JP2006332188A - Thermoelectric power generation module - Google Patents

Thermoelectric power generation module Download PDF

Info

Publication number
JP2006332188A
JP2006332188A JP2005151101A JP2005151101A JP2006332188A JP 2006332188 A JP2006332188 A JP 2006332188A JP 2005151101 A JP2005151101 A JP 2005151101A JP 2005151101 A JP2005151101 A JP 2005151101A JP 2006332188 A JP2006332188 A JP 2006332188A
Authority
JP
Japan
Prior art keywords
power generation
thermoelectric power
insulator
high temperature
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005151101A
Other languages
Japanese (ja)
Inventor
Yoshiki Fukada
善樹 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005151101A priority Critical patent/JP2006332188A/en
Publication of JP2006332188A publication Critical patent/JP2006332188A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric power generation module which can keep appropriate power generation performance for a long time even under severe application condition where a heat collector on the high-temerpature side becomes higher. <P>SOLUTION: When a heat collecting substrate 1 becomes higher in temperature while it is being used, an electrode plate 5 and the high-temperature ends of respective thermoelectric power generation elements N and P are got in contact with each other flexibly and appropriately by means of a melted low-melting-point metal layer 8A. As a result, appropriate thermal and electric conduction is realized between the heat collecting substrate 1 and the high-temperature ends of the respective thermoelectric power generation elements N and P, and the generation of thermal stress between the electrode plate 5 and the high-temperature ends of the respective thermoelectric power generation elements N and P can be prevented in advance. In addition, an insulator 9 blocks in advance the recondensation of vapor on the circumferential surface of the thermoelectric power generation elements N and P that is generated from melted low-melting-point metal layers 8A and 8B, thereby keeping appropriate insulation on the circumferential surface of the thermoelectric power generation elements N and P. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱エネルギーを電気エネルギーに直接変換する熱電発電モジュール(熱電変換モジュール)に関するものである。   The present invention relates to a thermoelectric power generation module (thermoelectric conversion module) that directly converts thermal energy into electrical energy.

熱電発電モジュールは、ゼーベック効果により温度差に応じた熱起電力を発生する2種類の極性の異なる熱電発電素子(熱電変換素子)、すなわち、n型熱電発電素子およびp型熱電発電素子を高温側の集熱部と低温側の放熱部との間に複数個設置し、これらの熱電発電素子の端部同士を電極を介して交互に直列に接続したものであり、熱エネルギーを電気エネルギーに直接変換することができる。   The thermoelectric power generation module generates two types of thermoelectric power generation elements (thermoelectric conversion elements) having different polarities that generate a thermoelectromotive force according to a temperature difference by the Seebeck effect, that is, an n-type thermoelectric power generation element and a p-type thermoelectric power generation element. Are installed between the heat collecting part and the low-temperature heat radiation part, and the ends of these thermoelectric power generation elements are alternately connected in series via electrodes, and heat energy is directly converted into electrical energy. Can be converted.

ところで、この種の熱電発電モジュールにおいて、熱電発電素子の高温端部と電極とがロウ付けなどにより接合されていると、両者の熱膨張の相違から熱電発電素子の高温端部と電極との間に熱応力が発生し、例えば高温側が500℃以上となる使用条件下では、熱電発電素子の高温端部と電極との間に大きな熱応力が発生してその接合部が破壊する恐れがある。   By the way, in this type of thermoelectric power generation module, when the high temperature end portion of the thermoelectric power generation element and the electrode are joined by brazing or the like, the difference between the two thermal expansion causes a difference between the high temperature end portion of the thermoelectric power generation element and the electrode. For example, under a use condition in which the high temperature side is 500 ° C. or higher, a large thermal stress is generated between the high temperature end portion of the thermoelectric power generation element and the electrode, and the joint portion may be broken.

このような技術的背景から、熱電発電素子の高温端部と電極との間に発生する熱応力に対抗して両者の接合強度を高めるため、熱電発電素子の高温端部の表面に拡散バリア層を設けることが提案されている(例えば特許文献1参照)。
特開平9−243201号公報(段落番号32、図1)
From such a technical background, a diffusion barrier layer is formed on the surface of the high temperature end of the thermoelectric power generation element in order to increase the bonding strength between the high temperature end of the thermoelectric power generation element and the electrode against the thermal stress generated between the electrodes. Has been proposed (see, for example, Patent Document 1).
JP-A-9-243201 (paragraph number 32, FIG. 1)

ところで、特許文献1に記載されているような熱電発電モジュールでは、高温側の集熱部が更に高温となって熱電発電素子の高温端部と電極との間に更に大きな熱応力が発生すると、その大きな熱応力で熱電発電素子の高温端部と電極との接合部が破壊して故障する恐れがある。   By the way, in the thermoelectric power generation module as described in Patent Document 1, when the heat collecting portion on the high temperature side becomes further high temperature and a larger thermal stress is generated between the high temperature end portion of the thermoelectric power generating element and the electrode, Due to the large thermal stress, the joint between the high temperature end portion of the thermoelectric power generation element and the electrode may break down and break down.

そこで、本発明は、高温側の集熱部が更に高温となる厳しい使用条件下においても長期に亘り良好な発電性能を維持できる熱電発電モジュールを提供することを課題とする。   Then, this invention makes it a subject to provide the thermoelectric power generation module which can maintain favorable electric power generation performance over a long period of time also under the severe use conditions in which the high temperature side heat collecting part becomes still higher temperature.

本発明に係る熱電発電モジュールは、高温側の集熱部と低温側の放熱部との間に極性の異なる熱電発電素子が複数配置され、各熱電発電素子の高温端部同士および低温端部同士が電極を介して接続されることで極性の異なる熱電発電素子が交互に直列に接続される熱電発電モジュールであって、各熱電発電素子の高温部と電極との間には低融点金属層が介設され、各熱電発電素子の周囲には絶縁体が充填されていることを特徴とする。   In the thermoelectric power generation module according to the present invention, a plurality of thermoelectric power generation elements having different polarities are arranged between the high temperature side heat collecting section and the low temperature side heat radiation section, and the high temperature ends and the low temperature ends of each thermoelectric generation element Are thermoelectric power generation modules in which thermoelectric power generation elements having different polarities are alternately connected in series by being connected via electrodes, and a low melting point metal layer is formed between the high temperature portion of each thermoelectric power generation element and the electrode. The thermoelectric power generation element is interposed and filled with an insulator.

本発明に係る熱電発電モジュールでは、使用状態において集熱部が高温となると、各熱電発電素子の高温端部と電極との間の低融点金属層が溶融し、この溶融した低融点金属層を介して電極と各熱電発電素子の高温端部とが柔軟性をもって良好に接触する。その結果、集熱部から各熱電発電素子の高温端部への熱伝導および電気伝導が良好に行われるようになり、しかも、電極と各熱電発電素子の高温端部との間の熱応力の発生が未然に防止される。また、溶融した低融点金属から蒸気が発生して各熱電発電素子の周面に再凝結するのを各熱電発電素子の周囲に充填された絶縁体が未然に阻止するため、各熱電発電素子の周面の絶縁性が良好に保たれる。   In the thermoelectric power generation module according to the present invention, when the heat collecting part becomes high in use, the low melting point metal layer between the high temperature end of each thermoelectric power generation element and the electrode is melted, and the melted low melting point metal layer is Thus, the electrode and the high temperature end portion of each thermoelectric generator are in good contact with flexibility. As a result, heat conduction and electrical conduction from the heat collecting part to the high temperature end of each thermoelectric power generation element can be performed well, and the thermal stress between the electrode and the high temperature end of each thermoelectric power generation element is improved. Occurrence is prevented in advance. In addition, since the insulator filled around each thermoelectric power generation element prevents vapor from being generated from the molten low melting point metal and recondensing on the peripheral surface of each thermoelectric power generation element, each thermoelectric power generation element The insulation of the peripheral surface is kept good.

本発明に係る熱電発電モジュールにおいて、相互に接着された中空粒子の集合体で絶縁体が構成されていると、絶縁体が各中空粒子の弾力に基づく柔軟性を発揮して熱電発電素子の熱膨張を吸収し、その破壊を防止するので好ましい。   In the thermoelectric power generation module according to the present invention, when the insulator is composed of an aggregate of hollow particles bonded to each other, the insulator exhibits flexibility based on the elasticity of each hollow particle, and the heat of the thermoelectric power generation element. It is preferable because it absorbs expansion and prevents its destruction.

また、絶縁体がガラス系接着剤で相互に接着された中空ガラスビーズの集合体で構成されていると、絶縁体が中空ガラスビーズの弾力に基づく柔軟性および高い耐熱性を発揮して熱電発電素子の熱膨張を確実に吸収し、その破壊を確実に防止するので好ましい。   In addition, when the insulator is composed of an aggregate of hollow glass beads bonded to each other with a glass-based adhesive, the insulator exhibits flexibility and high heat resistance based on the elasticity of the hollow glass beads, and thermoelectric power generation This is preferable because the thermal expansion of the element is surely absorbed and its destruction is reliably prevented.

本発明に係る熱電発電モジュールでは、使用状態において溶融した低融点金属層を介して電極と各熱電発電素子の高温端部とが柔軟性をもって良好に接触するため、集熱部から各熱電発電素子の高温端部への熱伝導および電気伝導が良好に行われるようになり、しかも、電極と各熱電発電素子の高温端部との間の熱応力の発生が未然に防止される。また、溶融した低融点金属から蒸気が発生して各熱電発電素子の周面に再凝結するのを各熱電発電素子の周囲に充填された絶縁体が未然に阻止するため、各熱電発電素子の周面の絶縁性が良好に保たれる。従って、本発明の熱電発電モジュールによれば、集熱部が更に高温となる厳しい使用条件下においても長期に亘り良好な発電性能を維持することできる。   In the thermoelectric power generation module according to the present invention, since the electrode and the high-temperature end of each thermoelectric power generation element are in good contact with each other through the low melting point metal layer melted in use, each thermoelectric power generation element from the heat collecting section Thus, heat conduction and electrical conduction to the high temperature end portion of the thermoelectric generator are performed well, and generation of thermal stress between the electrode and the high temperature end portion of each thermoelectric power generation element is prevented. In addition, the insulator filled around each thermoelectric power generation element prevents the generation of vapor from the molten low melting point metal and recondensation on the peripheral surface of each thermoelectric power generation element. The insulation of the peripheral surface is kept good. Therefore, according to the thermoelectric power generation module of the present invention, good power generation performance can be maintained over a long period of time even under severe use conditions where the heat collecting part is further heated.

本発明の熱電発電モジュールにおいて、相互に接着された中空粒子の集合体で絶縁体が構成されている場合、絶縁体が各中空粒子の弾力に基づく柔軟性を発揮して熱電発電素子の熱膨張を吸収するため、熱電発電素子の破壊を未然に防止して一層良好な発電性能を維持することできる。   In the thermoelectric power generation module of the present invention, when the insulator is composed of an aggregate of hollow particles bonded to each other, the insulator exhibits flexibility based on the elasticity of each hollow particle, and the thermal expansion of the thermoelectric power generation element Therefore, it is possible to prevent destruction of the thermoelectric power generation element and maintain better power generation performance.

また、絶縁体がガラス系接着剤で相互に接着された中空ガラスビーズの集合体で構成されている場合、絶縁体が中空ガラスビーズの弾力に基づく柔軟性および高い耐熱性を発揮して熱電発電素子の熱膨張を確実に吸収するため、熱電発電素子の破壊を確実に防止してより一層良好な発電性能を維持することできる。   In addition, when the insulator is composed of an assembly of hollow glass beads bonded to each other with a glass-based adhesive, the insulator exhibits flexibility and high heat resistance based on the elasticity of the hollow glass beads, and thermoelectric power generation Since the thermal expansion of the element is reliably absorbed, it is possible to reliably prevent destruction of the thermoelectric power generation element and maintain even better power generation performance.

以下、図面を参照して本発明に係る熱電発電モジュールの実施の形態を説明する。参照する図面において、図1は一実施形態に係る熱電発電モジュールの概略構造を示す斜視図、図2は図1に示した熱電発電モジュールの断面構造を示す部分縦断面図である。   Hereinafter, embodiments of a thermoelectric power generation module according to the present invention will be described with reference to the drawings. In the drawings to be referred to, FIG. 1 is a perspective view showing a schematic structure of a thermoelectric power generation module according to an embodiment, and FIG. 2 is a partial vertical cross-sectional view showing a cross-sectional structure of the thermoelectric power generation module shown in FIG.

一実施形態に係る熱電発電モジュールは、図1に示すように、高温側の集熱部を構成する絶縁セラミックス製の集熱基板1と、低温側の放熱部を構成する絶縁セラミックス製の放熱基板2との間にn型熱電発電素子Nおよびp型熱電発電素子Pがそれぞれ複数配置され、これらのn型熱電発電素子Nおよびp型熱電発電素子Pが+端子3と−端子4との間で電極板5,6を介して交互に直列に接続される基本構造を有する。   As shown in FIG. 1, a thermoelectric power generation module according to an embodiment includes a heat collecting substrate 1 made of insulating ceramics that constitutes a high temperature side heat collecting portion and a heat radiating substrate made of insulating ceramics that constitutes a low temperature side heat radiating portion. 2, a plurality of n-type thermoelectric power generation elements N and p-type thermoelectric power generation elements P are arranged, and these n-type thermoelectric power generation elements N and p-type thermoelectric power generation elements P are disposed between the + terminal 3 and the − terminal 4. And have a basic structure that is alternately connected in series via the electrode plates 5 and 6.

ここで、図2に示すように、n型熱電発電素子Nは、ゼーベック効果により熱起電力を発生し、その際、集熱基板1側の高温端部が+極となり、放熱基板2側の低温端部が−極となる。反対に、p型熱電発電素子Pは、ゼーベック効果により熱起電力を発生し、その際、集熱基板1側の高温端部が−極となり、放熱基板2側の低温端部が+極となる。   Here, as shown in FIG. 2, the n-type thermoelectric power generation element N generates a thermoelectromotive force due to the Seebeck effect. At this time, the high-temperature end portion on the heat collecting substrate 1 side becomes a positive pole, and The low temperature end becomes the negative pole. On the other hand, the p-type thermoelectric generator P generates a thermoelectromotive force due to the Seebeck effect. At this time, the high temperature end on the heat collecting substrate 1 side becomes a negative pole, and the low temperature end on the heat dissipation substrate 2 side becomes a positive pole. Become.

そこで、複数のn型熱電発電素子Nとp型熱電発電素子Pとが交互に直列に接続されるように、例えば図2に示す配置例では、n型熱電発電素子Nの+極となる高温端部と、その右側に配置されたp型熱電発電素子Pの−極となる高温端部とが集熱基板1側の電極板5を介して接続され、このp型熱電発電素子Pの+極となる低温端部と、その右側に配置されたn型熱電発電素子Nの−極となる低温端部とが放熱基板2側の電極板6を介して接続される。そして、同様の接続状態が順次繰り返されることで、複数のn型熱電発電素子Nとp型熱電発電素子Pとが交互に直列に接続される。   Therefore, in the arrangement example shown in FIG. 2, for example, in the arrangement example shown in FIG. The end and the high temperature end serving as the negative pole of the p-type thermoelectric generator P disposed on the right side thereof are connected via the electrode plate 5 on the heat collecting substrate 1 side. A low-temperature end portion serving as a pole and a low-temperature end portion serving as a negative pole of the n-type thermoelectric generator N arranged on the right side thereof are connected via an electrode plate 6 on the heat dissipation substrate 2 side. A plurality of n-type thermoelectric generators N and p-type thermoelectric generators P are alternately connected in series by sequentially repeating the same connection state.

ここで、本実施形態の熱電発電モジュールにおいては、各n型熱電発電素子Nの高温端部および各p型熱電発電素子Pの高温端部にそれぞれ拡散防止層7が被着されている。また、各電極板5の両面側には低融点金属層8A,8Bが形成されている。そして、集熱基板1と放熱基板2との間の各n型熱電発電素子Nおよびp型熱電発電素子Pの周囲には絶縁体9が充填されている。   Here, in the thermoelectric power generation module of the present embodiment, the diffusion prevention layer 7 is attached to the high temperature end portion of each n-type thermoelectric power generation element N and the high temperature end portion of each p-type thermoelectric power generation element P. Further, low melting point metal layers 8A and 8B are formed on both sides of each electrode plate 5. An insulator 9 is filled around each n-type thermoelectric generator N and p-type thermoelectric generator P between the heat collecting substrate 1 and the heat dissipation substrate 2.

拡散防止層7は、モリブデン(Mo)などの高融点金属をメッキ、蒸着、溶射などの適宜の手段で例えば10μm程度の厚さに被着した層であり、溶融した低融点金属層8A,8Bの低融点金属が各n型熱電発電素子Nおよびp型熱電発電素子Pの高温端部に拡散するのを阻止する。   The diffusion prevention layer 7 is a layer formed by depositing a high melting point metal such as molybdenum (Mo) to a thickness of, for example, about 10 μm by an appropriate means such as plating, vapor deposition, or thermal spraying. The molten low melting point metal layers 8A and 8B Of the low melting point metal is prevented from diffusing into the high temperature end portions of the n-type thermoelectric generator N and the p-type thermoelectric generator P.

低融点金属層8A,8Bは、例えば、錫(Sn)、鉛(Pb)、亜鉛(Zn)などの低融点金属を例えば0.5mm程度の厚さに溶射して形成される。ここで、例えば錫(Sn)を成分とする低融点金属層8は、熱電発電モジュールの使用状態において250℃以上の高温になると確実に溶融する。   The low melting point metal layers 8A and 8B are formed by spraying a low melting point metal such as tin (Sn), lead (Pb), and zinc (Zn) to a thickness of about 0.5 mm, for example. Here, for example, the low melting point metal layer 8 containing tin (Sn) as a component is surely melted when a high temperature of 250 ° C. or higher is reached in the use state of the thermoelectric power generation module.

絶縁体9は、相互に接着された中空粒子の集合体、例えば粒径3〜30μm程度の多数の中空ガラスビーズを珪酸ガラス系の接着剤で相互に接着した中空ガラスビーズの集合体で構成されている。この絶縁体9は、各中空ガラスビーズの弾力に基づく柔軟性を有し、かつ、500℃以上の高い耐熱性を有する。   The insulator 9 is composed of an aggregate of hollow particles bonded to each other, for example, an aggregate of hollow glass beads in which a large number of hollow glass beads having a particle size of about 3 to 30 μm are bonded to each other with a silicate glass-based adhesive. ing. The insulator 9 has flexibility based on the elasticity of each hollow glass bead and has high heat resistance of 500 ° C. or higher.

図3は、図2に示した断面構造の熱電発電モジュールの製造工程の一例を示している。まず、図3(a)に示す工程では、各n型熱電発電素子Nおよび各p型熱電発電素子Pの高温端部にそれぞれ拡散防止層7を被着する。   FIG. 3 shows an example of a manufacturing process of the thermoelectric power generation module having the cross-sectional structure shown in FIG. First, in the step shown in FIG. 3A, the diffusion prevention layer 7 is deposited on the high temperature end portions of the n-type thermoelectric elements N and the p-type thermoelectric elements P, respectively.

図3(b)に示す工程では、図示しない型枠内の所定位置に各n型熱電発電素子Nおよび各p型熱電発電素子Pを配置し、それらの周囲の隙間に絶縁体9を充填する。そして、絶縁体9が固化した後、各n型熱電発電素子Nおよび各p型熱電発電素子Pと一体化したブロック状の絶縁体9の両面を各n型熱電発電素子Nおよび各p型熱電発電素子Pの両端面と面一となるように研磨する。   In the step shown in FIG. 3 (b), each n-type thermoelectric power generation element N and each p-type thermoelectric power generation element P are arranged at a predetermined position in a mold (not shown), and the insulator 9 is filled in the space around them. . After the insulator 9 is solidified, both sides of the block-like insulator 9 integrated with each n-type thermoelectric power generation element N and each p-type thermoelectric power generation element P are connected to each n-type thermoelectric power generation element N and each p-type thermoelectric power supply. Polishing so as to be flush with both end faces of the power generation element P.

図3(c)に示す工程では、両面が研磨されたブロック状の絶縁体9の一方の面、すなわち、各n型熱電発電素子Nおよび各p型熱電発電素子Pの高温端部に被着された拡散防止層7が露出している一方の面に低融点金属層8A、モリブデン(Mo)などの電極材層5A、低融点金属層8Bを溶射により順次積層する。   In the step shown in FIG. 3 (c), one surface of the block-like insulator 9 whose both surfaces are polished, that is, the high-temperature end portions of the n-type thermoelectric elements N and the p-type thermoelectric elements P are deposited. A low melting point metal layer 8A, an electrode material layer 5A such as molybdenum (Mo), and a low melting point metal layer 8B are sequentially laminated on one surface where the diffusion prevention layer 7 is exposed.

図3(d)に示す工程では、ブロック状の絶縁体9の他方の面、すなわち、各n型熱電発電素子Nおよび各p型熱電発電素子Pの低温端部側の端面が露出している他方の面にモリブデン(Mo)などの電極材層6Aを溶射により形成する。   In the step shown in FIG. 3D, the other surface of the block-shaped insulator 9, that is, the end surface on the low temperature end portion side of each n-type thermoelectric element N and each p-type thermoelectric element P is exposed. An electrode material layer 6A such as molybdenum (Mo) is formed on the other surface by thermal spraying.

図3(e)に示す工程では、低融点金属層8Bから低融点金属層8Aに至る深さで分離溝を形成し、電極材層5Aを相互に分離して各電極板5を形成する。また、電極材層6Aに分離溝を形成して相互に分離した各電極板6を形成する。   In the step shown in FIG. 3E, separation grooves are formed at a depth from the low melting point metal layer 8B to the low melting point metal layer 8A, and the electrode material layers 5A are separated from each other to form the respective electrode plates 5. In addition, separation grooves are formed in the electrode material layer 6A to form the electrode plates 6 separated from each other.

図3(f)に示す工程では、図3(e)に示す工程で形成された各分離溝内に絶縁体9を充填して固化させた後、ブロック状の絶縁体9の一方の面に集熱基板1を接合し、他方の面に放熱基板2を接合する。   In the step shown in FIG. 3 (f), the insulator 9 is filled in each separation groove formed in the step shown in FIG. 3 (e) and solidified, and then the one surface of the block-like insulator 9 is formed. The heat collecting substrate 1 is bonded, and the heat dissipation substrate 2 is bonded to the other surface.

以上の工程により製造された図2に示す断面構造の熱電発電モジュールでは、使用状態において集熱基板1が例えば250℃以上の高温になると、例えば錫(Sn)を成分とする低融点金属層8A,8Bが確実に溶融する。そして、溶融した低融点金属層8Bを介して集熱基板1と各電極板5とが良好に接触すると共に、溶融した低融点金属層8Aを介して各電極板5と各n型熱電発電素子Nおよびp型熱電発電素子Pの高温端部に被着された拡散防止層7とが柔軟性をもって良好に接触する。   In the thermoelectric power generation module having the cross-sectional structure shown in FIG. 2 manufactured by the above steps, the low melting point metal layer 8A containing, for example, tin (Sn) as a component when the heat collecting substrate 1 reaches a high temperature of, for example, 250 ° C. or higher in use. 8B surely melts. The heat collecting substrate 1 and each electrode plate 5 are in good contact with each other through the melted low melting point metal layer 8B, and each electrode plate 5 and each n-type thermoelectric generator through the melted low melting point metal layer 8A. The diffusion prevention layer 7 deposited on the high temperature end portion of the N and p-type thermoelectric generators P makes good contact with flexibility.

その結果、本実施形態の熱電発電モジュールでは、集熱基板1から各n型熱電発電素子Nおよび各p型熱電発電素子Pの高温端部への熱伝導および電気伝導が良好に行われるようになる。しかも、溶融した低融点金属層8Aにより各電極板5と各n型熱電発電素子Nおよび各p型熱電発電素子Pの高温端部との間の熱膨張の相違が吸収されるため、両者の間の熱応力の発生が未然に防止される。   As a result, in the thermoelectric power generation module of the present embodiment, heat conduction and electrical conduction from the heat collecting substrate 1 to the high temperature end portions of the n-type thermoelectric power generation elements N and the p-type thermoelectric power generation elements P are favorably performed. Become. Moreover, since the melted low melting point metal layer 8A absorbs the difference in thermal expansion between the electrode plates 5 and the high-temperature ends of the n-type thermoelectric elements N and p-type thermoelectric elements P, In the meantime, the generation of thermal stress is prevented.

また、溶融した低融点金属層8A,8Bから蒸気が発生して各n型熱電発電素子Nおよび各p型熱電発電素子Pの周囲に再凝結するのを絶縁体9が阻止するため、各n型熱電発電素子Nおよびp型熱電発電素子Pの周囲の絶縁性が良好に保たれる。なお、この絶縁体9が低融点金属層8A,8Bを密封状態とすることで、低融点金属層8A,8Bの酸化が防止される。   Further, since the insulator 9 prevents vapor from being generated from the melted low melting point metal layers 8A and 8B and re-condensing around each n-type thermoelectric generator N and each p-type thermoelectric generator P, each n The insulation around the thermoelectric generator N and the p-type thermoelectric generator P is kept good. The insulator 9 seals the low melting point metal layers 8A and 8B, thereby preventing the low melting point metal layers 8A and 8B from being oxidized.

この絶縁体9は、例えば粒径3〜30μm程度の多数の中空ガラスビーズを珪酸ガラス系の接着剤で相互に接着した中空ガラスビーズの集合体で構成されているため、各中空ガラスビーズの弾力に基づく柔軟性および500℃以上の高い耐熱性を発揮して各n型熱電発電素子Nおよび各p型熱電発電素子Pの熱膨張を確実に吸収し、その破壊を確実に防止する。   Since this insulator 9 is composed of an aggregate of hollow glass beads in which a large number of hollow glass beads having a particle size of, for example, about 3 to 30 μm are bonded to each other with a silicate glass adhesive, the elasticity of each hollow glass bead The thermal expansion of each n-type thermoelectric power generation element N and each p-type thermoelectric power generation element P is reliably absorbed and the destruction thereof is reliably prevented.

従って、本実施形態の熱電発電モジュールによれば、集熱基板1が更に高温となる厳しい使用条件下においても長期に亘り良好な発電性能を維持することできる。   Therefore, according to the thermoelectric power generation module of the present embodiment, good power generation performance can be maintained over a long period even under severe use conditions in which the heat collecting substrate 1 is further heated.

本発明に係る熱電発電モジュールは、前述した一実施形態に限定されるものではない。例えば、図2に示した低融点金属層8A,8Bは、錫(Sn)、鉛(Pb)、亜鉛(Zn)などの低融点金属を銅メッシュなどの適宜の金属メッシュに含浸させて形成してもよい。   The thermoelectric power generation module according to the present invention is not limited to the above-described embodiment. For example, the low melting point metal layers 8A and 8B shown in FIG. 2 are formed by impregnating a low melting point metal such as tin (Sn), lead (Pb), or zinc (Zn) into an appropriate metal mesh such as a copper mesh. May be.

本発明の一実施形態に係る熱電発電モジュールの概略構造を示す斜視図である。It is a perspective view which shows schematic structure of the thermoelectric power generation module which concerns on one Embodiment of this invention. 図1に示した熱電発電モジュールの断面構造を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the cross-section of the thermoelectric power generation module shown in FIG. 図2に示した熱電発電モジュールの製造工程を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the manufacturing process of the thermoelectric power generation module shown in FIG.

符号の説明Explanation of symbols

1 集熱基板
2 放熱基板
3 +端子
4 −端子
5 電極板
5A 電極材層
6 電極板
6A 電極材層
7 拡散防止層
8A 低融点金属層
8B 低融点金属層
9 絶縁体



DESCRIPTION OF SYMBOLS 1 Heat collection board | substrate 2 Heat dissipation board 3 + terminal 4-terminal 5 Electrode board 5A Electrode material layer 6 Electrode board 6A Electrode material layer 7 Diffusion prevention layer 8A Low melting metal layer 8B Low melting metal layer 9 Insulator



Claims (3)

高温側の集熱部と低温側の放熱部との間に極性の異なる熱電発電素子が複数配置され、各熱電発電素子の高温端部同士および低温端部同士が電極を介して接続されることで極性の異なる熱電発電素子が交互に直列に接続される熱電発電モジュールであって、各熱電発電素子の高温端部と電極との間には低融点金属層が介設され、各熱電発電素子の周囲には絶縁体が充填されていることを特徴とする熱電発電モジュール。   A plurality of thermoelectric power generation elements having different polarities are arranged between the heat collecting section on the high temperature side and the heat radiation section on the low temperature side, and the high temperature ends and the low temperature ends of each thermoelectric generation element are connected via electrodes. Thermoelectric power generation modules in which thermoelectric power generation elements having different polarities are alternately connected in series, and a low melting point metal layer is interposed between the high temperature end of each thermoelectric power generation element, and each thermoelectric power generation element The thermoelectric power generation module is characterized by being filled with an insulator around. 前記絶縁体は、相互に接着された中空粒子の集合体で構成されていることを特徴とする請求項1に記載の熱電発電モジュール。   The thermoelectric generator module according to claim 1, wherein the insulator is composed of an aggregate of hollow particles bonded to each other. 前記絶縁体は、ガラス系接着剤で相互に接着された中空ガラスビーズの集合体で構成されていることを特徴とする請求項1に記載の熱電発電モジュール。


The thermoelectric generator module according to claim 1, wherein the insulator is configured by an aggregate of hollow glass beads bonded to each other with a glass-based adhesive.


JP2005151101A 2005-05-24 2005-05-24 Thermoelectric power generation module Pending JP2006332188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151101A JP2006332188A (en) 2005-05-24 2005-05-24 Thermoelectric power generation module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151101A JP2006332188A (en) 2005-05-24 2005-05-24 Thermoelectric power generation module

Publications (1)

Publication Number Publication Date
JP2006332188A true JP2006332188A (en) 2006-12-07

Family

ID=37553592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151101A Pending JP2006332188A (en) 2005-05-24 2005-05-24 Thermoelectric power generation module

Country Status (1)

Country Link
JP (1) JP2006332188A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883852B1 (en) * 2007-06-01 2009-02-17 주식회사 제펠 A high density micro thermo electric cooling module and a method for manufacturing the same
WO2009142240A1 (en) * 2008-05-23 2009-11-26 株式会社村田製作所 Thermoelectric conversion module and process for producing thermoelectric conversion module
WO2011060149A3 (en) * 2009-11-13 2011-08-04 Alphabet Energy, Inc. Uniwafer thermoelectric modules
US8736011B2 (en) 2010-12-03 2014-05-27 Alphabet Energy, Inc. Low thermal conductivity matrices with embedded nanostructures and methods thereof
JP2014135455A (en) * 2013-01-11 2014-07-24 Fujitsu Ltd Thermoelectric conversion element, electronic device, and method of manufacturing thermoelectric conversion element
KR101460432B1 (en) * 2013-03-07 2014-11-12 홍익대학교 산학협력단 Fabrication methods of thermoelectric thin film modules using combined processes of adhesive flip chip bonding and solder reflow flip chip bonding and thermoelectric thin film modules produced using the same method
KR101474635B1 (en) 2013-03-07 2014-12-19 홍익대학교 산학협력단 Fabrication methods of thermoelectric thin film modules using adhesive flip chip bonding and thermoelectric thin film modules produced using the same method
US9051175B2 (en) 2012-03-07 2015-06-09 Alphabet Energy, Inc. Bulk nano-ribbon and/or nano-porous structures for thermoelectric devices and methods for making the same
US9082930B1 (en) 2012-10-25 2015-07-14 Alphabet Energy, Inc. Nanostructured thermolectric elements and methods of making the same
US9219215B1 (en) 2007-08-21 2015-12-22 The Regents Of The University Of California Nanostructures having high performance thermoelectric properties
US9240328B2 (en) 2010-11-19 2016-01-19 Alphabet Energy, Inc. Arrays of long nanostructures in semiconductor materials and methods thereof
US9257627B2 (en) 2012-07-23 2016-02-09 Alphabet Energy, Inc. Method and structure for thermoelectric unicouple assembly
US9691849B2 (en) 2014-04-10 2017-06-27 Alphabet Energy, Inc. Ultra-long silicon nanostructures, and methods of forming and transferring the same
WO2017170320A1 (en) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 Thermoelectric conversion element and thermoelectric conversion module
GB2585045A (en) * 2019-06-25 2020-12-30 Sumitomo Chemical Co Thermoelectric device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883852B1 (en) * 2007-06-01 2009-02-17 주식회사 제펠 A high density micro thermo electric cooling module and a method for manufacturing the same
US9219215B1 (en) 2007-08-21 2015-12-22 The Regents Of The University Of California Nanostructures having high performance thermoelectric properties
WO2009142240A1 (en) * 2008-05-23 2009-11-26 株式会社村田製作所 Thermoelectric conversion module and process for producing thermoelectric conversion module
WO2011060149A3 (en) * 2009-11-13 2011-08-04 Alphabet Energy, Inc. Uniwafer thermoelectric modules
US9735022B2 (en) 2010-11-19 2017-08-15 Alphabet Energy, Inc. Arrays of long nanostructures in semiconductor materials and methods thereof
US9240328B2 (en) 2010-11-19 2016-01-19 Alphabet Energy, Inc. Arrays of long nanostructures in semiconductor materials and methods thereof
US8736011B2 (en) 2010-12-03 2014-05-27 Alphabet Energy, Inc. Low thermal conductivity matrices with embedded nanostructures and methods thereof
US9514931B2 (en) 2010-12-03 2016-12-06 Alphabet Energy, Inc. Low thermal conductivity matrices with embedded nanostructures and methods thereof
US9242855B2 (en) 2012-03-07 2016-01-26 Alphabet Energy, Inc. Bulk nano-ribbon and/or nano-porous structures for thermoelectric devices and methods for making the same
US9051175B2 (en) 2012-03-07 2015-06-09 Alphabet Energy, Inc. Bulk nano-ribbon and/or nano-porous structures for thermoelectric devices and methods for making the same
US9257627B2 (en) 2012-07-23 2016-02-09 Alphabet Energy, Inc. Method and structure for thermoelectric unicouple assembly
US9082930B1 (en) 2012-10-25 2015-07-14 Alphabet Energy, Inc. Nanostructured thermolectric elements and methods of making the same
JP2014135455A (en) * 2013-01-11 2014-07-24 Fujitsu Ltd Thermoelectric conversion element, electronic device, and method of manufacturing thermoelectric conversion element
KR101460432B1 (en) * 2013-03-07 2014-11-12 홍익대학교 산학협력단 Fabrication methods of thermoelectric thin film modules using combined processes of adhesive flip chip bonding and solder reflow flip chip bonding and thermoelectric thin film modules produced using the same method
KR101474635B1 (en) 2013-03-07 2014-12-19 홍익대학교 산학협력단 Fabrication methods of thermoelectric thin film modules using adhesive flip chip bonding and thermoelectric thin film modules produced using the same method
US9691849B2 (en) 2014-04-10 2017-06-27 Alphabet Energy, Inc. Ultra-long silicon nanostructures, and methods of forming and transferring the same
WO2017170320A1 (en) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 Thermoelectric conversion element and thermoelectric conversion module
CN108780836A (en) * 2016-03-28 2018-11-09 松下知识产权经营株式会社 Thermoelectric conversion element and thermo-electric conversion module
CN108780836B (en) * 2016-03-28 2022-11-04 松下知识产权经营株式会社 Thermoelectric conversion device and thermoelectric conversion module
GB2585045A (en) * 2019-06-25 2020-12-30 Sumitomo Chemical Co Thermoelectric device

Similar Documents

Publication Publication Date Title
JP2006332188A (en) Thermoelectric power generation module
JP5956608B2 (en) Thermoelectric module
JP5831468B2 (en) Method for manufacturing thermoelectric conversion device
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
JP6008293B2 (en) Thermoelectric conversion element and thermoelectric conversion module
US20130118541A1 (en) Thermoelectric module and method of manufacturing the same
US20110259018A1 (en) Thermoelectric module and method for manufacturing the same
JP2012038980A (en) Thermoelectric conversion module and manufacturing method of the same
JP2012064913A (en) Asymmetric thermoelectric module and manufacturing method of the same
US20130269744A1 (en) Thermoelectric conversion module
JP2017020101A (en) Metal particle, paste, molded body and laminate
JP2008277584A (en) Thermoelectric substrate member, thermoelectric module, and manufacturing method of them
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
JP6390546B2 (en) Thermoelectric conversion module and manufacturing method thereof
US20200256742A1 (en) Thermopile Assembly Providing a Massive Electrical Series of Wire Thermocouple Elements
KR102374415B1 (en) Thermo electric device
JP2003282972A (en) Thermoelectric element
JP6471241B2 (en) Thermoelectric module
JP2016219681A (en) Structure and method for joining metal wiring
CN108713259B (en) Thermoelectric conversion module
JP2018093152A (en) Thermoelectric power generation device
JP2004119833A (en) Thermoelement module and its manufacturing method
JP5375950B2 (en) Thermoelectric conversion element
JP2017076744A (en) Thermoelectric conversion module and thermal power generation device
JP7281715B2 (en) Thermoelectric conversion module