JP2012028388A - Method for manufacturing thermoelectric conversion module - Google Patents

Method for manufacturing thermoelectric conversion module Download PDF

Info

Publication number
JP2012028388A
JP2012028388A JP2010162927A JP2010162927A JP2012028388A JP 2012028388 A JP2012028388 A JP 2012028388A JP 2010162927 A JP2010162927 A JP 2010162927A JP 2010162927 A JP2010162927 A JP 2010162927A JP 2012028388 A JP2012028388 A JP 2012028388A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type
electrode
chip
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010162927A
Other languages
Japanese (ja)
Inventor
Shinsuke Hirono
慎介 広納
Takushi Kita
拓志 木太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010162927A priority Critical patent/JP2012028388A/en
Publication of JP2012028388A publication Critical patent/JP2012028388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a thermoelectric conversion module composed of multiple thermoelectric transducers by forming multiple thermoelectric conversion material chips collectively on a substrate by electrolytic deposition.SOLUTION: Electrodes are arranged on an insulated substrate 10 and an insulation mask 14 made of resin which is soluble in an organic solvent are disposed between the electrodes. A mold plate 18 having conductive film all over the surface on one side thereof and through holes 20 at positions where chips are going to be formed is put in position, and the electrodes are electrolytically deposited as cathode electrodes in an electrolyte solution via the conductive film, thereby filling the through holes with a thermoelectric conversion material 32 to form chips, with the mold plate having the conducive film and the insulation mask removed. These steps are carried out in order for P-type and N-type thermoelectric conversion materials to produce a P-type half body which has electrodes and P-type chips arranged on an insulated substrate and an N-type half body which has electrodes and N-type chips arranged on another insulated substrate. The P-type half body and the N-type half body are combined to produce a thermoelectric conversion module composed of a combination of multiple thermoelectric transducers.

Description

本発明は、熱電変換材料のチップを多数個一括して基板上に形成して熱電変換モジュールを製造する方法に関する。   The present invention relates to a method for manufacturing a thermoelectric conversion module by forming a large number of chips of a thermoelectric conversion material on a substrate at once.

熱電変換材料は、2つの基本的な熱電効果であるゼーベック(Seebeck)効果及びペルチェ(Peltier)効果に基づき、熱エネルギと電気エネルギとの直接変換を行なうエネルギ材料である。   The thermoelectric conversion material is an energy material that performs direct conversion between thermal energy and electric energy based on two basic thermoelectric effects, the Seebeck effect and the Peltier effect.

熱電変換材料を用いた熱電発電デバイスは、従来の発電技術に比べて、構造は簡単で、堅牢かつ耐久性が高く、可動部材は存在せず、マイクロ化が容易であり、メンテナンス不要で信頼性が高く、寿命が長く、騒音は発生せず、汚染も発生せず、低温の廃熱を利用可能であるといった多くの利点がある。   Thermoelectric power generation devices using thermoelectric conversion materials have a simple structure, robustness, high durability, no moving parts, easy microfabrication, no maintenance, and reliability compared to conventional power generation technology There are many advantages such as high life, long life, no noise, no pollution and low temperature waste heat can be used.

熱電変換材料を用いた熱電冷却デバイスも、従来の圧縮冷却技術に比べて、フロン不要で汚染は発生せず、小型化は容易で、可動部材は存在せず、騒音も発生しないなどの利点がある。   Compared to conventional compression cooling technology, thermoelectric cooling devices using thermoelectric conversion materials do not require chlorofluorocarbon, do not cause contamination, are easily downsized, have no moving parts, and do not generate noise. is there.

そのため、特に近年のエネルギ問題や環境問題の重大化に伴い、航空・宇宙、国防建設、地質及び気象観測、医療衛生、マイクロ電子などの領域や石油化工、冶金、電力工業における廃熱利用方面などの広範な用途への実用化が期待されている。   Therefore, especially in recent years, energy and environmental issues have become more serious, such as aviation / space, national defense construction, geological and meteorological observation, medical hygiene, microelectronics, etc. Is expected to be put to practical use for a wide range of applications.

従来、粉末の焼結や溶解凝固によりP型・N型各々のバルク熱電変換材料を製造し、これを機械加工によりダイシングして数mm角のP型チップ・N型チップとし、2枚の基板上にP型チップ・N型チップをそれぞれ所定パターンに配列し、各基板上のチップを両基板で挟むように接合して両基板間に多数の熱電変換素子を形成する。   Conventionally, P-type and N-type bulk thermoelectric conversion materials are manufactured by powder sintering and melting and solidification, and this is diced by machining to form several mm square P-type chips and N-type chips. A P-type chip and an N-type chip are arranged in a predetermined pattern on the top, and the chips on each substrate are joined so as to be sandwiched between both substrates, thereby forming a large number of thermoelectric conversion elements between the two substrates.

本明細書においては、熱電変換材料そのものの小片(例えば数mm角)を「チップ」(熱電変換材料チップ)、一対のP型・N型のチップを電極を介して接合して構成したものを「素子」(熱電変換素子)、多数の素子を組み合わせた素子群を「モジュール」(熱電変換モジュール)と呼ぶ。一般に、素子単位の発電量は小さいため、多数の素子を組み合わせて素子群すなわちモジュールとして実用に供される。   In this specification, a small piece (for example, several mm square) of a thermoelectric conversion material itself is formed by joining a “chip” (thermoelectric conversion material chip) and a pair of P-type and N-type chips via electrodes. An “element” (thermoelectric conversion element) and an element group in which a large number of elements are combined are called a “module” (thermoelectric conversion module). In general, since the power generation amount of each element is small, a large number of elements are combined and put into practical use as an element group, that is, a module.

ここで、電解析出により基板上に多数のチップを一括形成して素子パターンを直接得ることができれば、素子あるいはモジュールの作製コストを大幅に低減することが可能になり、非常に望ましい。   Here, if an element pattern can be obtained directly by forming a large number of chips on a substrate by electrolytic deposition, the manufacturing cost of the element or module can be greatly reduced, which is very desirable.

しかし、電極が基板上に離散して配列されるため、各電極上に各チップを電解析出により一括して形成することは実際的でなかった。   However, since the electrodes are discretely arranged on the substrate, it is not practical to collectively form each chip on each electrode by electrolytic deposition.

すなわち、(1)電解析出により多数のチップを一括形成するには、基板上に離散して配列された電極を電気的に接続する必要がある、(2)この電気接続用の導電材の露出部にも電解析出が起きてしまう、(3)電気接続用の導電材は使用後に除去しなくてはならない、という問題があった。   That is, (1) In order to collectively form a large number of chips by electrolytic deposition, it is necessary to electrically connect discretely arranged electrodes on the substrate. (2) The conductive material for this electrical connection There was a problem that electrolytic deposition also occurred in the exposed portion, and (3) the conductive material for electrical connection had to be removed after use.

特許文献1に、熱電変換材料を電解析出により作製する方法が開示されている。しかし、電解析出による形成する熱電変換材料の結晶方位の制御や多層膜の作成方法が提案されているが、熱電変換材料から多数のチップを、そして素子を一括形成してモジュールを作製することについては何ら開示がない。   Patent Document 1 discloses a method for producing a thermoelectric conversion material by electrolytic deposition. However, control of the crystal orientation of the thermoelectric conversion material formed by electrolytic deposition and a method of creating a multilayer film have been proposed, but a module can be manufactured by forming a large number of chips and elements in a batch from the thermoelectric conversion material. There is no disclosure about.

特開2001−7408号公報JP 2001-7408 A

本発明は、基板上に電解析出により多数の熱電変換材料チップを一括形成して、多数の熱電変換素子から成る熱電変換モジュールを一括して製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for collectively manufacturing a thermoelectric conversion module including a plurality of thermoelectric conversion elements by forming a large number of thermoelectric conversion material chips on a substrate by electrolytic deposition.

上記の目的を達成するために、本発明は、一対のP型およびN型の熱電変換材料のチップで構成された熱電変換素子を多数組み合わせた熱電変換モジュールを製造する方法であって、
(1)絶縁基板上に厚さの等しい多数の電極を所定パターンに配列する工程、
(2)有機溶剤で容易に溶解する樹脂製の、該電極と同じ厚さの絶縁マスクを、該多数の電極間を埋めるように配置して該電極の上面と該絶縁マスクの上面とを同一平面にする工程、
(3)一方の面全体に導電膜を備え、かつ、上記絶縁基板上に配列された上記電極上のチップ形成予定位置に対応する部位にチップ形状の貫通孔を有するモールド板を用意する工程、
(4)各電極の各チップ形成予定位置にモールド板の各貫通孔を位置あわせし、該モールド板の該一方の面にある該導電膜を上記絶縁基板上の該電極に密接させて、該モールド板を固定する工程、
(5)電解溶液中で、上記導電膜を介して各電極をカソード電極として電解析出を行なうことにより、上記絶縁基板上の該多数の電極上で、上記モールド板の上記チップ形状の各貫通孔内を上記熱電変換材料で充填して各電極上に該熱電変換材料のチップを形成する工程、
(6)上記モールド板を除去する工程、および
(7)上記樹脂製の絶縁マスクを有機溶剤で溶解して除去する工程、
を順次行なって該絶縁基板上に該電極およびその上の該チップを配列した熱電変換モジュールの半体を形成する操作を、P型およびN型の前記熱電変換材料について行い、一つの絶縁基板上に電極とその上のP型熱電変換材料チップが配列されたP型半体と、別の絶縁基板上に電極とその上のN型熱電変換材料チップが配列されたN型半体とを作製し、
上記P型半体と上記N型半体とを各々のチップ配列面を対面させて組み合わせることにより、P型熱電変換材料チップとN型熱電変換材料チップとが対を成して構成する熱電変換素子が多数組み合わされた熱電変換モジュールを製造することを特徴とする熱電変換モジュールの製造方法を提供する。
To achieve the above object, the present invention is a method of manufacturing a thermoelectric conversion module in which a large number of thermoelectric conversion elements composed of a pair of thermoelectric conversion material chips of P type and N type are combined,
(1) a step of arranging a large number of electrodes of equal thickness on an insulating substrate in a predetermined pattern;
(2) An insulating mask made of a resin that is easily dissolved in an organic solvent and having the same thickness as the electrode is disposed so as to fill the space between the electrodes, and the upper surface of the electrode and the upper surface of the insulating mask are the same. Flattening process,
(3) A step of providing a mold plate having a conductive film on one whole surface and having a chip-shaped through hole at a portion corresponding to a chip formation scheduled position on the electrode arranged on the insulating substrate;
(4) Align each through hole of the mold plate at each chip formation planned position of each electrode, and bring the conductive film on the one surface of the mold plate into close contact with the electrode on the insulating substrate, Fixing the mold plate,
(5) Electrodeposition of each electrode as a cathode electrode through the conductive film in an electrolytic solution, whereby the chip-shaped through-holes of the mold plate are formed on the multiple electrodes on the insulating substrate. A step of filling a hole with the thermoelectric conversion material to form a chip of the thermoelectric conversion material on each electrode;
(6) a step of removing the mold plate, and (7) a step of dissolving and removing the resin insulating mask with an organic solvent,
Are sequentially performed on the insulating substrate to form a half body of the thermoelectric conversion module in which the electrodes and the chips on the insulating substrate are arranged on the P-type and N-type thermoelectric conversion materials. A P-type half with an electrode and a P-type thermoelectric conversion material chip arranged thereon, and an N-type half with an electrode and an N-type thermoelectric conversion material chip arranged on another insulating substrate are prepared. And
A thermoelectric conversion in which a P-type thermoelectric conversion material chip and an N-type thermoelectric conversion material chip constitute a pair by combining the P-type half and the N-type half with their chip arrangement surfaces facing each other. Provided is a method for manufacturing a thermoelectric conversion module, characterized by manufacturing a thermoelectric conversion module in which a large number of elements are combined.

本発明によれば、(4)各電極の各チップ形成予定位置にモールド板の各貫通孔を位置あわせし、該モールド板の該一方の面にある該導電膜を上記絶縁基板上の該電極に密接させて、該モールド板を固定するので、工程(5)で、上記導電膜を介して絶縁基板上の全ての電極に電圧を印加して各電極上に電解析出により熱電変換材料チップを一括して形成でき、工程(7)で、上記樹脂製の絶縁マスクを有機溶剤で溶解して除去することができ、この工程をP型・N型の各熱電変換材料について行なって得たP型・N型の半体を組み合わせることで、多数の熱電変換素子から成る熱電変換モジュールを一括して製造できる。   According to the present invention, (4) each through hole of the mold plate is aligned with each chip formation planned position of each electrode, and the conductive film on the one surface of the mold plate is connected to the electrode on the insulating substrate. In the step (5), a voltage is applied to all electrodes on the insulating substrate through the conductive film, and a thermoelectric conversion material chip is formed by electrolytic deposition on each electrode. In the step (7), the insulating mask made of resin can be dissolved and removed with an organic solvent, and this step was obtained for each of the P-type and N-type thermoelectric conversion materials. By combining the P-type and N-type halves, a thermoelectric conversion module composed of a large number of thermoelectric conversion elements can be manufactured in a lump.

図1は、本発明の方法の第1実施形態により、絶縁基板上に電極を配列した状態を示す。FIG. 1 shows a state in which electrodes are arranged on an insulating substrate according to a first embodiment of the method of the present invention. 図2は、本発明の方法の第1実施形態により、図1の次工程において、絶縁基板上の電極間を埋めるように絶縁マスクを配置した状態を示す。FIG. 2 shows a state in which an insulating mask is arranged so as to fill between the electrodes on the insulating substrate in the next step of FIG. 1 according to the first embodiment of the method of the present invention. 図3は、本発明の方法の第1実施形態により、図2の次工程において、各電極上に熱電変換材料を電解析出させチップを形成するための(1)モールド板および(2)このモールド板を絶縁基板上に配置した状態を示す。FIG. 3 shows (1) a mold plate and (2) this for forming a chip by electrolytically depositing a thermoelectric conversion material on each electrode in the next step of FIG. 2 according to the first embodiment of the method of the present invention. The state which has arrange | positioned the mold board on the insulated substrate is shown. 図4は、本発明の方法の第1実施形態により、図3の次工程において、(1)はモールド板を配置した基板に電解析出を行なう状態、(2)は電解析出によりモールド板の開口内に熱電変換材料チップを形成した状態、(3)は(2)の線III−IIIにおける断面図、(4)は別の電解液を用いて熱電変換材料の露出表面にニッケルめっき被膜を形成した状態を示す。FIG. 4 shows the first embodiment of the method of the present invention, in the next step of FIG. 3, (1) is a state in which electrolytic deposition is performed on a substrate on which a mold plate is arranged, and (2) is a mold plate by electrolytic deposition. (3) is a cross-sectional view taken along line III-III in (2), and (4) is a nickel plating film on the exposed surface of the thermoelectric conversion material using another electrolytic solution. The state which formed is shown. 図5は、本発明の方法の第1実施形態により、図4の次工程において、電解析出後に、モールド板(導電膜付)、絶縁マスクを除去した状態の(1)P型半体および(2)N型半体を示す。FIG. 5 shows a first embodiment of the method of the present invention, in the next step of FIG. 4, after electrolytic deposition, (1) P-type half with the mold plate (with conductive film) and insulating mask removed, and (2) An N-type half is shown. 図6は、本発明の方法の第1実施形態により、図6の次工程において、P型半体とN型半体をチップ形成側の面同士を向かい合わせ、重ね合わせて接合し、熱電変換モジュールを完成させた状態を示す。FIG. 6 shows the thermoelectric conversion according to the first embodiment of the method of the present invention, in the next step of FIG. Shows the completed state of the module. 図7は、本発明の方法の第2実施形態により、チップを電解析出させる方法を示す断面図である。FIG. 7 is a cross-sectional view showing a method for electrolytically depositing a chip according to the second embodiment of the method of the present invention. 図8は、本発明の方法の第2実施形態における変形例を示す断面図である。FIG. 8 is a sectional view showing a modification of the second embodiment of the method of the present invention.

〔第1実施形態〕
図1〜図6を参照して、本発明の方法の第1実施形態を説明する。
[First Embodiment]
A first embodiment of the method of the present invention will be described with reference to FIGS.

先ず、図1に示すように、絶縁基板10上に厚さの等しい多数の電極12を所定パターンに配列する。仮に、(1)(2)はP型用基板、(3)(4)はN型用基板とするが、P、Nは逆でもよい。(1)は平面図、(2)は(1)の線II−IIにおける断面図であり、(3)は平面図、(4)は(2)の線IV−IVにおける断面図である。図2においても同様である。   First, as shown in FIG. 1, a large number of electrodes 12 having the same thickness are arranged in a predetermined pattern on an insulating substrate 10. Although (1) and (2) are P-type substrates and (3) and (4) are N-type substrates, P and N may be reversed. (1) is a plan view, (2) is a sectional view taken along line II-II in (1), (3) is a plan view, and (4) is a sectional view taken along line IV-IV in (2). The same applies to FIG.

次に、図2に示すように、有機溶剤で容易に溶解する樹脂製の、電極12と同じ厚さの絶縁マスク14を、多数の電極12間を埋めるように配設して、電極12の上面と絶縁マスク14の上面を同一平面にする。絶縁マスク14は、有機溶媒に容易に溶解する樹脂製とすることにより、後工程で容易に除去可能である。   Next, as shown in FIG. 2, an insulating mask 14 made of a resin that is easily dissolved in an organic solvent and having the same thickness as the electrode 12 is disposed so as to fill a space between the electrodes 12. The upper surface and the upper surface of the insulating mask 14 are flush with each other. The insulating mask 14 is made of a resin that is easily dissolved in an organic solvent, so that it can be easily removed in a subsequent process.

次に、図3(1)に示すように、一方の面全体にスパッタリング等により形成して導電膜16を備え、かつ、絶縁基板10上に配列された電極12上のチップ形成予定位置に対応する部位にチップ形状の各貫通孔20を有するモールド板18を用意し、図(2)に示すように各電極12の各チップ形成予定位置にモールド板18の各貫通孔20を位置あわせし、モールド板18の一方の面にある導電膜16を絶縁基板10上の電極12に密接させて、固定冶具22で固定モールド板18を固定する。導電膜16に電解析出用の給電リード24を接続しておく。固定されたアセンブリを19で示す。 Next, as shown in FIG. 3 (1), the entire surface is formed by sputtering or the like, provided with a conductive film 16, and corresponds to a chip formation planned position on the electrode 12 arranged on the insulating substrate 10. the mold plate 18 having the through-hole 20 of the tip shape site is prepared, and the respective through holes 20 of the mold plate 18 aligning and in each chip formation planned position of each electrode 12 as shown in FIG. 3 (2) Then, the conductive film 16 on one surface of the mold plate 18 is brought into close contact with the electrode 12 on the insulating substrate 10, and the fixed mold plate 18 is fixed by the fixing jig 22. A power supply lead 24 for electrolytic deposition is connected to the conductive film 16. A fixed assembly is indicated at 19.

次に、図4(1)に示すように、電解溶液26中で、導電膜16を介して各電極12をカソード電極として電解析出を行なう。電解溶液26中に、固定アセンブリ19を負極として配置し、白金等の対極28に正極とし、直流電源30から給電する。   Next, as shown in FIG. 4A, electrolytic deposition is performed in the electrolytic solution 26 with each electrode 12 as a cathode electrode through the conductive film 16. In the electrolytic solution 26, the fixed assembly 19 is disposed as a negative electrode, and a counter electrode 28 such as platinum is used as a positive electrode, and power is supplied from a DC power source 30.

これにより、図4(2)平面図および(3)断面図((2)の線III−III)に示すように、絶縁基板10上の多数の電極12上で、モールド板18のチップ形状の各貫通孔20内を熱電変換材料で充填して、各電極12上に熱電変換材料のチップ32を形成する。
すなわち、図4(3)の断面図に示すように、モールド板18の一方の面全体に形成されている導電膜16は、貫通孔20以外の部位で電極12と密着しており、多数の電極12間が導電膜16を介して相互に電気的に接合されている。したがって、給電リード24から導電膜16を介して多数の電極12に電解析出用の電流が一括して供給され、各電極12上にチップ32が一括して形成される。
As a result, as shown in FIG. 4 (2) plan view and (3) cross-sectional view (line III-III in (2)), the chip shape of the mold plate 18 is formed on the numerous electrodes 12 on the insulating substrate 10. Each through hole 20 is filled with a thermoelectric conversion material, and a chip 32 of the thermoelectric conversion material is formed on each electrode 12.
That is, as shown in the cross-sectional view of FIG. 4 (3), the conductive film 16 formed on the entire one surface of the mold plate 18 is in close contact with the electrode 12 at a portion other than the through-hole 20, and many The electrodes 12 are electrically connected to each other through the conductive film 16. Therefore, the current for electrolytic deposition is collectively supplied from the power supply leads 24 to the multiple electrodes 12 through the conductive film 16, and the chips 32 are collectively formed on the electrodes 12.

更に、望ましくは、図4(4)に示すように、更に別の電解溶液中で、モールド板18の貫通孔20内にあるチップ32の表面にNi等の電解めっき膜34を形成する。これにより、接合材を使用してP型半導体とN型半導体とを組み合わせるときに、チップと電極との接合性を向上させることができる。   Further, desirably, as shown in FIG. 4 (4), an electrolytic plating film 34 of Ni or the like is formed on the surface of the chip 32 in the through hole 20 of the mold plate 18 in another electrolytic solution. Thereby, when a P-type semiconductor and an N-type semiconductor are combined using a bonding material, the bondability between the chip and the electrode can be improved.

次に、図5に示すように、モールド板18(導電膜16を伴う)、絶縁マスク14を除去する。絶縁マスク14の除去は、マスクの材料である樹脂を有機溶剤で溶解することにより容易に行なえる。   Next, as shown in FIG. 5, the mold plate 18 (with the conductive film 16) and the insulating mask 14 are removed. The insulating mask 14 can be easily removed by dissolving a resin as a mask material with an organic solvent.

図1〜図5の工程を順次行なって、絶縁基板10上に電極12およびその上のチップ32を配列した熱電変換モジュールの半体36、38が形成される。すなわち、以上の工程をP型およびN型の熱電変換材料について行い、一つの絶縁基板10上に電極12とその上のP型熱電変換材料チップ32が配列されたP型半体36と、別の絶縁基板10上に電極12とその上のN型熱電変換材料チップ32が配列されたN型半体38とを作製する。   The steps of FIGS. 1 to 5 are sequentially performed to form thermoelectric conversion module halves 36 and 38 in which the electrodes 12 and the chips 32 thereon are arranged on the insulating substrate 10. That is, the above process is performed on the P-type and N-type thermoelectric conversion materials, and the P-type half 36 in which the electrodes 12 and the P-type thermoelectric conversion material chips 32 are arranged on one insulating substrate 10 is separated from the P-type half 36. The N-type half body 38 in which the electrode 12 and the N-type thermoelectric conversion material chip 32 are arranged on the insulating substrate 10 is prepared.

次に、図6に示すように、P型半体36とN型半体38とを各々のチップ配列面を対面させて組み合わせることにより、P型熱電変換材料チップとN型熱電変換材料チップとが対を成して構成する熱電変換素子が多数組み合わされた熱電変換モジュール40を製造する。   Next, as shown in FIG. 6, by combining the P-type half 36 and the N-type half 38 with their chip arrangement surfaces facing each other, the P-type thermoelectric conversion material chip, the N-type thermoelectric conversion material chip, Manufactures a thermoelectric conversion module 40 in which a large number of thermoelectric conversion elements configured in pairs are combined.

〔第2実施形態〕
第2実施形態は、第1実施形態の構成に加えて、電極上のチップ形成予定位置以外の部位を、更に別の絶縁マスクで覆う。
[Second Embodiment]
In the second embodiment, in addition to the configuration of the first embodiment, the portion other than the chip formation planned position on the electrode is covered with another insulating mask.

モールド板18の導電膜16と電極12との密着性を得られない場合、導電膜16と電気12の接触面に電解液が侵入して、本来のチップ形成予定位置以外にも熱電変換材料が析出する虞がある。その防止のために、電極上のチップ形成予定位置以外の部位を、更に別の絶縁マスクで覆う。   When the adhesion between the conductive film 16 of the mold plate 18 and the electrode 12 cannot be obtained, the electrolyte enters the contact surface between the conductive film 16 and the electricity 12, and the thermoelectric conversion material is not located at the original chip formation planned position. There is a risk of precipitation. In order to prevent this, the part other than the chip formation planned position on the electrode is covered with another insulating mask.

図7を参照して、第2実施形態を説明する。
図2の工程の後、図7(1)に示すように、電極12のチップ形成予定位置5以外の部位を、更に第2絶縁マスク42で覆う。
The second embodiment will be described with reference to FIG.
After the step of FIG. 2, as shown in FIG. 7 (1), the portion other than the chip formation planned position 5 of the electrode 12 is further covered with a second insulating mask 42.

次に図7(2)に示すように、チップ形成予定位置5に貫通孔20を位置合わせしてモールド板18を固定する。この状態では、電極12と導電膜16とは、第2絶縁膜42の厚さだけ離れており、電気的な導通はない。   Next, as shown in FIG. 7B, the mold plate 18 is fixed by aligning the through hole 20 with the chip formation planned position 5. In this state, the electrode 12 and the conductive film 16 are separated from each other by the thickness of the second insulating film 42 and are not electrically conductive.

電解析出処理を開始すると、図7(3)に示すように、導電膜16の断面から電解析出が開始して、電析部32Aが成長して、電極12と接続し、導電膜16と電極12とが導通状態になる。   When the electrolytic deposition treatment is started, as shown in FIG. 7 (3), electrolytic deposition starts from the cross section of the conductive film 16, and the electrodeposition portion 32A grows and is connected to the electrode 12, and the conductive film 16 And the electrode 12 become conductive.

更に電解析出処理を継続すれば、電析部が成長を続け、第1実施形態の場合と同様に、貫通孔20内にチップ32が形成される。
以降の処理は第1実施形態と同様である。
If the electrolytic deposition process is further continued, the electrodeposition portion continues to grow, and the chip 32 is formed in the through hole 20 as in the case of the first embodiment.
The subsequent processing is the same as in the first embodiment.

〔第2実施形態の変形例〕
図8に示したのは、図7の変形例であり、図8(1)に示すように、電極12のチップ形成予定位置5以外の一部5Aは第2絶縁膜42で覆われていない場合である。
[Modification of Second Embodiment]
FIG. 8 shows a modification of FIG. 7, and as shown in FIG. 8A, a part 5 </ b> A other than the chip formation planned position 5 of the electrode 12 is not covered with the second insulating film 42. Is the case.

この場合、チップ形成予定位置5に貫通孔20を位置合わせしてモールド板18を固定すると、図8(2)に示すように、電極12のチップ形成予定位置5以外の一部5Aは、モールド板18および導電膜16が第2絶縁膜42の端面より張り出した状態になり、導電膜16と電極12との間に空間Aが残る。   In this case, when the through hole 20 is aligned with the chip formation planned position 5 and the mold plate 18 is fixed, as shown in FIG. 8 (2), a part 5A of the electrode 12 other than the chip formation planned position 5 is molded. The plate 18 and the conductive film 16 protrude from the end face of the second insulating film 42, and a space A remains between the conductive film 16 and the electrode 12.

このような状態でも、電解析出処理を開始すると、図8(3)に示すように、導電膜16の断面から電解析出が開始して、電析部32Aが成長して、電極12と接続し、導電膜16と電極12とが導通状態になる。   Even in such a state, when the electrolytic deposition treatment is started, as shown in FIG. 8 (3), electrolytic deposition starts from the cross section of the conductive film 16, and the electrodeposition portion 32 </ b> A grows. As a result, the conductive film 16 and the electrode 12 become conductive.

そして、更に電解析出処理を継続すれば、電析部が成長を続け、第1実施形態の場合と同様に、貫通孔20内にチップ32が形成される。
以降の処理は、第1実施形態と同様である。
If the electrolytic deposition process is further continued, the electrodeposition portion continues to grow, and the chip 32 is formed in the through hole 20 as in the case of the first embodiment.
The subsequent processing is the same as in the first embodiment.

本発明の第1実施形態の実施例を説明する。   Examples of the first embodiment of the present invention will be described.

アルミナ基板10上に厚さ200μmの銅板をはんだ接合する。この銅板をエッチング処理により熱電変換素子用の電極12にパターニングする。これにより図1に示すように、P型チップ形成用およびN型チップ形成用に電極12が配列したP型用基板(1)(2)、N型用基板(3)(4)を準備する。アルミナ基板10に代えて、マグネシア、窒化珪素、炭化珪素等のセラミックスや樹脂系材料等の絶縁材料を用いることができる。電極12の材料としては、銅(Cu)に代えて、Al、Fe、Ag、Au、ステンレス鋼等の金属材料を用いることができる。   A 200 μm thick copper plate is soldered on the alumina substrate 10. This copper plate is patterned on the thermoelectric conversion element electrode 12 by etching. As a result, as shown in FIG. 1, P-type substrates (1) (2) and N-type substrates (3) (4) on which electrodes 12 are arranged for P-type chip formation and N-type chip formation are prepared. . Instead of the alumina substrate 10, ceramics such as magnesia, silicon nitride, and silicon carbide, and insulating materials such as resin materials can be used. As a material of the electrode 12, metal materials such as Al, Fe, Ag, Au, and stainless steel can be used instead of copper (Cu).

次に、図2に示すように、多数の電極12間を埋めるように絶縁マスク14を配置して、電極12の上面と絶縁マスク14の上面とを同一平面にする。絶縁マスク14は、有機溶剤で容易に溶解して除去可能な樹脂製である。   Next, as shown in FIG. 2, an insulating mask 14 is disposed so as to fill a large number of electrodes 12, and the upper surface of the electrode 12 and the upper surface of the insulating mask 14 are flush with each other. The insulating mask 14 is made of a resin that can be easily dissolved and removed with an organic solvent.

絶縁マスク14は、ポリイミド系、エポキシ系、アクリル系、フェノール系の樹脂等を用いることができ、スクリーン印刷によりインクレジスト材を塗布する方法や、予めパターニングしたドライフィルムを用いる方法、感光性を持つフォトレジストで露光部を硬化させ未硬化部分を洗浄除去する方法等によって形成することができる。   The insulating mask 14 can be made of polyimide, epoxy, acrylic, phenolic resin, etc., and has a method of applying an ink resist material by screen printing, a method of using a pre-patterned dry film, and photosensitivity. It can be formed by a method of curing an exposed portion with a photoresist and washing away an uncured portion.

次に、図3(1)に示すように、一方の面全体に導電膜16を備え、かつ、絶縁基板10上に配列された電極12上のチップ形成予定位置に対応する部位にチップ形状の貫通孔20を有するモールド板18を用意する。   Next, as shown in FIG. 3A, a conductive film 16 is provided on one entire surface, and a chip-shaped portion is formed at a position corresponding to a chip formation planned position on the electrode 12 arranged on the insulating substrate 10. A mold plate 18 having a through hole 20 is prepared.

次に、図3(2)に示すように、各電極12の各チップ形成予定位置にモールド板18の各貫通孔20を位置あわせし、モールド板18の一方の面にある導電膜16を絶縁基板10上の電極12に密接させて、モールド板18を固定し、電解析出用アセンブリ19とする。モールド板18は、樹脂材料等の一方の面全体に、スパッタリング等の製膜法によって、電解析出の給電膜としての導電膜16を形成した後に、チップの形状・寸法(例えば2mm角)の貫通孔20を形成して作製する。この樹脂材料等としては、PTFE等の剥離性の高い材料が好ましいが、これに限定する必要はなく、他の樹脂やセラミックスを用いることもできる。チップ(貫通孔)の形状として直方体を図示したが他の形状でもよい。   Next, as shown in FIG. 3 (2), each through hole 20 of the mold plate 18 is aligned with each chip formation planned position of each electrode 12, and the conductive film 16 on one surface of the mold plate 18 is insulated. The mold plate 18 is fixed in close contact with the electrode 12 on the substrate 10 to obtain an assembly 19 for electrolytic deposition. The mold plate 18 has a chip shape / dimension (for example, 2 mm square) after forming a conductive film 16 as a power supply film for electrolytic deposition on one whole surface of a resin material or the like by a film forming method such as sputtering. The through hole 20 is formed and produced. The resin material or the like is preferably a highly peelable material such as PTFE, but is not limited thereto, and other resins and ceramics can also be used. Although a rectangular parallelepiped is illustrated as the shape of the chip (through hole), other shapes may be used.

次に、図4(1)に示すように電解析出を行なって、図4(2)(3)に示すように貫通孔20内にチップ32を形成する。電解析出用アセンブリ19を負極とし、白金等の貴金属を正極とする。モールド板18の導電膜16に通電することで、電極12の、貫通孔20内に露出した表面上にチップ32が形成される。P型チップ32とN型チップ32は別々の基板10上に形成する。   Next, electrolytic deposition is performed as shown in FIG. 4 (1), and chips 32 are formed in the through holes 20 as shown in FIGS. 4 (2) and (3). The electrodeposition assembly 19 is a negative electrode, and a noble metal such as platinum is a positive electrode. By energizing the conductive film 16 of the mold plate 18, the chip 32 is formed on the surface of the electrode 12 exposed in the through hole 20. The P-type chip 32 and the N-type chip 32 are formed on different substrates 10.

一例として、BiTe系熱電変換材料の熱電変換モジュールを作製する場合、電解溶液26としてBiとTeOを溶解させた硝酸溶液を用い、定電位で電解析出を行なうことにより、BiTe系熱電変換材料のチップ32が形成できる。電析電位によってBiとTeの組成比を調整し、P型チップとN型チップを作り分けることができる。ドーパントとなる金属イオンを電析浴中に溶解させることにより、P型やN型の組成調整を行なうこともできる。また、その他の金属塩と電解溶液26の組み合わせを変えて電析を行なえば、種々の組成の熱電変換材料のチップ32を形成することができる。 As an example, when producing a thermoelectric conversion module of a BiTe thermoelectric conversion material, a BiTe system is obtained by performing electrolytic deposition at a constant potential using a nitric acid solution in which Bi 2 O 3 and TeO 2 are dissolved as the electrolytic solution 26. A chip 32 of thermoelectric conversion material can be formed. The composition ratio of Bi and Te can be adjusted by the electrodeposition potential to make a P-type chip and an N-type chip separately. P-type and N-type composition adjustments can also be made by dissolving metal ions as dopants in the electrodeposition bath. If the electrodeposition is performed by changing the combination of other metal salts and the electrolytic solution 26, the chips 32 of thermoelectric conversion materials having various compositions can be formed.

必要に応じて、図4(4)に示すように、形成したチップ32の頂面にNi電解めっき膜等の保護膜34を形成してもよい。   If necessary, a protective film 34 such as a Ni electrolytic plating film may be formed on the top surface of the formed chip 32 as shown in FIG.

次に、図5に示すように、モールド板18(導電マスク16を伴う)、絶縁マスク14を除去する。これは、モールド板18(導電マスク16を伴う)を基板10上のチップ32から引き抜いた後、樹脂製の絶縁マスク14をトルエンやキシレン等の有機溶剤で溶解して除去することによって行なう。これにより、(1)P型半体36と(2)N型半体38が得られる。   Next, as shown in FIG. 5, the mold plate 18 (with the conductive mask 16) and the insulating mask 14 are removed. This is performed by pulling out the mold plate 18 (with the conductive mask 16) from the chip 32 on the substrate 10 and then dissolving and removing the resin insulating mask 14 with an organic solvent such as toluene or xylene. Thereby, (1) P-type half 36 and (2) N-type half 38 are obtained.

次に、図6に示すように、P型半体36とN型半体38とを各々のチップ配列面を向き合わせて貼り合わせ、熱電変換モジュール40を製造する。   Next, as shown in FIG. 6, the P-type half 36 and the N-type half 38 are bonded to each other with their chip arrangement surfaces facing each other, and the thermoelectric conversion module 40 is manufactured.

そのために、先ず、チップ32の頂面(この例ではNi保護膜34上)にスクリーン印刷によりはんだペースト(図示せず)を塗布する。次いで、位置合わせ用冶具を用いて、P型半体36のP型チップ32の頂面とN型半体38の電極とを位置合わせし且つN型半体38のN型チップ32の頂面とP型半体36の電極とを位置合わせして固定する。次に、この固定したアセンブリをはんだの溶融温度以上の高温で熱処理し、各半体のチップ32と相手方半体の電極12とを接合する。これにより、P型熱電変換材料チップとN型熱電変換材料チップとが対を成して構成する熱電変換素子が多数組み合わされた熱電変換モジュール40が得られる。   For this purpose, first, a solder paste (not shown) is applied to the top surface of the chip 32 (on the Ni protective film 34 in this example) by screen printing. Next, using the alignment jig, the top surface of the P-type chip 32 of the P-type half 36 and the electrode of the N-type half 38 are aligned, and the top surface of the N-type chip 32 of the N-type half 38 And the electrode of the P-type half 36 are aligned and fixed. Next, the fixed assembly is heat-treated at a temperature higher than the melting temperature of the solder to bond each half chip 32 to the other half electrode 12. As a result, the thermoelectric conversion module 40 in which a large number of thermoelectric conversion elements configured by forming pairs of P-type thermoelectric conversion material chips and N-type thermoelectric conversion material chips is obtained.

本発明によれば、基板上に電解析出により多数の熱電変換材料チップを一括形成して、多数の熱電変換素子から成る熱電変換モジュールを一括して製造する方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the method of collectively manufacturing the thermoelectric conversion module which consists of many thermoelectric conversion elements by forming many thermoelectric conversion material chips | tips collectively on a board | substrate by electrolytic deposition is provided.

10 絶縁基板
12 熱電変換素子用の電極
14 絶縁マスク
16 導電膜
18 モールド板
20 貫通孔
22 固定冶具
24 給電リード
26 電解溶液
28 対極
30 直流電源
32 チップ(熱電変換材料のチップ)
34 電解めっき膜(保護膜)
36 P型半体
38 N型半体
40 熱電変換モジュール
42 別の(第2の)絶縁マスク
DESCRIPTION OF SYMBOLS 10 Insulation board | substrate 12 Electrode for thermoelectric conversion elements 14 Insulation mask 16 Conductive film 18 Mold board 20 Through-hole 22 Fixing jig 24 Feeding lead 26 Electrolytic solution 28 Counter electrode 30 DC power supply 32 Chip (chip of thermoelectric conversion material)
34 Electrolytic plating film (protective film)
36 P-type half 38 N-type half 40 Thermoelectric conversion module 42 Another (second) insulation mask

Claims (2)

一対のP型およびN型の熱電変換材料のチップで構成された熱電変換素子を多数組み合わせた熱電変換モジュールを製造する方法であって、
(1)絶縁基板上に厚さの等しい多数の電極を所定パターンに配列する工程、
(2)有機溶剤で容易に溶解する樹脂製の、該電極と同じ厚さの絶縁マスクを、該多数の電極間を埋めるように配置して該電極の上面と該絶縁マスクの上面とを同一平面にする工程、
(3)一方の面全体に導電膜を備え、かつ、上記絶縁基板上に配列された上記電極上のチップ形成予定位置に対応する部位にチップ形状の貫通孔を有するモールド板を用意する工程、
(4)各電極の各チップ形成予定位置にモールド板の各貫通孔を位置あわせし、該モールド板の該一方の面にある該導電膜を上記絶縁基板上の該電極に密接させて、該モールド板を固定する工程、
(5)電解溶液中で、上記導電膜を介して各電極をカソード電極として電解析出を行なうことにより、上記絶縁基板上の該多数の電極上で、上記モールド板の上記チップ形状の各貫通孔内を上記熱電変換材料で充填して各電極上に該熱電変換材料のチップを形成する工程、
(6)上記モールド板を除去する工程、および
(7)上記樹脂製の絶縁マスクを有機溶剤で溶解して除去する工程、
を順次行なって該絶縁基板上に該電極およびその上の該チップを配列した熱電変換モジュールの半体を形成する操作を、P型およびN型の前記熱電変換材料について行い、一つの絶縁基板上に電極とその上のP型熱電変換材料チップが配列されたP型半体と、別の絶縁基板上に電極とその上のN型熱電変換材料チップが配列されたN型半体とを作製し、
上記P型半体と上記N型半体とを各々のチップ配列面を対面させて組み合わせることにより、P型熱電変換材料チップとN型熱電変換材料チップとが対を成して構成する熱電変換素子が多数組み合わされた熱電変換モジュールを製造することを特徴とする熱電変換モジュールの製造方法。
A method of manufacturing a thermoelectric conversion module in which a large number of thermoelectric conversion elements composed of a pair of P-type and N-type thermoelectric conversion material chips are combined,
(1) a step of arranging a large number of electrodes of equal thickness on an insulating substrate in a predetermined pattern;
(2) An insulating mask made of a resin that is easily dissolved in an organic solvent and having the same thickness as the electrode is disposed so as to fill the space between the electrodes, and the upper surface of the electrode and the upper surface of the insulating mask are the same. Flattening process,
(3) A step of providing a mold plate having a conductive film on one whole surface and having a chip-shaped through hole at a portion corresponding to a chip formation scheduled position on the electrode arranged on the insulating substrate;
(4) Align each through hole of the mold plate at each chip formation planned position of each electrode, and bring the conductive film on the one surface of the mold plate into close contact with the electrode on the insulating substrate, Fixing the mold plate,
(5) Electrodeposition of each electrode as a cathode electrode through the conductive film in an electrolytic solution, whereby the chip-shaped through-holes of the mold plate are formed on the multiple electrodes on the insulating substrate. A step of filling a hole with the thermoelectric conversion material to form a chip of the thermoelectric conversion material on each electrode;
(6) a step of removing the mold plate, and (7) a step of dissolving and removing the resin insulating mask with an organic solvent,
Are sequentially performed on the insulating substrate to form a half body of the thermoelectric conversion module in which the electrodes and the chips on the insulating substrate are arranged on the P-type and N-type thermoelectric conversion materials. A P-type half with an electrode and a P-type thermoelectric conversion material chip arranged thereon, and an N-type half with an electrode and an N-type thermoelectric conversion material chip arranged on another insulating substrate are prepared. And
A thermoelectric conversion in which a P-type thermoelectric conversion material chip and an N-type thermoelectric conversion material chip constitute a pair by combining the P-type half and the N-type half with their chip arrangement surfaces facing each other. A method for producing a thermoelectric conversion module, comprising producing a thermoelectric conversion module in which a large number of elements are combined.
請求項1において、
上記工程(2)の後、上記工程(4)の前に、上記電極上のチップ形成予定位置以外を、更に別の絶縁マスクで覆うことを特徴とする熱電変換モジュールの製造方法。
In claim 1,
A method of manufacturing a thermoelectric conversion module, wherein after the step (2) and before the step (4), a portion other than the chip formation planned position on the electrode is covered with another insulating mask.
JP2010162927A 2010-07-20 2010-07-20 Method for manufacturing thermoelectric conversion module Pending JP2012028388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162927A JP2012028388A (en) 2010-07-20 2010-07-20 Method for manufacturing thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162927A JP2012028388A (en) 2010-07-20 2010-07-20 Method for manufacturing thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2012028388A true JP2012028388A (en) 2012-02-09

Family

ID=45781014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162927A Pending JP2012028388A (en) 2010-07-20 2010-07-20 Method for manufacturing thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2012028388A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180094A (en) * 2012-03-02 2013-09-12 Toshiba Corp Magnetic resonance imaging apparatus and cooling apparatus thereof
KR101386682B1 (en) * 2012-03-26 2014-04-21 한국기계연구원 A Thermolectric Semiconductor module and A Manufacturing Method of The same
JP2014103246A (en) * 2012-11-20 2014-06-05 Aisin Takaoka Ltd Method for manufacturing thermoelectric module and thermoelectric module
DE102014203182A1 (en) * 2014-02-21 2015-08-27 Albert-Ludwigs-Universität Freiburg A method of manufacturing a vertical-type thermoelectric generator realized by galvanic two-side deposition in a substrate, and a thermoelectric generator
JP2017212245A (en) * 2016-05-23 2017-11-30 学校法人神奈川大学 Method for manufacturing flexible thermoelectric conversion member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180094A (en) * 2012-03-02 2013-09-12 Toshiba Corp Magnetic resonance imaging apparatus and cooling apparatus thereof
KR101386682B1 (en) * 2012-03-26 2014-04-21 한국기계연구원 A Thermolectric Semiconductor module and A Manufacturing Method of The same
JP2014103246A (en) * 2012-11-20 2014-06-05 Aisin Takaoka Ltd Method for manufacturing thermoelectric module and thermoelectric module
US9716218B2 (en) 2012-11-20 2017-07-25 Aisin Takaoka Co., Ltd. Method of manufacturing thermoelectric module, and thermoelectric module
DE102014203182A1 (en) * 2014-02-21 2015-08-27 Albert-Ludwigs-Universität Freiburg A method of manufacturing a vertical-type thermoelectric generator realized by galvanic two-side deposition in a substrate, and a thermoelectric generator
DE102014203182B4 (en) 2014-02-21 2021-12-30 Albert-Ludwigs-Universität Freiburg Method for manufacturing a thermoelectric generator and thermoelectric generator
JP2017212245A (en) * 2016-05-23 2017-11-30 学校法人神奈川大学 Method for manufacturing flexible thermoelectric conversion member

Similar Documents

Publication Publication Date Title
JP3600486B2 (en) Manufacturing method of thermoelectric conversion element
US8516690B2 (en) Anisotropic conductive joint package
EP0760530B1 (en) Manufacture of thermoelectric power generation unit
JP5598152B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP2012028388A (en) Method for manufacturing thermoelectric conversion module
US20110083712A1 (en) Thermoelectric Module
US20120313245A1 (en) Semiconductor device
JP2008141027A (en) Bonding structure of thermoelectric conversion element and thermoelectric conversion module
JP2013038407A (en) Thin film electrode ceramic substrate and method for producing the same
JPH06338636A (en) Manufacture of thermoelectric generating element
US20130048350A1 (en) Base member
JP2011238867A (en) Method for producing thermoelectric conversion module
TWI636716B (en) Process to produce multiple plane metalization on a ceramic substrate
KR20070095145A (en) Insulation structure for high thermal condition and its manufacturing method
JP2010161297A (en) Thermoelectric conversion module and method for manufacturing the same
US10236430B2 (en) Thermoelectric module
KR20100070029A (en) Thermoelectric element arranging plate and method of manufacturing thermoelectric module using the same
JP2011238864A (en) Manufacturing method of thermoelectric conversion module
JP2003347603A (en) Thermoelectric element and its manufacturing method
KR101153720B1 (en) A thermoelectric Module and Method for fabricatingA thermoelectric Module and Method for fabricating thereof thereof
JPH09191133A (en) Manufacture of thermoelectric generating element
JP2003273410A (en) Thermoelement and method of manufacturing the same
JP2000101141A (en) Semiconductor light-emitting element and manufacture thereof
JP2009141303A (en) Mother board and method of forming electrolytic plating film
JP2000164422A (en) Thin film coil module