JP2004140064A - Thermoelement and its manufacturing method - Google Patents

Thermoelement and its manufacturing method Download PDF

Info

Publication number
JP2004140064A
JP2004140064A JP2002301534A JP2002301534A JP2004140064A JP 2004140064 A JP2004140064 A JP 2004140064A JP 2002301534 A JP2002301534 A JP 2002301534A JP 2002301534 A JP2002301534 A JP 2002301534A JP 2004140064 A JP2004140064 A JP 2004140064A
Authority
JP
Japan
Prior art keywords
metal
thermoelectric
insulating layer
thermoelectric element
thermoelement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301534A
Other languages
Japanese (ja)
Other versions
JP4199513B2 (en
Inventor
Tetsuhiro Nakamura
中村  哲浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2002301534A priority Critical patent/JP4199513B2/en
Publication of JP2004140064A publication Critical patent/JP2004140064A/en
Application granted granted Critical
Publication of JP4199513B2 publication Critical patent/JP4199513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein a conductive material is liable to separate from a thermoelectric semiconductor due to a thermal expansion coefficient difference between a heat dissipating board and a thermoelement because metal interconnect lines formed on the heat dissipating board are electrically connected to the thermoelectric semiconductor provided with a conductive material formed on its front surface with solder or a conductive adhesive agent in a thermoelement having a conventional structure, the thermoelement can not be set high enough in reliability and performance because an electrical connection is liable to be often disconnected in a heat cycle test, and the thermoelement is restrained from being reduced in size due to the fact that the thickness of the heat dissipating board causes increase in the thickness of the whole thermoelement. <P>SOLUTION: The p-type thermoelements and the n-type thermoelements are alternately arranged through the intermediary of an insulator. The thermoelements are electrically connected together with metal members and metal interconnect lines, the surfaces of the metal interconnect lines and the insulators are protected by an insulating layer containing thermally conductive particles and catalytic metal particles, and a metal layer is formed on the surface of the insulating layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は熱電素子の構造およびその製造方法に関するものである。
【0002】
【従来の技術】
以下、図面を用いて従来技術の一例を説明する。図16は従来例の熱電素子の構造を示す断面図である(たとえば、非特許文献1参照。)。図16に示すようにp型とn型の熱電半導体1を交互に配置し、熱電半導体1の両端部に導電材18を設けた熱電半導体1と、放熱板17上に形成した銅や金などからなる金属配線4とを、ハンダ16を用いて電気的に接続している。
【0003】
この図16に示す熱電素子は、上下面で温度差がある場合には発電素子として使用することができ、熱電素子に電流を流すと上下面の一方が発熱し、一方が吸熱するため、冷却用または加熱用素子として使用することができる。
【0004】
熱電半導体としては、一般的に用いられるビスマス−テルル系、アンチモン−テルル系、ビスマス−テルル−アンチモン系、ビスマス−テルル−セレン系の他に、鉛−ゲルマニウム系、シリコン−ゲルマニウム系などの材料が用いられる。
【0005】
次に従来例における熱電素子の製造方法を図12から図16を用いて説明する。まず、p型、n型の熱電半導体1のそれぞれの表面に図12に示すように導電材18とハンダ16を電解メッキにより形成する。
【0006】
熱電半導体1と金属配線4を電気的に接続させる接続材料としてハンダ16を用いた場合、ハンダ中のスズ成分が熱電半導体1内に拡散して性能を劣化させるのを防止する目的と、ハンダの濡れ性を確保する目的で熱電半導体1の表面には導電材18を形成している。導電材18としては、熱電半導体1への金属拡散防止効果の高いニッケルが主に形成される。
【0007】
導電材18とハンダ16を形成した熱電半導体1をダイシングソーやワイヤーソーなどで切断し、図13に示すような柱状の熱電半導体1を形成する。
【0008】
金属配線4を形成した放熱板17上にフラックス19を塗布し、図13に示す導電材18とハンダ16が形成された柱状の熱電半導体1を図14に示すようにp型とn型の熱電半導体1が交互になるように配置する。
【0009】
さらにもう一方の金属配線4を形成した放熱板17をフラックス19を介して図15に示すように配置し、熱電半導体1を放熱板17で挟んだ後、熱処理によって熱電半導体1上に形成された導電材18と放熱板17上に形成された金属配線4とをハンダ16により接合し、フラックス19を洗浄し除去することにより図16に示すような熱電素子を得ることができる。
放熱板17としてはシリコン、アルミナなどの熱伝導の良い材料を用いる。金属配線4としては、メッキ法、スパッタリング法、真空蒸着法などにより形成された銅やニッケルや金などの皮膜をエッチングなどによりパターン化したものを使用している。
【0010】
【非特許文献1】
上村欣一・西田勲夫著「熱電半導体とその応用」日刊工業新聞社、1988年12月20日、p.39−41
【0011】
【発明が解決しようとする課題】
前述した熱電素子には以下に記載するような問題点がある。
【0012】
従来の熱電素子の構造では、放熱板17上に形成した金属配線4と端面に導電材18を設けた熱電半導体1とをハンダ16を用いて電気的に接続しているが、熱電素子が熱膨張または熱収縮することにより、導電材18と熱電半導体1との間で剥離が発生し、p型とn型の熱電半導体1の電気的接続が断線してしまう。電気的接続の断線は加熱と冷却を交互に繰り返す温度サイクル試験で顕著に現れ、信頼性の面でも十分な性能を得られていない。
【0013】
また、放熱板17として厚さが0.5mm程度のアルミナを使用しているが、放熱板17の厚みが熱電素子全体の厚みを増加させてしまうことになり、熱電素子を小型化する際の大きな問題点となっている。
【0014】
本発明の目的は、上記課題を解決して、小型でかつ信頼性の高い熱電素子およびその製造方法を提供することにある。
【0015】
【課題を解決するための手段】
上記の目的を達成するために、本発明における熱電素子およびその製造方法は、下記記載の構成と製造方法を採用する。
【0016】
本発明の熱電素子は、p型とn型の複数の熱電半導体を絶縁物を介して交互に配列し、前記熱電半導体が金属部材および金属配線によって電気的に直列に接続した熱電素子において、前記金属配線および前記絶縁物上に熱伝導粒子と触媒金属粒子とを含有した絶縁層を形成しており、絶縁層上に金属層が形成されていることを特徴としている。
【0017】
本発明の熱電素子の製造方法は、絶縁物を介して配列している複数のp型とn型の熱電半導体を用意する工程と、前記熱電半導体を電気的に直列に接続するための土台となる金属部材を形成する工程と、前記金属部材上と前記金属部材が形成されていない前記熱電半導体の端部面とに金属配線を形成する工程と、前記金属配線および前記絶縁物表面に絶縁層を形成する工程と、前記絶縁層表面に金属層を形成する工程とを有することを特徴としている。
【0018】
[作用]
本発明の熱電素子は、p型とn型の複数の熱電半導体を絶縁物を介して交互に配列し、各熱電半導体1が金属部材および金属配線によって電気的に接続され、金属配線および絶縁物表面を熱伝導粒子と触媒金属粒子とを含有した絶縁層によって保護しており、絶縁層の表面に金属層が形成されている構造となっている。
【0019】
このように複数の熱電半導体を電気的に接続している金属配線と絶縁物表面に熱伝導粒子と触媒金属粒子とを含有した絶縁層を形成することにより、金属配線を絶縁、保護し、金属配線の剥離を防止する補強効果を得ることができる。
【0020】
また、絶縁層には熱伝導粒子と触媒金属粒子とを含有しているので、熱電素子を加熱または冷却した場合の被冷却物や被加熱物に伝わる熱の損失を少なくすることができ、触媒金属粒子を含有しているので、触媒金属粒子を核として絶縁層上に金属層を無電解メッキ法により形成することができ、被冷却物や被加熱物をハンダを用いて金属層に接合することができる。
【0021】
これにより、従来の熱電素子で使用していた放熱板を用いずに熱電素子を形成することができ、小型で信頼性の高い熱電素子を得ることができる。
【0022】
【発明の実施の形態】
以下図面を用いて本発明の最適な実施形態における熱電素子について説明する。図1に本実施形態における熱電素子の断面図を示す。図1に示すように、p型とn型の複数の熱電半導体1を絶縁物2を介して交互に配列し、各熱電半導体1を金属部材3および金属配線4によって電気的に接続し、金属配線4および絶縁物2表面を熱伝導粒子10と触媒金属粒子11とを含有した絶縁層5によって保護しており、絶縁層5の表面に金属層6が形成されている構造となっている。
【0023】
金属部材3はp型とn型の熱電半導体1が電気的に直列接続する部分に配置しており、熱電半導体1上と熱電半導体1間の絶縁物2上をまたぐように形成している。これにより金属配線4を電解メッキまたは無電解メッキにより金属部材3上および熱電半導体1上に形成すると同時に、p型とn型の熱電半導体1を電気的に直列接続することができる。
【0024】
また、複数の熱電半導体1を電気的に接続している金属配線4と絶縁物2表面に熱伝導粒子10と触媒金属粒子11とを含有した絶縁層5を形成することにより、金属配線4を絶縁、保護し、金属配線4の剥離を防止する補強効果を得ることができる。
【0025】
絶縁層5には熱伝導粒子10と触媒金属粒子11とを含有しているので、熱電素子を加熱または冷却した場合の被冷却物や被加熱物に伝わる熱の損失を少なくすることができ、触媒金属粒子11を含有しているので、触媒金属粒子11を核として絶縁層5上に金属層6を無電解メッキ法により形成することができ、被冷却物や被加熱物をハンダ16を用いて金属層6に接合することができる。
【0026】
これにより、従来の熱電素子で使用していた放熱板17を用いずに熱電素子を形成することができ、小型で信頼性の高い熱電素子を得ることができる。
【0027】
次に、本実施形態における熱電素子の製造方法について図1から図12を用いて説明する。まず、50mm×50mm×5mmの大きさのp型とn型の熱電半導体1のそれぞれを図2に示すように、櫛歯状になるようにダイシングソーで幅0.6mmの溝を1.1mmピッチで加工する。その後、溝に絶縁物2としてスリーボンド(株)のエポキシ樹脂2280C(商品名)を60℃に加熱しながら流し込み、図3に示すように櫛歯状のp型とn型の熱電半導体1を組み合わせ、130℃で1時間加熱することによりエポキシ樹脂を硬化させる。その後、不要な部分を研削により除去し、図4に示すような構造の熱電素子ブロックを得た。
【0028】
熱電半導体1としては、一般的に用いられるビスマス−テルル系、アンチモン−テルル系、ビスマス−テルル−アンチモン系、ビスマス−テルル−セレン系などを用いることができるが、鉛−ゲルマニウム系、シリコン−ゲルマニウム系などの熱電半導体を用いることができる。
【0029】
次にp型とn型の熱電半導体1を接続する金属部材3を形成する。金属部材3の形成方法は、まずp型とn型の複数の熱電半導体1を絶縁物2を介して交互に配列した熱電半導体ブロックに開口部を設けたメタルマスクを熱電半導体1と絶縁物2との表面に配置し、真空蒸着法やスパッタリング法で金属被膜を形成し、メタルマスクを除去することによりメタルマスクの開口部にのみ金属部材3が図5に示すように形成される。金属部材3を形成する位置はp型とn型の熱電半導体1が電気的に直列に接続する部分であり、熱電半導体1上と熱電半導体1間の絶縁物2上をまたぐように形成している。
【0030】
金属部材3は金属配線4を無電解メッキで形成する場合には、無電解メッキを開始させる触媒としての役割と熱電半導体1間の絶縁物2上に無電解メッキを行うための土台としての役割を果たしている。そのため金属部材3としては周期表第VIII属の金属のいずれかを形成する。また、金属配線4を電解メッキで形成する場合には、熱電半導体1間の絶縁物2上に電解メッキを行うための土台の役割のみを果たすので、金属の種類については特に制限されない。本実施形態では熱電半導体1への金属拡散防止効果の高いニッケルを厚さ0.1μmで形成した。
【0031】
その後、無電解ニッケルメッキ液に浸漬しするか、電解ニッケルメッキを行い、金属部材3上と熱電半導体1上に図6に示すように金属配線4を形成する。本実施形態では奥野製薬工業(株)の無電解ニッケルメッキ液トップケミアロイB−1(商品名)を用いて、液温60℃で10分間無電解ニッケルメッキを行い、ニッケルを1μmの厚みで金属配線4を形成した。
【0032】
金属配線4の抵抗を低減させるために金属配線4として形成したニッケル上に電解メッキにより銅を厚さ10μmで形成し、さらに銅表面の酸化防止を目的として金を厚さ1μmで形成した。電解銅メッキについては日本エレクトロプレイティング・エンジニヤース(株)の電解銅メッキ液ミクロファブCu200(商品名)を用い、液温25℃で電流密度3A/dmで15分電解銅メッキを行い、金メッキについてはNEケムキャットの電解金メッキ液NCF−500(商品名)を用い、液温25℃で電流密度0.8A/dmで2分間電解金メッキを行った。
【0033】
次に、図7に示すように金属配線4および絶縁物2表面に絶縁層5を印刷法により塗布し、加熱することにより絶縁層5を硬化させるが、その際に熱電素子の電力供給部分に当たる配線電極4上には絶縁層5を配置しないようにする。このことによりワイヤーボンディングやハンダ接合により外部の端子と接合することが可能となる。
【0034】
このとき形成する絶縁層5は、図8に示すようにベース基材12中に熱伝導粒子10と触媒金属粒子11とを含有したものを用いている。ベース基材12により金属配線4を絶縁、保護し、金属配線4の剥離を防止する補強効果を得ることができ、熱伝導粒子10を含有していることにより、熱電素子を加熱または冷却した場合の被冷却物や被加熱物に伝わる熱の損失を少なくすることができ、触媒金属粒子11を含有していることにより、触媒金属粒子11を核として絶縁層5上に金属層6を無電解メッキ法により形成することができ、被冷却物や被加熱物をハンダ16を用いて金属層6に接合することが可能となる。
【0035】
本実施形態ではベース基材12としてスリーボンド(株)のエポキシ樹脂2280C(商品名)を20重量部、熱伝導粒子10として平均粒子径が約10μmのアルミナ粒子を75重量部、触媒金属粒子11として平均粒子径が約3μmのパラジウム粒子を5重量部混合したものを使用し、130℃で1時間加熱することによりベース基材12を硬化させた。
【0036】
ベース基材12の種類についてはエポキシ系、アクリル系などの接着剤などを用いることができるが特に限定されるものではなく、熱伝導粒子10についても絶縁層5の熱伝導性と絶縁性を両立する材質のものであればよく、アルミナや窒化アルミニウムの粒子などを使用すると効果的であるが、特に限定されるものではない。触媒金属粒子11については無電解メッキが可能な金属であれば問題なく、具体的には元素周期表の第VIII族の金属粒子を1種類もしくは複数種類混合したものを用いるか、第VIII族以外の金属との合金粒子などを用いてもよい。また、熱伝導粒子10と触媒金属粒子11の粒子径や形状についても特に限定するものではない。
【0037】
その後、図9に示すように無電解メッキ液に浸漬することにより、絶縁層5中の触媒金属粒子11を核として無電解メッキが開始し、絶縁層5表面に金属層6を形成することができる。無電解メッキ液は奥野製薬工業(株)のトップケミアロイB−1(商品名)を使用し、液温60℃で10分間無電解ニッケルメッキを行い、厚みが約1μmのニッケルを形成した後、奥野製薬工業(株)の無電解金メッキ液フラッシュゴールドNBを用いて液温90℃で30分間無電解金メッキを行い、厚みが約0.1μmの金を形成した。
【0038】
図10に示す熱電素子の点線部分をダイシングソーやワイヤーソーなどで分割することにより図1に示すような熱電素子を得ることができる。
【0039】
上記工程により得られた図1に示すような熱電素子は、図11に示すように被冷却物15と金属層6とをハンダ16を用いて接合したり、電力供給部分に当たる金属配線4および絶縁層5上の金属層6とガラスや樹脂などで形成した基板13上に形成した銅や金などからなる接合パターン14とをハンダ16を用いて接合することが可能となる。
【0040】
以上の工程により形成した熱電素子は、p型とn型の複数の熱電半導体1を絶縁物2を介して交互に配列し、各熱電半導体1が金属部材3および金属配線4によって電気的に接続し、金属配線4および絶縁物2表面を熱伝導粒子と触媒金属粒子とを含有した絶縁層5によって保護しており、絶縁層5の表面に金属層6が形成されている構造となっている。
【0041】
このように複数の熱電半導体1を電気的に接続している金属配線4と絶縁物2表面に熱伝導粒子と触媒金属粒子とを含有した絶縁層5を形成することにより、金属配線4を絶縁、保護し、金属配線4の剥離を防止する補強効果を得ることができる。
【0042】
また、絶縁層5には熱伝導粒子と触媒金属粒子とを含有しているので、熱電素子を加熱または冷却した場合の被冷却物や被加熱物に伝わる熱の損失を少なくすることができ、触媒金属粒子を含有しているので、触媒金属を核として絶縁層5上に金属層6を無電解メッキ法により形成することができ、被冷却物や被加熱物をハンダを用いて金属層6に接合することができる。
【0043】
これにより、従来の熱電素子で使用していた放熱板17を用いずに熱電素子を形成することができ、小型で信頼性の高い熱電素子を得ることができる。
【0044】
【発明の効果】
以上の説明で明らかなように、本発明の熱電素子は、p型とn型の複数の熱電半導体を絶縁物を介して交互に配列し、各熱電半導体が金属部材および金属配線によって電気的に接続し、金属配線および絶縁物表面を熱伝導粒子と触媒金属粒子とを含有した絶縁層によって保護しており、絶縁層の表面に金属層が形成されている構造となっている。
【0045】
このように複数の熱電半導体を電気的に接続している金属配線と絶縁物表面に熱伝導粒子と触媒金属粒子とを含有した絶縁層を形成することにより、金属配線を絶縁、保護し、金属配線の剥離を防止する補強効果を得ることができる。
【0046】
また、絶縁層には熱伝導粒子と触媒金属粒子とを含有しているので、熱電素子を加熱または冷却した場合の被冷却物や被加熱物に伝わる熱の損失を少なくすることができ、触媒金属粒子を含有しているので、触媒金属を核として絶縁層上に金属層を無電解メッキ法により形成することができ、被冷却物や被加熱物をハンダを用いて金属層6に接合することができる。
【0047】
これにより、従来の熱電素子で使用していた放熱板を用いずに熱電素子を形成することができ、小型で信頼性の高い熱電素子を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態における熱電素子を示す断面図である。
【図2】本発明の実施形態における熱電素子の製造方法を示す断面図である。
【図3】本発明の実施形態における熱電素子の製造方法を示す断面図である。
【図4】本発明の実施形態における熱電素子の製造方法を示す断面図である。
【図5】本発明の実施形態における熱電素子の製造方法を示す断面図である。
【図6】本発明の実施形態における熱電素子の製造方法を示す断面図である。
【図7】本発明の実施形態における熱電素子の製造方法を示す断面図である。
【図8】本発明の実施形態における熱電素子の製造方法を示す断面図である。
【図9】本発明の実施形態における熱電素子の製造方法を示す断面図である。
【図10】本発明の実施形態における熱電素子の製造方法を示す断面図である。
【図11】本発明の実施形態における熱電素子の構造を示す断面図である。
【図12】従来例における熱電素子の製造方法を示す断面図である。
【図13】従来例における熱電素子の熱半導体の斜視図である。
【図14】従来例における熱電素子の製造方法を示す断面図である。
【図15】従来例における熱電素子の製造方法を示す断面図である。
【図16】従来例における熱電素子の構造を示す断面図である。
【符号の説明】
1 熱電半導体
2 絶縁物
3 金属部材
4 金属配線
5 絶縁層
6 金属層
10 熱伝導粒子
11  触媒金属粒子
12  ベース基材
13  基板
14  接合パターン
15  被冷却物
16 ハンダ
17 放熱板
18 導電材
19 フラックス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric element structure and a method for manufacturing the same.
[0002]
[Prior art]
Hereinafter, an example of the related art will be described with reference to the drawings. FIG. 16 is a cross-sectional view showing the structure of a conventional thermoelectric element (for example, see Non-Patent Document 1). As shown in FIG. 16, p-type and n-type thermoelectric semiconductors 1 are alternately arranged, and a thermoelectric semiconductor 1 in which conductive materials 18 are provided at both ends of the thermoelectric semiconductor 1 and copper, gold, or the like formed on a heat dissipation plate 17. Is electrically connected to the metal wiring 4 composed of
[0003]
The thermoelectric element shown in FIG. 16 can be used as a power generating element when there is a temperature difference between the upper and lower surfaces, and when an electric current is applied to the thermoelectric element, one of the upper and lower surfaces generates heat, and one of them absorbs heat. Or a heating element.
[0004]
Examples of the thermoelectric semiconductor include commonly used materials such as bismuth-tellurium, antimony-tellurium, bismuth-tellurium-antimony, bismuth-tellurium-selenium, lead-germanium, and silicon-germanium. Used.
[0005]
Next, a method for manufacturing a thermoelectric element in a conventional example will be described with reference to FIGS. First, as shown in FIG. 12, a conductive material 18 and solder 16 are formed on each surface of the p-type and n-type thermoelectric semiconductors 1 by electrolytic plating.
[0006]
When the solder 16 is used as a connection material for electrically connecting the thermoelectric semiconductor 1 and the metal wiring 4, the purpose is to prevent the tin component in the solder from diffusing into the thermoelectric semiconductor 1 and deteriorating the performance. A conductive material 18 is formed on the surface of the thermoelectric semiconductor 1 for the purpose of ensuring wettability. As the conductive material 18, nickel having a high effect of preventing metal diffusion into the thermoelectric semiconductor 1 is mainly formed.
[0007]
The thermoelectric semiconductor 1 on which the conductive material 18 and the solder 16 are formed is cut with a dicing saw, a wire saw, or the like to form a columnar thermoelectric semiconductor 1 as shown in FIG.
[0008]
A flux 19 is applied on a heat sink 17 on which the metal wiring 4 is formed, and the columnar thermoelectric semiconductor 1 on which the conductive material 18 and the solder 16 are formed as shown in FIG. 13 is p-type and n-type thermoelectric semiconductors as shown in FIG. The semiconductors 1 are arranged alternately.
[0009]
Further, the heat radiating plate 17 on which the other metal wiring 4 is formed is arranged as shown in FIG. 15 via the flux 19, the thermoelectric semiconductor 1 is sandwiched between the heat radiating plates 17, and then formed on the thermoelectric semiconductor 1 by heat treatment. By joining the conductive material 18 and the metal wiring 4 formed on the heat radiating plate 17 with the solder 16 and washing and removing the flux 19, a thermoelectric element as shown in FIG. 16 can be obtained.
As the heat radiating plate 17, a material having good heat conductivity such as silicon or alumina is used. The metal wiring 4 is formed by patterning a film of copper, nickel, gold, or the like formed by a plating method, a sputtering method, a vacuum evaporation method, or the like by etching or the like.
[0010]
[Non-patent document 1]
Kinichi Uemura and Isao Nishida, Thermoelectric Semiconductors and Their Applications, Nikkan Kogyo Shimbun, December 20, 1988, p. 39-41
[0011]
[Problems to be solved by the invention]
The above-described thermoelectric element has the following problems.
[0012]
In the structure of the conventional thermoelectric element, the metal wiring 4 formed on the heat radiating plate 17 and the thermoelectric semiconductor 1 provided with the conductive material 18 on the end face are electrically connected by using the solder 16. Due to expansion or thermal contraction, separation occurs between the conductive material 18 and the thermoelectric semiconductor 1, and the electrical connection between the p-type and n-type thermoelectric semiconductors 1 is broken. Disconnection of the electrical connection is remarkable in a temperature cycle test in which heating and cooling are alternately repeated, and sufficient performance has not been obtained in terms of reliability.
[0013]
Further, although the alumina having a thickness of about 0.5 mm is used as the heat radiating plate 17, the thickness of the heat radiating plate 17 increases the thickness of the entire thermoelectric element, which is a problem when miniaturizing the thermoelectric element. It is a big problem.
[0014]
An object of the present invention is to solve the above problems and provide a small and highly reliable thermoelectric element and a method for manufacturing the same.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, a thermoelectric element and a method of manufacturing the same according to the present invention employ the following configurations and manufacturing methods.
[0016]
The thermoelectric element of the present invention is a thermoelectric element in which a plurality of p-type and n-type thermoelectric semiconductors are alternately arranged via an insulator, and the thermoelectric semiconductors are electrically connected in series by a metal member and a metal wiring. An insulating layer containing heat conductive particles and catalytic metal particles is formed on the metal wiring and the insulator, and the metal layer is formed on the insulating layer.
[0017]
The method for manufacturing a thermoelectric element according to the present invention includes a step of preparing a plurality of p-type and n-type thermoelectric semiconductors arranged via an insulator, and a base for electrically connecting the thermoelectric semiconductors in series. Forming a metal member, and forming a metal wiring on the metal member and on the end surface of the thermoelectric semiconductor where the metal member is not formed; and forming an insulating layer on the surface of the metal wiring and the insulator. And a step of forming a metal layer on the surface of the insulating layer.
[0018]
[Action]
In the thermoelectric element of the present invention, a plurality of p-type and n-type thermoelectric semiconductors are alternately arranged via an insulator, and each thermoelectric semiconductor 1 is electrically connected by a metal member and a metal wiring. The surface is protected by an insulating layer containing heat conductive particles and catalytic metal particles, and the structure is such that a metal layer is formed on the surface of the insulating layer.
[0019]
By forming the insulating layer containing the heat conductive particles and the catalytic metal particles on the surface of the metal wiring and the insulator which electrically connect the plurality of thermoelectric semiconductors, the metal wiring is insulated and protected, and the metal wiring is formed. It is possible to obtain a reinforcing effect of preventing peeling of the wiring.
[0020]
In addition, since the insulating layer contains the heat conductive particles and the catalytic metal particles, when the thermoelectric element is heated or cooled, the loss of heat to be transferred to the object to be cooled and the object to be heated can be reduced, and the catalyst can be reduced. Since it contains metal particles, a metal layer can be formed on the insulating layer by electroless plating with the catalyst metal particles as nuclei, and the object to be cooled or the object to be heated is joined to the metal layer using solder. be able to.
[0021]
Thus, the thermoelectric element can be formed without using the heat sink used in the conventional thermoelectric element, and a small and highly reliable thermoelectric element can be obtained.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a thermoelectric element according to a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of the thermoelectric element according to the present embodiment. As shown in FIG. 1, a plurality of p-type and n-type thermoelectric semiconductors 1 are alternately arranged via an insulator 2, and each thermoelectric semiconductor 1 is electrically connected by a metal member 3 and a metal wiring 4. The surfaces of the wiring 4 and the insulator 2 are protected by the insulating layer 5 containing the heat conductive particles 10 and the catalytic metal particles 11, and the metal layer 6 is formed on the surface of the insulating layer 5.
[0023]
The metal member 3 is disposed at a portion where the p-type and n-type thermoelectric semiconductors 1 are electrically connected in series, and is formed so as to straddle the thermoelectric semiconductor 1 and the insulator 2 between the thermoelectric semiconductors 1. Thereby, the metal wiring 4 can be formed on the metal member 3 and the thermoelectric semiconductor 1 by electrolytic plating or electroless plating, and at the same time, the p-type and n-type thermoelectric semiconductors 1 can be electrically connected in series.
[0024]
Further, by forming an insulating layer 5 containing heat conductive particles 10 and catalytic metal particles 11 on the surfaces of the metal wires 4 electrically connecting the plurality of thermoelectric semiconductors 1 and the insulator 2, the metal wires 4 are formed. A reinforcing effect of insulating and protecting and preventing peeling of the metal wiring 4 can be obtained.
[0025]
Since the insulating layer 5 contains the heat conductive particles 10 and the catalytic metal particles 11, the loss of heat transferred to the object to be cooled or the object to be heated when the thermoelectric element is heated or cooled can be reduced. Since the catalyst metal particles 11 are contained, the metal layer 6 can be formed on the insulating layer 5 using the catalyst metal particles 11 as a nucleus by an electroless plating method. To the metal layer 6.
[0026]
Thus, the thermoelectric element can be formed without using the heat radiating plate 17 used in the conventional thermoelectric element, and a small and highly reliable thermoelectric element can be obtained.
[0027]
Next, a method for manufacturing a thermoelectric element according to the present embodiment will be described with reference to FIGS. First, as shown in FIG. 2, each of the p-type and n-type thermoelectric semiconductors 1 having a size of 50 mm × 50 mm × 5 mm is formed into a comb-shaped dicing saw so that a groove having a width of 0.6 mm is formed by 1.1 mm. Process at the pitch. Thereafter, an epoxy resin 2280C (trade name) of Three Bond Co., Ltd. was poured into the groove as an insulator 2 while heating to 60 ° C., and the comb-shaped p-type and n-type thermoelectric semiconductors 1 were combined as shown in FIG. The epoxy resin is cured by heating at 130 ° C. for 1 hour. Thereafter, unnecessary portions were removed by grinding to obtain a thermoelectric element block having a structure as shown in FIG.
[0028]
As the thermoelectric semiconductor 1, commonly used bismuth-tellurium-based, antimony-tellurium-based, bismuth-tellurium-antimony-based, bismuth-tellurium-selenium-based and the like can be used, but lead-germanium-based, silicon-germanium-based A thermoelectric semiconductor such as a system can be used.
[0029]
Next, a metal member 3 for connecting the p-type and n-type thermoelectric semiconductors 1 is formed. The method of forming the metal member 3 is as follows. First, a plurality of p-type and n-type thermoelectric semiconductors 1 are alternately arranged via an insulator 2. Then, a metal film is formed by a vacuum evaporation method or a sputtering method, and the metal mask is removed, whereby the metal member 3 is formed only at the opening of the metal mask as shown in FIG. The position where the metal member 3 is formed is a portion where the p-type and n-type thermoelectric semiconductors 1 are electrically connected in series, and is formed so as to straddle the thermoelectric semiconductor 1 and the insulator 2 between the thermoelectric semiconductors 1. I have.
[0030]
When the metal wiring 3 is formed by electroless plating, the metal member 3 functions as a catalyst for starting electroless plating and as a base for performing electroless plating on the insulator 2 between the thermoelectric semiconductors 1. Plays. Therefore, any one of metals belonging to Group VIII of the periodic table is formed as the metal member 3. Further, when the metal wiring 4 is formed by electrolytic plating, it serves only as a base for performing electrolytic plating on the insulator 2 between the thermoelectric semiconductors 1, and thus the type of metal is not particularly limited. In this embodiment, nickel having a high effect of preventing metal diffusion into the thermoelectric semiconductor 1 is formed with a thickness of 0.1 μm.
[0031]
Thereafter, the metal wiring 4 is formed on the metal member 3 and the thermoelectric semiconductor 1 as shown in FIG. 6 by immersing in an electroless nickel plating solution or performing electrolytic nickel plating. In the present embodiment, electroless nickel plating is performed at a solution temperature of 60 ° C. for 10 minutes using an electroless nickel plating solution Top Chemialloy B-1 (trade name) manufactured by Okuno Pharmaceutical Co., Ltd. Metal wiring 4 was formed.
[0032]
Copper was formed to a thickness of 10 μm by electrolytic plating on nickel formed as the metal wiring 4 in order to reduce the resistance of the metal wiring 4, and gold was formed to a thickness of 1 μm to prevent oxidation of the copper surface. For electrolytic copper plating, using electrolytic copper plating solution Microfab Cu200 (trade name) of Japan Electroplating Engineers Co., Ltd., electrolytic copper plating at a liquid temperature of 25 ° C. and a current density of 3 A / dm 2 for 15 minutes, followed by gold plating As for ( 2) , electrolytic gold plating was performed at a liquid temperature of 25 ° C. and a current density of 0.8 A / dm 2 for 2 minutes using an NEC-Cat electrolytic gold plating solution NCF-500 (trade name).
[0033]
Next, as shown in FIG. 7, the insulating layer 5 is applied to the surface of the metal wiring 4 and the insulator 2 by a printing method, and the insulating layer 5 is cured by heating. At this time, the insulating layer 5 hits a power supply portion of the thermoelectric element. The insulating layer 5 is not arranged on the wiring electrode 4. This makes it possible to connect to an external terminal by wire bonding or solder bonding.
[0034]
As the insulating layer 5 formed at this time, as shown in FIG. 8, a base material 12 containing heat conductive particles 10 and catalytic metal particles 11 is used. When the thermoelectric element is heated or cooled by containing the heat conductive particles 10, the reinforcing effect of insulating and protecting the metal wiring 4 and preventing the metal wiring 4 from peeling can be obtained by the base material 12. The loss of heat transmitted to the object to be cooled or the object to be heated can be reduced, and since the catalyst metal particles 11 are contained, the metal layer 6 is electrolessly formed on the insulating layer 5 with the catalyst metal particles 11 as nuclei. It can be formed by a plating method, and an object to be cooled or an object to be heated can be joined to the metal layer 6 using the solder 16.
[0035]
In the present embodiment, 20 parts by weight of epoxy resin 2280C (trade name) of Three Bond Co., Ltd. as base material 12, 75 parts by weight of alumina particles having an average particle diameter of about 10 μm as thermal conductive particles 10, and catalyst metal particles 11 Using a mixture of 5 parts by weight of palladium particles having an average particle diameter of about 3 μm, the base material 12 was cured by heating at 130 ° C. for 1 hour.
[0036]
The type of the base material 12 may be an epoxy-based or acrylic-based adhesive or the like, but is not particularly limited, and the heat conductive particles 10 also have both the thermal conductivity and the insulating property of the insulating layer 5. It is effective to use particles of alumina or aluminum nitride, but the material is not particularly limited. The catalyst metal particles 11 may be of any metal as long as they can be electrolessly plated. Specifically, one or a mixture of one or more kinds of metal particles of group VIII of the periodic table may be used. May be used. Also, the particle diameter and shape of the heat conductive particles 10 and the catalytic metal particles 11 are not particularly limited.
[0037]
Then, as shown in FIG. 9, by immersing in an electroless plating solution, electroless plating starts with the catalyst metal particles 11 in the insulating layer 5 as nuclei, and the metal layer 6 can be formed on the surface of the insulating layer 5. it can. The electroless plating solution used was Top Chemialloy B-1 (trade name) of Okuno Pharmaceutical Co., Ltd., and electroless nickel plating was performed at a solution temperature of 60 ° C. for 10 minutes to form nickel having a thickness of about 1 μm. Using electroless gold plating solution Flash Gold NB manufactured by Okuno Pharmaceutical Co., Ltd., electroless gold plating was performed at a liquid temperature of 90 ° C. for 30 minutes to form gold having a thickness of about 0.1 μm.
[0038]
The thermoelectric element shown in FIG. 1 can be obtained by dividing the dotted line portion of the thermoelectric element shown in FIG. 10 with a dicing saw or a wire saw.
[0039]
The thermoelectric element as shown in FIG. 1 obtained by the above-described process can be configured such that the object to be cooled 15 and the metal layer 6 are joined by using the solder 16 as shown in FIG. The metal layer 6 on the layer 5 and the bonding pattern 14 made of copper, gold, or the like formed on the substrate 13 formed of glass, resin, or the like can be bonded using the solder 16.
[0040]
In the thermoelectric element formed by the above steps, a plurality of p-type and n-type thermoelectric semiconductors 1 are alternately arranged via an insulator 2, and each thermoelectric semiconductor 1 is electrically connected by a metal member 3 and a metal wiring 4. Then, the surfaces of the metal wiring 4 and the insulator 2 are protected by the insulating layer 5 containing the heat conductive particles and the catalytic metal particles, and the metal layer 6 is formed on the surface of the insulating layer 5. .
[0041]
By forming the insulating layer 5 containing the heat conductive particles and the catalytic metal particles on the surfaces of the metal wires 4 electrically connecting the plurality of thermoelectric semiconductors 1 and the insulator 2 in this manner, the metal wires 4 are insulated. Thus, a reinforcing effect of protecting and preventing separation of the metal wiring 4 can be obtained.
[0042]
Further, since the insulating layer 5 contains the heat conductive particles and the catalytic metal particles, it is possible to reduce the loss of heat transferred to the object to be cooled or the object to be heated when the thermoelectric element is heated or cooled, Since the catalyst metal particles are contained, the metal layer 6 can be formed on the insulating layer 5 by the electroless plating method using the catalyst metal as a nucleus. Can be joined.
[0043]
Thus, the thermoelectric element can be formed without using the heat radiating plate 17 used in the conventional thermoelectric element, and a small and highly reliable thermoelectric element can be obtained.
[0044]
【The invention's effect】
As is clear from the above description, the thermoelectric element of the present invention has a plurality of p-type and n-type thermoelectric semiconductors alternately arranged via an insulator, and each thermoelectric semiconductor is electrically connected by a metal member and a metal wiring. The connection and the metal wiring and the surface of the insulator are protected by an insulating layer containing the heat conductive particles and the catalytic metal particles, and the metal layer is formed on the surface of the insulating layer.
[0045]
By forming the insulating layer containing the heat conductive particles and the catalytic metal particles on the surface of the metal wiring and the insulator which electrically connect the plurality of thermoelectric semiconductors, the metal wiring is insulated and protected, and the metal wiring is formed. It is possible to obtain a reinforcing effect of preventing peeling of the wiring.
[0046]
In addition, since the insulating layer contains the heat conductive particles and the catalytic metal particles, when the thermoelectric element is heated or cooled, the loss of heat to be transferred to the object to be cooled and the object to be heated can be reduced, and the catalyst can be reduced. Since it contains metal particles, a metal layer can be formed on the insulating layer by electroless plating using the catalyst metal as a nucleus, and the object to be cooled or the object to be heated is joined to the metal layer 6 using solder. be able to.
[0047]
Thus, the thermoelectric element can be formed without using the heat sink used in the conventional thermoelectric element, and a small and highly reliable thermoelectric element can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a thermoelectric element according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.
FIG. 6 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.
FIG. 7 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.
FIG. 8 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.
FIG. 9 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.
FIG. 10 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element according to an embodiment of the present invention.
FIG. 11 is a cross-sectional view illustrating a structure of a thermoelectric element according to an embodiment of the present invention.
FIG. 12 is a cross-sectional view illustrating a method for manufacturing a thermoelectric element in a conventional example.
FIG. 13 is a perspective view of a thermal semiconductor of a thermoelectric element in a conventional example.
FIG. 14 is a cross-sectional view illustrating a method of manufacturing a thermoelectric element in a conventional example.
FIG. 15 is a cross-sectional view illustrating a method of manufacturing a thermoelectric element in a conventional example.
FIG. 16 is a cross-sectional view illustrating a structure of a thermoelectric element in a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thermoelectric semiconductor 2 Insulator 3 Metal member 4 Metal wiring 5 Insulating layer 6 Metal layer 10 Heat conductive particles 11 Catalytic metal particles 12 Base material 13 Substrate 14 Joining pattern 15 Cooled object 16 Solder 17 Heat sink 18 Conductive material 19 Flux

Claims (2)

p型とn型の複数の熱電半導体を絶縁物を介して交互に配列し、該熱電半導体を金属部材および金属配線によって電気的に直列に接続した熱電素子であって、前記金属配線および前記絶縁物上に熱伝導粒子と触媒金属粒子とを含有した絶縁層が形成されており、該絶縁層上に金属層が形成されている熱電素子。A thermoelectric element in which a plurality of p-type and n-type thermoelectric semiconductors are alternately arranged via an insulator, and the thermoelectric semiconductors are electrically connected in series by a metal member and metal wiring. A thermoelectric element in which an insulating layer containing heat conductive particles and catalytic metal particles is formed on an object, and a metal layer is formed on the insulating layer. 絶縁物を介して配列している複数のp型とn型の熱電半導体を用意する工程と、該熱電半導体を電気的に直列に接続するための土台となる金属部材を形成する工程と、該金属部材上と該金属部材が形成されていない前記熱電半導体の端部面とに金属配線を形成する工程と、該金属配線および前記絶縁物表面に絶縁層を形成する工程と、該絶縁層表面に金属層を形成する工程とを有する熱電素子の製造方法。A step of preparing a plurality of p-type and n-type thermoelectric semiconductors arranged via an insulator; and forming a metal member serving as a base for electrically connecting the thermoelectric semiconductors in series. Forming a metal wiring on the metal member and the end surface of the thermoelectric semiconductor where the metal member is not formed; forming an insulating layer on the metal wiring and the surface of the insulator; Forming a metal layer on the thermoelectric element.
JP2002301534A 2002-10-16 2002-10-16 Method for manufacturing thermoelectric element Expired - Fee Related JP4199513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301534A JP4199513B2 (en) 2002-10-16 2002-10-16 Method for manufacturing thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301534A JP4199513B2 (en) 2002-10-16 2002-10-16 Method for manufacturing thermoelectric element

Publications (2)

Publication Number Publication Date
JP2004140064A true JP2004140064A (en) 2004-05-13
JP4199513B2 JP4199513B2 (en) 2008-12-17

Family

ID=32449844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301534A Expired - Fee Related JP4199513B2 (en) 2002-10-16 2002-10-16 Method for manufacturing thermoelectric element

Country Status (1)

Country Link
JP (1) JP4199513B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131406A1 (en) * 2008-06-02 2009-12-09 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A method for manufacturing a thermoelectric generator, a wearable thermoelectric generator and a garment comprising the same
JP2011129838A (en) * 2009-12-21 2011-06-30 Fujitsu Ltd Thermoelectric conversion module and method of manufacturing the same
JP2013110157A (en) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd Thermoelectric conversion module
JP2014179372A (en) * 2013-03-13 2014-09-25 Kitagawa Kogyo Co Ltd Thermoelectric conversion module
JP2016111326A (en) * 2014-12-09 2016-06-20 パナソニックIpマネジメント株式会社 Thermoelectric conversion module and thermoelectric conversion system
WO2020116803A1 (en) * 2018-12-07 2020-06-11 서울대학교산학협력단 Stretchable and flexible wearable thermoelectric element configured to be coolable and heatable
CN113285009A (en) * 2021-05-26 2021-08-20 杭州大和热磁电子有限公司 TEC assembled by depositing gold-tin solder and preparation method
JP7407718B2 (en) 2018-01-23 2024-01-04 エルジー イノテック カンパニー リミテッド thermoelectric module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196583A (en) * 1989-03-24 1991-08-28 Nippon Steel Corp Vertical type silicon thermopile and manufacture thereof
JPH09270210A (en) * 1996-01-29 1997-10-14 Canon Inc Manufacture of electromagnetic wave shielding cable, electromagnetic wave shielding cable, and electromagnetic wave shielding flexible printed board, and manufacture thereof
JP2001119076A (en) * 1999-08-10 2001-04-27 Matsushita Electric Works Ltd Thermoelectric conversion module and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196583A (en) * 1989-03-24 1991-08-28 Nippon Steel Corp Vertical type silicon thermopile and manufacture thereof
JPH09270210A (en) * 1996-01-29 1997-10-14 Canon Inc Manufacture of electromagnetic wave shielding cable, electromagnetic wave shielding cable, and electromagnetic wave shielding flexible printed board, and manufacture thereof
JP2001119076A (en) * 1999-08-10 2001-04-27 Matsushita Electric Works Ltd Thermoelectric conversion module and manufacturing method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131406A1 (en) * 2008-06-02 2009-12-09 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A method for manufacturing a thermoelectric generator, a wearable thermoelectric generator and a garment comprising the same
WO2009148309A1 (en) * 2008-06-02 2009-12-10 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno A method for manufacturing a thermoelectric generator, a wearable thermoelectric generator and a garment comprising the same
US9065016B2 (en) 2008-06-02 2015-06-23 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for manufacturing a thermoelectric generator
JP2011129838A (en) * 2009-12-21 2011-06-30 Fujitsu Ltd Thermoelectric conversion module and method of manufacturing the same
JP2013110157A (en) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd Thermoelectric conversion module
JP2014179372A (en) * 2013-03-13 2014-09-25 Kitagawa Kogyo Co Ltd Thermoelectric conversion module
JP2016111326A (en) * 2014-12-09 2016-06-20 パナソニックIpマネジメント株式会社 Thermoelectric conversion module and thermoelectric conversion system
JP7407718B2 (en) 2018-01-23 2024-01-04 エルジー イノテック カンパニー リミテッド thermoelectric module
WO2020116803A1 (en) * 2018-12-07 2020-06-11 서울대학교산학협력단 Stretchable and flexible wearable thermoelectric element configured to be coolable and heatable
KR20200069735A (en) * 2018-12-07 2020-06-17 서울대학교산학협력단 Bidirectional stretchable and flexible wearable thermoelectric cooler and heater
KR102152642B1 (en) * 2018-12-07 2020-09-08 서울대학교산학협력단 Bidirectional stretchable and flexible wearable thermoelectric cooler and heater
US11839157B2 (en) 2018-12-07 2023-12-05 Seoul National University R&Db Foundation Bidirectional stretchable and flexible wearable thermoelectric module
CN113285009A (en) * 2021-05-26 2021-08-20 杭州大和热磁电子有限公司 TEC assembled by depositing gold-tin solder and preparation method

Also Published As

Publication number Publication date
JP4199513B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
TW200818418A (en) Semiconductor die package including stacked dice and heat sink structures
JP2008258547A (en) Semiconductor device, and manufacturing method thereof
JP2000058930A (en) Thermoelement, and its manufacture
JP6550477B2 (en) Electrical contact method of parts by galvanic bonding of open-pored contact pieces and corresponding part modules
JP2008141027A (en) Bonding structure of thermoelectric conversion element and thermoelectric conversion module
JP2006013080A (en) Semiconductor module and manufacturing method thereof
JP4407521B2 (en) Insulated heat transfer structure and power module substrate
JP4199513B2 (en) Method for manufacturing thermoelectric element
JP2002064169A (en) Heat radiating structure
JP4407509B2 (en) Insulated heat transfer structure and power module substrate
JP2001223240A (en) Semiconductor device
JP2003282970A (en) Thermoelectric converter and thermoelectric conversion element and their manufacturing method
JP6818465B2 (en) Thermoelectric module
JP2000269392A (en) Semiconductor module and heat-radiating insulating plate
JP3350299B2 (en) Manufacturing method of thermoelectric converter
JP4136453B2 (en) Thermoelectric element and manufacturing method thereof
JP2013157446A (en) Thermoelectric module
JPH03195083A (en) Hybrid integrated circuit and its manufacture
JP5247531B2 (en) Thermoelectric conversion module
US11152286B2 (en) Power semiconductor module device
JP2011238867A (en) Method for producing thermoelectric conversion module
JPS5835956A (en) Hybrid integrated circuit device
JP2004072003A (en) Multilayer circuit board having metal base, and hybrid integrated circuit using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4199513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees