらに有する請求項1記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, further comprising a reflective metal layer that is disposed at an intermediate portion in the height direction of the porous insulating layer and is electrically insulated from the thermoelectric conversion element. 前記反射金属層が、隣接する前記熱電変換素子間で中央から両側に向かって傾斜する表面を有する請求項2記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 2, wherein the reflective metal layer has a surface inclined from the center toward both sides between the adjacent thermoelectric conversion elements. 前記反射金属層が、隣接する前記熱電変換素子間で一方から他方に向かって傾斜する表面を有する請求項2記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 2, wherein the reflective metal layer has a surface inclined from one to the other between the adjacent thermoelectric conversion elements. 接続配線を形成した一方の電気的絶縁性基板上に複数の熱電変換素子の底面を接続し、
接続配線を形成した他方の電気的絶縁性基板を前記複数の熱電変換素子の頂面に接続し、
前記一対の電気的絶縁性基板間で、前記複数の熱電変換素子間の領域にポーラス絶縁層を射出成形する、
熱電変換モジュールの製造方法。
Connecting the bottom surfaces of a plurality of thermoelectric conversion elements on one electrically insulating substrate on which connection wiring is formed,
Connecting the other electrically insulating substrate on which the connection wiring is formed to the top surfaces of the plurality of thermoelectric conversion elements;
Between the pair of electrically insulating substrates, a porous insulating layer is injection molded in a region between the plurality of thermoelectric conversion elements;
Manufacturing method of thermoelectric conversion module.
前記複数の熱電変換素子の頂面に前記他方の電気的絶縁性基板を接続する前に、前記複数の熱電変換素子を通過させる貫通孔を形成し、前記貫通孔から離隔した領域表面に反射金属層を形成した絶縁層を、前記熱電変換素子の高さの中間位置に配置する、請求項5記載の熱電変換モジュールの製造方法。   Before connecting the other electrically insulating substrate to the top surfaces of the plurality of thermoelectric conversion elements, a through-hole through which the plurality of thermoelectric conversion elements pass is formed, and a reflective metal is formed on the surface of the region separated from the through-hole. The manufacturing method of the thermoelectric conversion module of Claim 5 which arrange | positions the insulating layer in which the layer was formed in the intermediate position of the height of the said thermoelectric conversion element.
JP2010179014A 2010-08-09 2010-08-09 Thermoelectric conversion module and manufacturing method thereof Expired - Fee Related JP5598152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179014A JP5598152B2 (en) 2010-08-09 2010-08-09 Thermoelectric conversion module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179014A JP5598152B2 (en) 2010-08-09 2010-08-09 Thermoelectric conversion module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012038980A true JP2012038980A (en) 2012-02-23
JP5598152B2 JP5598152B2 (en) 2014-10-01

Family

ID=45850626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179014A Expired - Fee Related JP5598152B2 (en) 2010-08-09 2010-08-09 Thermoelectric conversion module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5598152B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129057A1 (en) * 2012-02-27 2013-09-06 株式会社Kelk Thermoelectric module, thermoelectric power generating apparatus, and thermoelectric power generator
WO2014084363A1 (en) * 2012-11-29 2014-06-05 京セラ株式会社 Thermoelectric module
JP2014123596A (en) * 2012-12-20 2014-07-03 Kyocera Corp Thermoelectric module
JP2016025325A (en) * 2014-07-24 2016-02-08 パナソニックIpマネジメント株式会社 Thermoelectric conversion module
JP2016077085A (en) * 2014-10-07 2016-05-12 株式会社アクトリー Photovoltaic power generation system
JPWO2014024945A1 (en) * 2012-08-07 2016-07-25 国立大学法人京都工芸繊維大学 Calorimeter and calorimeter design method
JPWO2014064755A1 (en) * 2012-10-22 2016-09-05 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and thermoelectric power generation electronic device
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof
CN112768596A (en) * 2021-02-05 2021-05-07 北京航空航天大学杭州创新研究院 Method for preparing high-integration thermoelectric thin film device
CN114556600A (en) * 2019-10-24 2022-05-27 三菱电机株式会社 Thermoelectric conversion element module and method for manufacturing thermoelectric conversion element module
WO2022196724A1 (en) * 2021-03-16 2022-09-22 古河電気工業株式会社 Thermoelectric conversion module
WO2023176581A1 (en) * 2022-03-16 2023-09-21 古河電気工業株式会社 Thermoelectric conversion module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287678A (en) * 1986-06-06 1987-12-14 Matsushita Refrig Co Thermoelectric effect element
JP2003008087A (en) * 2001-04-18 2003-01-10 Suzuki Sogyo Co Ltd Thermoelectric element module and its manufacturing method
JP2004241404A (en) * 2003-02-03 2004-08-26 Matsushita Electric Ind Co Ltd Thermoelectric module and its manufacturing method
JP2005079347A (en) * 2003-08-29 2005-03-24 Toshiba Corp Thermoelectric conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287678A (en) * 1986-06-06 1987-12-14 Matsushita Refrig Co Thermoelectric effect element
JP2003008087A (en) * 2001-04-18 2003-01-10 Suzuki Sogyo Co Ltd Thermoelectric element module and its manufacturing method
JP2004241404A (en) * 2003-02-03 2004-08-26 Matsushita Electric Ind Co Ltd Thermoelectric module and its manufacturing method
JP2005079347A (en) * 2003-08-29 2005-03-24 Toshiba Corp Thermoelectric conversion device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793462B2 (en) 2012-02-27 2017-10-17 Kelk Ltd. Thermoelectric module, thermoelectric power generating apparatus, and thermoelectric generator
CN104115294A (en) * 2012-02-27 2014-10-22 Kelk株式会社 Thermoelectric module, thermoelectric power generating apparatus, and thermoelectric power generator
JPWO2013129057A1 (en) * 2012-02-27 2015-07-30 株式会社Kelk Thermoelectric module, thermoelectric generator and thermoelectric generator
CN104115294B (en) * 2012-02-27 2016-11-23 Kelk株式会社 Electrothermal module, thermoelectric generating device and thermoelectric generator
WO2013129057A1 (en) * 2012-02-27 2013-09-06 株式会社Kelk Thermoelectric module, thermoelectric power generating apparatus, and thermoelectric power generator
JPWO2014024945A1 (en) * 2012-08-07 2016-07-25 国立大学法人京都工芸繊維大学 Calorimeter and calorimeter design method
US9846089B2 (en) 2012-08-07 2017-12-19 National University Corporation Kyoto Institute Of Technology Calorimeter and method for designing calorimeter
JPWO2014064755A1 (en) * 2012-10-22 2016-09-05 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and thermoelectric power generation electronic device
CN104838511B (en) * 2012-11-29 2017-06-13 京瓷株式会社 Electrothermal module
JP5956608B2 (en) * 2012-11-29 2016-07-27 京セラ株式会社 Thermoelectric module
WO2014084363A1 (en) * 2012-11-29 2014-06-05 京セラ株式会社 Thermoelectric module
CN104838511A (en) * 2012-11-29 2015-08-12 京瓷株式会社 Thermoelectric module
JPWO2014084363A1 (en) * 2012-11-29 2017-01-05 京セラ株式会社 Thermoelectric module
JP2014123596A (en) * 2012-12-20 2014-07-03 Kyocera Corp Thermoelectric module
JP2016025325A (en) * 2014-07-24 2016-02-08 パナソニックIpマネジメント株式会社 Thermoelectric conversion module
JP2016077085A (en) * 2014-10-07 2016-05-12 株式会社アクトリー Photovoltaic power generation system
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof
CN114556600A (en) * 2019-10-24 2022-05-27 三菱电机株式会社 Thermoelectric conversion element module and method for manufacturing thermoelectric conversion element module
CN112768596A (en) * 2021-02-05 2021-05-07 北京航空航天大学杭州创新研究院 Method for preparing high-integration thermoelectric thin film device
WO2022196724A1 (en) * 2021-03-16 2022-09-22 古河電気工業株式会社 Thermoelectric conversion module
WO2023176581A1 (en) * 2022-03-16 2023-09-21 古河電気工業株式会社 Thermoelectric conversion module

Also Published As

Publication number Publication date
JP5598152B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5598152B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP5696261B1 (en) Thermoelectric conversion module
JP5209075B2 (en) Electronic device and manufacturing method thereof
JP5956608B2 (en) Thermoelectric module
US20110048489A1 (en) Combined thermoelectric/photovoltaic device for high heat flux applications and method of making the same
JP2007227508A (en) Thermoelectric conversion module, and its manufacturing method
RU2546830C2 (en) Thermoelectric element
JP2006332188A (en) Thermoelectric power generation module
KR20230115966A (en) Thermoelectric device moudule
US9240535B2 (en) Light-emitting-element mount substrate and LED device
KR20120028687A (en) Asymmetry thermoelectric module and manufacturing method thereof
JP2019149501A (en) Wiring board and electronic device
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
KR101460880B1 (en) Fabrication methods of thermoelectric thin film modules using moulds consisting of via-holes and thermoelectric thin film modules produced using the same method
KR101680422B1 (en) Thermoelectric modules consisting of thermal-via electrodes and Fabrication method thereof
JP2005259944A (en) Thin film thermo-electronic semiconductor device and manufacturing method thereof
KR20180029409A (en) Thermoelectric element
JP2004221109A (en) Thermoelectric element module and manufacturing method therefor
KR20200010784A (en) Flexible thermoelectric module and fabrication method thereof
CN212517193U (en) High-thermal-conductivity silicon carbide device packaging structure
JP4362303B2 (en) Thermoelectric element and manufacturing method thereof
KR102456680B1 (en) Thermoelectric element
KR20160002608A (en) Thermoelectric modules consisting of thermal-via electrodes and Fabrication method thereof
KR102373052B1 (en) Thermoelectric device moudule and device using the same
KR20150084314A (en) Thermoelectric modules consisting of thermal-via electrodes and Fabrication method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5598152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees