JP4523306B2 - Method for manufacturing thermoelectric element - Google Patents

Method for manufacturing thermoelectric element Download PDF

Info

Publication number
JP4523306B2
JP4523306B2 JP2004079362A JP2004079362A JP4523306B2 JP 4523306 B2 JP4523306 B2 JP 4523306B2 JP 2004079362 A JP2004079362 A JP 2004079362A JP 2004079362 A JP2004079362 A JP 2004079362A JP 4523306 B2 JP4523306 B2 JP 4523306B2
Authority
JP
Japan
Prior art keywords
protective layer
substrate
type
thermoelectric
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004079362A
Other languages
Japanese (ja)
Other versions
JP2005268555A (en
Inventor
渡辺  滋
村上  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2004079362A priority Critical patent/JP4523306B2/en
Publication of JP2005268555A publication Critical patent/JP2005268555A/en
Application granted granted Critical
Publication of JP4523306B2 publication Critical patent/JP4523306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明はペルチェ冷却や温度差発電に用いる熱電素子に関するものであり、特にその信頼性を向上させる素子構造と製造方法に関する。  The present invention relates to a thermoelectric element used for Peltier cooling and temperature difference power generation, and more particularly to an element structure and a manufacturing method for improving its reliability.

熱電対は極性の異なる2種類の熱電半導体を接続し、その両端に温度差を与えることにより電極間に電圧を発生し、反対に外部から電流を流すと温度差を生じる性質を持つ。この熱電対を複数直列化し、熱・電気変換特性を増幅利用しているのが熱電素子である。   A thermocouple has the property that two types of thermoelectric semiconductors having different polarities are connected, a temperature difference is generated between both ends, a voltage is generated between the electrodes, and conversely a temperature difference is generated when a current is passed from the outside. A thermoelectric element uses a plurality of these thermocouples in series to amplify and utilize the thermal / electric conversion characteristics.

たとえば熱電素子は熱を電気エネルギーに変換できる特徴つまりゼーベック効果を利用して発電素子に、あるいは電気エネルギーで温度差を生じる特徴つまりペルチェ効果を利用して対象物を冷やしたりする冷却素子に応用される。   For example, a thermoelectric element is applied to a power generation element using the Seebeck effect that can convert heat into electric energy, or a cooling element that cools an object using a characteristic that causes a temperature difference due to electric energy, that is, the Peltier effect. The

そして熱電素子は構造やその動作が簡単なため、他の熱/電気変換システムに比べて小型化に有利なところから発電素子としては腕時計などの携帯用電子機器内部での発電、また冷却素子としては半導体素子やセンサー素子などの局所的な冷却への応用が広がっている。   And since the thermoelectric element has a simple structure and its operation, it is advantageous for downsizing compared to other thermal / electrical conversion systems. As a power generation element, it can generate power inside portable electronic devices such as wristwatches and as a cooling element. Has expanded its application to local cooling of semiconductor elements and sensor elements.

熱電素子として発電あるいは冷却に使われている半導体材料の中でもっとも一般的なのはビスマス(Bi)とテルル(Te)を主成分にしたいわゆるBiTe合金である。この材料は室温近辺で現在もっとも性能が良いため各所で多用されている。BiTe合金は添加物により他の熱電半導体材料と同様にp型とn型の極性を有するものがあり、両者を電気的に接続して対にしたものが熱電対と呼ばれる。熱電素子は異種極性の熱電半導体を柱状に加工し、熱電対を構成しつつ、さらにそれを複数接続して構成されている。   The most common semiconductor material used for power generation or cooling as a thermoelectric element is a so-called BiTe alloy mainly composed of bismuth (Bi) and tellurium (Te). Since this material has the best performance at around room temperature, it is widely used in various places. Some BiTe alloys have p-type and n-type polarities in the same manner as other thermoelectric semiconductor materials due to additives, and those obtained by electrically connecting the two are called thermocouples. The thermoelectric element is formed by processing thermoelectric semiconductors of different polarities into a columnar shape to form a thermocouple and further connecting a plurality of them.

従来の熱電素子の構造と製造方法は、まずセラミックスの二枚の平板状基板に所定のパターンにて基板電極を形成する。複数のp型とn型の熱電半導体は柱状に加工されその両端面において半田層を介して上下二枚の基板の基板電極に接合する。基板電極は隣り合ったp型とn型の熱電半導体を接続し熱電対を形成し、さらに複数の熱電対が直列化した構成となっている。   In a conventional thermoelectric element structure and manufacturing method, first, substrate electrodes are formed in a predetermined pattern on two flat ceramic substrates. A plurality of p-type and n-type thermoelectric semiconductors are processed into a columnar shape, and bonded to the substrate electrodes of the upper and lower two substrates via solder layers at both end faces thereof. The substrate electrode has a configuration in which adjacent p-type and n-type thermoelectric semiconductors are connected to form a thermocouple, and a plurality of thermocouples are connected in series.

この熱電素子に直流電流を流すと柱の一端が吸熱をし、他端が発熱をするといういわゆるペルチェ効果が働き、一端に位置する片方の基板を冷却対象物に接触させると、対象物の熱を吸熱し冷却することが可能となる。   When a direct current is passed through the thermoelectric element, a so-called Peltier effect occurs in which one end of the pillar absorbs heat and the other end generates heat. When one substrate located at one end is brought into contact with the object to be cooled, the heat of the object Can be cooled by absorbing heat.

この様に熱電素子を冷却素子として利用した場合、その素子の信頼性に対して2つの問題がある。1つは結露の問題である。熱電素子で冷却をする場合、その条件によっては室温以下の温度に制御することが可能である。これを大気中で行うと、大気中の水分が低温部分である柱の一端に結露として現れる。柱の端部は半田、基板電極など異種の金属が接合されているため、結露による水分の付加により局部電池が形成され、金属の腐食が生じてしまう。この腐食により素子抵抗の増大ついには素子の破壊が生じてしまう。   Thus, when a thermoelectric element is used as a cooling element, there are two problems with respect to the reliability of the element. One is the problem of condensation. When cooling with a thermoelectric element, it is possible to control to a temperature below room temperature depending on the conditions. When this is performed in the atmosphere, moisture in the atmosphere appears as condensation on one end of the pillar, which is a low temperature part. Since dissimilar metals such as solder and substrate electrodes are joined to the ends of the pillars, local batteries are formed by the addition of moisture due to dew condensation, resulting in metal corrosion. Due to this corrosion, the element resistance increases and eventually the element is destroyed.

2つめの問題は応力集中である。熱電素子はその性質から片側の基板が冷却され、もう片側の基板は加熱される。その為基板に冷却収縮と加熱膨張が生じることから、つまりはその間に存在する熱電半導体の柱には斜めに変形しようとする力が加わる。この力は端部である接合部に集中することから、接合部の破壊が生じやすくなる。   The second problem is stress concentration. Due to the nature of the thermoelectric element, the substrate on one side is cooled and the substrate on the other side is heated. For this reason, cooling shrinkage and heating expansion occur in the substrate, that is, a force for obliquely deforming the column of the thermoelectric semiconductor existing therebetween is applied. Since this force concentrates on the joining portion which is the end portion, the joining portion is easily broken.

この第1の問題である結露対策のため、従来ではたとえばシリコーン樹脂などを熱電半導体の柱の間に充填することで、外部からの水分の進入を抑え、接合部分での腐食を防止しようとする試みが行われている(たとえば特許文献1参照)。
実開平2−113348号公報(図2)
In order to prevent dew condensation, which is the first problem, conventionally, for example, silicone resin is filled between the columns of the thermoelectric semiconductor to suppress the ingress of moisture from outside and prevent corrosion at the joint portion. Attempts have been made (see, for example, Patent Document 1).
Japanese Utility Model Publication No. 2-113348 (FIG. 2)

前記の公報のように熱電素子に樹脂を充填することで接合部の腐食は抑えられ、その点では信頼性は向上する。しかし、従来の熱電素子の製造方法では熱電半導体の柱を基板に接合して熱電素子を完成させた後に樹脂を充填する。そのため、シリコーンの様な柔軟性のある樹脂を使わないと、樹脂の硬化収縮のために柱間を縮めるように応力が加わるため、柱が破損してしまう危険がある。あるいは柱が反ってしまうことから、接合部分に応力が加わり断線などの危険がある。   By filling the thermoelectric element with resin as described in the above publication, corrosion of the joint is suppressed, and in that respect, reliability is improved. However, in the conventional method for manufacturing a thermoelectric element, a thermoelectric element is joined to a substrate to complete the thermoelectric element, and then the resin is filled. Therefore, if a flexible resin such as silicone is not used, stress is applied to shrink the space between the columns due to curing and shrinkage of the resin, and there is a risk that the columns may be damaged. Or, since the column is warped, there is a risk of disconnection or the like due to stress applied to the joint.

つまり従来の方法では柔軟な樹脂しか充填できないため、冷却の際に上下基板の膨張と収縮から生じる接合部分への応力を抑えることはできず、機械的な信頼性の向上は期待できない。機械的強度を高めようとたとえばエポキシ樹脂のような硬度の高い樹脂を用いると、上述のように逆に信頼性が低下してしまう。  That is, since only a flexible resin can be filled in the conventional method, it is impossible to suppress the stress on the joint portion caused by the expansion and contraction of the upper and lower substrates during cooling, and improvement in mechanical reliability cannot be expected. If a resin having high hardness such as an epoxy resin is used to increase the mechanical strength, the reliability is lowered as described above.

そこで本発明の目的は、熱電素子の2つの問題である低温での結露と温度差による素子の変形との両者を同時に解決できる、新しい熱電素子構造とその素子の製造方法を提供しようとするものである。  Therefore, an object of the present invention is to provide a new thermoelectric element structure and a method for manufacturing the element that can simultaneously solve both problems of thermoelectric elements, namely, dew condensation at a low temperature and deformation of the element due to a temperature difference. It is.

上記の目的を達成するために本発明の熱電素子の製造方法においては下記に記載する手段を採用する。 In order to achieve the above object, the method described below is employed in the method for manufacturing a thermoelectric element of the present invention.

型熱電半導体からなる複数のp型柱状素子とn型熱電半導体からなる複数のn型柱状素子とを第1保護層を介して固定する工程と、p型柱状素子とn型柱状素子の端面に接合電極を形成する工程と、基板に基板電極を形成する工程と、接合電極と基板電極とを所定の位置で対向させ、半田を用いて接合する工程と、第1保護層と基板との間隙に第2保護層を充填する工程とを有する。 and fixing a plurality of n-type columnar element comprising a plurality of p-type pillar-shaped element and the n-type thermoelectric semiconductor formed of p-type thermoelectric semiconductor via the first protective layer, the end face of the p-type pillar-shaped element and the n-type pillar element A step of forming a bonding electrode on the substrate, a step of forming a substrate electrode on the substrate, a step of facing the bonding electrode and the substrate electrode at a predetermined position and bonding using solder, and a step of bonding the first protective layer and the substrate Filling the gap with the second protective layer.

さらに第1保護層と第2保護層は樹脂材料からなり、第2保護層は第1保護層より硬化収縮率が大きいことを特徴とする。  Further, the first protective layer and the second protective layer are made of a resin material, and the second protective layer has a curing shrinkage rate larger than that of the first protective layer.

本発明の熱電素子は、第1保護層と第2保護層が素子に充填され、外部からの水分の進入を防げることから、電極接合部分での腐食に対しての信頼性が高くなる。また、第1保護層と第2保護層は隣り合った柱間と接合されている基板それぞれを強固に保持することから、上下基板の膨張収縮による応力から接合部分を保護することが出来る。   In the thermoelectric element of the present invention, the first protective layer and the second protective layer are filled in the element, and moisture can be prevented from entering from the outside. Therefore, reliability against corrosion at the electrode joint portion is increased. In addition, since the first protective layer and the second protective layer firmly hold each of the substrates bonded between the adjacent columns, the bonded portion can be protected from stress due to expansion and contraction of the upper and lower substrates.

さらに熱電素子の内部で第1保護層と第2保護層との2層になっていることから、第2保護層は第1保護層と基板の間を自らの収縮力により引きつける働きをするため、接合部
分は上下に押さえ込まれる形となり強度が向上する。この場合、第2保護層は硬化収縮率の大きいものであるとさらに効果的である。
Furthermore, since there are two layers of the first protective layer and the second protective layer inside the thermoelectric element, the second protective layer functions to attract the first protective layer and the substrate by its contraction force. The joined portion is pressed up and down to improve the strength. In this case, it is more effective that the second protective layer has a large cure shrinkage rate.

また本発明の製造方法では、第1保護層は柱と基板を接合する前に硬化しており、その収縮応力は開放されているため、柱間を固定するだけに作用できる。さらに第2保護層は接合の後に充填硬化されることから、第1保護層と基板間を引きつけることが可能となる。   Moreover, in the manufacturing method of this invention, since the 1st protective layer is hardened before joining a pillar and a board | substrate and the shrinkage stress is open | released, it can act only to fix between pillars. Furthermore, since the second protective layer is filled and cured after bonding, it is possible to attract the first protective layer and the substrate.

以上の様に本発明の熱電素子は、耐湿性と機械的強度のどちらも優れた非常に信頼性の高い素子であり、本発明の素子を利用することで腐食や破壊が懸念される高湿条件での長時間使用など、過酷な条件での冷却が可能となる。   As described above, the thermoelectric element of the present invention is a highly reliable element that is excellent in both moisture resistance and mechanical strength, and high humidity is expected to cause corrosion and destruction by using the element of the present invention. Cooling under severe conditions such as long-term use under conditions is possible.

以下、図面を用いて本発明の熱電素子の最適な実施形態を説明する。図1には本発明の熱電素子の側面断面図を図2〜図7には本発明の熱電素子の製造工程を示している。   Hereinafter, the optimal embodiment of the thermoelectric element of this invention is described using drawing. FIG. 1 is a side sectional view of the thermoelectric element of the present invention, and FIGS. 2 to 7 show manufacturing steps of the thermoelectric element of the present invention.

図1に示すように本発明の熱電素子では、p型熱電半導体からなるp型柱状素子10とn型熱電半導体からなるn型柱状素子11が交互に複数並んで配置している。ここではp型柱状素子10にBiSbTe合金を、n型柱状素子11にはBiSeTe合金をそれぞれ用いている。また、それぞれの柱状素子は上面から下面へ長く伸びた形状をしており、すなわち柱状になっている。   As shown in FIG. 1, in the thermoelectric element of the present invention, a plurality of p-type columnar elements 10 made of p-type thermoelectric semiconductors and n-type columnar elements 11 made of n-type thermoelectric semiconductors are alternately arranged. Here, a BiSbTe alloy is used for the p-type columnar element 10, and a BiSeTe alloy is used for the n-type columnar element 11. Each columnar element has a shape extending long from the upper surface to the lower surface, that is, has a columnar shape.

p型柱状素子10とn型柱状素子11の柱の側面を電気的に絶縁しさらに両者を固定して機械強度を高めるために、それぞれの素子の間隙にはエポキシ系接着剤からなる第1保護層60を設けている。   In order to electrically insulate and fix the side surfaces of the pillars of the p-type columnar element 10 and the n-type columnar element 11 and to increase the mechanical strength, a first protection made of an epoxy adhesive is provided in the gap between the elements. Layer 60 is provided.

さらにp型柱状素子10とn型柱状素子11の両端面には金属膜からなる接合電極20を設けている。ここでは接合電極20の材料にニッケル/金の多層膜を用いている。接合電極20は基本的には隣り合ったp型柱状素子10とn型柱状素子11の1本ずつを柱の端面においてあらかじめ接続する構造になっている。   Further, junction electrodes 20 made of a metal film are provided on both end faces of the p-type columnar element 10 and the n-type columnar element 11. Here, a multilayer film of nickel / gold is used as the material of the bonding electrode 20. The junction electrode 20 basically has a structure in which each of the adjacent p-type columnar elements 10 and n-type columnar elements 11 is connected in advance at the end faces of the columns.

基板40は熱伝導が良好で絶縁性であることが好ましいことから、アルミナを用いている。基板40には基板電極30が設けられており、その平面的パターンは接合電極20とほぼ同じであり、向かい合わせることによりそれぞれが対向した位置に来るようになっている。基板電極30はクロム/銅/ニッケル/金の多層膜からなっている。この中で電極という機能から抵抗値を下げて導線として働いているのは銅膜である。   Since the substrate 40 preferably has good thermal conductivity and is insulative, alumina is used. A substrate electrode 30 is provided on the substrate 40, and the planar pattern thereof is substantially the same as that of the bonding electrode 20, so that they face each other by facing each other. The substrate electrode 30 is made of a multilayer film of chromium / copper / nickel / gold. Among these, it is the copper film that works as a conductor by lowering the resistance value from the function of the electrode.

そして2枚の基板40は柱の上下において接合電極20と基板電極30が対向するよう配置されており、接合電極20と基板電極30との間は半田50で接合されている。   The two substrates 40 are arranged so that the bonding electrode 20 and the substrate electrode 30 face each other above and below the pillar, and the bonding electrode 20 and the substrate electrode 30 are bonded by a solder 50.

さらに第1保護層60と基板40との間で基板電極30が形成されていないところには、第2保護層70が設けられている。第2保護層70はやはりエポキシ系接着剤からなっており、硬化するときの収縮力によって第1保護層60と基板40を強固に保持している。また、第1の保護層60と第2の保護層70が有ることにより、接合電極20と半田50と基板電極30からなる接合部分は完全に覆われた状態となっており、外部からの水分などの進入を防いでいる。   Further, a second protective layer 70 is provided where the substrate electrode 30 is not formed between the first protective layer 60 and the substrate 40. The second protective layer 70 is also made of an epoxy-based adhesive, and firmly holds the first protective layer 60 and the substrate 40 by the shrinkage force when cured. Further, since the first protective layer 60 and the second protective layer 70 are provided, the joint portion composed of the joint electrode 20, the solder 50, and the substrate electrode 30 is completely covered, and moisture from the outside Etc. are prevented.

続いて本発明の熱電素子の製造方法について説明する。はじめに、図2に示すようにp型熱電半導体のブロックとn型熱電半導体のブロックとに縦溝1を形成し、縦隔壁2を残してp型櫛歯素子3とn型櫛歯素子4を作製する。この時、p型櫛歯素子3とn型櫛歯素
子4とで、縦溝1のピッチを同一にし、かつ一方のブロックの縦溝1幅が他方のブロックの縦隔壁2幅よりも大きくなるようにする。ここではp型熱電半導体としてBiSbTe合金の焼結体、n型熱電半導体としてBiSeTe合金の焼結体を用いた。加工は、ダイシングソーあるいはワイヤーソーなどを用いて行う。
Then, the manufacturing method of the thermoelectric element of this invention is demonstrated. First, as shown in FIG. 2, the vertical grooves 1 are formed in the p-type thermoelectric semiconductor block and the n-type thermoelectric semiconductor block, and the p-type comb element 3 and the n-type comb element 4 are left with the vertical partition 2 left. Make it. At this time, the p-type comb-tooth element 3 and the n-type comb-tooth element 4 have the same pitch of the vertical grooves 1 and the width of the vertical groove 1 of one block is larger than the width of the vertical partition wall 2 of the other block. Like that. Here, a sintered body of BiSbTe alloy was used as the p-type thermoelectric semiconductor, and a sintered body of BiSeTe alloy was used as the n-type thermoelectric semiconductor. Processing is performed using a dicing saw or a wire saw.

つづいてp型櫛歯素子3とn型櫛歯素子4を、互いに縦溝1に相手の縦隔壁2を挿入し合って組み合わせて一体化する。両者を組み合わせた図を図3に示す。組み合わせた2つの櫛歯素子は嵌合部に第1保護層60を設けて固着することで一体化櫛歯素子5とする。第1保護層60には流動性のあるエポキシ樹脂系の接着剤を用い、組み合わせた櫛歯素子のそれぞれの縦隔壁2の隙間に浸透させ充填する。その後必要に応じて加熱を行い、所定の時間保持することで接着剤を硬化させて隔壁同士を固着する。   Subsequently, the p-type comb-tooth element 3 and the n-type comb-tooth element 4 are combined and integrated by inserting the other vertical partition wall 2 into the vertical groove 1. A combination of both is shown in FIG. The combined two comb-tooth elements are formed as an integrated comb-tooth element 5 by providing and fixing the first protective layer 60 on the fitting portion. A fluid epoxy resin adhesive is used for the first protective layer 60 so as to penetrate and fill the gaps between the vertical partition walls 2 of the combined comb elements. Thereafter, heating is performed as necessary, and the adhesive is cured by holding for a predetermined time, thereby fixing the partition walls to each other.

こののち図には示していないが、必要に応じて組み合わせた一体化櫛歯素子5には、縦溝と直交するように横溝と横隔壁を形成するように再度の加工を行う。そして横溝にも初めの組合せを行ったときと同じように、エポキシ系接着剤を充填し固着させ、再度第1保護層60を形成する。この横溝を形成することで熱電半導体は細く加工されることになり、熱電対数としては増加させることが出来る。   After that, although not shown in the drawing, the integrated comb-teeth element 5 combined as necessary is processed again so as to form a transverse groove and a transverse partition so as to be orthogonal to the longitudinal groove. Then, as in the case of the first combination, the lateral grooves are filled and fixed with an epoxy adhesive, and the first protective layer 60 is formed again. By forming these lateral grooves, the thermoelectric semiconductor is processed finely, and the number of thermocouples can be increased.

つづいて図4に示すように第1保護層を形成した一体化櫛歯素子5はその上下面を研削で除去し平坦化する。すると柱状のp型柱状素子10とn型柱状素子11が交互に並んだ状態になる。これまでの工程で第1保護層60を形成するときエポキシ系接着剤を硬化させていたため、柱同士は固着されるが樹脂の硬化収縮で柱には応力が加わっていた。しかし、本工程を経ることで連続部分が除去され柱は分離した状態となり、応力は開放されて第1保護層60の硬化収縮の機械的特性にあたえる影響は全くなくなる。   Subsequently, as shown in FIG. 4, the upper and lower surfaces of the integrated comb-tooth element 5 on which the first protective layer is formed are removed by grinding and flattened. Then, the columnar p-type columnar elements 10 and the n-type columnar elements 11 are alternately arranged. Since the epoxy adhesive was cured when forming the first protective layer 60 in the steps so far, the columns were fixed to each other, but stress was applied to the columns due to curing shrinkage of the resin. However, through this step, the continuous portion is removed and the pillars are separated, the stress is released, and there is no influence on the mechanical properties of the hardening shrinkage of the first protective layer 60.

こののち、特に高い信頼性が必要な場合は、研削面の加工変質層を除去する意味で硝酸や塩酸などのエッチング液をもちいて、加工面を数ミクロンエッチングする。つづいてp型柱状素子10とn型柱状素子11とを配線するような形で、図5に示したように接合電極20を形成する。  Thereafter, when particularly high reliability is required, an etching solution such as nitric acid or hydrochloric acid is used to remove the work-affected layer on the ground surface, and the processed surface is etched by several microns. Subsequently, the junction electrode 20 is formed as shown in FIG. 5 in such a manner that the p-type columnar element 10 and the n-type columnar element 11 are wired.

まずニッケルからなる金属板に所望の配線パターンの形状をした開口部を設け、開口部から隣り合ったp型柱状素子10とn型柱状素子11の端面が見えるように位置合わせを行い密着して固定する。真空蒸着装置に設置し、ニッケルあるいはパラジウムを蒸着する。この方法は一般にマスク蒸着法と呼ばれるものである。ここで蒸着層は隣り合った2本の熱電半導体素子端面をすべて覆う必要はなく、2本が電気的に接続できる形状なら多少小さくても良い。  First, an opening having the shape of a desired wiring pattern is provided on a metal plate made of nickel, and alignment is performed so that end faces of the p-type columnar element 10 and the n-type columnar element 11 adjacent to each other can be seen from the opening. Fix it. Installed in a vacuum evaporation system and deposits nickel or palladium. This method is generally called a mask vapor deposition method. Here, the vapor deposition layer does not need to cover all two adjacent end faces of the thermoelectric semiconductor elements, and may be slightly smaller as long as the two can be electrically connected.

蒸着工程につづいて無電解ニッケルメッキ液に浸漬し、ニッケルの皮膜を形成する。ニッケル皮膜は蒸着によって形成したニッケルあるいはパラジウムを反応の核として成長することから、蒸着層の上にまず形成される。また、蒸着金属が接触しているp型柱状素子10とn型柱状素子11の露出端面にもニッケル皮膜は形成される。無電解メッキだけで十分なメッキ厚が確保できない場合は、さらに電解ニッケルメッキを行うが、総厚としてニッケルメッキの厚みは数μmである。   Following the vapor deposition step, the film is immersed in an electroless nickel plating solution to form a nickel film. Since the nickel film grows by using nickel or palladium formed by vapor deposition as reaction nuclei, it is first formed on the vapor deposition layer. A nickel film is also formed on the exposed end surfaces of the p-type columnar element 10 and the n-type columnar element 11 that are in contact with the deposited metal. When a sufficient plating thickness cannot be ensured only by electroless plating, electrolytic nickel plating is further performed. The total thickness of nickel plating is several μm.

ニッケル膜は熱電半導体との密着をとるためと不純物の拡散を防ぐために施すが、ニッケルメッキにつづいて金メッキを行う。金のメッキはこの後の工程で用いる半田との親和性をよくするために必要である。以上の工程で図5に示す熱電ブロック6は完成するが、さらにその上に半田50メッキを行っておく。半田50にはSnPb系、SnAg系、SnSb系、SnCu系、AuSn系などメッキできる半田材なら特に制限はない。半田50も電解メッキ法により10〜20μmほど形成する。半田50は接合電極20と基板電
極30の接合のために必要な部材であるので、この後説明する基板40の製造工程の最後に形成しても良い。
The nickel film is applied for adhesion to the thermoelectric semiconductor and for preventing diffusion of impurities, and gold plating is performed following the nickel plating. Gold plating is necessary to improve the affinity with the solder used in the subsequent steps. Although the thermoelectric block 6 shown in FIG. 5 is completed by the above steps, solder 50 plating is further performed thereon. The solder 50 is not particularly limited as long as it is a solder material that can be plated, such as SnPb, SnAg, SnSb, SnCu, and AuSn. The solder 50 is also formed with a thickness of 10 to 20 μm by electrolytic plating. Since the solder 50 is a member necessary for joining the joining electrode 20 and the substrate electrode 30, it may be formed at the end of the manufacturing process of the substrate 40 to be described later.

熱電ブロック6の製造と同時に、図6のように基板電極30が施された2枚の基板40を作製する。基板40としてはアルミナ板を用意し、スパッタリング法によりクロム膜を約0.1μm形成しその上に銅膜を約0.2μm形成する。ここに基板電極30のネガパターンをフォトレジストを用いたフォトリソグラフィー法で形成する。その後電解メッキを用いて銅膜を約10μm、ニッケル膜を約2μm、金膜を約0.5μm形成する。基板電極30用のメッキはここまでであるが、前述した半田50を基板40側に形成する場合は、金膜のメッキに続いて行う。そして最後にフォトレジストを専用の剥離液にて溶解し、スパッタリングにより形成した銅とクロムの膜をエッチングすることで電気的に分離した基板電極30とする。   Simultaneously with the manufacture of the thermoelectric block 6, two substrates 40 on which the substrate electrode 30 is applied are manufactured as shown in FIG. An alumina plate is prepared as the substrate 40, a chromium film is formed to a thickness of about 0.1 μm by sputtering, and a copper film is formed thereon to a thickness of about 0.2 μm. Here, a negative pattern of the substrate electrode 30 is formed by a photolithography method using a photoresist. Thereafter, an electrolytic plating is used to form a copper film of about 10 μm, a nickel film of about 2 μm, and a gold film of about 0.5 μm. The plating for the substrate electrode 30 is up to here, but when the solder 50 described above is formed on the substrate 40 side, it is performed following the plating of the gold film. Finally, the photoresist is dissolved in a special stripping solution, and the copper and chromium films formed by sputtering are etched to form electrically separated substrate electrodes 30.

以上の工程で作成した熱電ブロック6と2枚の基板40とは図7に示すように接合電極20と基板電極30を同じパターンが対向する様位置あわせを行い密着させ加熱することで、ハンダを溶解させて接合する。この時、熱電ブロック6側あるいは基板40側にハンダ接合用のフラックスを塗布しておいた方が良い。   As shown in FIG. 7, the thermoelectric block 6 and the two substrates 40 formed in the above process are aligned and brought into close contact with each other so that the same pattern is opposed to each other, thereby heating the solder. Dissolve and join. At this time, it is preferable to apply soldering flux to the thermoelectric block 6 side or the substrate 40 side.

最後に第1保護層60と基板40との間で基板電極30が形成されていないところには、第2保護層70を形成する。第2保護層70にも流動性のあるエポキシ樹脂系の接着剤を用い、第1保護層60と基板40との隙間に浸透させ充填する。その後必要に応じて加熱を行い、所定の時間保持することで接着剤を硬化させて第1保護層60と基板40を固着する。   Finally, the second protective layer 70 is formed where the substrate electrode 30 is not formed between the first protective layer 60 and the substrate 40. The second protective layer 70 is also filled with a fluid epoxy resin adhesive so as to penetrate into the gap between the first protective layer 60 and the substrate 40. Thereafter, heating is performed as necessary, and the adhesive is cured by holding for a predetermined time, so that the first protective layer 60 and the substrate 40 are fixed.

第2保護層70であるエポキシ系接着剤は、硬化するときの収縮力によって第1保護層60と基板40を強固に保持する。この接着剤は第1保護層60に用いた接着剤と同じでも問題はない。ただし第2保護層70は硬化収縮力により基板40と柱状素子に挟まれた接合電極20と基板電極30の接合部分を強く押さえつけ、強度を増す効果があるため第1保護層60よりさらに収縮率が大きい方が望ましい。  The epoxy adhesive that is the second protective layer 70 firmly holds the first protective layer 60 and the substrate 40 by the shrinkage force when cured. There is no problem even if this adhesive is the same as the adhesive used for the first protective layer 60. However, since the second protective layer 70 has the effect of increasing the strength by strongly pressing the bonding portion between the bonding electrode 20 and the substrate electrode 30 sandwiched between the substrate 40 and the columnar element by the curing shrinkage force, the shrinkage rate is further reduced than the first protective layer 60. The larger is desirable.

以上の製造工程にて、すでに図1に示した本発明の熱電素子は完成する。本製造工程では、第1保護層60はp型柱状素子10、n型柱状素子11と基板40とを接合する前に硬化しており、その収縮応力は途中の工程にて開放されている。つまり従来のような基板40を柱と接合したのち樹脂を充填して硬化させたときのような残留応力は残らず、柱間を固定するだけの補強材として作用できる。さらに第2保護層70は接合の後に充填硬化されることから、すでに硬化済みの第1保護層60と基板40間を引きつけることが可能となる。   With the above manufacturing process, the thermoelectric element of the present invention already shown in FIG. 1 is completed. In this manufacturing process, the first protective layer 60 is cured before joining the p-type columnar element 10, the n-type columnar element 11 and the substrate 40, and the shrinkage stress is released in the middle of the process. That is, there is no residual stress remaining when the conventional substrate 40 is bonded to the pillars and then filled and cured with resin, and can function as a reinforcing material that only fixes the space between the pillars. Furthermore, since the second protective layer 70 is filled and cured after bonding, it is possible to attract the already-cured first protective layer 60 and the substrate 40.

本発明の実施の形態における熱電素子の構造を示す断面図である。It is sectional drawing which shows the structure of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the thermoelectric element in embodiment of this invention.

符号の説明Explanation of symbols

1 縦溝
2 縦隔壁
3 p型櫛歯素子
4 n型櫛歯素子
5 一体化櫛歯素子
6 熱電ブロック
10 p型柱状素子
11 n型柱状素子
20 接合電極
30 基板電極
40 基板
50 半田
60 第1保護層
70 第2保護層


DESCRIPTION OF SYMBOLS 1 Vertical groove 2 Vertical partition 3 P-type comb-tooth element 4 N-type comb-tooth element 5 Integrated comb-tooth element 6 Thermoelectric block 10 P-type columnar element 11 N-type columnar element 20 Junction electrode 30 Substrate electrode 40 Substrate 50 Solder 60 1st Protective layer 70 Second protective layer


Claims (2)

p型熱電半導体からなる複数のp型柱状素子とn型熱電半導体からなる複数のn型柱状素子とを第1保護層を介して固定する工程と、前記p型柱状素子とn型柱状素子の端面に接合電極を形成する工程と、基板に基板電極を形成する工程と、前記接合電極と前記基板電極とを所定の位置で対向させ、半田を用いて接合する工程と、前記第1保護層と前記基板との間隙に第2保護層を形成する工程とを有する熱電素子の製造方法。   fixing a plurality of p-type columnar elements made of p-type thermoelectric semiconductor and a plurality of n-type columnar elements made of n-type thermoelectric semiconductor via a first protective layer; and A step of forming a bonding electrode on an end surface, a step of forming a substrate electrode on a substrate, a step of facing the bonding electrode and the substrate electrode at a predetermined position, and bonding using solder, and the first protective layer And a step of forming a second protective layer in the gap between the substrate and the substrate. 前記第1保護層と前記第2保護層は樹脂材料からなり、前記第2保護層と前記第1保護層より硬化収縮率が大きい事を特徴とする請求項1に記載の熱電素子の製造方法。 2. The method of manufacturing a thermoelectric element according to claim 1, wherein the first protective layer and the second protective layer are made of a resin material and have a curing shrinkage rate larger than that of the second protective layer and the first protective layer. .
JP2004079362A 2004-03-19 2004-03-19 Method for manufacturing thermoelectric element Expired - Fee Related JP4523306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004079362A JP4523306B2 (en) 2004-03-19 2004-03-19 Method for manufacturing thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079362A JP4523306B2 (en) 2004-03-19 2004-03-19 Method for manufacturing thermoelectric element

Publications (2)

Publication Number Publication Date
JP2005268555A JP2005268555A (en) 2005-09-29
JP4523306B2 true JP4523306B2 (en) 2010-08-11

Family

ID=35092782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079362A Expired - Fee Related JP4523306B2 (en) 2004-03-19 2004-03-19 Method for manufacturing thermoelectric element

Country Status (1)

Country Link
JP (1) JP4523306B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826310B2 (en) * 2006-03-27 2011-11-30 ヤマハ株式会社 Thermoelectric module
JP5589672B2 (en) * 2010-08-20 2014-09-17 富士通株式会社 Thermoelectric conversion device and manufacturing method thereof
JP6122736B2 (en) 2013-08-30 2017-04-26 株式会社Kelk Thermoelectric generator module
WO2017074002A1 (en) * 2015-10-27 2017-05-04 한국과학기술원 Flexible thermoelectric device and production method therefor
JP6404983B2 (en) * 2017-04-05 2018-10-17 株式会社Kelk Thermoelectric module
CN113285009A (en) * 2021-05-26 2021-08-20 杭州大和热磁电子有限公司 TEC assembled by depositing gold-tin solder and preparation method
EP4265333A1 (en) * 2022-04-22 2023-10-25 Epinovatech AB A semiconductor structure and a microfluidic system thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183409A (en) * 1998-12-11 2000-06-30 Seiko Instruments Inc Thermoelectric converter
JP2003008087A (en) * 2001-04-18 2003-01-10 Suzuki Sogyo Co Ltd Thermoelectric element module and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183409A (en) * 1998-12-11 2000-06-30 Seiko Instruments Inc Thermoelectric converter
JP2003008087A (en) * 2001-04-18 2003-01-10 Suzuki Sogyo Co Ltd Thermoelectric element module and its manufacturing method

Also Published As

Publication number Publication date
JP2005268555A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US20130014796A1 (en) Thermoelectric element and thermoelectric module
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
JP2008277584A (en) Thermoelectric substrate member, thermoelectric module, and manufacturing method of them
JP4523306B2 (en) Method for manufacturing thermoelectric element
JP3956405B2 (en) Thermoelectric module manufacturing method
JP2000101152A (en) Thermoelectric element
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
JP6690017B2 (en) Thermoelectric module
JP4038173B2 (en) Power semiconductor device
US10236430B2 (en) Thermoelectric module
JP2003282972A (en) Thermoelectric element
JPH10144967A (en) Thermoelectric element module for cooling
JP6818465B2 (en) Thermoelectric module
US20140091444A1 (en) Semiconductor unit and method for manufacturing the same
JP2004296961A (en) Thermoelectric element and its manufacturing method
JP4136453B2 (en) Thermoelectric element and manufacturing method thereof
JP6595320B2 (en) Thermoelectric module assembly
JP2004140064A (en) Thermoelement and its manufacturing method
JP6884225B2 (en) Thermoelectric module
JP4011692B2 (en) Thermoelectric element
JP2013157446A (en) Thermoelectric module
JP6987656B2 (en) Thermoelectric converter
JP2015060899A (en) Method for manufacturing thermoelectric conversion module
JP6920154B2 (en) Thermoelectric module
JP5633356B2 (en) Semiconductor device and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4523306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150604

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees