JP2008277584A - Thermoelectric substrate member, thermoelectric module, and manufacturing method of them - Google Patents

Thermoelectric substrate member, thermoelectric module, and manufacturing method of them Download PDF

Info

Publication number
JP2008277584A
JP2008277584A JP2007120287A JP2007120287A JP2008277584A JP 2008277584 A JP2008277584 A JP 2008277584A JP 2007120287 A JP2007120287 A JP 2007120287A JP 2007120287 A JP2007120287 A JP 2007120287A JP 2008277584 A JP2008277584 A JP 2008277584A
Authority
JP
Japan
Prior art keywords
electrodes
thermoelectric
substrate
stress buffer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007120287A
Other languages
Japanese (ja)
Inventor
Yuuma Horio
裕磨 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2007120287A priority Critical patent/JP2008277584A/en
Publication of JP2008277584A publication Critical patent/JP2008277584A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric module capable of preventing lamination between a thermoelectric element and an electrode from being easily peeled off and having excellent reliability, to provide a thermoelectric substrate member to be used for the thermoelectric module, and to provide a method for manufacturing the thermoelectric module and the thermoelectric substrate member. <P>SOLUTION: Plurality of first and second electrodes 3, 4 are respectively formed on the opposite surfaces of first and second substrates 1, 2, and N-type thermoelectric elements 5 and P-type thermoelectric elements 6 are arranged so as to be held between the first electrodes 3 and the second electrodes 4. Further, stress buffer layers 7, 8 are respectively arranged between the first electrode 3 and the first substrate 1 and between the second electrode 4 and the second substrate 2. The electrodes 3, 4 are formed with copper plate layers and the substrates 1, 2 are formed with alumina or copper plates or the like. For the stress buffer layers 7, 8, polyimide resin, aramid resin, or epoxy resin can be used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱電素子を複数個設けてそのペルチェ効果又はゼーベック効果により、対象物を電子冷却し、又は熱を電力に変換する熱電モジュール及びそれに使用する熱電用基板部材並びにそれらの製造方法に関する。   The present invention relates to a thermoelectric module in which a plurality of thermoelectric elements are provided and an object is electronically cooled or heat is converted into electric power by the Peltier effect or Seebeck effect, a thermoelectric substrate member used therefor, and a manufacturing method thereof.

熱電モジュールは、Bi、Sb、Te及びSeからなる群から選択された少なくとも2種の元素を含むp型半導体とn型半導体の微小チップ(熱電素子)を、電極をパターニングしたセラミクス基板で上下に挟んで接合し、接点に温度差が生じると起電力が発生するゼーベック効果を利用し、熱を電力に変換するものである。又は、熱電モジュールは、熱電素子への電圧印加により、熱の流れが電流の方向と同一方向又は逆方向におきるペルチェ効果を利用して、通電により、対象物を冷却又は加熱(電子冷却)するものである。   The thermoelectric module is composed of a p-type semiconductor and an n-type semiconductor microchip (thermoelectric element) containing at least two elements selected from the group consisting of Bi, Sb, Te, and Se on a ceramic substrate with patterned electrodes. The heat is converted into electric power by utilizing the Seebeck effect in which an electromotive force is generated when a temperature difference occurs between the contacts. Alternatively, a thermoelectric module cools or heats (electrically cools) an object by energization using the Peltier effect in which the flow of heat occurs in the same direction as or in the opposite direction to the direction of current by applying a voltage to the thermoelectric element. Is.

この場合に、いずれのタイプの熱電モジュールにおいても、モジュールに組み立てられた熱電素子には、温度差が生じており、熱電素子と電極又は基板との間の熱応力により、熱電素子の電極からの剥離が問題となる。   In this case, in any type of thermoelectric module, there is a temperature difference between the thermoelectric elements assembled in the module, and due to the thermal stress between the thermoelectric element and the electrode or the substrate, Delamination becomes a problem.

従来の電子冷却素子として、基板を可撓性を有する樹脂シートにして、冷却対象物の形状に合わせることができるようにした電子冷却素子が開示されている(特許文献1)。この公報に記載された熱電モジュールは、図8にその熱電モジュールの構造を模式的に示すように、ポリイミドシートからなる基板20,21の対向面に夫々電極22、23を形成し、一つの電極22の長手方向両端部にN型熱電素子24とP型熱電素子25を接続し、隣接する2個の電極22上に配置された隣接する2個のN型熱電素子24とP型熱電素子25を対向する1個の電極23により接続して、熱電素子24,25が直列に接続されている。この熱電モジュールにおいては、基板がポリイミドシートであるので柔軟性があり、冷却対象物の形状に合わせて変形するようになっている。   As a conventional electronic cooling element, an electronic cooling element is disclosed in which a substrate is made of a flexible resin sheet so as to match the shape of an object to be cooled (Patent Document 1). In the thermoelectric module described in this publication, electrodes 22 and 23 are respectively formed on opposing surfaces of substrates 20 and 21 made of a polyimide sheet so as to schematically show the structure of the thermoelectric module in FIG. The N-type thermoelectric element 24 and the P-type thermoelectric element 25 are connected to both ends in the longitudinal direction of the 22, and the two adjacent N-type thermoelectric elements 24 and the P-type thermoelectric element 25 disposed on the two adjacent electrodes 22. Are connected by a single electrode 23 facing each other, and thermoelectric elements 24 and 25 are connected in series. In this thermoelectric module, since the substrate is a polyimide sheet, it is flexible and is deformed in accordance with the shape of the object to be cooled.

また、N型熱電素子とP型熱電素子とを柔軟な絶縁物内に埋め込むようにして、熱電モジュールに柔軟性をもたせたものが提案されている(特許文献2)。この熱電モジュールは、N型半導体素子31とP型半導体素子32とが、ゴム、プラスチック又は樹脂等の柔軟な絶縁物30内に埋め込まれ、必要な箇所に孔33を形成したものを、導電性プラスチック電極34が形成された柔軟な絶縁物基板36と、導電性プラスチック電極35が形成された柔軟な絶縁性基板37との間に挟み、電極34,35によりN型半導体素子31とP型半導体素子32とを直列に接続して構成されている。   In addition, a thermoelectric module has been proposed in which an N-type thermoelectric element and a P-type thermoelectric element are embedded in a flexible insulator (Patent Document 2). In this thermoelectric module, an N-type semiconductor element 31 and a P-type semiconductor element 32 are embedded in a flexible insulator 30 such as rubber, plastic or resin, and a hole 33 is formed at a required location. The N-type semiconductor element 31 and the P-type semiconductor are sandwiched between a flexible insulating substrate 36 on which a plastic electrode 34 is formed and a flexible insulating substrate 37 on which a conductive plastic electrode 35 is formed. The element 32 is connected in series.

特開平7−202275号公報JP-A-7-202275 特開平8−228027号公報JP-A-8-228027

しかしながら、特許文献1に記載の従来技術においては、この熱電モジュールのポリイミド層21(20)上に被冷却体を接合する際、基板自体の柔軟性に起因してボイドが発生しやすいという問題点がある。図10(a)はこの被冷却物を基板上に搭載した状態を示す図、図10(b)はその一部拡大図である。ポリイミド基板21上にメタライズ層41を形成し、はんだ層42によりヒートシンク40を接合する。このとき、基板20の柔軟性に起因してはんだ層42にボイド43が生成し、このボイド43は熱伝導が極めて小さいので、このボイドの界面に高い熱抵抗が生じる。このため、熱電モジュールの実使用状態で、モジュール性能が低下するという問題点がある。   However, in the prior art described in Patent Document 1, when a cooled object is bonded onto the polyimide layer 21 (20) of this thermoelectric module, voids are likely to occur due to the flexibility of the substrate itself. There is. FIG. 10A is a diagram showing a state in which the object to be cooled is mounted on the substrate, and FIG. 10B is a partially enlarged view thereof. A metallized layer 41 is formed on the polyimide substrate 21, and the heat sink 40 is joined by the solder layer 42. At this time, a void 43 is generated in the solder layer 42 due to the flexibility of the substrate 20, and since the void 43 has a very small thermal conductivity, a high thermal resistance is generated at the interface of the void. For this reason, there exists a problem that module performance falls in the actual use state of a thermoelectric module.

また、特許文献2に記載の従来技術においては、上下基板(熱電モジュールとしての低温側基板と高温側基板)の間に、絶縁物があるために、熱電モジュールにとって重要な特性である温度差(ΔT)を得にくくなる。   In the prior art described in Patent Document 2, since there is an insulator between the upper and lower substrates (a low temperature side substrate and a high temperature side substrate as a thermoelectric module), a temperature difference (characteristic important for the thermoelectric module) ΔT) is difficult to obtain.

本発明はかかる問題点に鑑みてなされたものであって、実使用時に熱応力を受けても熱電素子と電極との間の剥離が生じにくく、信頼性が優れた熱電モジュール及びそれに使用する熱電用基板部材並びにそれらの製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and even when subjected to thermal stress during actual use, peeling between the thermoelectric element and the electrode is unlikely to occur, and the thermoelectric module having excellent reliability and the thermoelectric module used therefor It is an object of the present invention to provide a substrate member for use and a manufacturing method thereof.

本発明に係る熱電用基板部材は、1対の基板と、前記基板の対向面上に配置された複数個の電極と、前記電極と前記基板との間に形成されヤング率が前記電極及び前記基板のヤング率よりも低い応力緩衝層と、を有することを特徴とする。   A thermoelectric substrate member according to the present invention is formed between a pair of substrates, a plurality of electrodes disposed on an opposing surface of the substrate, and the electrodes and the substrate. And a stress buffer layer lower than the Young's modulus of the substrate.

この熱電用基板部材において、前記応力緩衝層は、例えば、ポリイミド系樹脂、アラミド系樹脂又はエポキシ系樹脂である。また、前記基板は、例えば、アルミナ又は銅板である。   In the thermoelectric substrate member, the stress buffer layer is, for example, a polyimide resin, an aramid resin, or an epoxy resin. Moreover, the said board | substrate is an alumina or a copper plate, for example.

本発明に係る熱電モジュールは、第1及び第2の基板と、前記第1及び第2の基板の対向面上に配置された夫々複数個の第1の電極及び第2の電極と、前記第1の電極と前記第2の電極との間に挟まれるように配置され各電極上に夫々1又は複数個接続されたN型熱電素子及びP型熱電素子と、を有し、前記第1の電極及び第2の電極は、N型熱電素子の通電方向とP型熱電素子の通電方向とが相互に相反するように前記N型熱電素子及びP型熱電素子に接続された熱電モジュールにおいて、前記第1及び第2の電極と夫々前記第1及び第2の基板との間に、ヤング率が前記第1及び第2の電極並びに前記第1及び第2の基板のヤング率よりも低い応力緩衝層が配置されていることを特徴とする。   The thermoelectric module according to the present invention includes first and second substrates, a plurality of first electrodes and second electrodes disposed on opposing surfaces of the first and second substrates, and the first and second substrates, respectively. An N-type thermoelectric element and a P-type thermoelectric element that are arranged so as to be sandwiched between one electrode and the second electrode, and are connected to one or more of the electrodes, respectively. In the thermoelectric module connected to the N-type thermoelectric element and the P-type thermoelectric element so that the energization direction of the N-type thermoelectric element and the energization direction of the P-type thermoelectric element are opposite to each other, A stress buffer between the first and second electrodes and the first and second substrates, respectively, whose Young's modulus is lower than the Young's modulus of the first and second electrodes and the first and second substrates. It is characterized in that the layers are arranged.

この熱電モジュールにおいて、前記応力緩衝層は、例えば、ポリイミド系樹脂、アラミド系樹脂又はエポキシ系樹脂である。また、前記基板は、例えば、アルミナ又は銅板である。   In this thermoelectric module, the stress buffer layer is, for example, a polyimide resin, an aramid resin, or an epoxy resin. Moreover, the said board | substrate is an alumina or a copper plate, for example.

本発明に係る熱電用基板部材の製造方法は、応力緩衝材料からなる応力緩衝層の一面に銅メッキを施すか又は銅板を貼り付け、他の面は銅板又は絶縁基板を貼り付ける工程と、前記一面上の銅メッキ層又は銅板上にマスクを設けて前記銅メッキ層又は銅板をエッチングすることにより前記銅メッキ層又は銅板から複数個の電極をパターン形成する工程と、前記電極間の間隙をとおる線に沿って前記応力緩衝層に切り込みを設けてこれを分断し1個の応力緩衝層に1又は複数個の電極を配置させる工程と、を有することを特徴とする。   The method for manufacturing a thermoelectric substrate member according to the present invention includes a step of applying copper plating or a copper plate to one surface of a stress buffer layer made of a stress buffer material, and a step of attaching a copper plate or an insulating substrate to the other surface, A step of patterning a plurality of electrodes from the copper plating layer or the copper plate by providing a mask on the copper plating layer or the copper plate on one surface and etching the copper plating layer or the copper plate, and a gap between the electrodes A step of cutting the stress buffer layer along a line, dividing the cut, and arranging one or a plurality of electrodes in one stress buffer layer.

また、本発明に係る熱電モジュールの製造方法は、応力緩衝材料からなる応力緩衝層の一面に銅メッキを施すか又は銅板を貼り付け、他の面は銅板又は絶縁基板を貼り付ける工程と、前記一面上の銅メッキ層又は銅板上にマスクを設けて前記銅メッキ層又は銅板をエッチングすることにより前記銅メッキ層又は銅板から複数個の電極をパターン形成する工程と、前記電極間の間隙をとおる線に沿って前記応力干渉基板に切り込みを設けてこれを分断し1個の応力緩衝層に1又は複数個の電極を配置させる工程と、得られた熱電用基板部材を1対用意しその対向する電極間に熱電素子を介在させて前記電極と前記熱電素子とを接合する工程と、を有することを特徴とする。   Further, the method of manufacturing a thermoelectric module according to the present invention includes a step of applying copper plating or a copper plate to one surface of a stress buffer layer made of a stress buffer material, and a step of attaching a copper plate or an insulating substrate to the other surface, A step of patterning a plurality of electrodes from the copper plating layer or the copper plate by providing a mask on the copper plating layer or the copper plate on one surface and etching the copper plating layer or the copper plate, and a gap between the electrodes A step of cutting the stress interference substrate along the line and dividing it to arrange one or a plurality of electrodes on one stress buffer layer, and a pair of the obtained thermoelectric substrate members are prepared to face each other A step of joining the electrode and the thermoelectric element with a thermoelectric element interposed between the electrodes.

本発明によれば、電極と基板との間に応力緩衝層を設けたので、基板に外部から熱が印加されたりして、熱応力が発生しても、この熱応力は応力緩衝層により緩衝されるので、電極と熱電素子との間に大きな力が作用して両者が剥離してしまうことが防止される。   According to the present invention, since the stress buffer layer is provided between the electrode and the substrate, even if heat is applied to the substrate from the outside and thermal stress is generated, the thermal stress is buffered by the stress buffer layer. Therefore, it is prevented that a large force acts between the electrode and the thermoelectric element and the both are separated.

以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。図1は、本発明の実施形態に係る熱電モジュールの一部を示す正面図、図2は同じくその一部を示す平面図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a front view showing a part of a thermoelectric module according to an embodiment of the present invention, and FIG. 2 is a plan view showing the same part.

図1に示すように、本実施形態においては、1対の基板1,2が対向配置され、この基板1,2の対向面に、夫々応力緩衝層7,8が形成され、この応力緩衝層7,8の上に、電極3,4が形成されている。本実施形態においては、図2に示すように、応力緩衝層7,8の形状と、電極3,4の形状とは応力緩衝層7,8の方が若干大きいがほぼ同一であり、1個の応力緩衝層7、8の上に夫々1個の電極3,4が配置されている。そして、電極3,4の間に、N型熱電素子5とP型熱電素子6とが挟まれて、電極3,4と熱電素子5,6とがはんだ合金により接合されている。この場合に、基板1側の電極3上に配置されたN型熱電素子5と、この電極3に隣接する電極3上に配置されたP型熱電素子6とが、基板2側の1個の電極4により接続されている。同様に、基板2側の1個の電極4に接続されたN型熱電素子5及びP型熱電素子6は、夫々隣接する他の電極4に接続されたP型熱電素子6及びN型熱電素子5と、基板1側において、1個の電極3により接続されている。このようにして、N型熱電素子5とP型熱電素子6とが電極3,4により直列に接続され、この直列接続体の一方の端部の電極3と他方の端部の電極4との間に所定の電圧を印加することにより、電流がN型熱電素子5とP型熱電素子6とを相反する方向に流れ、ペルチェ効果により、熱が一方の基板1又は2から他方の基板2又は1に流れ、吸熱側の基板では対象物を冷却し、放熱側の基板では対象物を加熱する。   As shown in FIG. 1, in this embodiment, a pair of substrates 1 and 2 are disposed to face each other, and stress buffer layers 7 and 8 are formed on opposite surfaces of the substrates 1 and 2, respectively. Electrodes 3 and 4 are formed on 7 and 8. In the present embodiment, as shown in FIG. 2, the shape of the stress buffer layers 7 and 8 and the shape of the electrodes 3 and 4 are almost the same, although the stress buffer layers 7 and 8 are slightly larger. One electrode 3 and 4 is disposed on each of the stress buffer layers 7 and 8. The N-type thermoelectric element 5 and the P-type thermoelectric element 6 are sandwiched between the electrodes 3 and 4, and the electrodes 3 and 4 and the thermoelectric elements 5 and 6 are joined by a solder alloy. In this case, an N-type thermoelectric element 5 disposed on the electrode 3 on the substrate 1 side and a P-type thermoelectric element 6 disposed on the electrode 3 adjacent to the electrode 3 are combined into one piece on the substrate 2 side. The electrodes 4 are connected. Similarly, an N-type thermoelectric element 5 and a P-type thermoelectric element 6 connected to one electrode 4 on the substrate 2 side are respectively a P-type thermoelectric element 6 and an N-type thermoelectric element connected to another electrode 4 adjacent thereto. 5 and one substrate 3 on the substrate 1 side. In this way, the N-type thermoelectric element 5 and the P-type thermoelectric element 6 are connected in series by the electrodes 3 and 4, and the electrode 3 at one end and the electrode 4 at the other end of the series connection body are connected. By applying a predetermined voltage therebetween, current flows in the opposite direction between the N-type thermoelectric element 5 and the P-type thermoelectric element 6, and heat is transferred from one substrate 1 or 2 to the other substrate 2 or by the Peltier effect. 1, the target object is cooled on the heat absorption side substrate, and the target object is heated on the heat dissipation side substrate.

而して、本実施形態においては、電極3と基板1との間に応力緩衝層7が配置されており、電極4と基板2との間に応力緩衝層8が配置されている。この応力緩衝層7,8は、電極3,4よりも若干大きく1個の応力緩衝層7,8の上に1個の電極3,4が配置されている。   Thus, in the present embodiment, the stress buffer layer 7 is disposed between the electrode 3 and the substrate 1, and the stress buffer layer 8 is disposed between the electrode 4 and the substrate 2. The stress buffer layers 7 and 8 are slightly larger than the electrodes 3 and 4, and one electrode 3 and 4 is disposed on one stress buffer layer 7 and 8.

本発明においては、電極3,4は銅めっき層又は銅板から形成することができる。また、基板1,2は、アルミナ又は銅板等により形成されており、基本的には剛性体である。更に、応力緩衝層としては、ポリイミド系樹脂、アラミド系樹脂又はエポキシ系樹脂を使用することができる。このポリイミド系樹脂、アラミド系樹脂又はエポキシ系樹脂は、電極を構成する銅めっき層及び基板を構成するアルミナ又は銅板よりも、ヤング率が低い。   In the present invention, the electrodes 3 and 4 can be formed from a copper plating layer or a copper plate. The substrates 1 and 2 are made of alumina or a copper plate, and are basically rigid bodies. Furthermore, a polyimide resin, an aramid resin, or an epoxy resin can be used as the stress buffer layer. This polyimide resin, aramid resin or epoxy resin has a Young's modulus lower than that of the copper plating layer constituting the electrode and the alumina or copper plate constituting the substrate.

これにより、基板、電極及び熱電素子に熱応力が作用しても、応力緩衝層7,8により熱電素子5,6と電極3,4との間に剥離等が生じることが防止され、信頼性が高い熱電モジュールを得ることができる。また、本発明は、基板1,2自体は、基本的には、アルミナ又は銅板等の剛性体を使用するので、応力緩衝層7,8は柔軟性を有するにも拘わらず、熱電モジュールを組み立てる際のハンダ付け時に、はんだ層内にボイドが発生することを防止でき、はんだ接合層内において、熱抵抗が増大することを防止できる。   Thereby, even if thermal stress acts on the substrate, the electrode, and the thermoelectric element, the stress buffer layers 7 and 8 prevent the thermoelectric elements 5 and 6 and the electrodes 3 and 4 from being peeled off, thereby improving reliability. A high thermoelectric module can be obtained. In the present invention, since the substrates 1 and 2 themselves basically use a rigid body such as alumina or a copper plate, the thermoelectric module is assembled even though the stress buffer layers 7 and 8 have flexibility. During soldering, voids can be prevented from being generated in the solder layer, and thermal resistance can be prevented from increasing in the solder joint layer.

本実施形態にて応力緩衝層として使用しているポリイミド系樹脂及びアラミド系樹脂は、金属及びセラミックス系材料に比して相対的にヤング率が低い。また、これらの材料は、銅メッキが容易であり、電極の形成も容易である。更に、これらの材料は、市販されていて入手しやすいのに加え、ハンダ付け温度において、軟化しないという利点がある。このため、これらの材料は応力緩衝層として有効である。   The polyimide resin and the aramid resin used as the stress buffer layer in the present embodiment have a relatively low Young's modulus compared to metal and ceramic materials. In addition, these materials can be easily plated with copper and can easily form electrodes. Furthermore, these materials are commercially available and easily available, and also have the advantage of not softening at the soldering temperature. For this reason, these materials are effective as a stress buffer layer.

次に、本発明の実施形態に係る熱電モジュールの製造方法について説明する。図4(a)、(b)、図5(a)、(b)、図6、図7(a)、(b)は、本発明の実施形態に係る熱電モジュールの製造方法を工程順に示す図である。先ず、図4(a)に示すように、片面に銅メッキ層11を形成し、他面に銅板12を接着したポリイミド層10を用意するか、図4(b)に示すように、片面に銅メッキ層11を形成し、他面にアルミナ板13を接着したポリイミド層10を用意する。   Next, the manufacturing method of the thermoelectric module which concerns on embodiment of this invention is demonstrated. 4A, 4B, 5A, 5B, 6, 7A, and 7B show a method of manufacturing a thermoelectric module according to an embodiment of the present invention in the order of steps. FIG. First, as shown in FIG. 4A, a polyimide layer 10 having a copper plating layer 11 formed on one side and a copper plate 12 bonded to the other side is prepared, or on one side as shown in FIG. A polyimide layer 10 is prepared by forming a copper plating layer 11 and bonding an alumina plate 13 to the other surface.

次に、電極を形成するが、以下、図4(a)に示す両面銅メッキポリイミド層を使用した場合の製造方法について説明する。しかし、片面銅メッキ片面アルミナ板接着ポリイミド基板の場合も同様である。図5(a)、(b)に示すように、このポリイミド層10の上の銅メッキ層11の上に、電極3,4となる部分11aを被覆するマスクパターンを形成する。そして、このマスクパターンをマスクとして銅めっき層をエッチングすることにより、電極3,4となる銅部分11aを形成する。   Next, although an electrode is formed, the manufacturing method in the case of using the double-sided copper plating polyimide layer shown in FIG. However, the same applies to a single-sided copper-plated single-sided alumina plate-bonded polyimide substrate. As shown in FIGS. 5A and 5B, a mask pattern is formed on the copper plating layer 11 on the polyimide layer 10 so as to cover the portion 11a to be the electrodes 3 and 4. And the copper part 11a used as the electrodes 3 and 4 is formed by etching a copper plating layer using this mask pattern as a mask.

次に、図6に示すように、ポリイミド層10における銅部分11a間の間隙に、縦方向に延びる切り込み14aを、ブレードソーにより形成する。   Next, as shown in FIG. 6, in the gap between the copper portions 11a in the polyimide layer 10, a cut 14a extending in the vertical direction is formed by a blade saw.

更に、図7に示すように、ポリイミド層10における銅部分11a間の間隙に、横方向に延びる切り込み14bを、ブレードソーにより形成する。   Further, as shown in FIG. 7, in the gap between the copper portions 11a in the polyimide layer 10, a cut 14b extending in the lateral direction is formed by a blade saw.

これにより、ポリイミド層10が、1個の電極に対して1個のポリイミド層となるように分離され、図1及び図2に示すように、基板1,2(この場合は銅基板)上に、ポリイミドからなる応力緩衝層7,8が形成され、応力緩衝層7,8の上に電極3,4が形成された電極付基板が製造される。この応力緩衝層の分断により更に応力緩和効果を促進することができる。   Thereby, the polyimide layer 10 is separated so as to be one polyimide layer for one electrode, and as shown in FIGS. 1 and 2, on the substrates 1 and 2 (in this case, a copper substrate). The stress buffer layers 7 and 8 made of polyimide are formed, and the substrate with electrodes in which the electrodes 3 and 4 are formed on the stress buffer layers 7 and 8 is manufactured. The stress relaxation effect can be further promoted by dividing the stress buffer layer.

次に、これらの基板1,2を電極3,4同士が対向するように配置し、電極3,4間に熱電素子5,6を挟み、電極3,4と熱電素子5,6とを導電性接着剤により接合する。これにより、図1,2に示す熱電モジュールが製造される。   Next, the substrates 1 and 2 are arranged so that the electrodes 3 and 4 face each other, the thermoelectric elements 5 and 6 are sandwiched between the electrodes 3 and 4, and the electrodes 3 and 4 and the thermoelectric elements 5 and 6 are electrically connected. Bonded with adhesive. Thereby, the thermoelectric module shown in FIGS. 1 and 2 is manufactured.

次に、本発明の他の実施形態に係る熱電モジュールについて説明する。図3はこの他の実施形態に係る熱電モジュールの一部を示す平面図である。本実施形態においては、基板1、2上の電極3,4と、熱電素子5,6との関係は、図1及び図2に示す第1実施形態と同一であるが、電極3,4と応力緩衝層7,8との関係が異なる。即ち、本実施形態においては、1個の応力緩衝層7上に、6個の電極3が配置されており、6個の電極3に対して、共通に1個の応力緩衝層7が設けられている。このようにしても、熱応力による熱電素子と電極との剥離防止等には有効であり、ダイシングソーによる分離工程が少なくて済む分、製造工程が簡略化される。   Next, a thermoelectric module according to another embodiment of the present invention will be described. FIG. 3 is a plan view showing a part of a thermoelectric module according to another embodiment. In this embodiment, the relationship between the electrodes 3 and 4 on the substrates 1 and 2 and the thermoelectric elements 5 and 6 is the same as that in the first embodiment shown in FIGS. The relationship with the stress buffer layers 7 and 8 is different. That is, in this embodiment, six electrodes 3 are arranged on one stress buffer layer 7, and one stress buffer layer 7 is provided in common for the six electrodes 3. ing. Even if it does in this way, it is effective for the peeling prevention of the thermoelectric element and electrode by a thermal stress, etc., and a manufacturing process is simplified to the extent that the separation process by a dicing saw may be reduced.

なお、本発明は上記実施形態に限らず、例えば、一の電極上に、複数個のN型熱電素子と、複数個のP型熱電素子とを設置してもよい。   In addition, this invention is not restricted to the said embodiment, For example, you may install several N type thermoelectric elements and several P type thermoelectric elements on one electrode.

また、応力緩衝層7の分断は、ダイシングソーの他に、紫外線(UV)レーザ、又は炭酸ガス(CO)レーザによる分離方法を使用することもできる。 The stress buffer layer 7 can be divided by using a separation method using an ultraviolet (UV) laser or a carbon dioxide (CO 2 ) laser in addition to a dicing saw.

次に、本発明の実施例の効果について、本発明の範囲から外れる比較例の特性と比較して説明する。   Next, effects of the embodiment of the present invention will be described in comparison with the characteristics of a comparative example that is out of the scope of the present invention.

(試験例1)
供試熱電モジュールは、1辺長が40mmの正方形の面をもち、厚さが1.5mmである。搭載する熱電素子の数は120対である。また、熱電素子の材料は、P型熱電素子がBi0.5Sb1.5Te、N型熱電素子がBi1.9Sb0.1Te2.6Se0.4の組成を有する。これらの熱電材料はホットプレスにより焼結したものである。実施例1乃至4の基板構造は、図2に示すように、電極と応力緩衝層とが1:1に対応するものである。応力緩衝層としてのポリイミド層の厚さは20μm、この応力緩衝層の一面に形成される銅メッキ層(銅電極)の厚さは100μm、応力緩衝層の他面に貼り付けられるものがアルミナの場合は厚さが120μm、銅板の場合は厚さが140μmである。比較例1の熱電モジュールは、外形寸法は実施例と同一であるが、基板には、0.2mm厚のアルミナ板の一面に銅電極をメタライズ(厚さ100μm)したものを使用した。このアルミナ板の他面には、銅のベタ層(100μm)をメッキにより形成した。この比較例1の熱電モジュールは従来の一般的な構造を有する。なお、実施例1乃至4と比較例1とは熱電素子と銅電極との接合に、Sn−Sb系はんだを使用した。
(Test Example 1)
The test thermoelectric module has a square surface with a side length of 40 mm and a thickness of 1.5 mm. The number of thermoelectric elements to be mounted is 120 pairs. The material of the thermoelectric element has a composition of Bi 0.5 Sb 1.5 Te 3 for the P-type thermoelectric element and Bi 1.9 Sb 0.1 Te 2.6 Se 0.4 for the N-type thermoelectric element. These thermoelectric materials are sintered by hot pressing. In the substrate structures of Examples 1 to 4, as shown in FIG. 2, the electrode and the stress buffer layer correspond to 1: 1. The thickness of the polyimide layer as the stress buffer layer is 20 μm, the thickness of the copper plating layer (copper electrode) formed on one surface of the stress buffer layer is 100 μm, and the one attached to the other surface of the stress buffer layer is alumina. In this case, the thickness is 120 μm, and in the case of a copper plate, the thickness is 140 μm. The external dimensions of the thermoelectric module of Comparative Example 1 were the same as those of the example, but the substrate used was a metallized copper electrode (thickness: 100 μm) on one surface of a 0.2 mm thick alumina plate. On the other surface of the alumina plate, a solid copper layer (100 μm) was formed by plating. The thermoelectric module of Comparative Example 1 has a conventional general structure. In Examples 1 to 4 and Comparative Example 1, Sn—Sb solder was used for joining the thermoelectric element and the copper electrode.

この供試材に対し、信頼性試験のために温度差付加試験を実施した。熱電モジュールの上下基板に150Kの温度差を付加した後、温度差を0に戻す熱サイクル試験を繰り返した。そして、熱応力による破壊の進展を熱電モジュールのACR変化率及び最大温度差ΔT変化率で評価した、1熱サイクルに要する時間は、昇温2分間、保持1分間、降温3分間の計6分間である。   A temperature difference addition test was performed on the specimen for reliability testing. After adding a temperature difference of 150 K to the upper and lower substrates of the thermoelectric module, a thermal cycle test for returning the temperature difference to 0 was repeated. The progress of fracture due to thermal stress was evaluated by the ACR change rate and the maximum temperature difference ΔT change rate of the thermoelectric module. The time required for one thermal cycle was 6 minutes in total: 2 minutes for temperature rise, 1 minute for holding, and 3 minutes for temperature drop. It is.

その結果、下記表1に熱電モジュールのACR(交流抵抗値)増加率を示す。また、下記表2は、熱電特性の劣化による熱電モジュールのΔT(最大温度差)の低下率を示す。   As a result, Table 1 below shows the ACR (AC resistance value) increase rate of the thermoelectric module. Table 2 below shows the rate of decrease in ΔT (maximum temperature difference) of the thermoelectric module due to deterioration of thermoelectric characteristics.

Figure 2008277584
Figure 2008277584

Figure 2008277584
Figure 2008277584

上記表1及び表2に示すように、本発明の実施例1乃至6の場合は、熱サイクルを繰り返しても、ACR増加率及び最大温度差の低下率が小さく、熱電特性の劣化が極めて少ない。また、試験したサイクル数の範囲では、熱電モジュールの破壊が発生することがなかった。これに対し、比較例1の場合は、ACR増加率及び最大温度差の低下率が大きく、熱サイクルによる熱電特性の劣化が大きく、1500サイクルで熱電モジュールが破壊した。なお、モジュールの破壊判断基準は5%の変化として考えられる。即ち、ACR増加率又は最大温度差の低下率が5%を超えると、経験的に、ジュール熱が高くなりすぎ、熱電材料自体及び熱電材料とはんだ層との界面等に亀裂が生じて使用できなくなる。   As shown in Table 1 and Table 2, in the case of Examples 1 to 6 of the present invention, even when the thermal cycle is repeated, the ACR increase rate and the decrease rate of the maximum temperature difference are small, and the deterioration of the thermoelectric characteristics is extremely small. . In addition, the thermoelectric module was not broken within the range of the number of cycles tested. On the other hand, in the case of the comparative example 1, the ACR increase rate and the decrease rate of the maximum temperature difference were large, the thermoelectric characteristics were greatly deteriorated due to the thermal cycle, and the thermoelectric module was destroyed in 1500 cycles. Note that the criteria for determining whether or not a module is broken can be considered as a 5% change. That is, if the ACR increase rate or the maximum temperature difference decrease rate exceeds 5%, the Joule heat becomes empirically too high, and the thermoelectric material itself and the interface between the thermoelectric material and the solder layer are cracked. Disappear.

(試験例2)
供試熱電モジュールは、1辺長が40mmの正方形の面をもち、厚さが1.5mmである。搭載する熱電素子の数は120対である。また、熱電素子の材料は、P型熱電素子がBi0.5Sb1.5Te、N型熱電素子がBi1.9Sb0.1Te2.6Se0.4の組成を有する。これらの熱電材料はホットプレスにより焼結したものである。実施例5乃至8の基板構造は、図3に示すように、電極と応力緩衝層との数の比が6:1に対応するものである。但し、基板はアルミナ板であり、その厚さは0.2mmである。
(Test Example 2)
The test thermoelectric module has a square surface with a side length of 40 mm and a thickness of 1.5 mm. The number of thermoelectric elements to be mounted is 120 pairs. The material of the thermoelectric element has a composition of Bi 0.5 Sb 1.5 Te 3 for the P-type thermoelectric element and Bi 1.9 Sb 0.1 Te 2.6 Se 0.4 for the N-type thermoelectric element. These thermoelectric materials are sintered by hot pressing. In the substrate structures of Examples 5 to 8, as shown in FIG. 3, the ratio of the number of electrodes to the stress buffer layer corresponds to 6: 1. However, the substrate is an alumina plate and the thickness is 0.2 mm.

電極の応力緩衝層としてのポリイミド層の厚さは20μm、銅電極の厚さは100μm、銅メタライズ層の厚さは100μmである。比較例1の熱電モジュールは、前述のとおり、外形寸法は実施例5乃至8と同一であるが、基板には、0.2mm厚のアルミナ板の一面に銅電極をメタライズ(厚さ100μm)したものを使用した。このアルミナ板の他面には、銅のベタ層(100μm)をメッキにより形成した。この比較例1の熱電モジュールは従来の一般的な構造を有する。なお、実施例5乃至8と比較例1とは熱電素子と銅電極との接合に、Sn−Sb系はんだを使用した。   The thickness of the polyimide layer as the stress buffer layer of the electrode is 20 μm, the thickness of the copper electrode is 100 μm, and the thickness of the copper metallized layer is 100 μm. As described above, the thermoelectric module of Comparative Example 1 has the same outer dimensions as those of Examples 5 to 8, but the substrate was metallized with a copper electrode on one surface of a 0.2 mm thick alumina plate (thickness: 100 μm). I used something. On the other surface of the alumina plate, a solid copper layer (100 μm) was formed by plating. The thermoelectric module of Comparative Example 1 has a conventional general structure. In Examples 5 to 8 and Comparative Example 1, Sn—Sb solder was used for joining the thermoelectric element and the copper electrode.

この供試材に対し、信頼性試験のために温度差付加試験を実施した。熱電モジュールの上下基板に試験例1と同様に150Kの温度差を付加した後、温度差を0に戻す熱サイクル試験を繰り返した。そして、熱応力による破壊の進展を熱電モジュールのACR変化率及び最大温度差ΔT変化率で評価した、1熱サイクルに要する時間は、前述と同様に、昇温2分間、保持1分間、降温3分間の計6分間である。   A temperature difference addition test was performed on the specimen for reliability testing. After adding a temperature difference of 150 K to the upper and lower substrates of the thermoelectric module in the same manner as in Test Example 1, a thermal cycle test for returning the temperature difference to 0 was repeated. Then, the progress of fracture due to thermal stress was evaluated by the ACR change rate and the maximum temperature difference ΔT change rate of the thermoelectric module, and the time required for one heat cycle was 2 minutes for temperature rise, 1 minute for holding, 3 minutes for temperature drop as described above. A total of 6 minutes.

その結果、下記表2に熱電モジュールのACR(交流抵抗値)増加率を示す。また、下記表2は、熱電特性の劣化による熱電モジュールのΔT(最大温度差)の低下率を示す。   As a result, Table 2 below shows the ACR (AC resistance value) increase rate of the thermoelectric module. Table 2 below shows the rate of decrease in ΔT (maximum temperature difference) of the thermoelectric module due to deterioration of thermoelectric characteristics.

Figure 2008277584
Figure 2008277584
Figure 2008277584
Figure 2008277584

Figure 2008277584
Figure 2008277584

上記表3及び表4に示すように、本発明の実施例7乃至12の場合は、熱サイクルを繰り返しても、ACR増加率及び最大温度差の低下率が小さく、熱電特性の劣化が極めて少ない。また、試験したサイクル数の範囲では、熱電モジュールの破壊が発生することがなかった。これに対し、比較例1の場合は、ACR増加率及び最大温度差の低下率が大きく、熱サイクルによる熱電特性の劣化が大きく、1500サイクルで熱電モジュールが破壊した。これにより、本発明による熱電モジュールの信頼性向上効果が確認された。   As shown in Tables 3 and 4 above, in Examples 7 to 12 of the present invention, even when the thermal cycle is repeated, the ACR increase rate and the decrease rate of the maximum temperature difference are small, and the deterioration of the thermoelectric characteristics is extremely small. . In addition, the thermoelectric module was not broken within the range of the number of cycles tested. On the other hand, in the case of the comparative example 1, the ACR increase rate and the decrease rate of the maximum temperature difference were large, the thermoelectric characteristics were greatly deteriorated due to the thermal cycle, and the thermoelectric module was destroyed in 1500 cycles. Thereby, the reliability improvement effect of the thermoelectric module by this invention was confirmed.

本発明の第1実施形態に係る熱電モジュールを示す正面図である。It is a front view which shows the thermoelectric module which concerns on 1st Embodiment of this invention. 同じく第1実施形態の熱電モジュールの平面図である。It is a top view of the thermoelectric module of a 1st embodiment similarly. 本発明の第2実施形態に係る熱電モジュールを示す平面図である。It is a top view which shows the thermoelectric module which concerns on 2nd Embodiment of this invention. (a)、(b)は本発明の実施形態に係る熱電モジュールの製造方法を示す図である。(A), (b) is a figure which shows the manufacturing method of the thermoelectric module which concerns on embodiment of this invention. 同じく、図4の次の工程を示す図である。Similarly, it is a figure which shows the next process of FIG. 同じく、図5の次の工程を示す図である。Similarly, it is a figure which shows the next process of FIG. (a)、(b)は、同じく、図6の次の工程を示す図である。(A), (b) is a figure which similarly shows the next process of FIG. 特許文献1に記載の熱電モジュールを示す正面図である。2 is a front view showing a thermoelectric module described in Patent Document 1. FIG. 特許文献2に記載の熱電モジュールを示す図である。It is a figure which shows the thermoelectric module of patent document 2. FIG. (a)、(b)は、特許文献1に記載の熱電モジュールの欠点を説明する図である。(A), (b) is a figure explaining the fault of the thermoelectric module of patent document 1. FIG.

符号の説明Explanation of symbols

1,2:基板
3,4:電極
5,6:熱電素子
7,8:応力緩衝層
10:ポリイミド層
11:銅めっき層
11a:銅部分
12:銅板
14a、14b:切り込み
1, 2: substrate 3, 4: electrodes 5, 6: thermoelectric elements 7, 8: stress buffer layer 10: polyimide layer 11: copper plating layer 11a: copper portion 12: copper plates 14a, 14b: notches

Claims (8)

1対の基板と、前記基板の対向面上に配置された複数個の電極と、前記電極と前記基板との間に形成されヤング率が前記電極及び前記基板のヤング率よりも低い応力緩衝層と、を有することを特徴とする熱電用基板部材。 A pair of substrates, a plurality of electrodes disposed on opposite surfaces of the substrate, and a stress buffer layer formed between the electrodes and the substrate and having a Young's modulus lower than the Young's modulus of the electrodes and the substrate And a thermoelectric substrate member. 前記応力緩衝層は、ポリイミド系樹脂、アラミド系樹脂又はエポキシ系樹脂であることを特徴とする請求項1に記載の熱電用基板部材。 The thermoelectric substrate member according to claim 1, wherein the stress buffer layer is a polyimide resin, an aramid resin, or an epoxy resin. 前記基板は、アルミナ又は銅板であることを特徴とする請求項1又は2に記載の熱電用基板部材。 The thermoelectric substrate member according to claim 1, wherein the substrate is alumina or a copper plate. 第1及び第2の基板と、前記第1及び第2の基板の対向面上に配置された夫々複数個の第1の電極及び第2の電極と、前記第1の電極と前記第2の電極との間に挟まれるように配置され各電極上に夫々1又は複数個接続されたN型熱電素子及びP型熱電素子と、を有し、前記第1の電極及び第2の電極は、N型熱電素子の通電方向とP型熱電素子の通電方向とが相互に相反するように前記N型熱電素子及びP型熱電素子に接続された熱電モジュールにおいて、前記第1及び第2の電極と夫々前記第1及び第2の基板との間に、ヤング率が前記第1及び第2の電極並びに前記第1及び第2の基板のヤング率よりも低い応力緩衝層が配置されていることを特徴とする熱電モジュール。 A plurality of first and second electrodes disposed on opposing surfaces of the first and second substrates, the first electrode, and the second electrode, respectively. An N-type thermoelectric element and a P-type thermoelectric element that are arranged so as to be sandwiched between the electrodes and are connected to each electrode, respectively, and the first electrode and the second electrode, In the thermoelectric module connected to the N-type thermoelectric element and the P-type thermoelectric element so that the energization direction of the N-type thermoelectric element and the energization direction of the P-type thermoelectric element are opposite to each other, the first and second electrodes A stress buffer layer having a Young's modulus lower than that of each of the first and second electrodes and the first and second substrates is disposed between the first and second substrates. A featured thermoelectric module. 前記応力緩衝層は、ポリイミド系樹脂、アラミド系樹脂又はエポキシ系樹脂であることを特徴とする請求項1に記載の熱電モジュール。 The thermoelectric module according to claim 1, wherein the stress buffer layer is a polyimide resin, an aramid resin, or an epoxy resin. 前記基板は、アルミナ又は銅板であることを特徴とする請求項1又は2に記載の熱電モジュール。 The thermoelectric module according to claim 1, wherein the substrate is alumina or a copper plate. 応力緩衝材料からなる応力緩衝層の一面に銅メッキを施すか又は銅板を貼り付け、他の面は銅板又は絶縁基板を貼り付ける工程と、前記一面上の銅メッキ層又は銅板上にマスクを設けて前記銅メッキ層又は銅板をエッチングすることにより前記銅メッキ層又は銅板から複数個の電極をパターン形成する工程と、前記電極間の間隙をとおる線に沿って前記応力緩衝層に切り込みを設けてこれを分断し1個の応力緩衝層に1又は複数個の電極を配置させる工程と、を有することを特徴とする熱電用基板部材の製造方法。 Applying copper plating or attaching a copper plate to one surface of the stress buffer layer made of stress buffer material, and attaching a copper plate or insulating substrate to the other surface, and providing a mask on the copper plating layer or copper plate on the one surface Patterning a plurality of electrodes from the copper plating layer or copper plate by etching the copper plating layer or copper plate, and providing a cut in the stress buffer layer along a line passing through the gap between the electrodes. A process for dividing the substrate and disposing one or a plurality of electrodes on one stress buffer layer, and a method for producing a thermoelectric substrate member. 応力緩衝材料からなる応力緩衝層の一面に銅メッキを施すか又は銅板を貼り付け、他の面は銅板又は絶縁基板を貼り付ける工程と、前記一面上の銅メッキ層又は銅板上にマスクを設けて前記銅メッキ層又は銅板をエッチングすることにより前記銅メッキ層又は銅板から複数個の電極をパターン形成する工程と、前記電極間の間隙をとおる線に沿って前記応力干渉基板に切り込みを設けてこれを分断し1個の応力緩衝層に1又は複数個の電極を配置させる工程と、得られた熱電用基板部材を1対用意しその対向する電極間に熱電素子を介在させて前記電極と前記熱電素子とを接合する工程と、を有することを特徴とする熱電モジュールの製造方法。 Applying copper plating or attaching a copper plate to one surface of the stress buffer layer made of stress buffer material, and attaching a copper plate or insulating substrate to the other surface, and providing a mask on the copper plating layer or copper plate on the one surface Patterning a plurality of electrodes from the copper plating layer or copper plate by etching the copper plating layer or copper plate, and providing a notch in the stress interference substrate along a line passing through a gap between the electrodes. The step of dividing this and arranging one or a plurality of electrodes on one stress buffer layer, and preparing a pair of the obtained thermoelectric substrate members and interposing a thermoelectric element between the opposing electrodes, Joining the thermoelectric element, and a method for manufacturing a thermoelectric module.
JP2007120287A 2007-04-27 2007-04-27 Thermoelectric substrate member, thermoelectric module, and manufacturing method of them Pending JP2008277584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007120287A JP2008277584A (en) 2007-04-27 2007-04-27 Thermoelectric substrate member, thermoelectric module, and manufacturing method of them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007120287A JP2008277584A (en) 2007-04-27 2007-04-27 Thermoelectric substrate member, thermoelectric module, and manufacturing method of them

Publications (1)

Publication Number Publication Date
JP2008277584A true JP2008277584A (en) 2008-11-13

Family

ID=40055183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120287A Pending JP2008277584A (en) 2007-04-27 2007-04-27 Thermoelectric substrate member, thermoelectric module, and manufacturing method of them

Country Status (1)

Country Link
JP (1) JP2008277584A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518287A (en) * 2009-02-19 2012-08-09 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric device
CN104641480A (en) * 2012-08-17 2015-05-20 马勒国际公司 Thermoelectric module
US9842979B2 (en) 2012-08-17 2017-12-12 Mahle International Gmbh Thermoelectric device
KR101875902B1 (en) * 2016-05-13 2018-07-06 티엠에스테크 주식회사 Thermoelectric module and method for manufacturing thermoelectric module
US10074790B2 (en) 2012-08-17 2018-09-11 Mahle International Gmbh Thermoelectric device
US10505093B2 (en) 2016-05-30 2019-12-10 Hyundai Motor Company Housing for thermoelectric module
CN113574687A (en) * 2019-03-19 2021-10-29 株式会社Kelk Thermoelectric module and optical module
WO2022168777A1 (en) * 2021-02-03 2022-08-11 三菱マテリアル株式会社 Thermoelectric conversion module, and method for producing thermoelectric conversion module
JP2022119182A (en) * 2021-02-03 2022-08-16 三菱マテリアル株式会社 Thermoelectric conversion module, and, manufacturing method for thermoelectric conversion module
EP4084100A4 (en) * 2019-12-24 2023-12-27 LG Innotek Co., Ltd. Thermoelectric device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124858A (en) * 1994-10-27 1996-05-17 Aisin Seiki Co Ltd Thick film forming method
JP2000164943A (en) * 1998-11-30 2000-06-16 Yamaha Corp Substrate for thermoelectric module and its manufacture, and the thermoelectric module
JP2003110157A (en) * 2001-09-28 2003-04-11 Toshiba Corp Thermoelectricity generation set
JP2003110154A (en) * 2001-09-28 2003-04-11 Hitachi Ltd Electronic device with peltier module, optical module and manufacturing method for them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124858A (en) * 1994-10-27 1996-05-17 Aisin Seiki Co Ltd Thick film forming method
JP2000164943A (en) * 1998-11-30 2000-06-16 Yamaha Corp Substrate for thermoelectric module and its manufacture, and the thermoelectric module
JP2003110157A (en) * 2001-09-28 2003-04-11 Toshiba Corp Thermoelectricity generation set
JP2003110154A (en) * 2001-09-28 2003-04-11 Hitachi Ltd Electronic device with peltier module, optical module and manufacturing method for them

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184365B2 (en) 2009-02-19 2015-11-10 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Thermoelectric device
JP2012518287A (en) * 2009-02-19 2012-08-09 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric device
US10074790B2 (en) 2012-08-17 2018-09-11 Mahle International Gmbh Thermoelectric device
US9735333B2 (en) 2012-08-17 2017-08-15 Mahle International Gmbh Thermoelectric module
US9842979B2 (en) 2012-08-17 2017-12-12 Mahle International Gmbh Thermoelectric device
CN104641480A (en) * 2012-08-17 2015-05-20 马勒国际公司 Thermoelectric module
KR101875902B1 (en) * 2016-05-13 2018-07-06 티엠에스테크 주식회사 Thermoelectric module and method for manufacturing thermoelectric module
US10505093B2 (en) 2016-05-30 2019-12-10 Hyundai Motor Company Housing for thermoelectric module
CN113574687A (en) * 2019-03-19 2021-10-29 株式会社Kelk Thermoelectric module and optical module
CN113574687B (en) * 2019-03-19 2024-02-20 株式会社Kelk Thermoelectric module and optical module
EP4084100A4 (en) * 2019-12-24 2023-12-27 LG Innotek Co., Ltd. Thermoelectric device
WO2022168777A1 (en) * 2021-02-03 2022-08-11 三菱マテリアル株式会社 Thermoelectric conversion module, and method for producing thermoelectric conversion module
JP2022119182A (en) * 2021-02-03 2022-08-16 三菱マテリアル株式会社 Thermoelectric conversion module, and, manufacturing method for thermoelectric conversion module
JP7248091B2 (en) 2021-02-03 2023-03-29 三菱マテリアル株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP2008277584A (en) Thermoelectric substrate member, thermoelectric module, and manufacturing method of them
JP4803088B2 (en) Thermoelectric module and method for manufacturing the same
JP5987444B2 (en) Thermoelectric conversion device and manufacturing method thereof
US20090002950A1 (en) Multi-layer electrically isolated thermal conduction structure for a circuit board assembly
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
US11017922B2 (en) Chip resistor and mounting structure thereof
JP2009302494A (en) Chip resistor and method for manufacturing the same
JP2005079210A (en) Thermoelectric conversion device
JP2008141027A (en) Bonding structure of thermoelectric conversion element and thermoelectric conversion module
US9881719B2 (en) Chip resistor and method for making the same
JP4407521B2 (en) Insulated heat transfer structure and power module substrate
JP2015002212A (en) Chip resistor and packaging structure for chip resistor
US9514867B2 (en) Chip resistor and method for making the same
JP2006261505A (en) Insulating heat transfer sheet
JP2008098197A (en) Thermoelectric conversion element and its fabrication process
JP4797676B2 (en) Insulated heat transfer structure, power module substrate, and method of manufacturing insulated heat transfer structure
JP4407509B2 (en) Insulated heat transfer structure and power module substrate
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
JP2006310277A (en) Chip type fuse
JP4375249B2 (en) Thermoelectric module
JP4523306B2 (en) Method for manufacturing thermoelectric element
JP6471241B2 (en) Thermoelectric module
JP2014072314A (en) Semiconductor device and semiconductor device manufacturing method
JP4136453B2 (en) Thermoelectric element and manufacturing method thereof
JP2014060463A (en) Chip resistor and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802