JP2011238867A - Method for producing thermoelectric conversion module - Google Patents

Method for producing thermoelectric conversion module Download PDF

Info

Publication number
JP2011238867A
JP2011238867A JP2010110891A JP2010110891A JP2011238867A JP 2011238867 A JP2011238867 A JP 2011238867A JP 2010110891 A JP2010110891 A JP 2010110891A JP 2010110891 A JP2010110891 A JP 2010110891A JP 2011238867 A JP2011238867 A JP 2011238867A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type
chip
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010110891A
Other languages
Japanese (ja)
Inventor
Shinsuke Hirono
慎介 広納
Takushi Kita
拓志 木太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010110891A priority Critical patent/JP2011238867A/en
Publication of JP2011238867A publication Critical patent/JP2011238867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a thermoelectric conversion module by collectively forming a large number of thermoelectric conversion material chips on a substrate by means of electrolytic deposition.SOLUTION: A method for producing a thermoelectric conversion module comprises the steps of: arranging electrodes on an insulation substrate 10; electrically interconnecting the electrodes via a conductive member 14 containing a resin support structure soluble in an organic solvent; covering the insulation substrate with a mask 16 which has openings only at portions corresponding to the positions on the electrodes where chips are to be formed; aligning a mold plate 18 having through-holes at the positions of the openings; performing electrolytic deposition in an electrolyte using the electrodes for cathode electrodes with conductive members intervening so that the through-holes are filled with a thermoelectric conversion material 32 to thereby form the chips; removing the mold plate, the mask and the conductive member successively for the P-type and N-type thermoelectric conversion materials to produce a P-type half body having the electrodes and P-type chips arranged on the insulation substrate and an N-type half body having the electrodes and N-type chips arranged on another insulation substrate; and combining the P-type half body with the N-type half body to produce a thermoelectric conversion module by combining a large number of thermoelectric conversion elements.

Description

本発明は、熱電変換材料のチップを多数個一括して基板上に形成して熱電変換モジュールを製造する方法に関する。   The present invention relates to a method for manufacturing a thermoelectric conversion module by forming a large number of chips of a thermoelectric conversion material on a substrate at once.

熱電変換材料は、2つの基本的な熱電効果であるゼーベック(Seebeck)効果及びペルチェ(Peltier)効果に基づき、熱エネルギと電気エネルギとの直接変換を行なうエネルギ材料である。   The thermoelectric conversion material is an energy material that performs direct conversion between thermal energy and electric energy based on two basic thermoelectric effects, the Seebeck effect and the Peltier effect.

熱電変換材料を用いた熱電発電デバイスは、従来の発電技術に比べて、構造は簡単で、堅牢かつ耐久性が高く、可動部材は存在せず、マイクロ化が容易であり、メンテナンス不要で信頼性が高く、寿命が長く、騒音は発生せず、汚染も発生せず、低温の廃熱を利用可能であるといった多くの利点がある。   Thermoelectric power generation devices using thermoelectric conversion materials have a simple structure, robustness, high durability, no moving parts, easy microfabrication, no maintenance, and reliability compared to conventional power generation technology There are many advantages such as high life, long life, no noise, no pollution and low temperature waste heat can be used.

熱電変換材料を用いた熱電冷却デバイスも、従来の圧縮冷却技術に比べて、フロン不要で汚染は発生せず、小型化は容易で、可動部材は存在せず、騒音も発生しないなどの利点がある。   Compared to conventional compression cooling technology, thermoelectric cooling devices using thermoelectric conversion materials do not require chlorofluorocarbon, do not cause contamination, are easily downsized, have no moving parts, and do not generate noise. is there.

そのため、特に近年のエネルギ問題や環境問題の重大化に伴い、航空・宇宙、国防建設、地質及び気象観測、医療衛生、マイクロ電子などの領域や石油化工、冶金、電力工業における廃熱利用方面などの広範な用途への実用化が期待されている。   Therefore, especially in recent years, energy and environmental issues have become more serious, such as aviation / space, national defense construction, geological and meteorological observation, medical hygiene, microelectronics, etc. Is expected to be put to practical use for a wide range of applications.

従来、粉末の焼結や溶解凝固によりP型・N型各々のバルク熱電変換材料を製造し、これを機械加工によりダイシングして数mm角のP型チップ・N型チップとし、2枚の基板上にP型チップ・N型チップをそれぞれ所定パターンに配列し、各基板上のチップを両基板で挟むように接合して両基板間に多数の熱電変換素子を形成する。   Conventionally, P-type and N-type bulk thermoelectric conversion materials are manufactured by powder sintering and melting and solidification, and this is diced by machining to form several mm square P-type chips and N-type chips. A P-type chip and an N-type chip are arranged in a predetermined pattern on the top, and the chips on each substrate are joined so as to be sandwiched between both substrates, thereby forming a large number of thermoelectric conversion elements between the two substrates.

本明細書においては、熱電変換材料そのものの小片(例えば数mm角)を「チップ」(熱電変換材料チップ)、一対のP型・N型のチップを電極を介して接合して構成したものを「素子」(熱電変換素子)、多数の素子を組み合わせた素子群を「モジュール」(熱電変換モジュール)と呼ぶ。一般に、素子単位の発電量は小さいため、多数の素子を組み合わせて素子群すなわちモジュールとして実用に供される。   In this specification, a small piece (for example, several mm square) of a thermoelectric conversion material itself is formed by joining a “chip” (thermoelectric conversion material chip) and a pair of P-type and N-type chips via electrodes. An “element” (thermoelectric conversion element) and an element group in which a large number of elements are combined are called a “module” (thermoelectric conversion module). In general, since the power generation amount of each element is small, a large number of elements are combined and put into practical use as an element group, that is, a module.

ここで、電解析出により基板上に多数のチップを一括形成して素子パターンを直接得ることができれば、素子あるいはモジュールの作製コストを大幅に低減することが可能になり、非常に望ましい。   Here, if an element pattern can be obtained directly by forming a large number of chips on a substrate by electrolytic deposition, the manufacturing cost of the element or module can be greatly reduced, which is very desirable.

しかし、電極が基板上に離散して配列されるため、各電極上に各チップを電解析出により一括して形成することは実際的でなかった。   However, since the electrodes are discretely arranged on the substrate, it is not practical to collectively form each chip on each electrode by electrolytic deposition.

すなわち、(1)電解析出により多数のチップを一括形成するには、基板上に離散して配列された電極を電気的に接続する必要がある、(2)この電気接続用の導電材の露出部にも電解析出が起きてしまう、(3)電気接続用の導電材は使用後に除去しなくてはならない、という問題があった。   That is, (1) In order to collectively form a large number of chips by electrolytic deposition, it is necessary to electrically connect discretely arranged electrodes on the substrate. (2) The conductive material for this electrical connection There was a problem that electrolytic deposition also occurred in the exposed portion, and (3) the conductive material for electrical connection had to be removed after use.

特許文献1に、熱電変換材料を電解析出により作製する方法が開示されている。しかし、電解析出による形成する熱電変換材料の結晶方位の制御や多層膜の作成方法が提案されているが、熱電変換材料から多数のチップを、そして素子を一括形成してモジュールを作製することについては何ら開示がない。   Patent Document 1 discloses a method for producing a thermoelectric conversion material by electrolytic deposition. However, control of the crystal orientation of the thermoelectric conversion material formed by electrolytic deposition and a method of creating a multilayer film have been proposed, but a module can be manufactured by forming a large number of chips and elements in a batch from the thermoelectric conversion material. There is no disclosure about.

特開2001−7408号公報JP 2001-7408 A

本発明は、基板上に電解析出により多数の熱電変換材料チップを一括形成して、多数の熱電変換素子から成る熱電変換モジュールを一括して製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for collectively manufacturing a thermoelectric conversion module including a plurality of thermoelectric conversion elements by forming a large number of thermoelectric conversion material chips on a substrate by electrolytic deposition.

上記の目的を達成するために、本発明は、一対のP型およびN型の熱電変換材料のチップで構成された熱電変換素子を多数組み合わせた熱電変換モジュールを製造する方法であって、
(1)絶縁基板上に多数の電極を所定パターンに配列する工程、
(2)有機溶剤で容易に溶解する樹脂の支持構造を含む導電部材を、該多数の電極間を電気的に接合するように配設する工程、
(3)上記絶縁基板上に配列された上記電極上のチップ形成予定位置に対応する部位のみに開口を有するマスクで該絶縁基板上を覆う工程、
(4)上記マスクの上記開口に対応する部位にチップ形状の各貫通孔を有するモールド板を、各電極の各チップ形成予定位置にモールド板の各貫通孔を位置あわせして、上記絶縁基板上に密接固定する工程、
(5)電解溶液中で、上記導電部材を介して各電極をカソード電極として電解析出を行なうことにより、上記絶縁基板上の該多数の電極上で、上記モールド板の上記チップ形状の各貫通孔内を上記熱電変換材料で充填して各電極上に該熱電変換材料のチップを形成する工程、
(6)上記モールド板を除去する工程、
(7)上記マスクを除去する工程、および
(8)上記導電部材の支持構造の樹脂を有機溶剤で溶解することにより該導電部材を除去する工程、
を順次行なって該絶縁基板上に該電極およびその上の該チップを配列した熱電変換モジュールの半体を形成する操作を、P型およびN型の前記熱電変換材料について行い、一つの絶縁基板上に電極とその上のP型熱電変換材料チップが配列されたP型半体と、別の絶縁基板上に電極とその上のN型熱電変換材料チップが配列されたN型半体とを作製し、
上記P型半体と上記N型半体とを各々のチップ配列面を対面させて組み合わせることにより、P型熱電変換材料チップとN型熱電変換材料チップとが対を成して構成する熱電変換素子が多数組み合わされた熱電変換モジュールを製造することを特徴とする熱電変換モジュールの製造方法を提供する。
To achieve the above object, the present invention is a method of manufacturing a thermoelectric conversion module in which a large number of thermoelectric conversion elements composed of a pair of thermoelectric conversion material chips of P type and N type are combined,
(1) arranging a large number of electrodes in a predetermined pattern on an insulating substrate;
(2) A step of disposing a conductive member including a resin support structure that is easily dissolved in an organic solvent so as to electrically join the multiple electrodes;
(3) A step of covering the insulating substrate with a mask having an opening only in a portion corresponding to a chip formation scheduled position on the electrode arranged on the insulating substrate;
(4) A mold plate having chip-shaped through-holes at a portion corresponding to the opening of the mask is aligned with each through-hole of the mold plate at each chip formation planned position of each electrode. Intimately fixing to,
(5) Electrodeposition is performed in the electrolytic solution with each electrode as a cathode electrode through the conductive member, whereby the chip-shaped through-holes of the mold plate are formed on the multiple electrodes on the insulating substrate. A step of filling a hole with the thermoelectric conversion material to form a chip of the thermoelectric conversion material on each electrode;
(6) removing the mold plate,
(7) a step of removing the mask, and (8) a step of removing the conductive member by dissolving the resin of the support structure of the conductive member with an organic solvent,
Are sequentially performed on the insulating substrate to form a half body of the thermoelectric conversion module in which the electrodes and the chips on the insulating substrate are arranged on the P-type and N-type thermoelectric conversion materials. A P-type half with an electrode and a P-type thermoelectric conversion material chip arranged thereon, and an N-type half with an electrode and an N-type thermoelectric conversion material chip arranged on another insulating substrate are prepared. And
A thermoelectric conversion in which a P-type thermoelectric conversion material chip and an N-type thermoelectric conversion material chip constitute a pair by combining the P-type half and the N-type half with their chip arrangement surfaces facing each other. Provided is a method for manufacturing a thermoelectric conversion module, characterized by manufacturing a thermoelectric conversion module in which a large number of elements are combined.

本発明によれば、工程(2)で、有機溶剤で容易に溶解する樹脂の支持構造を含む導電部材を、該多数の電極間を電気的に接合するように配設するので、工程(5)で、上記導電部材を介して絶縁基板上の全ての電極に電圧を印加して各電極上に電解析出により熱電変換材料チップを一括して形成でき、工程(8)で、上記導電部材の支持構造の樹脂を有機溶剤で溶解することにより該導電部材を除去することができ、この工程をP型・N型の各熱電変換材料について行なって得たP型・N型の半体を組み合わせることで、多数の熱電変換素子から成る熱電変換モジュールを一括して製造できる。   According to the present invention, in the step (2), the conductive member including the resin support structure that is easily dissolved in the organic solvent is disposed so as to electrically join the multiple electrodes. ), A voltage is applied to all electrodes on the insulating substrate through the conductive member, and thermoelectric conversion material chips can be collectively formed on each electrode by electrolytic deposition. In step (8), the conductive member The conductive member can be removed by dissolving the resin of the supporting structure with an organic solvent, and the P-type and N-type halves obtained by performing this process on the P-type and N-type thermoelectric conversion materials are obtained. By combining them, a thermoelectric conversion module composed of a large number of thermoelectric conversion elements can be manufactured in a lump.

図1は、本発明の方法の第1実施形態により、絶縁基板上に電極を配列した状態を示す。FIG. 1 shows a state in which electrodes are arranged on an insulating substrate according to a first embodiment of the method of the present invention. 図2は、本発明の方法の第1実施形態により、図1の次工程において、絶縁基板上の電極間に導電性樹脂を充填した状態を示す。FIG. 2 shows a state in which conductive resin is filled between electrodes on an insulating substrate in the next step of FIG. 1 according to the first embodiment of the method of the present invention. 図3は、本発明の方法の第1実施形態により、図2の次工程において、チップ形成予定位置以外の電極上および樹脂上をマスクで覆った状態を示す。FIG. 3 shows a state in which the electrode and the resin other than the chip formation scheduled positions are covered with a mask in the next step of FIG. 2 according to the first embodiment of the method of the present invention. 図4は、本発明の方法の第1実施形態により、図3の次工程において、各電極上に熱電変換材料を電解析出させチップを形成するための(1)モールド板および(2)このモールド板を絶縁基板上に配置した状態を示す。FIG. 4 shows (1) a mold plate and (2) this for forming a chip by electrolytically depositing a thermoelectric conversion material on each electrode in the next step of FIG. 3 according to the first embodiment of the method of the present invention. The state which has arrange | positioned the mold board on the insulated substrate is shown. 図5は、本発明の方法の第1実施形態により、図4の次工程において、(1)はモールド板を配置した基板に電解析出を行なう状態、(2)は電解析出によりモールド板の開口内に熱電変換材料チップを形成した状態、(3)は(2)の線III−IIIにおける断面図、(4)は別の電解液を用いて熱電変換材料の露出表面にニッケルめっき被膜を形成した状態を示す。FIG. 5 shows the first embodiment of the method of the present invention, in the next step of FIG. 4, (1) is a state in which electrolytic deposition is performed on a substrate on which a mold plate is arranged, and (2) is a mold plate by electrolytic deposition. (3) is a cross-sectional view taken along line III-III in (2), and (4) is a nickel plating film on the exposed surface of the thermoelectric conversion material using another electrolytic solution. The state which formed is shown. 図6は、本発明の方法の第1実施形態により、図5の次工程において、電解析出後に、モールド板、マスク、導電部材を除去した状態の(1)P型半体および(2)N型半体を示す。FIG. 6 shows (1) a P-type half and (2) with the mold plate, mask and conductive member removed after electrolytic deposition in the next step of FIG. 5 according to the first embodiment of the method of the present invention. N-type half is shown. 図7は、本発明の方法の第1実施形態により、図6の次工程において、P型半体とN型半体をチップ形成側同士を向かい合わせ、重ね合わせて接合し、熱電変換モジュールを完成させた状態を示す。7 shows a thermoelectric conversion module according to the first embodiment of the method of the present invention. In the next step of FIG. Shows the completed state. 図8は、本発明の方法の第2実施形態において、第1実施形態の図2の次工程として、チップ形成予定位置以外の電極上を絶縁材料でマスキングした状態を示す。FIG. 8 shows a state in which, on the second embodiment of the method of the present invention, the electrode other than the chip formation scheduled position is masked with an insulating material as the next step of FIG. 2 of the first embodiment. 図9は、本発明の方法の第2実施形態において、図8の次工程において、電極間の樹脂上とチップ形成予定位置の電極上にNi等の無電解めっき膜を形成した状態を示す。樹脂を支持構造とする無電解めっき膜を導電部材として電極間を電気的に接合する。FIG. 9 shows a state where an electroless plating film of Ni or the like is formed on the resin between the electrodes and on the electrode at the chip formation position in the next step of FIG. 8 in the second embodiment of the method of the present invention. The electrodes are electrically joined using an electroless plating film having a resin support structure as a conductive member. 図10は、本発明の方法の第2実施形態において、図9の次工程において、無電解めっき膜を介して全電極上に熱電変換材料を電解析出させてチップを形成した状態を示す。FIG. 10 shows a state in which, in the second embodiment of the method of the present invention, a chip is formed by electrolytically depositing a thermoelectric conversion material on all the electrodes through the electroless plating film in the next step of FIG. 図11は、本発明の第2実施形態において、図10の次工程において、チップ形成用のモールド板を取り外した状態を示す。FIG. 11 shows a state in which the mold plate for chip formation is removed in the next step of FIG. 10 in the second embodiment of the present invention. 図12は、本発明の第2実施形態において、図11の次工程において、チップ間のマスク、電極間の樹脂、チップ形成位置以外の無電解めっき膜を除去した状態を示す。FIG. 12 shows a state in which the mask between chips, the resin between electrodes, and the electroless plating film other than the chip formation position are removed in the next step of FIG. 11 in the second embodiment of the present invention.

〔第1実施形態〕
図1〜図7を参照して、本発明の方法の第1実施形態を説明する。
[First Embodiment]
A first embodiment of the method of the present invention will be described with reference to FIGS.

先ず、図1に示すように、絶縁基板10上に多数の電極12を所定パターンに配列する。仮に、(1)(2)はP型用基板、(3)(4)はN型用基板とするが、P、Nは逆でもよい。(1)は平面図、(2)は(1)の線II−IIにおける断面図であり、(3)は平面図、(4)は(2)の線IV−IVにおける断面図である。図2、3においても同様である。   First, as shown in FIG. 1, a large number of electrodes 12 are arranged in a predetermined pattern on an insulating substrate 10. Although (1) and (2) are P-type substrates and (3) and (4) are N-type substrates, P and N may be reversed. (1) is a plan view, (2) is a sectional view taken along line II-II in (1), (3) is a plan view, and (4) is a sectional view taken along line IV-IV in (2). The same applies to FIGS.

次に、図2に示すように、有機溶剤で容易に溶解する樹脂の支持構造を含む導電部材14を、多数の電極12間を電気的に接合するように配設する。第1実施形態においては、導電部材14は、樹脂中に導電体として導電性ポリマーや金属粒子を分散させた導電性樹脂を用いることができる。この場合、樹脂の支持構造は分散媒体としての樹脂であり、これが有機溶媒に容易に溶解することにより導電部材14全体が崩壊して容易に除去可能である。   Next, as shown in FIG. 2, a conductive member 14 including a resin support structure that is easily dissolved in an organic solvent is disposed so as to electrically join a large number of electrodes 12. In 1st Embodiment, the conductive member 14 can use the conductive resin which disperse | distributed the conductive polymer and the metal particle as a conductor in resin. In this case, the resin support structure is a resin as a dispersion medium, and the conductive member 14 as a whole is easily dissolved in an organic solvent, so that the entire conductive member 14 can be easily removed.

次に、図3に示すように、絶縁基板10上に配列された電極12上のチップ形成予定位置に対応する部位のみに開口17を有する絶縁性のマスク16で絶縁基板10上を覆う。   Next, as shown in FIG. 3, the insulating substrate 10 is covered with an insulating mask 16 having openings 17 only at portions corresponding to the chip formation scheduled positions on the electrodes 12 arranged on the insulating substrate 10.

次に、図4(1)に示すように、マスク16の開口17に対応する部位にチップ形状の各貫通孔20を有するモールド板18を、図4(2)に示すように各電極12の各チップ形成予定位置にモールド板18の各貫通孔20を位置あわせして、固定冶具22で絶縁基板10上に密接固定する。導電部材14に電解析出用の給電リード24を接続しておく。固定されたアセンブリを19で示す。   Next, as shown in FIG. 4A, a mold plate 18 having chip-shaped through-holes 20 at portions corresponding to the openings 17 of the mask 16 is formed, and as shown in FIG. Each through-hole 20 of the mold plate 18 is aligned with each chip formation planned position, and fixed on the insulating substrate 10 with the fixing jig 22. A power supply lead 24 for electrolytic deposition is connected to the conductive member 14. A fixed assembly is indicated at 19.

次に、図5(1)に示すように、電解溶液26中で、導電部材14を介して各電極12をカソード電極として電解析出を行なう。電解溶液26中に、固定アセンブリ19を負極として配置し、白金等の対極28に正極とし、直流電源30から給電する。   Next, as shown in FIG. 5A, electrolytic deposition is performed in the electrolytic solution 26 using the electrodes 12 as cathode electrodes via the conductive member 14. In the electrolytic solution 26, the fixed assembly 19 is disposed as a negative electrode, and a counter electrode 28 such as platinum is used as a positive electrode, and power is supplied from a DC power source 30.

これにより、図5(2)平面図および(3)断面図((2)の線III−III)に示すように、絶縁基板10上の多数の電極12上で、モールド板18のチップ形状の各貫通孔20内を熱電変換材料で充填して、各電極12上に熱電変換材料のチップ32を形成する。   As a result, as shown in FIG. 5 (2) plan view and (3) cross-sectional view (line III-III in (2)), the chip shape of the mold plate 18 is formed on the numerous electrodes 12 on the insulating substrate 10. Each through hole 20 is filled with a thermoelectric conversion material, and a chip 32 of the thermoelectric conversion material is formed on each electrode 12.

望ましくは、図5(4)に示すように、更に別の電解溶液中で、モールド板18の貫通孔20内にあるチップ32の表面にNi等の電解めっき膜34を形成する。これにより、接合材を使用してP型半導体とN型半導体とを組み合わせるときに、チップと電極との接合性を向上させることができる。   Desirably, as shown in FIG. 5 (4), an electrolytic plating film 34 of Ni or the like is formed on the surface of the chip 32 in the through hole 20 of the mold plate 18 in another electrolytic solution. Thereby, when a P-type semiconductor and an N-type semiconductor are combined using a bonding material, the bondability between the chip and the electrode can be improved.

次に、図6に示すように、モールド板18、マスク16、導電部材14を除去する。導電部材14の除去は、支持構造の樹脂を有機溶剤で溶解することにより容易に行なえる。   Next, as shown in FIG. 6, the mold plate 18, the mask 16, and the conductive member 14 are removed. The conductive member 14 can be easily removed by dissolving the resin of the support structure with an organic solvent.

図1〜図6の工程を順次行なって、絶縁基板10上に電極12およびその上のチップ32を配列した熱電変換モジュールの半体36、38が形成される。すなわち、P型およびN型の熱電変換材料について行い、一つの絶縁基板10上に電極12とその上のP型熱電変換材料チップ32が配列されたP型半体36と、別の絶縁基板10上に電極12とその上のN型熱電変換材料チップ32が配列されたN型半体38とを作製する。   The steps of FIGS. 1 to 6 are sequentially performed to form thermoelectric conversion module halves 36 and 38 in which the electrodes 12 and the chips 32 thereon are arranged on the insulating substrate 10. That is, P-type and N-type thermoelectric conversion materials are used, and a P-type half 36 in which electrodes 12 and P-type thermoelectric conversion material chips 32 are arranged on one insulating substrate 10, and another insulating substrate 10. An electrode 12 and an N-type half body 38 on which the N-type thermoelectric conversion material chip 32 is arranged are manufactured.

次に、図7に示すように、P型半体36とN型半体38とを各々のチップ配列面を対面させて組み合わせることにより、P型熱電変換材料チップとN型熱電変換材料チップとが対を成して構成する熱電変換素子が多数組み合わされた熱電変換モジュール40を製造する。   Next, as shown in FIG. 7, by combining the P-type half body 36 and the N-type half body 38 with their chip arrangement surfaces facing each other, the P-type thermoelectric conversion material chip, the N-type thermoelectric conversion material chip, Manufactures a thermoelectric conversion module 40 in which a large number of thermoelectric conversion elements configured in pairs are combined.

〔第2実施形態〕
第2実施形態は、電極12間を電気的に接合する導電部材が第1実施形態と異なる。すなわち、第1実施形態においては、電極12間を充填する導電性樹脂を導電部材として用いたが、第2実施形態においては、電極12間を充填する樹脂(導電性または非導電性)上にNi等の無電解めっき膜を形成して導電部材として用いる。第1実施形態で用いる導電部材は、支持構造としての樹脂中に導電体である導電性ポリマーや金属粒子が分散した導電性樹脂であるのに対して、第2実施形態で用いる導電部材は、支持構造としての樹脂上に導電体である金属膜が無電解めっきされた構造である。したがって第2実施形態においては、樹脂自体は導電性である必要はなく非導電性でよい。Ni等の金属の無電解めっき膜は、電極とチップとの間の拡散防止層として機能させることができる。導電性樹脂を用いた場合、電解析出時の電極間接合機能には無電解めっき膜は不要であるが、無電解めっき膜の拡散防止層としての機能が得られる点で、第1実施形態のプロセスに対して有利である。
[Second Embodiment]
The second embodiment is different from the first embodiment in the conductive member that electrically joins the electrodes 12 together. That is, in the first embodiment, the conductive resin filling between the electrodes 12 is used as the conductive member. However, in the second embodiment, the resin filling between the electrodes 12 (conductive or non-conductive) is used. An electroless plating film such as Ni is formed and used as a conductive member. The conductive member used in the first embodiment is a conductive resin in which a conductive polymer or metal particles as conductors are dispersed in a resin as a support structure, whereas the conductive member used in the second embodiment is This is a structure in which a metal film as a conductor is electrolessly plated on a resin as a support structure. Therefore, in the second embodiment, the resin itself does not need to be conductive and may be non-conductive. The electroless plating film of metal such as Ni can function as a diffusion preventing layer between the electrode and the chip. When a conductive resin is used, an electroless plating film is not necessary for the electrode-to-electrode bonding function during electrolytic deposition, but the function of the electroless plating film as a diffusion preventing layer can be obtained in the first embodiment. This process is advantageous.

図1〜2、4〜5、8〜12、7をこの順に参照して、実施形態2のプロセスを説明する。   The process of Embodiment 2 is demonstrated with reference to FIGS. 1-2, 4-5, 8-12, and 7 in this order.

先ず、第1実施形態と同様に、図1に示すように絶縁基板10上に多数の電極12を所定パターンに配列する。   First, as in the first embodiment, a large number of electrodes 12 are arranged in a predetermined pattern on an insulating substrate 10 as shown in FIG.

次に、図2に示すように、有機溶剤で容易に溶解する樹脂の支持構造14’を電極12間に充填する。第2実施形態に用いる樹脂は、導電性である必要はない。後にその上に形成する金属の無電解めっき膜を支持構造として作用すればよい。   Next, as shown in FIG. 2, a resin support structure 14 ′ easily dissolved with an organic solvent is filled between the electrodes 12. The resin used in the second embodiment does not need to be conductive. A metal electroless plating film to be formed later may act as a support structure.

次に、図8に示すように、チップ形成予定位置以外の電極12上を絶縁材料のマスク16で覆う。仮に、(1)(2)はP型用基板、(3)(4)はN型用基板とするが、P、Nは逆でもよい。(1)は平面図、(2)は(1)の線II−IIにおける断面図であり、(3)は平面図、(4)は(2)の線IV−IVにおける断面図である。図9においても同様である。   Next, as shown in FIG. 8, the electrode 12 other than the chip formation planned position is covered with a mask 16 made of an insulating material. Although (1) and (2) are P-type substrates and (3) and (4) are N-type substrates, P and N may be reversed. (1) is a plan view, (2) is a sectional view taken along line II-II in (1), (3) is a plan view, and (4) is a sectional view taken along line IV-IV in (2). The same applies to FIG.

次に、図9に示すように、電極12上のチップ形成予定位置と樹脂14’上にNi等の金属の無電解めっき膜52を形成する。図9(2)および図9(4)に断面を示すように、樹脂14’と無電解めっき膜52で導電部材14を構成する。導電部材14の無電解めっき膜52を介して、多数の電極12は電気的に接続されている。   Next, as shown in FIG. 9, an electroless plating film 52 of a metal such as Ni is formed on the chip formation planned position on the electrode 12 and the resin 14 '. 9 (2) and 9 (4), the conductive member 14 is composed of the resin 14 'and the electroless plating film 52. As shown in FIG. Many electrodes 12 are electrically connected through the electroless plating film 52 of the conductive member 14.

次に、第1実施形態と同様に、図4(1)に示すモールド板18を図4(2)に示すように位置合わせして絶縁基板10に固定し、図5(1)に示すように電解溶液26中で導電部材14(特に無電解めっき膜52)を介し、電極12をカソード電極として電解析出を行う。   Next, as in the first embodiment, the mold plate 18 shown in FIG. 4 (1) is aligned and fixed to the insulating substrate 10 as shown in FIG. 4 (2), as shown in FIG. 5 (1). Then, electrolytic deposition is performed in the electrolytic solution 26 with the electrode 12 as a cathode electrode through the conductive member 14 (particularly, the electroless plating film 52).

これにより、図10に示すように、電極12上のチップ形成予定位置に、無電解めっき膜52を介して熱電変換材料のチップ32が形成される。仮に、(1)はP型半体、(2)はN型半体とするが、P、Nは逆でもよい。(1)は図9(1)の線II−IIに対応する位置における断面図であり、(2)は図9(3)の線IV−IVに対応する位置おける断面図である。図11、12においても同様である。   Thereby, as shown in FIG. 10, the chip 32 of the thermoelectric conversion material is formed via the electroless plating film 52 at the chip formation planned position on the electrode 12. Although (1) is a P-type half and (2) is an N-type half, P and N may be reversed. (1) is a cross-sectional view at a position corresponding to line II-II in FIG. 9 (1), and (2) is a cross-sectional view at a position corresponding to line IV-IV in FIG. 9 (3). The same applies to FIGS.

次に、図11に示すように、モールド板18を取り外す。   Next, as shown in FIG. 11, the mold plate 18 is removed.

次に、図12に示すように、マスク16、電極12間の樹脂14’、チップ位置以外に残る無電解めっき膜52を除去する。この状態は、第1実施形態の図6の状態に対応しており、次工程において第1実施形態の図7に示したように、P型半体36とN型半体38をチップ形成側同士を向かい合わせ、重ね合わせて接合し、熱電変換モジュール40を完成させる。第2実施形態においては、電極12とチップ32との間に残るNi等の無電解めっき膜52は、電極12とチップ32との間の拡散防止層として機能する。   Next, as shown in FIG. 12, the mask 16, the resin 14 ′ between the electrodes 12, and the electroless plating film 52 remaining other than the chip position are removed. This state corresponds to the state of FIG. 6 of the first embodiment, and in the next step, as shown in FIG. 7 of the first embodiment, the P-type half 36 and the N-type half 38 are connected to the chip formation side. The thermoelectric conversion module 40 is completed by facing each other and overlapping and joining. In the second embodiment, the electroless plating film 52 such as Ni remaining between the electrode 12 and the chip 32 functions as a diffusion prevention layer between the electrode 12 and the chip 32.

本発明の第1実施形態の実施例を説明する。   Examples of the first embodiment of the present invention will be described.

アルミナ基板10上に厚さ200μmの銅板をはんだ接合する。この銅板をエッチング処理により熱電変換素子用の電極12にパターニングする。これにより図1に示すように、P型チップ形成用およびN型チップ形成用に電極12が配列したP型用基板(1)(2)、N型用基板(3)(4)を準備する。アルミナ基板10に代えて、マグネシア、窒化珪素、炭化珪素等のセラミックスや樹脂系材料等の絶縁材料を用いることができる。電極12の材料としては、銅(Cu)に代えて、Al、Fe、Ag、Au、ステンレス鋼等の金属材料を用いることができる。   A 200 μm thick copper plate is soldered on the alumina substrate 10. This copper plate is patterned on the thermoelectric conversion element electrode 12 by etching. As a result, as shown in FIG. 1, P-type substrates (1) (2) and N-type substrates (3) (4) on which electrodes 12 are arranged for P-type chip formation and N-type chip formation are prepared. . Instead of the alumina substrate 10, ceramics such as magnesia, silicon nitride, and silicon carbide, and insulating materials such as resin materials can be used. As a material of the electrode 12, metal materials such as Al, Fe, Ag, Au, and stainless steel can be used instead of copper (Cu).

次に、図2に示すように、多数の電極12間に導電性樹脂14を充填して、全ての電極12を電気的に接続し一体化する。導電性樹脂14としては、支持構造としての樹脂中に、ポリアセチレン、ポリアニリン、ポリピロール等の導電性ポリマーや金属フィラーを混合・分散させたものを用いることができる。   Next, as shown in FIG. 2, a conductive resin 14 is filled between a large number of electrodes 12, and all the electrodes 12 are electrically connected and integrated. As the conductive resin 14, a resin obtained by mixing and dispersing a conductive polymer such as polyacetylene, polyaniline, polypyrrole, or a metal filler in a resin as a support structure can be used.

次に、図3に示すように、電極12上のチップ形成予定位置に対応する部位にのみ開口17を有する絶縁性のマスク16でアルミナ基板10上を覆う。   Next, as shown in FIG. 3, the alumina substrate 10 is covered with an insulating mask 16 having an opening 17 only at a portion corresponding to a chip formation planned position on the electrode 12.

マスク16は、ポリイミド系、エポキシ系、アクリル系、フェノール系の樹脂等を用いることができ、スクリーン印刷によりインクレジスト材を塗布する方法や、予めパターニングしたドライフィルムを用いる方法、感光性を持つフォトレジストで露光部を硬化させ未硬化部分を洗浄除去する方法等によって形成することができる。   The mask 16 can be made of polyimide, epoxy, acrylic, phenolic resin, or the like. A method of applying an ink resist material by screen printing, a method of using a pre-patterned dry film, or a photosensitive photo. It can be formed by a method of curing an exposed portion with a resist and washing away an uncured portion.

次に、図3に示すように、絶縁基板10上に配列された電極12上のチップ形成予定位置に対応する部位のみに開口17を有する絶縁性のマスク16で絶縁基板10上を覆う。   Next, as shown in FIG. 3, the insulating substrate 10 is covered with an insulating mask 16 having openings 17 only at portions corresponding to the chip formation scheduled positions on the electrodes 12 arranged on the insulating substrate 10.

次に、図4(1)に示すモールド板18を図4(2)に示すように絶縁基板10上に密接固定し、電解析出用アセンブリ19とする。モールド板18は、樹脂材料等にチップの形状・寸法(例えば2mm角)の貫通孔20を形成して作製する。この樹脂材料等としては、PTFE等の剥離性の高い材料が好ましいが、これに限定する必要はなく、他の樹脂やセラミックスを用いることもできる。チップ(貫通孔)の形状として直方体を図示したが他の形状でもよい。   Next, the mold plate 18 shown in FIG. 4A is closely fixed on the insulating substrate 10 as shown in FIG. The mold plate 18 is produced by forming a through hole 20 having a chip shape and dimensions (for example, 2 mm square) in a resin material or the like. The resin material or the like is preferably a highly peelable material such as PTFE, but is not limited thereto, and other resins and ceramics can also be used. Although a rectangular parallelepiped is illustrated as the shape of the chip (through hole), other shapes may be used.

次に、図5(1)に示すように電解析出を行なって、図5(2)(3)に示すように貫通孔20内にチップ32を形成する。電解析出用アセンブリ19を負極とし、白金等の貴金属を正極とする。基板10上の導電性樹脂から成る導電部材14に通電することで、マスク16で覆われていない全ての電極12上にチップ32が形成される。P型チップ32とN型チップ32は別々の基板10上に形成する。   Next, electrolytic deposition is performed as shown in FIG. 5 (1), and chips 32 are formed in the through holes 20 as shown in FIGS. 5 (2) and (3). The electrodeposition assembly 19 is a negative electrode, and a noble metal such as platinum is a positive electrode. By energizing the conductive member 14 made of conductive resin on the substrate 10, the chips 32 are formed on all the electrodes 12 not covered with the mask 16. The P-type chip 32 and the N-type chip 32 are formed on different substrates 10.

一例として、BiTe系熱電変換材料の熱電変換モジュールを作製する場合、電解溶液26としてBiとTeOを溶解させた硝酸溶液を用い、定電位で電解析出を行なうことにより、BiTe系熱電変換材料のチップ32が形成できる。電析電位によってBiとTeの組成比を調整し、P型チップとN型チップを作り分けることができる。ドーパントとなる金属イオンを電析浴中に溶解させることにより、P型やN型の組成調整を行なうこともできる。また、その他の金属塩と電解溶液26の組み合わせを変えて電析を行なえば、種々の組成の熱電変換材料のチップ32を形成することができる。 As an example, when producing a thermoelectric conversion module of a BiTe thermoelectric conversion material, a BiTe system is obtained by performing electrolytic deposition at a constant potential using a nitric acid solution in which Bi 2 O 3 and TeO 2 are dissolved as the electrolytic solution 26. A chip 32 of thermoelectric conversion material can be formed. The composition ratio of Bi and Te can be adjusted by the electrodeposition potential to make a P-type chip and an N-type chip separately. P-type and N-type composition adjustments can also be made by dissolving metal ions as dopants in the electrodeposition bath. If the electrodeposition is performed by changing the combination of other metal salts and the electrolytic solution 26, the chips 32 of thermoelectric conversion materials having various compositions can be formed.

必要に応じて、図5(4)に示すように、形成したチップ32の頂面にNi電解めっき膜等の保護膜34を形成してもよい。   If necessary, a protective film 34 such as a Ni electrolytic plating film may be formed on the top surface of the formed chip 32 as shown in FIG.

次に、図6に示すように、モールド板18、マスク16、導電部材14を除去する。これは、モールド板18を基板10上のチップ32から引き抜いた後、マスク16および導電性樹脂14をトルエンやキシレン等の有機溶剤で溶解して除去することによって行なう。   Next, as shown in FIG. 6, the mold plate 18, the mask 16, and the conductive member 14 are removed. This is performed by removing the mold plate 18 from the chip 32 on the substrate 10 and then removing the mask 16 and the conductive resin 14 by dissolving them in an organic solvent such as toluene or xylene.

次に、図7に示すように、P型半体36とN型半体38とを各々のチップ配列面を向き合わせて貼り合わせ、熱電変換モジュール40を製造する。   Next, as shown in FIG. 7, the P-type half 36 and the N-type half 38 are bonded to each other with their chip arrangement surfaces facing each other, and the thermoelectric conversion module 40 is manufactured.

そのために、先ず、チップ32の頂面(この例ではNi保護膜34上)にスクリーン印刷によりはんだペースト(図示せず)を塗布する。次いで、位置合わせ用冶具を用いて、P型半体36のP型チップ32の頂面とN型半体38の電極とを位置合わせし且つN型半体38のN型チップ32の頂面とP型半体36の電極とを位置合わせして固定する。次に、この固定したアセンブリをはんだの溶融温度以上の高温で熱処理し、各半体のチップ32と相手方半体の電極12とを接合する。これにより、P型熱電変換材料チップとN型熱電変換材料チップとが対を成して構成する熱電変換素子が多数組み合わされた熱電変換モジュール40が得られる。   For this purpose, first, a solder paste (not shown) is applied to the top surface of the chip 32 (on the Ni protective film 34 in this example) by screen printing. Next, using the alignment jig, the top surface of the P-type chip 32 of the P-type half 36 and the electrode of the N-type half 38 are aligned, and the top surface of the N-type chip 32 of the N-type half 38 And the electrode of the P-type half 36 are aligned and fixed. Next, the fixed assembly is heat-treated at a temperature higher than the melting temperature of the solder to bond each half chip 32 to the other half electrode 12. As a result, the thermoelectric conversion module 40 in which a large number of thermoelectric conversion elements configured by forming pairs of P-type thermoelectric conversion material chips and N-type thermoelectric conversion material chips is obtained.

本発明によれば、基板上に電解析出により多数の熱電変換材料チップを一括形成して、多数の熱電変換素子から成る熱電変換モジュールを一括して製造する方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the method of collectively manufacturing the thermoelectric conversion module which consists of many thermoelectric conversion elements by forming many thermoelectric conversion material chips | tips collectively on a board | substrate by electrolytic deposition is provided.

10 絶縁基板
12 熱電変換素子用の電極
14 導電部材
14’ 支持構造
16 マスク
17 開口
18 モールド板
20 貫通孔
22 固定冶具
24 給電リード
26 電解溶液
28 対極
30 直流電源
32 チップ(熱電変換材料のチップ)
34 電解めっき膜(保護膜)
36 P型半体
38 N型半体
40 熱電変換モジュール
52 無電解めっき膜
DESCRIPTION OF SYMBOLS 10 Insulation board | substrate 12 Electrode for thermoelectric conversion elements 14 Conductive member 14 'Support structure 16 Mask 17 Opening 18 Mold plate 20 Through hole 22 Fixing jig 24 Feeding lead 26 Electrolytic solution 28 Counter electrode 30 DC power supply 32 Chip (chip of thermoelectric conversion material)
34 Electrolytic plating film (protective film)
36 P-type half 38 N-type half 40 Thermoelectric conversion module 52 Electroless plating film

Claims (3)

一対のP型およびN型の熱電変換材料のチップで構成された熱電変換素子を多数組み合わせた熱電変換モジュールを製造する方法であって、
(1)絶縁基板上に多数の電極を所定パターンに配列する工程、
(2)有機溶剤で容易に溶解する樹脂の支持構造を含む導電部材を、該多数の電極間を電気的に接合するように配設する工程、
(3)上記絶縁基板上に配列された上記電極上のチップ形成予定位置に対応する部位のみに開口を有する絶縁性のマスクで該絶縁基板上を覆う工程、
(4)上記マスクの上記開口に対応する部位にチップ形状の各貫通孔を有するモールド板を、各電極の各チップ形成予定位置にモールド板の各貫通孔を位置あわせして、上記絶縁基板上に密接固定する工程、
(5)電解溶液中で、上記導電部材を介して各電極をカソード電極として電解析出を行なうことにより、上記絶縁基板上の該多数の電極上で、上記モールド板の上記チップ形状の各貫通孔内を上記熱電変換材料で充填して各電極上に該熱電変換材料のチップを形成する工程、
(6)上記モールド板を除去する工程、
(7)上記マスクを除去する工程、および
(8)上記導電部材の支持構造の樹脂を有機溶剤で溶解することにより該導電部材を除去する工程、
を順次行なって該絶縁基板上に該電極およびその上の該チップを配列した熱電変換モジュールの半体を形成する操作を、P型およびN型の前記熱電変換材料について行い、一つの絶縁基板上に電極とその上のP型熱電変換材料チップが配列されたP型半体と、別の絶縁基板上に電極とその上のN型熱電変換材料チップが配列されたN型半体とを作製し、
上記P型半体と上記N型半体とを各々のチップ配列面を対面させて組み合わせることにより、P型熱電変換材料チップとN型熱電変換材料チップとが対を成して構成する熱電変換素子が多数組み合わされた熱電変換モジュールを製造することを特徴とする熱電変換モジュールの製造方法。
A method of manufacturing a thermoelectric conversion module in which a large number of thermoelectric conversion elements composed of a pair of P-type and N-type thermoelectric conversion material chips are combined,
(1) arranging a large number of electrodes in a predetermined pattern on an insulating substrate;
(2) A step of disposing a conductive member including a resin support structure that is easily dissolved in an organic solvent so as to electrically join the multiple electrodes;
(3) a step of covering the insulating substrate with an insulating mask having an opening only in a portion corresponding to a chip formation scheduled position on the electrode arranged on the insulating substrate;
(4) A mold plate having chip-shaped through-holes at a portion corresponding to the opening of the mask is aligned with each through-hole of the mold plate at each chip formation planned position of each electrode. Intimately fixing to,
(5) Electrodeposition is performed in the electrolytic solution with each electrode as a cathode electrode through the conductive member, whereby the chip-shaped through-holes of the mold plate are formed on the multiple electrodes on the insulating substrate. A step of filling a hole with the thermoelectric conversion material to form a chip of the thermoelectric conversion material on each electrode;
(6) removing the mold plate,
(7) a step of removing the mask, and (8) a step of removing the conductive member by dissolving the resin of the support structure of the conductive member with an organic solvent.
Are sequentially performed on the insulating substrate to form a half body of the thermoelectric conversion module in which the electrodes and the chips on the insulating substrate are arranged on the P-type and N-type thermoelectric conversion materials. A P-type half with an electrode and a P-type thermoelectric conversion material chip arranged thereon, and an N-type half with an electrode and an N-type thermoelectric conversion material chip arranged on another insulating substrate are prepared. And
A thermoelectric conversion in which a P-type thermoelectric conversion material chip and an N-type thermoelectric conversion material chip constitute a pair by combining the P-type half and the N-type half with their chip arrangement surfaces facing each other. A method for producing a thermoelectric conversion module, comprising producing a thermoelectric conversion module in which a large number of elements are combined.
請求項1において、
上記工程(2)で、有機溶剤で容易に溶解する樹脂の支持構造を含む導電部材として、導電性樹脂を用いることを特徴とする熱電変換モジュールの製造方法。
In claim 1,
A method of manufacturing a thermoelectric conversion module, wherein a conductive resin is used as a conductive member including a resin support structure that is easily dissolved in an organic solvent in the step (2).
請求項1において、
上記工程(2)〜(3)に代えて、下記工程:
有機溶剤で容易に溶解する樹脂の支持構造として、該多数の電極間を樹脂で充填した後に、各電極上のチップ形成予定位置以外を絶縁性のマスクで覆い、各電極上のチップ形成予定位置および該樹脂の支持構造上に無電解メッキにより導電膜を形成することにより上記導電部材を形成する工程
を行なうことを特徴とする熱電変換モジュールの製造方法。
In claim 1,
Instead of the above steps (2) to (3), the following steps:
As a support structure of a resin that is easily dissolved in an organic solvent, after filling the space between the electrodes with a resin, the chip formation planned position on each electrode is covered with an insulating mask other than the chip formation planned position on each electrode. And a process for forming the conductive member by forming a conductive film on the support structure of the resin by electroless plating.
JP2010110891A 2010-05-13 2010-05-13 Method for producing thermoelectric conversion module Pending JP2011238867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010110891A JP2011238867A (en) 2010-05-13 2010-05-13 Method for producing thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010110891A JP2011238867A (en) 2010-05-13 2010-05-13 Method for producing thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2011238867A true JP2011238867A (en) 2011-11-24

Family

ID=45326495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010110891A Pending JP2011238867A (en) 2010-05-13 2010-05-13 Method for producing thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2011238867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212245A (en) * 2016-05-23 2017-11-30 学校法人神奈川大学 Method for manufacturing flexible thermoelectric conversion member
CN112038478A (en) * 2020-09-15 2020-12-04 上海商皓电子科技有限公司 Manufacturing process of semiconductor refrigeration element and element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212245A (en) * 2016-05-23 2017-11-30 学校法人神奈川大学 Method for manufacturing flexible thermoelectric conversion member
CN112038478A (en) * 2020-09-15 2020-12-04 上海商皓电子科技有限公司 Manufacturing process of semiconductor refrigeration element and element
CN112038478B (en) * 2020-09-15 2023-09-26 上海商皓电子科技有限公司 Manufacturing process of semiconductor refrigeration element and element

Similar Documents

Publication Publication Date Title
US6274803B1 (en) Thermoelectric module with improved heat-transfer efficiency and method of manufacturing the same
US10566514B2 (en) Thermoelectric module
US8516690B2 (en) Anisotropic conductive joint package
US8664764B2 (en) Semiconductor device including a core substrate and a semiconductor element
US20190198424A1 (en) Power module with built-in power device and double-sided heat dissipation and manufacturing method thereof
WO2014199541A1 (en) Thermoelectric conversion module
JP2016076646A (en) Electrostatic chuck
JP2012099794A (en) Sintered metal joining, power semiconductor module preferably having sintered silver joining, and manufacturing method of the power semiconductor module
TWI300978B (en) A plate having a chip embedded therein and the manufacturing method of the same
TW201234682A (en) Circuit for a light emitting component and method of manufacturing the same
JP2015135933A (en) Multilayer wiring board and manufacturing method thereof
JP2012028388A (en) Method for manufacturing thermoelectric conversion module
JP2008141027A (en) Bonding structure of thermoelectric conversion element and thermoelectric conversion module
JP6550477B2 (en) Electrical contact method of parts by galvanic bonding of open-pored contact pieces and corresponding part modules
CN102118919A (en) Electronic device and method of manufacturing the same
JP2011238867A (en) Method for producing thermoelectric conversion module
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
KR20120126224A (en) Method for Manufacturing Dye Sensitized Solar Cell
KR101259308B1 (en) Heterostructure containing ic and led and method for fabricating the same
CN107785470B (en) UV-LED auxiliary frame ceramic substrate and manufacturing method thereof
JP6471241B2 (en) Thermoelectric module
JP2004140064A (en) Thermoelement and its manufacturing method
JP2011238864A (en) Manufacturing method of thermoelectric conversion module
CN116368965A (en) Thermoelectric conversion module
KR101153720B1 (en) A thermoelectric Module and Method for fabricatingA thermoelectric Module and Method for fabricating thereof thereof