JP4826310B2 - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
JP4826310B2
JP4826310B2 JP2006086616A JP2006086616A JP4826310B2 JP 4826310 B2 JP4826310 B2 JP 4826310B2 JP 2006086616 A JP2006086616 A JP 2006086616A JP 2006086616 A JP2006086616 A JP 2006086616A JP 4826310 B2 JP4826310 B2 JP 4826310B2
Authority
JP
Japan
Prior art keywords
type thermoelectric
electrode
thermoelectric element
substrate
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006086616A
Other languages
Japanese (ja)
Other versions
JP2007266138A (en
Inventor
林  高廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2006086616A priority Critical patent/JP4826310B2/en
Publication of JP2007266138A publication Critical patent/JP2007266138A/en
Application granted granted Critical
Publication of JP4826310B2 publication Critical patent/JP4826310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は熱電モジュールに関し、特に耐熱応力に優れ、信頼性の高い熱電モジュールに関する。   The present invention relates to a thermoelectric module, and more particularly, to a thermoelectric module having excellent heat stress and high reliability.

熱電モジュールは、Bi、Sb、Te及びSeからなる群から選択された少なくとも2種の元素を含むp型半導体とn型半導体の微小チップ(熱電素子)を、電極をパターニングしたセラミクス基板で上下に挟んで接合し、接点に温度差が生じると起電力が発生するゼーベック効果を利用し、熱を電力に変換するか又は通電により温度差を生じさせるペルチェ効果を利用し、温度調節を行うものである。   The thermoelectric module is composed of a p-type semiconductor and an n-type semiconductor microchip (thermoelectric element) containing at least two elements selected from the group consisting of Bi, Sb, Te, and Se on a ceramic substrate with patterned electrodes. It is used to adjust the temperature by using the Seebeck effect that generates electromotive force when a temperature difference occurs between the contacts and converting the heat into electric power or by generating the temperature difference by energization. is there.

図4は従来の熱電モジュールを示す模式的正面図である。熱電素子21及び22と電極24及び28との接合は通常Pb−Sn、Sn−Sb又はAu−Sn等のはんだ合金によるはんだ付けによって行われるが、熱電素子21及び22と電極24及び28との間にはんだ25が介在することで、このはんだ25が熱抵抗になり熱伝達及び熱伝導を妨げ、また電気抵抗を上昇させるため、熱電モジュール20の発電効率を妨げる要因の一つになる。また、図5に示すように、熱電モジュール20を駆動させた際、上下の基板の温度差により上下の基板の熱膨張差に起因する熱応力が発生し、この熱応力が熱電素子21及び熱電素子22と電極24及び28とのはんだ接合部に掛かるため、接合部等において破壊の虞があり、熱電モジュール20の信頼性が低いという問題点がある。 FIG. 4 is a schematic front view showing a conventional thermoelectric module. The thermoelectric elements 21 and 22 and the electrodes 24 and 28 are usually joined by soldering with a solder alloy such as Pb-Sn, Sn-Sb, or Au-Sn, but the thermoelectric elements 21 and 22 and the electrodes 24 and 28 are joined together. By interposing the solder 25 between them, the solder 25 becomes a thermal resistance, which hinders heat transfer and heat conduction, and raises the electric resistance, which becomes one of the factors hindering the power generation efficiency of the thermoelectric module 20. Further, as shown in FIG. 5, when the drives the thermoelectric module 20, the thermal stress is generated due to the difference in thermal expansion between the upper and lower substrates by a temperature difference between the upper and lower substrates, the thermal stress thermoelectric element 2 1及 since applied to the solder joint between the fine heat Denmoto terminal 2 2 and the electrodes 24 and 28, there is a possibility of breaking at the junction or the like, there is a problem of low reliability of the thermoelectric module 20.

この問題点を解決すべく、特許文献1に開示されている技術は、高温端側の電極34を緩やかな凸状の曲面を有するよう形成し、熱電素子31及び32と高温端側の電極34及び低温端側の電極38との接合をはんだ付けではなく熱電素子31及び32と電極34及び38との双方にHg、Ga、In又はこれらの合金からなる液体金属はんだを塗布することによって行っている。図6に特許文献1に開示された熱電モジュール30を示す模式的正面図を示す。高温端の電極34が緩やかな凸状の曲面を有しているため、接合の際、この電極34の凸部によって接合を受け持つ液体金属36が熱電素子31及び32の側部に押しやられ、熱電素子31及び32と電極34との接合面は極めて薄い液体金属面になる。これにより、熱抵抗及び電気抵抗の上昇を防ぎ、また、熱電素子31及び32と電極34及び38とを液体金属36によって接合しているため、接合部が上下の基板の熱膨張差に起因する熱応力の影響を受けないというものである。   In order to solve this problem, the technique disclosed in Patent Document 1 forms the electrode 34 on the high temperature end side so as to have a gently convex curved surface, and the thermoelectric elements 31 and 32 and the electrode 34 on the high temperature end side. In addition, bonding to the electrode 38 on the low temperature end side is not performed by soldering but by applying liquid metal solder made of Hg, Ga, In or an alloy thereof to both the thermoelectric elements 31 and 32 and the electrodes 34 and 38. Yes. FIG. 6 shows a schematic front view showing the thermoelectric module 30 disclosed in Patent Document 1. As shown in FIG. Since the electrode 34 at the high temperature end has a gently convex curved surface, at the time of bonding, the liquid metal 36 responsible for the bonding is pushed to the side portions of the thermoelectric elements 31 and 32 by the thermoelectric elements 31 and 32. The bonding surface between the elements 31 and 32 and the electrode 34 is an extremely thin liquid metal surface. This prevents an increase in thermal resistance and electrical resistance, and since the thermoelectric elements 31 and 32 and the electrodes 34 and 38 are joined by the liquid metal 36, the joint is caused by a difference in thermal expansion between the upper and lower substrates. It is not affected by thermal stress.

特開2003−37300号公報JP 2003-37300 A

しかしながら、特許文献1に開示された技術は全ての熱電素子31及び32と電極34及び38との接合を液体金属36によって行っているため、熱電モジュール30をハンドリングする際に熱電素子31及び32が動き、接触不良又はショートを起こすことがあるという問題点がある。また、熱電素子31及び32の表面には無電解めっき等によりのニッケルがめっきされているが、このニッケル面に液体金属36を塗布すると濡れ性が悪く、これにより接触抵抗が上昇し、熱電モジュール30を発電素子として使用する場合には発電効率が低下したり、また、温度調節素子として使用する場合には吸熱効率が低下したりするという問題点もある。   However, since the technique disclosed in Patent Document 1 joins all the thermoelectric elements 31 and 32 and the electrodes 34 and 38 with the liquid metal 36, the thermoelectric elements 31 and 32 are used when the thermoelectric module 30 is handled. There is a problem that movement, poor contact, or short-circuiting may occur. Further, the surface of the thermoelectric elements 31 and 32 is plated with nickel by electroless plating or the like, but when the liquid metal 36 is applied to the nickel surface, the wettability is poor, which increases the contact resistance, and the thermoelectric module. When 30 is used as a power generation element, there is a problem that power generation efficiency is reduced, and when it is used as a temperature control element, heat absorption efficiency is reduced.

本発明はかかる問題点に鑑みてなされたものであって、耐熱応力に優れ、ハンドリング性が良好であり、発電効率が高く、信頼性の高い熱電モジュールを提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a thermoelectric module that is excellent in heat stress, has good handling properties, has high power generation efficiency, and high reliability.

本発明に係る熱電モジュールは、高温端としての第1の基板と、前記第1の基板上に形成された複数個の第1の電極と、低温端としての第2の基板と、前記第2の基板上に形成された複数個の第2の電極と、複数個のp型熱電素子と、複数個のn型熱電素子と、を有し、各前記第1の電極に夫々1対の前記p型熱電素子及び前記n型熱電素子が接合され、隣接する1対の前記第1の電極に接合されたp型熱電素子及びn型熱電素子のうち隣接するp型熱電素子及びn型熱電素子が1個の前記第2の電極に接合されて前記複数個のp型熱電素子及びn型熱電素子が交互に直列接続された熱電モジュールにおいて、前記複数個のp型熱電素子及び前記複数個のn型熱電素子は、高さが等しく、前記第1の基板の対角長さの熱膨張量を前記p型熱電素子及び前記n型熱電素子の高さの3乗で割った数値Rが0.039以上であり、前記第1の基板の中央部は前記Rの値が0.039未満であって、前記第1の電極と前記p型熱電素子及び前記n型熱電素子とがはんだ付けによって接合され、前記中央部以外の部分は前記Rの値が0.039以上であって、前記第1の電極と前記p型熱電素子及び前記n型熱電素子とが、熱電モジュールの動作時における前記第1の基板の温度において液体である液体金属によって電気的に接続され、前記第2の電極と前記p型熱電素子及び前記n型熱電素子とが全てはんだ付けによって接合されており、前記p型熱電素子及び前記n型熱電素子の前記第1の電極及び前記第2の電極と接合される面にAuSnめっき又はSnSbめっきが施されていることを特徴とする。 The thermoelectric module according to the present invention includes a first substrate as a high temperature end, a plurality of first electrodes formed on the first substrate, a second substrate as a low temperature end, and the second substrate. A plurality of second electrodes formed on the substrate, a plurality of p-type thermoelectric elements, and a plurality of n-type thermoelectric elements, and each of the first electrodes has a pair of the above-described one pair. An adjacent p-type thermoelectric element and n-type thermoelectric element among a p-type thermoelectric element and an n-type thermoelectric element bonded to a pair of adjacent first electrodes, the p-type thermoelectric element and the n-type thermoelectric element being bonded Is connected to one second electrode, and the plurality of p-type thermoelectric elements and n-type thermoelectric elements are alternately connected in series, wherein the plurality of p-type thermoelectric elements and the plurality of p-type thermoelectric elements are connected to the second electrode . The n-type thermoelectric elements have the same height, and the amount of thermal expansion of the diagonal length of the first substrate is the p-type thermoelectric element. Child and numerical R divided by the cube of the height the n-type thermoelectric element is at 0.039 or more, the central portion of the first substrate is less than the value of the R is 0.039, the second 1 electrode, the p-type thermoelectric element, and the n-type thermoelectric element are joined by soldering, and the portion other than the center portion has a value of R of 0.039 or more, and the first electrode and the n-type thermoelectric element The p-type thermoelectric element and the n-type thermoelectric element are electrically connected by a liquid metal that is liquid at the temperature of the first substrate during operation of the thermoelectric module, and the second electrode and the p-type thermoelectric element And the n-type thermoelectric element are all joined by soldering, and the surfaces of the p-type thermoelectric element and the n-type thermoelectric element to be joined to the first electrode and the second electrode are AuSn plated or SnSb. that is plated And features.

上記熱電モジュールにおいて、例えば前記液体金属は、25乃至250℃において液体である。In the thermoelectric module, for example, the liquid metal is liquid at 25 to 250 ° C.

本発明に係る熱電モジュールの製造方法は、第1の電極に1対のp型熱電素子及びn型熱電素子が接合され、隣接する1対の前記第1の電極に接合されたp型熱電素子及びn型熱電素子のうち隣接するp型熱電素子及びn型熱電素子が1個の第2の電極に接合されて複数個のp型熱電素子及びn型熱電素子が交互に直列接続された熱電モジュールの製造方法において、前記第1の電極及び前記第2の電極と接合される面にAuSnめっき又はSnSbめっきが施された高さが等しいp型熱電素子及びn型熱電素子を使用し、前記第1の電極が設けられ、対角長さの熱膨張量を前記p型熱電素子及び前記n型熱電素子の高さの3乗で割った数値Rが0.039以上である基板を高温端としての第1の基板として使用し、この第1の基板の中央部は前記Rの値が0.039未満であって、この中央部の前記第1の電極に夫々1対のp型熱電素子及びn型熱電素子を配置してはんだ付けによって接合する工程と、前記第1の基板の中央部以外の部分は前記Rの値が0.039以上であって、この中央部以外の部分の前記第1の電極に夫々1対のp型熱電素子及びn型熱電素子を配置して熱電モジュールの動作時における前記第1の基板の温度において液体である液体金属によって電気的に接続する工程と、前記第2の電極が設けられた基板を低温端としての第2の基板として使用し、この第2の基板に設けられた前記第2の電極によって隣接する1対の前記第1の電極に接合されたp型熱電素子及びn型熱電素子のうち隣接するp型熱電素子及びn型熱電素子を1個の前記第の電極にはんだ付けによって接合する工程と、を有することを特徴とする。 The method of manufacturing a thermoelectric module according to the present invention includes a p-type thermoelectric element in which a pair of p-type thermoelectric elements and an n-type thermoelectric element are joined to a first electrode and joined to a pair of adjacent first electrodes. And n-type thermoelectric elements, adjacent p-type thermoelectric elements and n-type thermoelectric elements are joined to one second electrode, and a plurality of p-type thermoelectric elements and n-type thermoelectric elements are alternately connected in series. In the module manufacturing method, using a p-type thermoelectric element and an n-type thermoelectric element having the same height obtained by applying AuSn plating or SnSb plating to the surfaces to be joined to the first electrode and the second electrode, A substrate provided with a first electrode and having a numerical value R obtained by dividing the amount of thermal expansion of the diagonal length by the cube of the height of the p-type thermoelectric element and the n-type thermoelectric element is 0.039 or higher. It was used as the first substrate as the central portion of the first substrate Said less than the value of R is 0.039, and bonding by soldering to place p-type thermoelectric elements and the n-type thermoelectric elements each pair to said first electrode of the central portion, the first The portion other than the central portion of one substrate has a value of R of 0.039 or more, and a pair of p-type thermoelectric elements and n-type thermoelectric elements are respectively applied to the first electrodes in the portions other than the central portion. a second substrate of a step of electrically connecting the liquid metal which is liquid at a temperature of the first substrate during operation of the thermoelectric modules arranged to the substrate on which the second electrode is provided as a cold end Of p-type thermoelectric elements and n-type thermoelectric elements that are adjacent to each other by the second electrode provided on the second substrate, and are adjacent to each other. and n-type thermoelectric elements to one of said second electrodes And having it and bonding by attaching the.

上記熱電モジュールの製造方法において、例えば前記液体金属は、25乃至250℃において液体である。In the manufacturing method of the thermoelectric module, for example, the liquid metal is liquid at 25 to 250 ° C.

本発明によれば、基板の熱膨張が小さい低温端において、電極と熱電素子とがはんだ付けによって接合され、一方、基板の熱膨張が大きい高温端において、熱膨張の影響が少ない基板中央近傍で電極と熱電素子とがはんだ付けによって接合され、熱膨張によって大きく変位する基板中央近傍以外で電極と熱電素子とが液体金属によって接合されているため、熱電素子及び熱電素子と電極とのはんだ接合部が高温端と低温端との熱膨張差に起因する熱応力の影響を受けず、接合部等で破壊する虞がなく信頼性が高い熱電モジュールを得ることができる。また、高温端の基板中央近傍及び低温端において電極と熱電素子とがはんだ付けによって接合されているためハンドリング性が良好であり、また、高温端において基板中央近傍以外で電極と熱電素子とが液体金属によって接合されているため接触抵抗を抑えることができ、発電効率が高い熱電モジュールを得ることができる。   According to the present invention, at the low temperature end where the thermal expansion of the substrate is small, the electrode and the thermoelectric element are joined by soldering, while at the high temperature end where the thermal expansion of the substrate is large, the influence of the thermal expansion is small near the center of the substrate. Since the electrode and the thermoelectric element are joined by soldering, and the electrode and the thermoelectric element are joined by liquid metal except in the vicinity of the center of the substrate which is largely displaced by thermal expansion, the thermoelectric element and the solder joint portion between the thermoelectric element and the electrode However, there is no influence of thermal stress caused by the difference in thermal expansion between the high temperature end and the low temperature end, and there is no possibility of breaking at the joint or the like, and a highly reliable thermoelectric module can be obtained. Also, the electrode and the thermoelectric element are joined by soldering in the vicinity of the center of the substrate at the high temperature end and the low temperature end, so that the handling property is good. Since it is joined by metal, contact resistance can be suppressed, and a thermoelectric module with high power generation efficiency can be obtained.

以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1は、本発明の第1実施形態に係る熱電モジュールを示す模式的正面図である。p型熱電素子1及びn型熱電素子2の上下表面(接合される面)には異種材料間の拡散による組成変化を防ぐ拡散防止バリア層(図示せず)が形成され、更にこの上に液体金属の濡れ性を改善するためのSn等の金属層(図示せず)が形成されている。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic front view showing a thermoelectric module according to the first embodiment of the present invention. Diffusion prevention barrier layers (not shown) that prevent composition change due to diffusion between different materials are formed on the upper and lower surfaces (surfaces to be joined) of the p-type thermoelectric element 1 and the n-type thermoelectric element 2, and a liquid is further formed thereon. A metal layer (not shown) such as Sn for improving metal wettability is formed.

高温端(第1の基板)としての下基板3の上にパターン形成された第1の電極としての下部電極4上に、端部においては1個の熱電素子が配置され、端部以外においては1個の下部電極4上に1個のp型熱電素子1と1個のn型熱電素子2とが配置されている。そして、下基板3の中央部近傍においては下部電極4とp型熱電素子1及びn型熱電素子2とがはんだ付けによって接合され、下基板3の中央部近傍以外においては下部電極4とp型熱電素子1及びn型熱電素子2とが液体金属6によって接合されている。これにより、隣接するp型熱電素子1とn型熱電素子2とが電気的に接続されている。   On the lower electrode 4 as the first electrode patterned on the lower substrate 3 as the high temperature end (first substrate), one thermoelectric element is arranged at the end, and other than the end One p-type thermoelectric element 1 and one n-type thermoelectric element 2 are arranged on one lower electrode 4. The lower electrode 4 and the p-type thermoelectric element 1 and the n-type thermoelectric element 2 are joined by soldering in the vicinity of the central portion of the lower substrate 3, and the lower electrode 4 and the p-type are connected except for the vicinity of the central portion of the lower substrate 3. The thermoelectric element 1 and the n-type thermoelectric element 2 are joined by the liquid metal 6. Thereby, the adjacent p-type thermoelectric element 1 and n-type thermoelectric element 2 are electrically connected.

また、これらのp型熱電素子1及びn型熱電素子2の上に、低温端(第2の基板)として下面に上部電極8(第2の電極)が形成された上基板7が、隣接する2個の下部電極4における一方の下部電極4上のn型熱電素子2と他方の下部電極4上のp型熱電素子1とが、1個の上部電極8に接合されるように配置され、上部電極8とp型熱電素子1及びn型熱電素子2とがはんだ付けによって接合されている。これにより、上部電極8及び下部電極4により、p型熱電素子1とn型熱電素子2とが交互に直列に接続された熱電モジュール10が形成されている。   Further, an upper substrate 7 having an upper electrode 8 (second electrode) formed on the lower surface as a low temperature end (second substrate) is adjacent to the p-type thermoelectric element 1 and the n-type thermoelectric element 2. The n-type thermoelectric element 2 on one lower electrode 4 and the p-type thermoelectric element 1 on the other lower electrode 4 in the two lower electrodes 4 are arranged so as to be joined to one upper electrode 8, Upper electrode 8, p-type thermoelectric element 1 and n-type thermoelectric element 2 are joined by soldering. Thus, the thermoelectric module 10 in which the p-type thermoelectric elements 1 and the n-type thermoelectric elements 2 are alternately connected in series is formed by the upper electrode 8 and the lower electrode 4.

図2に示すように、熱電モジュール10の熱応力による信頼性は下記に示す数式1に依存し、R≧0.039で熱電モジュール10が破損することが判明した。ここでJは熱電モジュールの高温端における基板対角長さの熱膨張量、Hは熱電素子の高さ(チップ高さ)である。   As shown in FIG. 2, the reliability of the thermoelectric module 10 due to thermal stress depends on the following Equation 1, and it was found that the thermoelectric module 10 is damaged when R ≧ 0.039. Here, J is the thermal expansion amount of the diagonal length of the substrate at the high temperature end of the thermoelectric module, and H is the height (chip height) of the thermoelectric element.

Figure 0004826310
Figure 0004826310

よって、上述の下基板3の中央部近傍として熱電モジュール10の基板中央から中央部熱電素子の最外周部が上記に示す数式1においてR<0.039を満たす領域において、下部電極4とp型熱電素子1及びn型熱電素子2とがはんだ付けによって接合され、下基板3の中央部近傍以外として熱電モジュール10の基板中央から中央部熱電素子の最外周部が上記に示す数式1においてR≧0.039を満たす領域において、下部電極4とp型熱電素子1及びn型熱電素子2とが液体金属6によって接合されていることが好ましい。   Therefore, in the region where the outermost peripheral part of the central thermoelectric element from the center of the substrate of the thermoelectric module 10 satisfies R <0.039 in Equation 1 shown above as the vicinity of the central part of the lower substrate 3 described above, the lower electrode 4 and the p-type The thermoelectric element 1 and the n-type thermoelectric element 2 are joined by soldering, and the outermost peripheral portion of the central thermoelectric element from the center of the thermoelectric module 10 to the center of the thermoelectric module 10 except for the vicinity of the central portion of the lower substrate 3 is R ≧ In a region satisfying 0.039, it is preferable that the lower electrode 4 and the p-type thermoelectric element 1 and the n-type thermoelectric element 2 are joined by the liquid metal 6.

p型熱電素子1及びn型熱電素子2の上下表面(上部電極8及び下部電極4と接合される面)には拡散防止バリア層(図示せず)が形成され、更にこの上に液体金属6の濡れ性を改善するためにAuSnめっき又はSnSbめっき等によってSn等の金属層(図示せず)が形成されていることにより、p型熱電素子1及びn型熱電素子2において異種材料間の拡散による組成変化が防止でき、また良好な液体金属の濡れ性が得られるため熱電素子と電極との接触抵抗の上昇を防ぐことができる。   Diffusion prevention barrier layers (not shown) are formed on the upper and lower surfaces (surfaces joined to the upper electrode 8 and the lower electrode 4) of the p-type thermoelectric element 1 and the n-type thermoelectric element 2, and further the liquid metal 6 is formed thereon. In order to improve the wettability of the metal, a metal layer (not shown) such as Sn is formed by AuSn plating or SnSb plating, so that diffusion between different materials in the p-type thermoelectric element 1 and the n-type thermoelectric element 2 It is possible to prevent a change in composition due to the above, and it is possible to prevent an increase in contact resistance between the thermoelectric element and the electrode because good liquid metal wettability can be obtained.

また、低温端(上基板7)において電極と熱電素子との接合をはんだ付けによって行い、基板の熱膨張が大きい高温端(下基板3)においては熱膨張の影響が少ない熱電モジュールの基板中央近傍(上記数式1においてR<0.039を満たす領域)で電極と熱電素子との接合をはんだ付けによって行い、熱電モジュールの基板中央近傍以外(上記数式1においてR≧0.039を満たす領域)では電極と熱電素子との接合を液体金属によって行うことにより、ハンドリング性が良好で且つ耐熱応力に優れる熱電モジュールを得ることができる。   Also, the electrode and the thermoelectric element are joined by soldering at the low temperature end (upper substrate 7), and the thermal expansion of the thermoelectric module near the center of the thermoelectric module is less affected at the high temperature end (lower substrate 3) where the thermal expansion of the substrate is large. (A region satisfying R <0.039 in Equation 1 above) The electrode and the thermoelectric element are joined by soldering, and other than near the center of the substrate of the thermoelectric module (region satisfying R ≧ 0.039 in Equation 1 above). By joining the electrode and the thermoelectric element with a liquid metal, a thermoelectric module having good handling properties and excellent heat stress can be obtained.

次に、上述の如く構成された本実施形態の熱電モジュール10の動作について説明する。熱電モジュール10の低温端(上基板7)と高温端(下基板3)との間に温度差を発生させ、熱電モジュール10を駆動する。このとき低温端(上基板7)よりも高温端(下基板3)の方が温度が高いため、高温端(下基板3)の方が低温端(上基板7)よりも大きく熱膨張し、高温端(下基板3)と低温端(上基板7)との熱膨張差に起因する熱応力が、熱電素子及び熱電素子と電極とのはんだ接合部に掛かる。   Next, the operation of the thermoelectric module 10 of the present embodiment configured as described above will be described. A temperature difference is generated between the low temperature end (upper substrate 7) and the high temperature end (lower substrate 3) of the thermoelectric module 10 to drive the thermoelectric module 10. At this time, since the temperature of the high temperature end (lower substrate 3) is higher than that of the low temperature end (upper substrate 7), the high temperature end (lower substrate 3) is more thermally expanded than the low temperature end (upper substrate 7), Thermal stress due to the difference in thermal expansion between the high temperature end (lower substrate 3) and the low temperature end (upper substrate 7) is applied to the thermoelectric element and the solder joint between the thermoelectric element and the electrode.

基板の熱膨張が小さい低温端(上基板7)において、電極と熱電素子とがはんだ5によって接合されており、一方、基板の熱膨張が大きい高温端(下基板3)において、熱膨張の影響が少ない基板中央近傍で電極と熱電素子とがはんだ5によって接合されており、熱膨張によって大きく変位する基板中央近傍以外で電極と熱電素子とが液体金属6によって接合されているため、熱電素子及び熱電素子と電極とのはんだ接合部が高温端(下基板3)と低温端(上基板7)との熱膨張差に起因する熱応力の影響を受けず、接合部等で破壊する虞がない。   At the low temperature end (upper substrate 7) where the thermal expansion of the substrate is small, the electrode and the thermoelectric element are joined by the solder 5, while at the high temperature end (lower substrate 3) where the thermal expansion of the substrate is large, the influence of thermal expansion. The electrode and the thermoelectric element are joined by the solder 5 in the vicinity of the center of the substrate with a small amount, and the thermoelectric element and the thermoelectric element are joined by the liquid metal 6 in the vicinity of the substrate other than the vicinity of the center of the substrate that is largely displaced by thermal expansion. The solder joint between the thermoelectric element and the electrode is not affected by the thermal stress caused by the thermal expansion difference between the high temperature end (lower substrate 3) and the low temperature end (upper substrate 7), and there is no possibility of breaking at the joint or the like. .

以下、本発明の効果を実証するための実施例について、本発明の範囲から外れる比較例と比較して説明する。熱電モジュールとして光通信用LD(Laser Diode)の温調向け小型ペルチェモジュール、汎用冷却用大型ペルチェモジュール、及び発電用大型ゼーベックモジュールについて評価を行った。   Hereinafter, examples for demonstrating the effects of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention. Evaluation was made on a small Peltier module for temperature control of an LD (Laser Diode) for optical communication, a large Peltier module for general cooling, and a large Seebeck module for power generation as thermoelectric modules.

比較例としては、第1実施形態に係る熱電モジュール10と異なり、電極と熱電素子との接合を全てはんだ付けによって行ったもの、電極と熱電素子との接合を全て液体金属6によって行ったもの、及び図3に示すように、熱電モジュール11を駆動させたときに熱膨張が大きい高温端(下基板3)において電極と熱電素子とを全て液体金属6によって接合し、低温端(上基板7)において電極と熱電素子とを全てはんだ付けによって接合したものを作成した。図3において図1と同一構成物には同一構成物には同一符号を付して、その詳細な説明は省略する。   As a comparative example, unlike the thermoelectric module 10 according to the first embodiment, all the bonding between the electrode and the thermoelectric element is performed by soldering, all the bonding between the electrode and the thermoelectric element is performed by the liquid metal 6, As shown in FIG. 3, the electrodes and the thermoelectric elements are all joined together by the liquid metal 6 at the high temperature end (lower substrate 3) where thermal expansion is large when the thermoelectric module 11 is driven, and the low temperature end (upper substrate 7). The electrode and the thermoelectric element were all joined by soldering. 3, the same components as those of FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

作成した各熱電モジュールの良否を判定する項目として、組み立てに使用した熱電素子の電気抵抗から計算される熱電モジュール抵抗と実際に作製された熱電モジュールの交流抵抗との差分(ΔACR)を評価した。ΔACR分は、電極及びはんだ接合部等、熱電素子以外によって付加される抵抗であり、これらはジュール熱を発生するため熱電モジュールの性能を低下させる。一般に、ΔACRが5%を超えると、このジュール熱分が無視できなくなり望ましくない。   As an item for judging the quality of each created thermoelectric module, the difference (ΔACR) between the thermoelectric module resistance calculated from the electric resistance of the thermoelectric element used for assembly and the AC resistance of the actually produced thermoelectric module was evaluated. The ΔACR component is a resistance added by other than the thermoelectric element such as an electrode and a solder joint part, and these generate Joule heat, which deteriorates the performance of the thermoelectric module. In general, when ΔACR exceeds 5%, this Joule heat cannot be ignored, which is undesirable.

また、熱電モジュールの信頼性試験は、実際に使用される環境を想定し、光通信用LDの温調向け小型ペルチェモジュールについてはパワーサイクル試験(高温端85℃、低温端25℃での断続通電を500サイクル)及び衝撃試験(低温端に5gの錘を付与して落下試験)を行った。   In addition, the reliability test of thermoelectric modules assumes an environment where it is actually used, and power cycle tests (intermittent energization at a high temperature end of 85 ° C and a low temperature end of 25 ° C for a small Peltier module for temperature control of an optical communication LD. ) And an impact test (a drop test with a 5 g weight applied to the low temperature end).

汎用冷却用大型ペルチェモジュールについてはパワーサイクル試験(高温端25℃、低温端−45℃での断続通電を500サイクル)及び衝撃試験(低温端に100gの錘を付与して落下試験)を行った。   A power cycle test (500 cycles of intermittent energization at a high temperature end of 25 ° C. and a low temperature end of −45 ° C.) and an impact test (a drop test with a 100 g weight applied to the low temperature end) were performed on the large-sized Peltier module for general-purpose cooling. .

発電用大型ゼーベックモジュールについては連続発電試験(高温端250℃、低温端50℃での500時間の発電試験)及び衝撃試験(低温端に100gの錘を付与して落下試験)を行った。   The large-scale Seebeck module for power generation was subjected to a continuous power generation test (a power generation test for 500 hours at a high temperature end of 250 ° C. and a low temperature end of 50 ° C.) and an impact test (a drop test with a 100 g weight applied to the low temperature end).

上述のように、ΔACRが5%を超えると、このジュール熱分が無視できなるため、熱電モジュールの信頼性試験験前後でACRの変化分が5%を超えたものを×とした。ここでチップ高さとはp型熱電素子1及びn型熱電素子2の高さH、チップ断面とはp型熱電素子1及びn型熱電素子2の電極との接合面の断面、対数とはp型熱電素子1とn型熱電素子2とを1対としたときの各熱電モジュールに存在する熱電素子対の数、素子接合とはp型熱電素子1及びn型熱電素子2と電極との接合に使用した金属、素子メッキ処理とはp型熱電素子1及びn型熱電素子2の電極との接合に施したメッキ処理の種類である。   As described above, when ΔACR exceeds 5%, this Joule heat becomes negligible. Therefore, the case where the change in ACR exceeds 5% before and after the reliability test of the thermoelectric module is indicated as x. Here, the chip height is the height H of the p-type thermoelectric element 1 and the n-type thermoelectric element 2, the chip cross-section is the cross-section of the junction surface with the electrodes of the p-type thermoelectric element 1 and the n-type thermoelectric element 2, and the logarithm is p. The number of thermoelectric element pairs existing in each thermoelectric module when the n-type thermoelectric element 1 and the n-type thermoelectric element 2 are paired, the element junction is the junction between the p-type thermoelectric element 1 and the n-type thermoelectric element 2 and the electrode The metal and element plating treatment used in the above is the type of plating treatment performed for joining the electrodes of the p-type thermoelectric element 1 and the n-type thermoelectric element 2.

下記表1は光通信用LDの温調向け小型ペルチェモジュールの評価結果を示す。実施例1乃至3と比較例4及び5とから分かるように、電極と熱電素子とを全て液体金属6によって接合したもの(比較例4)及び高温端(下基板3)において電極と熱電素子とを全て液体金属6によって接合したもの(比較例5)は、低温端(上基板7)及び高温端(下基板3)の基板中央近傍において電極と熱電素子とをはんだ付けによって接合し、高温端(下基板3)の基板中央近傍以外で電極と熱電素子とを液体金属によって接合したもの(実施例1乃至3)よりも衝撃試験前後のACRの変化分が大きく、5%を超えた。また、熱電モジュールが上記数式1で示すR≧0.039の範囲であるとき、電極と熱電素子とを全てはんだ付けによって接合したもの(比較例3)は、パワーサイクル試験前後のACRの変化分が大きく、5%を超えた。   Table 1 below shows the evaluation results of a small Peltier module for temperature control of an optical communication LD. As can be seen from Examples 1 to 3 and Comparative Examples 4 and 5, the electrode and the thermoelectric element are bonded to each other by the liquid metal 6 (Comparative Example 4) and at the high temperature end (lower substrate 3). In the case where all of these are joined by the liquid metal 6 (Comparative Example 5), the electrode and the thermoelectric element are joined by soldering in the vicinity of the center of the substrate at the low temperature end (upper substrate 7) and the high temperature end (lower substrate 3). The amount of change in ACR before and after the impact test was larger than that in the case where the electrode and the thermoelectric element were joined by a liquid metal except in the vicinity of the center of the substrate of (lower substrate 3) and exceeded 5%. In addition, when the thermoelectric module is in the range of R ≧ 0.039 shown in the above mathematical formula 1, all the electrodes and thermoelectric elements joined by soldering (Comparative Example 3) are the changes in ACR before and after the power cycle test. Was over 5%.

Figure 0004826310
Figure 0004826310

下記表2は汎用冷却用大型ペルチェモジュールの評価結果を示す。実施例7と比較例8とから分かるように、熱電モジュールが上記数式1で示すR≧0.039の範囲であるとき、電極と熱電素子とを全てはんだ付けによって接合したもの(比較例8)は、低温端(上基板7)及び高温端(下基板3)の基板中央近傍において電極と熱電素子とをはんだ付けによって接合し、高温端(下基板3)の基板中央近傍以外で電極と熱電素子とを液体金属によって接合したもの(実施例7)よりもパワーサイクル試験前後のACRの変化分が大きく、5%を超えた。   Table 2 below shows the evaluation results of the general-purpose cooling large Peltier module. As can be seen from Example 7 and Comparative Example 8, when the thermoelectric module is in the range of R ≧ 0.039 shown in Equation 1, the electrode and the thermoelectric element are all joined by soldering (Comparative Example 8). The electrode and the thermoelectric element are joined to each other by soldering in the vicinity of the center of the substrate at the low temperature end (upper substrate 7) and the high temperature end (lower substrate 3), and the electrode and the thermoelectric are connected except at the center of the substrate at the high temperature end (lower substrate 3). The amount of change in ACR before and after the power cycle test was larger than that obtained by joining the device with a liquid metal (Example 7) and exceeded 5%.

また、実施例7と比較例9及び10とから分かるように、電極と熱電素子とを全て液体金属6によって接合したもの(比較例9)及び高温端(下基板3)において電極と熱電素子とを全て液体金属6によって接合したもの(比較例10)は、低温端(上基板7)及び高温端(下基板3)の基板中央近傍において電極と熱電素子とをはんだ付けによって接合し、高温端(下基板3)の基板中央近傍以外で電極と熱電素子とを液体金属によって接合したもの(実施例7)よりも衝撃試験前後のACRの変化分が大きく、5%を超えた。   Further, as can be seen from Example 7 and Comparative Examples 9 and 10, the electrode and the thermoelectric element are bonded to each other by the liquid metal 6 (Comparative Example 9) and the high temperature end (lower substrate 3). In which all of the electrodes are joined by the liquid metal 6 (Comparative Example 10), the electrode and the thermoelectric element are joined by soldering in the vicinity of the center of the substrate at the low temperature end (upper substrate 7) and the high temperature end (lower substrate 3). The amount of change in ACR before and after the impact test was larger than that in which the electrode and the thermoelectric element were joined by liquid metal except in the vicinity of the substrate center of (lower substrate 3), and exceeded 5%.

Figure 0004826310
Figure 0004826310

下記表3は発電用大型ゼーベックモジュールの評価結果を示す。実施例8と比較例11とから分かるように、熱電モジュールが上記数式1で示すR≧0.039の範囲であるとき、電極と熱電素子とを全てはんだ付けによって接合したもの(比較例11)は、低温端(上基板7)及び高温端(下基板3)の基板中央近傍において電極と熱電素子とをはんだ付けによって接合し、高温端(下基板3)の基板中央近傍以外で電極と熱電素子とを液体金属によって接合したもの(実施例8)よりもパワーサイクル試験前後のACRの変化分が大きく、5%を超えた。   Table 3 below shows the evaluation results of the large-scale power generation Seebeck module. As can be seen from Example 8 and Comparative Example 11, when the thermoelectric module is in the range of R ≧ 0.039 shown in Equation 1, the electrode and the thermoelectric element are all joined by soldering (Comparative Example 11). The electrode and the thermoelectric element are joined to each other by soldering in the vicinity of the center of the substrate at the low temperature end (upper substrate 7) and the high temperature end (lower substrate 3), and the electrode and the thermoelectric are connected except at the center of the substrate at the high temperature end (lower substrate 3). The amount of change in ACR before and after the power cycle test was larger than that obtained by bonding the device to the liquid metal (Example 8), exceeding 5%.

また、実施例8と比較例12及び13とから分かるように、電極と熱電素子とを全て液体金属6によって接合したもの(比較例12)及び高温端(下基板3)において電極と熱電素子とを全て液体金属6によって接合したもの(比較例13)は、低温端(上基板7)及び高温端(下基板3)の基板中央近傍において電極と熱電素子とをはんだ付けによって接合し、高温端(下基板3)の基板中央近傍以外で電極と熱電素子とを液体金属によって接合したもの(実施例8)よりも衝撃試験前後のACRの変化分が大きく、5%を超えた。   Further, as can be seen from Example 8 and Comparative Examples 12 and 13, the electrode and the thermoelectric element at the high temperature end (lower substrate 3) and the electrode and the thermoelectric element all joined by the liquid metal 6 (Comparative Example 12) In which all the electrodes are joined by the liquid metal 6 (Comparative Example 13), the electrode and the thermoelectric element are joined by soldering in the vicinity of the center of the substrate at the low temperature end (upper substrate 7) and the high temperature end (lower substrate 3). The amount of change in ACR before and after the impact test was larger than that in which the electrode and the thermoelectric element were joined by liquid metal except in the vicinity of the center of the lower substrate 3 (Example 8) and exceeded 5%.

Figure 0004826310
Figure 0004826310

これにより、熱電モジュールが上記数式1で示すR≧0.039の範囲であるとき、基板の熱膨張が小さい低温端(上基板7)において電極と熱電素子とをはんだ付けによって接合し、一方、基板の熱膨張が大きい高温端(下基板3)において熱膨張の影響が少ない基板中央近傍(上記数式で示すR<0.039を満たす領域)で電極と熱電素子とをはんだ付けによって接合し、熱膨張によって大きく変位する基板中央近傍以外(上記数式で示すR≧0.039を満たす領域)で電極と熱電素子とを液体金属6によって接合することにより、パワーサイクル試験及び衝撃試験においてACRの変化分を5%に抑えることができた。   Thereby, when the thermoelectric module is in the range of R ≧ 0.039 shown in the above mathematical formula 1, the electrode and the thermoelectric element are joined by soldering at the low temperature end (upper substrate 7) where the thermal expansion of the substrate is small, The electrode and the thermoelectric element are joined by soldering in the vicinity of the center of the substrate where the thermal expansion of the substrate is large (lower substrate 3) where the thermal expansion is small (region satisfying R <0.039 shown in the above formula), ACR changes in power cycle tests and impact tests by joining the electrodes and thermoelectric elements with the liquid metal 6 outside the vicinity of the center of the substrate that is largely displaced by thermal expansion (region satisfying R ≧ 0.039 shown in the above formula). The minutes could be reduced to 5%.

本発明の第1実施形態に係る熱電モジュールを示す模式的正面図である。It is a typical front view which shows the thermoelectric module which concerns on 1st Embodiment of this invention. とR(=J/H)との関係を表すグラフである。H 3 and is a graph showing the relationship between R (= J / H 3) . 比較例の熱電モジュールを示す模式的正面図である。It is a typical front view which shows the thermoelectric module of a comparative example. 従来の熱電モジュールを示す模式的正面図である。It is a typical front view which shows the conventional thermoelectric module. 図4に示す熱電モジュールを駆動させたときの様子を示す模式的正面図である。It is a typical front view which shows a mode when the thermoelectric module shown in FIG. 4 is driven. 従来の熱電モジュールを示す模式的正面図である。It is a typical front view which shows the conventional thermoelectric module.

符号の説明Explanation of symbols

1;p型熱電素子、2;n型熱電素子、3;下基板(高温端)、4;下部電極、5;はんだ、6;液体金属、7;上基板(低温端)、8;上部電極、10;熱電モジュール、20;熱電モジュール、21;p型熱電素子、22;n型熱電素子、23;下基板(高温端)、24;下部電極、25;はんだ、27;上基板(低温端)、28;上部電極、30;熱電モジュール、31;p型熱電素子、32;n型熱電素子、33;下基板(高温端)、34;下部電極、36;液体金属、37;上基板(低温端)、38;上部電極 1; p-type thermoelectric element, 2; n-type thermoelectric element, 3; lower substrate (high temperature end), 4; lower electrode, 5; solder, 6; liquid metal, 7; upper substrate (low temperature end), 8; 10; thermoelectric module, 20; thermoelectric module, 21; p-type thermoelectric element, 22; n-type thermoelectric element, 23; lower substrate (high temperature end), 24; lower electrode, 25; solder, 27; ), 28; upper electrode, 30; thermoelectric module, 31; p-type thermoelectric element, 32; n-type thermoelectric element, 33; lower substrate (high temperature end), 34; lower electrode, 36; liquid metal, 37; Cold end), 38; upper electrode

Claims (4)

高温端としての第1の基板と、前記第1の基板上に形成された複数個の第1の電極と、低温端としての第2の基板と、前記第2の基板上に形成された複数個の第2の電極と、複数個のp型熱電素子と、複数個のn型熱電素子と、を有し、各前記第1の電極に夫々1対の前記p型熱電素子及び前記n型熱電素子が接合され、隣接する1対の前記第1の電極に接合されたp型熱電素子及びn型熱電素子のうち隣接するp型熱電素子及びn型熱電素子が1個の前記第2の電極に接合されて前記複数個のp型熱電素子及びn型熱電素子が交互に直列接続された熱電モジュールにおいて、
前記複数個のp型熱電素子及び前記複数個のn型熱電素子は、高さが等しく、
前記第1の基板の対角長さの熱膨張量を前記p型熱電素子及び前記n型熱電素子の高さの3乗で割った数値Rが0.039以上であり、
前記第1の基板の中央部は前記Rの値が0.039未満であって、前記第1の電極と前記p型熱電素子及び前記n型熱電素子とがはんだ付けによって接合され、
前記中央部以外の部分は前記Rの値が0.039以上であって、前記第1の電極と前記p型熱電素子及び前記n型熱電素子とが、熱電モジュールの動作時における前記第1の基板の温度において液体である液体金属によって電気的に接続され、
前記第2の電極と前記p型熱電素子及び前記n型熱電素子とが全てはんだ付けによって接合されており、
前記p型熱電素子及び前記n型熱電素子の前記第1の電極及び前記第2の電極と接合される面にAuSnめっき又はSnSbめっきが施されていることを特徴とする熱電モジュール。
A first substrate as a high temperature end, a plurality of first electrodes formed on the first substrate, a second substrate as a low temperature end, and a plurality formed on the second substrate Each of the second electrodes, a plurality of p-type thermoelectric elements, and a plurality of n-type thermoelectric elements, and each of the first electrodes has a pair of the p-type thermoelectric element and the n-type. Among the p-type thermoelectric element and the n-type thermoelectric element bonded to the pair of adjacent first electrodes, each of the second p-type thermoelectric element and the n-type thermoelectric element is one second. In a thermoelectric module in which the plurality of p-type thermoelectric elements and n-type thermoelectric elements are alternately connected in series by being bonded to an electrode,
The plurality of p-type thermoelectric elements and the plurality of n-type thermoelectric elements are equal in height,
A numerical value R obtained by dividing the amount of thermal expansion of the diagonal length of the first substrate by the cube of the height of the p-type thermoelectric element and the n-type thermoelectric element is 0.039 or more,
The central portion of the first substrate has an R value of less than 0.039, and the first electrode, the p-type thermoelectric element, and the n-type thermoelectric element are joined by soldering,
The portion other than the central portion has a value of R of 0.039 or more, and the first electrode, the p-type thermoelectric element, and the n-type thermoelectric element are connected to each other during the operation of the thermoelectric module. Electrically connected by a liquid metal that is liquid at the temperature of the substrate ,
The second electrode, the p-type thermoelectric element and the n-type thermoelectric element are all joined by soldering ,
A thermoelectric module characterized in that AuSn plating or SnSb plating is applied to the surfaces of the p-type thermoelectric element and the n-type thermoelectric element to be joined to the first electrode and the second electrode .
前記液体金属は、25乃至250℃において液体であることを特徴とする請求項1に記載の熱電モジュール。The thermoelectric module according to claim 1, wherein the liquid metal is liquid at 25 to 250 ° C. 第1の電極に1対のp型熱電素子及びn型熱電素子が接合され、隣接する1対の前記第1の電極に接合されたp型熱電素子及びn型熱電素子のうち隣接するp型熱電素子及びn型熱電素子が1個の第2の電極に接合されて複数個のp型熱電素子及びn型熱電素子が交互に直列接続された熱電モジュールの製造方法において、
前記第1の電極及び前記第2の電極と接合される面にAuSnめっき又はSnSbめっきが施された高さが等しいp型熱電素子及びn型熱電素子を使用し、
前記第1の電極が設けられ、対角長さの熱膨張量を前記p型熱電素子及び前記n型熱電素子の高さの3乗で割った数値Rが0.039以上である基板を高温端としての第1の基板として使用し、この第1の基板の中央部は前記Rの値が0.039未満であって、この中央部の前記第1の電極に夫々1対のp型熱電素子及びn型熱電素子を配置してはんだ付けによって接合する工程と、
前記第1の基板の中央部以外の部分は前記Rの値が0.039以上であって、この中央部以外の部分の前記第1の電極に夫々1対のp型熱電素子及びn型熱電素子を配置して熱電モジュールの動作時における前記第1の基板の温度において液体である液体金属によって電気的に接続する工程と、
前記第2の電極が設けられた基板を低温端としての第2の基板として使用し、この第2の基板に設けられた前記第2の電極によって隣接する1対の前記第1の電極に接合されたp型熱電素子及びn型熱電素子のうち隣接するp型熱電素子及びn型熱電素子を1個の前記第の電極にはんだ付けによって接合する工程と、
を有することを特徴とする熱電モジュールの製造方法。
A pair of p-type thermoelectric elements and n-type thermoelectric elements are bonded to the first electrode, and adjacent p-type of the p-type thermoelectric elements and n-type thermoelectric elements bonded to the adjacent pair of the first electrodes. In the method of manufacturing a thermoelectric module in which a thermoelectric element and an n-type thermoelectric element are joined to one second electrode, and a plurality of p-type thermoelectric elements and n-type thermoelectric elements are alternately connected in series.
Using a p-type thermoelectric element and an n-type thermoelectric element having the same height in which AuSn plating or SnSb plating is applied to the surface joined to the first electrode and the second electrode,
A substrate provided with the first electrode and having a numerical value R obtained by dividing the diagonal thermal expansion amount by the cube of the height of the p-type thermoelectric element and the n-type thermoelectric element is 0.039 or higher. It is used as a first substrate as an end. The central portion of the first substrate has a value of R of less than 0.039, and a pair of p-type thermoelectric elements are connected to the first electrode in the central portion. Arranging the element and the n-type thermoelectric element and joining them by soldering;
The portion of the first substrate other than the central portion has a value of R of 0.039 or more, and a pair of p-type thermoelectric elements and n-type thermoelectric elements are respectively connected to the first electrodes of the portions other than the central portion. Arranging the elements and electrically connecting them with liquid metal that is liquid at the temperature of the first substrate during operation of the thermoelectric module ;
The substrate provided with the second electrode is used as a second substrate as a low temperature end, and is bonded to the pair of adjacent first electrodes by the second electrode provided on the second substrate. Bonding adjacent p-type thermoelectric elements and n-type thermoelectric elements among the p-type thermoelectric elements and n-type thermoelectric elements to one second electrode by soldering;
The manufacturing method of the thermoelectric module characterized by having.
前記液体金属は、25乃至250℃において液体であることを特徴とする請求項3に記載の熱電モジュールの製造方法。The method of manufacturing a thermoelectric module according to claim 3, wherein the liquid metal is liquid at 25 to 250 ° C. 5.
JP2006086616A 2006-03-27 2006-03-27 Thermoelectric module Expired - Fee Related JP4826310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086616A JP4826310B2 (en) 2006-03-27 2006-03-27 Thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086616A JP4826310B2 (en) 2006-03-27 2006-03-27 Thermoelectric module

Publications (2)

Publication Number Publication Date
JP2007266138A JP2007266138A (en) 2007-10-11
JP4826310B2 true JP4826310B2 (en) 2011-11-30

Family

ID=38638858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086616A Expired - Fee Related JP4826310B2 (en) 2006-03-27 2006-03-27 Thermoelectric module

Country Status (1)

Country Link
JP (1) JP4826310B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007395A1 (en) * 2011-04-14 2012-10-18 Behr Gmbh & Co. Kg Thermoelectric module for use in thermoelectric generator, for producing electrical energy, has device for generating electrical energy from heat, where contact surface of device is in thermal or electrical contact with connector
DE102015219737A1 (en) 2015-04-27 2016-10-27 Mahle International Gmbh Thermoelectric module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2881332B2 (en) * 1990-05-14 1999-04-12 株式会社小松製作所 Thermoelectric device manufacturing method
JPH05275754A (en) * 1992-03-26 1993-10-22 Mitsui Mining & Smelting Co Ltd Thermomodule
JP3062754B1 (en) * 1999-07-09 2000-07-12 工業技術院長 Thermoelectric generation module
JP3573448B2 (en) * 2000-12-18 2004-10-06 財団法人電力中央研究所 Thermoelectric conversion element
JP3629533B2 (en) * 2001-07-25 2005-03-16 独立行政法人産業技術総合研究所 Liquid metal bonded thermoelectric conversion module
JP2003092434A (en) * 2001-09-17 2003-03-28 Mitsuba Corp Thermoelectric cooling module
JP4523306B2 (en) * 2004-03-19 2010-08-11 シチズンホールディングス株式会社 Method for manufacturing thermoelectric element
JP4775932B2 (en) * 2004-07-06 2011-09-21 財団法人電力中央研究所 Cushion for heat transfer and thermoelectric conversion module having the same

Also Published As

Publication number Publication date
JP2007266138A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US4855810A (en) Thermoelectric heat pump
JP5545964B2 (en) Thermoelectric module
JP5522943B2 (en) Thermoelectric module
JP5426188B2 (en) Thermoelectric conversion module and thermoelectric semiconductor element
US20100108117A1 (en) Thermoelectric module package and manufacturing method therefor
KR20000006412A (en) Improved thermoelectric module and method of manufacturing the same
WO2010050455A1 (en) Thermoelectric module
JP4873888B2 (en) Thermoelectric conversion module, and power generation device and cooling device using the same
JP5092168B2 (en) Peltier element thermoelectric conversion module, manufacturing method of Peltier element thermoelectric conversion module, and optical communication module
JP2011029295A (en) Thermoelectric conversion module and method of manufacturing the same
JP2009231317A (en) Thermoelectric module
CN1622354A (en) Thermoelectric module and its flux
JP2007067231A (en) Thermoelectric module
JP2007048916A (en) Thermoelectric module
JP2007035907A (en) Thermoelectric module
JP4349552B2 (en) Peltier element thermoelectric conversion module, manufacturing method of Peltier element thermoelectric conversion module, and optical communication module
JP4826310B2 (en) Thermoelectric module
JP2008177356A (en) Thermoelectric power generation element
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
JP2006237547A (en) Thermoelectric conversion module, power generator and cooler using the same
JP2010287729A (en) Heating/cooling test apparatus
JP5865721B2 (en) Thermoelectric module
JP4363958B2 (en) Thermoelectric conversion module and manufacturing method thereof
WO2021019891A1 (en) Thermoelectric module, and method for manufacturing thermoelectric module
JPWO2018100933A1 (en) Thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4826310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees