JP4775932B2 - Cushion for heat transfer and thermoelectric conversion module having the same - Google Patents

Cushion for heat transfer and thermoelectric conversion module having the same Download PDF

Info

Publication number
JP4775932B2
JP4775932B2 JP2004198981A JP2004198981A JP4775932B2 JP 4775932 B2 JP4775932 B2 JP 4775932B2 JP 2004198981 A JP2004198981 A JP 2004198981A JP 2004198981 A JP2004198981 A JP 2004198981A JP 4775932 B2 JP4775932 B2 JP 4775932B2
Authority
JP
Japan
Prior art keywords
heat
melting point
heat transfer
shell
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004198981A
Other languages
Japanese (ja)
Other versions
JP2006024608A (en
Inventor
満 神戸
英雄 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2004198981A priority Critical patent/JP4775932B2/en
Publication of JP2006024608A publication Critical patent/JP2006024608A/en
Application granted granted Critical
Publication of JP4775932B2 publication Critical patent/JP4775932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、伝熱用クッションおよびこれを備える熱電変換モジュールに関する。さらに詳述すると、本発明は、クッションと伝熱の機能を兼ね備える伝熱用クッションおよびこれを備える熱電変換モジュールに関する。   The present invention relates to a heat transfer cushion and a thermoelectric conversion module including the same. More specifically, the present invention relates to a heat transfer cushion having both a cushion and a heat transfer function, and a thermoelectric conversion module including the same.

発熱機器から放熱設備まで熱を輸送する熱輸送手段としては、冷却材を強制循環させるループ、ヒートパイプ、銅やカーボンファイバー等の高熱伝導材料、ヒートポンプおよびペルチェ冷却システム等がある。いずれの熱輸送手段を採用する場合でも、効率的に発熱機器から放熱設備まで熱を輸送するためには、例えば図3に概略構成を示すように、発熱機器101の発熱面101aとこの発熱面101aと対向する熱輸送手段103の面103a、および放熱設備102の受熱面102aとこの受熱面102aと対向する熱輸送手段103の面103a’とを確実に接触させて、接触熱抵抗を低減する必要がある。   Examples of heat transport means for transporting heat from a heat generating device to a heat radiation facility include a loop for forcibly circulating a coolant, a heat pipe, a high heat conductive material such as copper and carbon fiber, a heat pump, and a Peltier cooling system. Regardless of which heat transporting means is used, in order to efficiently transport heat from the heat generating device to the heat dissipating equipment, for example, as shown schematically in FIG. 3, the heat generating surface 101a of the heat generating device 101 and the heat generating surface The surface 103a of the heat transport means 103 facing the 101a and the heat receiving surface 102a of the heat radiating equipment 102 and the surface 103a 'of the heat transport means 103 facing the heat receiving surface 102a are reliably brought into contact to reduce the contact thermal resistance. There is a need.

一方、熱源からの廃熱などを利用して発電を行う熱電変換モジュールがある。この熱電変換モジュール105は、例えば図4に示すように、交互に並ぶ複数のP型熱電半導体106aとN型熱電半導体106bと、隣接するP型熱電半導体106aとN型熱電半導体106bとを交互に電気的に連結する電極107と、電極107の熱源側に積層される電気絶縁性の受熱板108と、受熱板108の反対側の電極107に積層されて冷却手段により冷却される電気絶縁性の冷却板109とを備えている。   On the other hand, there is a thermoelectric conversion module that generates power using waste heat from a heat source. For example, as shown in FIG. 4, the thermoelectric conversion module 105 includes a plurality of alternately arranged P-type thermoelectric semiconductors 106a and N-type thermoelectric semiconductors 106b, and adjacent P-type thermoelectric semiconductors 106a and N-type thermoelectric semiconductors 106b. The electrically connected electrode 107, the electrically insulating heat receiving plate 108 laminated on the heat source side of the electrode 107, and the electrically insulating heat insulating plate 108 laminated on the electrode 107 on the opposite side of the heat receiving plate 108 and cooled by the cooling means. And a cooling plate 109.

この熱電変換モジュール105においては、発電性能の向上のために、熱電半導体106の両面にできるだけ大きい温度差を与える必要がある。このために従来では、図4(A)に示すように、組み立て済みの熱電変換モジュール105を熱源としての加熱ダクト110および冷却手段としての冷却ダクト111の間に挟み、ダクト110,111の上下から加圧力を作用させて、加熱ダクト110および冷却ダクト111が熱電変換モジュール105に密着するようにし、接触熱抵抗を低減して熱を効果的に伝導させる方法がとられている。また、図4(B)に示すように、熱電変換モジュール105と加熱ダクト110および冷却ダクト111の間にゴムシート112を介在させ、ダクト110,111の上下から加圧力を作用させる方法もある。さらに、図4(C)に示すように、熱電変換モジュール105と加熱ダクト110および冷却ダクト111の間に熱伝導の良いグリース113を介在させ、ダクト110,111の上下から加圧力を作用させる方法もある(特許文献1参照)。   In this thermoelectric conversion module 105, it is necessary to give a temperature difference as large as possible on both surfaces of the thermoelectric semiconductor 106 in order to improve the power generation performance. For this reason, conventionally, as shown in FIG. 4A, the assembled thermoelectric conversion module 105 is sandwiched between a heating duct 110 as a heat source and a cooling duct 111 as a cooling means. A method has been adopted in which heat is applied effectively so that the heating duct 110 and the cooling duct 111 are in close contact with the thermoelectric conversion module 105 to reduce contact thermal resistance and effectively conduct heat. In addition, as shown in FIG. 4B, there is a method in which a rubber sheet 112 is interposed between the thermoelectric conversion module 105, the heating duct 110, and the cooling duct 111 to apply pressure from above and below the ducts 110 and 111. Further, as shown in FIG. 4C, a method in which grease 113 having good thermal conductivity is interposed between the thermoelectric conversion module 105, the heating duct 110, and the cooling duct 111 and pressure is applied from above and below the ducts 110 and 111. There is also (refer patent document 1).

特開平11−30782号公報JP-A-11-30782

しかしながら、図3に示す発熱機器101の発熱面101aと熱輸送手段103の面103a、および熱輸送手段103の面103a’と放熱設備102の受熱面102aを単に接触させた場合の接触熱抵抗は、表面仕上げ状態や面同士を押し付ける加圧力などにも依存するが、一般に10−3〜10−2 (mK/W) 程度となり、接触面で大きな温度落差を発生し熱抵抗となる。接触熱抵抗を低減するには接触面を接合することが最も効果的だが、接合により両部材の相対変位が不可能になり、部材の温度変化にともなう熱膨張差を吸収できず、部材の破損につながる恐れがある。 However, the contact thermal resistance when the heat generating surface 101a of the heat generating device 101 shown in FIG. 3 and the surface 103a of the heat transport means 103, and the surface 103a ′ of the heat transport means 103 and the heat receiving surface 102a of the heat dissipating equipment 102 are simply brought into contact is Although it depends on the surface finish state and the pressing force pressing the surfaces, it is generally about 10 −3 to 10 −2 (m 2 K / W), and a large temperature drop is generated on the contact surface, resulting in thermal resistance. Joining the contact surfaces is the most effective way to reduce the contact thermal resistance, but the relative displacement of both members becomes impossible due to the joining, and the thermal expansion difference due to temperature changes of the members cannot be absorbed, resulting in damage to the members. May lead to

また、熱電変換システムにおいて、図4(A)に示す熱電変換モジュール105を挟んだダクト110,111の上下から加圧力を作用させる方式では、加圧力が弱いと接触熱抵抗が大きくなり、熱電半導体106本体への温度差が低減し出力が低下する。逆に加圧力を高めると出力は上がるが、熱電半導体106本体を破壊する恐れがあり、加圧力の調整が極めて難しい。このため、接触熱抵抗を低減するには、接触面となる受熱板108、冷却板109および加熱ダクト110、冷却ダクト111の平面度および表面粗さを向上させるため高精度の仕上げを行い、接触面の密着度を向上させる必要がある。但し、このような高精度の仕上げを行った場合でも、温度差が生じれば、受熱板108、冷却板109および加熱ダクト110、冷却ダクト111の接触面が曲面状に変形してしまう(面外変形とも呼ばれる)ため、常に良好な密着を保つことは不可能である。接触面が曲面状に変形してしまうと接触面間に隙間を生じ、大きな接触熱抵抗が発生してしまう。加えて、図4(A)に示すシステムでは、起動・停止時には熱過渡に起因する熱応力の回避のため加圧力を必ず緩める必要があり、実用性の点で劣る。   Further, in the thermoelectric conversion system, in the method of applying pressure from above and below the ducts 110 and 111 sandwiching the thermoelectric conversion module 105 shown in FIG. 4A, if the pressure is weak, the contact thermal resistance increases, and the thermoelectric semiconductor The temperature difference to the main body 106 decreases, and the output decreases. Conversely, when the applied pressure is increased, the output increases, but the thermoelectric semiconductor 106 main body may be destroyed, and adjustment of the applied pressure is extremely difficult. For this reason, in order to reduce the contact thermal resistance, high-precision finishing is performed to improve the flatness and surface roughness of the heat receiving plate 108, the cooling plate 109, the heating duct 110, and the cooling duct 111, which are contact surfaces, and the contact It is necessary to improve the adhesion of the surface. However, even when such high-precision finishing is performed, if a temperature difference occurs, the contact surfaces of the heat receiving plate 108, the cooling plate 109, the heating duct 110, and the cooling duct 111 are deformed into curved surfaces (surfaces). Therefore, it is impossible to always maintain good adhesion. If the contact surface is deformed into a curved surface, a gap is generated between the contact surfaces, and a large contact thermal resistance is generated. In addition, the system shown in FIG. 4A is inferior in terms of practicality because it is necessary to relax the applied pressure in order to avoid thermal stress caused by thermal transients when starting and stopping.

また、図4(B)に示す方式では、柔軟なゴムシート112が熱応力を緩和するため、加圧力の微妙な調整は不要だが、ゴムシート112の熱伝導率が悪いため、熱電半導体106本体への温度差が著しく低減し出力が大幅に低下する欠点がある。また、図4(C)に示す方式は、グリース113がすぐに酸化して劣化してしまったり蒸発してしまうため、実用システムでは採用できない。   Further, in the method shown in FIG. 4B, since the flexible rubber sheet 112 relieves thermal stress, fine adjustment of the pressing force is unnecessary, but the thermal conductivity of the rubber sheet 112 is poor, so the thermoelectric semiconductor 106 main body There is a disadvantage that the temperature difference to the temperature is remarkably reduced and the output is greatly reduced. Further, the method shown in FIG. 4C cannot be employed in a practical system because the grease 113 is immediately oxidized and deteriorates or evaporates.

また、特に加熱ダクト110は運転・停止中の温度差に起因する大きな熱膨張変位を生ずるため、熱電変換モジュール105がこの変位を許容できる構造が不可欠である。さもないと繰り返し応力により熱電変換モジュール105を破壊することになる。熱膨張変位量は、加熱ダクト110の寸法(固定位置から自由端までの距離)および運転・停止中の温度差に比例する。例えば一辺が2mの炭素鋼製の加熱ダクト110をその中心部で固定する場合、固定位置から自由端までの距離は1mである。この加熱ダクト110が運転中は520℃となり、停止中は20℃となるとすると、その変位量は次式で計算される。   In particular, since the heating duct 110 causes a large thermal expansion displacement due to a temperature difference during operation and stoppage, a structure that the thermoelectric conversion module 105 can tolerate this displacement is indispensable. Otherwise, the thermoelectric conversion module 105 will be destroyed by repeated stress. The amount of thermal expansion displacement is proportional to the dimension of the heating duct 110 (distance from the fixed position to the free end) and the temperature difference during operation / stop. For example, when the heating duct 110 made of carbon steel having a side of 2 m is fixed at the center, the distance from the fixing position to the free end is 1 m. If this heating duct 110 is 520 ° C. during operation and 20 ° C. during stoppage, the amount of displacement is calculated by the following equation.

<数式1>
変位量 =線膨張係数×温度差×距離
=16×10−6×(K−1)×500(K)×1000(mm)=8(mm)
<Formula 1>
Displacement = linear expansion coefficient x temperature difference x distance
= 16 × 10 −6 × (K −1 ) × 500 (K) × 1000 (mm) = 8 (mm)

このように熱電変換モジュール105は、接触熱抵抗を低減するためにしっかりと加圧され拘束されている必要があると同時に、上記の熱膨張による変位量を許容する必要がある。このような相反する要求を両立できる方策が求められているのが現状である。   As described above, the thermoelectric conversion module 105 needs to be firmly pressed and restrained in order to reduce the contact thermal resistance, and at the same time, it is necessary to allow the displacement due to the thermal expansion. At present, there is a demand for measures that can satisfy such conflicting requirements.

そこで本発明は、接触熱抵抗を低減して熱を効果的に伝導させ、尚且つ熱膨張変位を容易に吸収できる伝熱用クッションおよびこれを備える熱電変換モジュールを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a heat transfer cushion capable of effectively conducting heat by reducing contact thermal resistance and easily absorbing thermal expansion displacement, and a thermoelectric conversion module including the same.

かかる目的を達成するため、請求項1記載の発明は、温度差のある2面の間に介在しこれら2面から加圧力を受けると共に高温側の面から低温側の面へと熱を伝える伝熱用クッションであり、使用温度下で液状を呈する低融点材料と、この低融点材料を封入し且つ液状の前記低融点材料の変形を許容する柔軟性を備えると共に前記使用温度よりも融点が高い材料から成るシェルとを有し、前記シェルの前記高温側の面と対向する面または前記低温側の面と対向する面の一方または双方にカーボンシートが設けられるようにしている。 In order to achieve such an object, the invention described in claim 1 is provided between two surfaces having a temperature difference, receives pressure from these two surfaces, and transfers heat from the high temperature side surface to the low temperature side surface. This is a thermal cushion, and has a low melting point material that is liquid at the use temperature, and has a flexibility that encapsulates the low melting point material and allows deformation of the liquid low melting point material, and has a melting point that is higher than the use temperature. have a shell made of a material, a carbon sheet is in so that provided on one or both of the hot side of the surface opposite the surface or the cold side of the surface opposite the surface of the shell.

したがって、使用温度下で液状を呈する低融点材料およびこの低融点材料を封入する柔軟なシェルが、接触する伝熱面の曲面状の変形(面外変形)に追従して、2つの伝熱面の間を良好に充填し、これら2面の間に空隙が生じてしまうことを防ぐ。従って、伝熱用クッションは対向する2面と常に良好な密着状態を保つ。しかも、液状の低融点材料は熱伝導率が高いので、伝熱用クッションの熱抵抗を低く押さえることができ、効率的に高温側の面から低温側の面へと熱を伝えることができる。
したがって、伝熱面が熱膨張した場合でも、伝熱面をシート材上で滑らせて面方向にスライド移動させるので、シェルに作用しようとするせん断応力を逃がし、シェルの破壊を防止できる。これにより、伝熱面が大型となる場合の大きな熱膨張変位、例えば大型の加熱ダクトの運転・停止中の温度差に起因する熱膨張変位を許容できる。
カーボンシートは摺動性に優れると共に、カーボンシートが介在する界面の熱抵抗を、これがない場合の1/10以下に低減することができる。
Therefore, the low-melting-point material that exhibits a liquid state at the operating temperature and the flexible shell that encloses the low-melting-point material follow the curved deformation (out-of-plane deformation) of the heat-transfer surface that comes into contact with the two heat-transfer surfaces. The gap between the two is satisfactorily filled, and a gap is prevented from being generated between these two surfaces. Therefore, the heat transfer cushion always maintains good contact with the two opposing surfaces. Moreover, since the liquid low melting point material has high thermal conductivity, the heat resistance of the heat transfer cushion can be kept low, and heat can be efficiently transferred from the high temperature side surface to the low temperature side surface.
Therefore, even when the heat transfer surface is thermally expanded, the heat transfer surface is slid on the sheet material and slid in the surface direction, so that the shearing stress acting on the shell can be released and the shell can be prevented from being broken. Thereby, a large thermal expansion displacement when the heat transfer surface becomes large, for example, a thermal expansion displacement caused by a temperature difference during operation / stop of the large heating duct can be allowed.
The carbon sheet is excellent in slidability, and the thermal resistance at the interface where the carbon sheet is interposed can be reduced to 1/10 or less of the case without this.

また、請求項記載の発明は、請求項記載の伝熱用クッションにおいて、シェルは金属フォイルよりなるものとしている。この場合、シェルは熱伝導率の高い金属製とされ、且つ薄く形成されるので、伝熱用クッションの熱抵抗を低く押さえることができ、効率的に高温側の面から低温側の面へと熱を伝えることができる。 The invention of claim 2, in the cushion heat transfer according to claim 1, wherein the shell is assumed to made of a metal foil. In this case, since the shell is made of a metal having high thermal conductivity and is thinly formed, the thermal resistance of the heat transfer cushion can be kept low, and efficiently from the high temperature side surface to the low temperature side surface. Can convey heat.

また、請求項記載の発明は、請求項1または2記載の伝熱用クッションにおいて、低融点材料は融点が使用温度以下の金属であるものとしている。この場合、低融点材料は熱伝導率の高い金属であり、しかも使用温度下で溶融状態となり更に熱伝導率が高まるので、伝熱用クッションの熱抵抗を低く押さえることができ、効率的に高温側の面から低温側の面へと熱を伝えることができる。 According to a third aspect of the present invention, in the heat transfer cushion according to the first or second aspect , the low melting point material is a metal having a melting point equal to or lower than the operating temperature. In this case, the low-melting-point material is a metal having high thermal conductivity and is in a molten state at the operating temperature and further increases the thermal conductivity. Therefore, the thermal resistance of the heat transfer cushion can be kept low, and the temperature can be effectively increased. Heat can be transferred from the side surface to the low temperature side surface.

また、請求項記載の発明は、請求項1または2記載の伝熱用クッションにおいて、低融点材料は、融点が使用温度以下の金属に、当該金属よりも熱伝導率の高い微粒子を添加してなるものとしている。従って、使用温度よりも融点が低く且つ高い熱伝導率を有するとの低融点材料に適した条件を満足させることができる。 The invention according to claim 4 is the heat transfer cushion according to claim 1 or 2, wherein the low melting point material is obtained by adding fine particles having a higher thermal conductivity to a metal having a melting point lower than the operating temperature. It is supposed to be. Therefore, it is possible to satisfy conditions suitable for a low-melting-point material having a melting point lower than the use temperature and a high thermal conductivity.

また、請求項記載の発明は、請求項1からのいずれか1つに記載の伝熱用クッションにおいて、低融点材料を封入した状態でシェルの内部に隙間ができるようにしている。この場合、低融点材料が溶融した際の体積膨張を吸収することができ、低融点材料の体積膨張によりシェルが破損してしまうことを防止できる。 According to a fifth aspect of the present invention, in the heat transfer cushion according to any one of the first to fourth aspects, a gap is formed inside the shell in a state where a low melting point material is enclosed. In this case, the volume expansion when the low melting point material is melted can be absorbed, and the shell can be prevented from being damaged by the volume expansion of the low melting point material.

また、請求項記載の発明は、請求項記載の伝熱用クッションにおいて、前記隙間を真空とする又は不活性雰囲気とするようにしている。この場合、低融点材料の酸化を防ぐことができる。 According to a sixth aspect of the present invention, in the heat transfer cushion according to the fifth aspect , the gap is evacuated or an inert atmosphere. In this case, oxidation of the low melting point material can be prevented.

また、請求項記載の発明は、少なくとも一対の熱電素子と、熱源から熱を受ける受熱部と、前記熱電素子を挟んで前記受熱部の反対側に位置して冷媒により冷却される放熱部とを備え、前記受熱部と前記放熱部との温度差により発電する熱電変換モジュールにおいて、前記受熱部または前記放熱部の一方または双方に、請求項1からのいずれか1つに記載の伝熱用クッションを備えるようにしている。 The invention according to claim 7 includes at least a pair of thermoelectric elements, a heat receiving part that receives heat from a heat source, and a heat radiating part that is located on the opposite side of the heat receiving part across the thermoelectric element and is cooled by a refrigerant. In the thermoelectric conversion module which generates electric power by the temperature difference between the heat receiving part and the heat radiating part, heat transfer according to any one of claims 1 to 6 is provided on one or both of the heat receiving part and the heat radiating part. A cushion is provided.

したがって、使用温度下で液状を呈する低融点材料およびこの低融点材料を封入する柔軟なシェルが、接触する伝熱面の曲面状の変形(面外変形)に追従して、2つの伝熱面の間を良好に充填し、これら2面の間に空隙が生じてしまうことを防ぐ。従って、伝熱用クッションは対向する2面と常に良好な密着状態を保つ。しかも、液状の低融点材料は熱伝導率が高いので、伝熱用クッションの熱抵抗を低く押さえることができ、効率的に熱を伝えることができる。これにより、熱電変換モジュールに負荷できる温度差を従来よりも増大でき、熱電変換モジュールの発電電力を向上できる。すなわち実質的なエネルギー変換効率を向上できる。これにより熱電変換システムの発電単価を低減できる。また、液状の低融点材料を封入した柔軟なシェルがクッションとして機能し、熱電変換モジュールに作用する加圧力により熱電素子が破壊してしまうことを防止する。   Therefore, the low-melting-point material that exhibits a liquid state at the operating temperature and the flexible shell that encloses the low-melting-point material follow the curved deformation (out-of-plane deformation) of the heat-transfer surface that comes into contact with the two heat-transfer surfaces. The gap between the two is satisfactorily filled, and a gap is prevented from being generated between these two surfaces. Therefore, the heat transfer cushion always maintains good contact with the two opposing surfaces. Moreover, since the liquid low melting point material has a high thermal conductivity, the heat resistance of the heat transfer cushion can be kept low, and heat can be transferred efficiently. Thereby, the temperature difference which can be loaded to a thermoelectric conversion module can be increased compared with the past, and the generated electric power of a thermoelectric conversion module can be improved. That is, substantial energy conversion efficiency can be improved. Thereby, the power generation unit price of the thermoelectric conversion system can be reduced. In addition, a flexible shell encapsulating a liquid low-melting-point material functions as a cushion, and prevents the thermoelectric element from being destroyed by the applied pressure acting on the thermoelectric conversion module.

しかして請求項1記載の伝熱用クッションによれば、使用温度下で液状を呈する低融点材料およびこの低融点材料を封入する柔軟なシェルが、接触する伝熱面の曲面状の変形(面外変形)に追従して、2つの伝熱面の間を良好に充填し、これら2面の間に空隙が生じてしまうことを防ぐ。しかも、液状の低融点材料は熱伝導率が高いので、伝熱用クッションの熱抵抗を低く押さえることができる。よって、高温側の面から低温側の面へと効率的に熱を伝えることができる。この伝熱用クッションを用いることにより、発熱機器や放熱設備あるいは熱輸送手段などの伝熱面の平面度および表面粗さに対する要求条件を緩和することができ、また、対向する2つの伝熱面を直接接合しなくて済むので、対向する2つの伝熱面の熱膨張差によって部材を破損してしまうこともない。
しかも、請求項1記載の伝熱用クッションによれば、伝熱面が熱膨張した場合でも、伝熱面をシート材上で滑らせて面方向にスライド移動させるので、シェルに作用しようとするせん断応力を逃がし、シェルの破壊を防止できる。これにより、伝熱面が大型となる場合の大きな熱膨張変位、例えば大型の加熱ダクトの運転・停止中の温度差に起因する熱膨張変位を許容できる。
特に、請求項1記載の伝熱用クッションによれば、シート材をカーボンシートとしているので、カーボンシートは摺動性に優れると共に、カーボンシートが介在する界面の熱抵抗を、これがない場合の1/10以下に低減することができる。
Thus, according to the heat transfer cushion according to claim 1, the low melting point material that is liquid at the operating temperature and the flexible shell that encloses the low melting point material are deformed in a curved shape (surface Following the outer deformation), the space between the two heat transfer surfaces is satisfactorily filled, and a gap is prevented from being generated between these two surfaces. Moreover, since the liquid low melting point material has high thermal conductivity, the thermal resistance of the heat transfer cushion can be kept low. Therefore, heat can be efficiently transferred from the high temperature side surface to the low temperature side surface. By using this heat transfer cushion, the requirements for the flatness and surface roughness of the heat transfer surface of the heat generating device, the heat radiating equipment, or the heat transporting means can be relaxed, and two opposing heat transfer surfaces Is not required to be joined directly, so that the member is not damaged by the difference in thermal expansion between the two opposing heat transfer surfaces.
Moreover, according to the heat transfer cushion according to claim 1, even when the heat transfer surface is thermally expanded, the heat transfer surface is slid on the sheet material and slid in the surface direction, so that it tends to act on the shell. Shear stress can be released and the shell can be prevented from breaking. Thereby, a large thermal expansion displacement when the heat transfer surface becomes large, for example, a thermal expansion displacement caused by a temperature difference during operation / stop of the large heating duct can be allowed.
In particular, according to the heat transfer cushion according to claim 1, since the sheet material is a carbon sheet, the carbon sheet is excellent in slidability, and the thermal resistance at the interface where the carbon sheet is interposed is 1 / 10 or less.

さらに請求項記載の伝熱用クッションによれば、シェルは金属フォイルよりなるものとしているので、伝熱用クッションの熱抵抗をより低く押さえることができ、効率的に高温側の面から低温側の面へと熱を伝えることができる。 Furthermore, according to the heat transfer cushion of claim 2 , since the shell is made of a metal foil, the heat resistance of the heat transfer cushion can be kept lower, and the high temperature side surface can be efficiently moved to the low temperature side. Can convey heat to the surface.

さらに請求項記載の伝熱用クッションによれば、低融点材料は融点が使用温度以下の金属としているので、伝熱用クッションの熱抵抗をより低く押さえることができ、効率的に高温側の面から低温側の面へと熱を伝えることができる。 Furthermore, according to the heat transfer cushion according to claim 3 , since the low melting point material is a metal having a melting point equal to or lower than the operating temperature, the heat resistance of the heat transfer cushion can be kept low, and the high temperature side can be efficiently Heat can be transferred from the surface to the low-temperature surface.

さらに請求項記載の伝熱用クッションによれば、低融点材料は、融点が使用温度以下の金属に、当該金属よりも熱伝導率の高い微粒子を添加してなるものとしているので、使用温度よりも融点が低く且つ高い熱伝導率を有するとの低融点材料に適した条件を満足させることができる。 Furthermore, according to the heat transfer cushion according to claim 4 , the low melting point material is formed by adding fine particles having a higher thermal conductivity than the metal to a metal having a melting point equal to or lower than the use temperature. It is possible to satisfy conditions suitable for a low melting point material having a lower melting point and a higher thermal conductivity.

さらに請求項記載の伝熱用クッションによれば、低融点材料を封入した状態でシェルの内部に隙間ができるようにしているので、低融点材料が溶融した際の体積膨張を吸収することができ、低融点材料の体積膨張によりシェルが破損してしまうことを防止できる。 Furthermore, according to the heat transfer cushion according to claim 5 , since the gap is formed inside the shell in a state where the low melting point material is enclosed, the volume expansion when the low melting point material is melted can be absorbed. It is possible to prevent the shell from being damaged by the volume expansion of the low melting point material.

さらに請求項記載の伝熱用クッションによれば、上記隙間を真空とする又は不活性雰囲気とするので、低融点材料の酸化を防ぐことができる。 Furthermore, according to the heat transfer cushion according to the sixth aspect , since the gap is evacuated or an inert atmosphere, oxidation of the low melting point material can be prevented.

さらに請求項記載の熱電変換モジュールによれば、上記伝熱用クッションを備えるので、熱電変換モジュールに負荷できる温度差を従来よりも増大でき、熱電変換モジュールの発電電力を向上できる。すなわち実質的なエネルギー変換効率を向上できる。これにより熱電変換システムの発電単価を低減できる。また、液状の低融点材料を封入した柔軟なシェルがクッションとして機能し、熱電変換モジュールに作用する加圧力により熱電素子が破壊してしまうことを防止する。 Furthermore, according to the thermoelectric conversion module of claim 7, since the heat transfer cushion is provided, the temperature difference that can be applied to the thermoelectric conversion module can be increased as compared with the conventional case, and the generated power of the thermoelectric conversion module can be improved. That is, substantial energy conversion efficiency can be improved. Thereby, the power generation unit price of the thermoelectric conversion system can be reduced. In addition, a flexible shell encapsulating a liquid low-melting-point material functions as a cushion, and prevents the thermoelectric element from being destroyed by the applied pressure acting on the thermoelectric conversion module.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings.

図1に本発明の伝熱用クッションの実施の一形態を示す。この伝熱用クッション1は、温度差のある2面S1,S2の間に介在しこれら2面S1,S2から加圧力を受けると共に高温側の面S1から低温側の面S2へと熱を伝えるものである。   FIG. 1 shows an embodiment of the heat transfer cushion of the present invention. The heat transfer cushion 1 is interposed between two surfaces S1 and S2 having a temperature difference, receives pressure from the two surfaces S1 and S2, and transfers heat from the high temperature side surface S1 to the low temperature side surface S2. Is.

例えば発熱機器から放熱設備まで熱を輸送する熱輸送手段において、発熱機器と熱輸送手段との間に伝熱用クッション1を介在させる場合は、発熱機器の発熱面が高温側の面S1となり、発熱機器の発熱面と対向する熱輸送手段の面が低温側の面S2となる。また、熱輸送手段と放熱設備との間に伝熱用クッション1を介在させる場合は、放熱設備の受熱面が低温側の面S2となり、放熱設備の受熱面と対向する熱輸送手段の面が高温側の面S1となる。本実施形態では、高温側の面を加熱面S1と呼び、低温側の面を受熱面S2と呼び、加熱面S1を有する部材を熱源2と呼び、受熱面S2を有する部材を受熱部材3と呼ぶ。例えば図1は、熱源2が加熱ダクトであり、受熱部材3が冷却ダクトである例を示す。   For example, in a heat transport means for transporting heat from a heat generating device to a heat radiating facility, when the heat transfer cushion 1 is interposed between the heat generating device and the heat transport means, the heat generating surface of the heat generating device becomes the high temperature side surface S1, The surface of the heat transport means that faces the heat generating surface of the heat generating device is the low temperature surface S2. When the heat transfer cushion 1 is interposed between the heat transporting means and the heat radiating equipment, the heat receiving surface of the heat radiating equipment becomes the low temperature side surface S2, and the surface of the heat transporting means facing the heat receiving face of the heat radiating equipment is It becomes the surface S1 on the high temperature side. In the present embodiment, the surface on the high temperature side is called the heating surface S1, the surface on the low temperature side is called the heat receiving surface S2, the member having the heating surface S1 is called the heat source 2, and the member having the heat receiving surface S2 is the heat receiving member 3. Call. For example, FIG. 1 shows an example in which the heat source 2 is a heating duct and the heat receiving member 3 is a cooling duct.

この伝熱用クッション1は、融点が使用温度以下である低融点材料4と、この低融点材料4を封入し且つ液状の低融点材料4の変形を許容する柔軟性を備えるシェル5とを備えている。   The heat transfer cushion 1 includes a low melting point material 4 having a melting point equal to or lower than a use temperature, and a shell 5 that encloses the low melting point material 4 and has flexibility to allow deformation of the liquid low melting point material 4. ing.

シェル5の厚みは、加熱面S1や受熱面S2の温度差による曲面状の変形(面外変形)に柔軟に追従することができるように、また熱抵抗を小さくする観点から、薄くすることが望ましく、例えば20μm〜100μm(0.1mm)程度とすることが好ましい。また、シェル5の材料は、使用温度下で低融点材料4を確実に密封できるように融点が使用温度よりも高く、且つ封入する低融点材料4との共存性が良いものが選択される。特に高い熱伝導率を有する金属材料の利用が好ましい。例えば、使用温度が250℃以下の場合にはアルミニウム(Al)、銅(Cu)などが利用でき、使用温度が400℃以下ではステンレス鋼(SUS304,SUS316)などが利用でき、使用温度が600℃以下では、インコネル(Inconel)などが利用できる。本実施形態のシェル5は例えば薄い金属フォイル(金属箔)を用いて形成されている。但し、シェル5の材料が金属に限定されるものではない。   The thickness of the shell 5 can be reduced in order to flexibly follow the curved surface deformation (out-of-plane deformation) due to the temperature difference between the heating surface S1 and the heat receiving surface S2 and from the viewpoint of reducing the thermal resistance. Desirably, for example, about 20 μm to 100 μm (0.1 mm) is preferable. In addition, the material of the shell 5 is selected so that the melting point is higher than the use temperature and the coexistence with the low melting point material 4 to be sealed so that the low melting point material 4 can be reliably sealed at the use temperature. In particular, it is preferable to use a metal material having a high thermal conductivity. For example, when the operating temperature is 250 ° C. or lower, aluminum (Al), copper (Cu) or the like can be used. When the operating temperature is 400 ° C. or lower, stainless steel (SUS304, SUS316) or the like can be used, and the operating temperature is 600 ° C. Below, Inconel etc. can be used. The shell 5 of the present embodiment is formed using, for example, a thin metal foil (metal foil). However, the material of the shell 5 is not limited to metal.

一方、低融点材料4は、使用温度よりも融点が低く、且つ高い熱伝導率を有し、シェル5との共存性が良いものが選択される。具体的には、すず(Sn:融点232℃)、ビスマス(Bi:融点271℃)などが利用できる。ここで、融点が使用温度以下の金属に、当該金属よりも熱伝導率の高い微粒子を添加することで、使用温度よりも融点が低く且つ高い熱伝導率を有するとの条件を満足した低融点材料4を得るようにしても良い。例えばビスマスに、銅(Cu)またはタングステン(W)などの微粒子を添加することで、見かけの熱伝導率を高めることができる。この他、高価なため一般的ではないが、ガリウム(Ga:融点30℃)、インジウム(In:融点157℃)なども低融点材料4として利用可能である。但し、低融点材料4が金属に限定されるものではない。例えば、金属以外では溶融塩(例えばNaNO/KNO)などを低融点材料4として利用できる。 On the other hand, as the low melting point material 4, a material having a melting point lower than the use temperature, a high thermal conductivity, and good coexistence with the shell 5 is selected. Specifically, tin (Sn: melting point 232 ° C.), bismuth (Bi: melting point 271 ° C.), or the like can be used. Here, a low melting point satisfying the condition that the melting point is lower than the working temperature and has a high thermal conductivity by adding fine particles having a higher thermal conductivity than the metal to the metal having a melting point equal to or lower than the working temperature. The material 4 may be obtained. For example, the apparent thermal conductivity can be increased by adding fine particles such as copper (Cu) or tungsten (W) to bismuth. In addition, although not expensive because of its high price, gallium (Ga: melting point: 30 ° C.), indium (In: melting point: 157 ° C.), etc. can be used as the low melting point material 4. However, the low melting point material 4 is not limited to metal. For example, a molten salt (for example, NaNO 3 / KNO 3 ) or the like can be used as the low melting point material 4 other than metal.

伝熱用クッション1は例えば次のように作製される。例えば、2枚の薄い平板状の金属フォイルの一方または両方に対してプレス成形加工などを施し、これら2枚の金属フォイルの周縁を合わせた場合にこれら2枚の金属フォイル間に1〜2mm程度の隙間ができるようにする。この隙間に、当該隙間と同一厚さのシート状に成形された低融点材料4を入れて、前記2枚の金属フォイルを合わせた状態で、周囲を電子ビーム溶接などの方法により密封する。これにより、上記2枚の金属フォイルはシェル5として機能する。尚、図1は、2枚の平板状金属フォイルの一方のみに対してプレス成形加工を施し、低融点材料4を封入するための隙間を形成した例を示す。但し、図1の構成には限定されず、例えば2枚の平板状金属フォイルの双方に対してプレス成形加工などを施して、シェル5を構成する2枚の金属フォイルを上下対称の形状として、当該シェル5の内部に低融点材料4を封入するための隙間を形成するようにしても良い。また、低融点材料4を粉末(例えば上記に例示した金属の粉末)とし、当該粉末状の低融点材料4をシェル5の内部に形成した隙間に充填するようにしても良い。   The heat transfer cushion 1 is manufactured as follows, for example. For example, when one or both of two thin flat metal foils are subjected to press molding and the peripheral edges of these two metal foils are combined, about 1 to 2 mm between the two metal foils. To create a gap. A low melting point material 4 formed into a sheet having the same thickness as the gap is put into the gap, and the surroundings are sealed by a method such as electron beam welding in a state where the two metal foils are combined. Thereby, the two metal foils function as the shell 5. FIG. 1 shows an example in which only one of the two flat metal foils is press-molded to form a gap for enclosing the low melting point material 4. However, it is not limited to the configuration of FIG. 1, for example, by performing press forming processing on both of the two flat plate-like metal foils, the two metal foils constituting the shell 5 have a vertically symmetrical shape, A gap for enclosing the low melting point material 4 may be formed inside the shell 5. Alternatively, the low melting point material 4 may be a powder (for example, a metal powder exemplified above), and the powdery low melting point material 4 may be filled in a gap formed inside the shell 5.

ここで、低融点材料4を封入した状態でシェル5の内部に隙間6ができるようにすることが好ましい。例えば本実施形態では、低融点材料4のシートの寸法をシェル5の内部の平面寸法よりも小さくして、シェル5の内部の隙間6を確保するようにしている。隙間6を確保することで、低融点材料4が溶融した際の体積膨張を吸収することができ、低融点材料4の体積膨張によりシェル5が破損してしまうことを防止できる。   Here, it is preferable that a gap 6 is formed inside the shell 5 in a state where the low melting point material 4 is sealed. For example, in the present embodiment, the dimension of the sheet of the low melting point material 4 is made smaller than the plane dimension inside the shell 5 so as to ensure the gap 6 inside the shell 5. By securing the gap 6, the volume expansion when the low melting point material 4 is melted can be absorbed, and the shell 5 can be prevented from being damaged by the volume expansion of the low melting point material 4.

さらに、シェル5の内部に確保した隙間6は、真空または不活性雰囲気とすることが、低融点材料4の酸化を防ぐ上で好ましい。尚、シェル5の周囲を電子ビーム溶接により密封する場合は、電子ビーム溶接が真空雰囲気で行われるため、シェル5の内部は自ずと真空になる。シェル5の内部を不活性雰囲気とする場合には、例えばアルゴン(Ar)やヘリウム(He)などの不活性ガスを低融点材料4とともにシェル5内に封入するようにする。   Further, it is preferable that the gap 6 secured inside the shell 5 is in a vacuum or an inert atmosphere in order to prevent the low melting point material 4 from being oxidized. When the periphery of the shell 5 is sealed by electron beam welding, since the electron beam welding is performed in a vacuum atmosphere, the inside of the shell 5 is naturally evacuated. When the inside of the shell 5 is an inert atmosphere, an inert gas such as argon (Ar) or helium (He) is enclosed in the shell 5 together with the low melting point material 4.

シェル5を構成する2枚の金属フォイルの間の隙間の大きさ、換言すれば伝熱用クッション1の厚みhは、大きくするほど、加熱面S1や受熱面S2の温度差による曲面状の変形に柔軟に追従することができ、加熱面S1と受熱面S2との間を良好に充填することができるが、伝熱用クッション1自体の熱抵抗も大きくなるため、必要最小限とすることが好ましい。このため、伝熱用クッション1の厚みhは、加熱面S1や受熱面S2に想定される変形の程度により適宜決定する。   As the size of the gap between the two metal foils constituting the shell 5, in other words, the thickness h of the heat transfer cushion 1 increases, the deformation of the curved surface due to the temperature difference between the heating surface S1 and the heat receiving surface S2 increases. The heating surface S1 and the heat receiving surface S2 can be satisfactorily filled, but the heat resistance of the heat transfer cushion 1 itself is also increased, so that the necessary minimum is required. preferable. For this reason, the thickness h of the heat transfer cushion 1 is appropriately determined depending on the degree of deformation assumed for the heating surface S1 and the heat receiving surface S2.

加熱面S1と受熱面S2には、伝熱用クッション1を押圧する力が作用する。例えば受熱部材3が固定され熱源2が移動可能となる構成とし、熱源2を受熱部材3側に移動させて、図1に示す加圧力Pを作用させる。   A force for pressing the heat transfer cushion 1 acts on the heating surface S1 and the heat receiving surface S2. For example, the heat receiving member 3 is fixed and the heat source 2 is movable, the heat source 2 is moved to the heat receiving member 3 side, and the pressure P shown in FIG. 1 is applied.

シェル5内に封入された低融点材料4は例えば熱源2で加熱されて溶融する。シェル5は液状の低融点材料4の変形を許容する柔軟性を備えるので、伝熱用クッション1は加熱面S1および受熱面S2に密着し、加熱面S1や受熱面S2が温度差により曲面状に変形してもこの変形に柔軟に追従して、加熱面S1と受熱面S2との間を良好に充填し、加熱面S1と受熱面S2の間に空隙が生じてしまうことを防ぐ。従って、伝熱用クッション1は加熱面S1および受熱面S2と常に良好な密着状態を保つ。   The low melting point material 4 enclosed in the shell 5 is heated by the heat source 2 and melted, for example. Since the shell 5 has flexibility to allow deformation of the liquid low melting point material 4, the heat transfer cushion 1 is in close contact with the heating surface S1 and the heat receiving surface S2, and the heating surface S1 and the heat receiving surface S2 are curved due to temperature differences. Even if it is deformed, the deformation is flexibly followed to satisfactorily fill the space between the heating surface S1 and the heat receiving surface S2 and prevent a gap from being generated between the heating surface S1 and the heat receiving surface S2. Therefore, the heat transfer cushion 1 always maintains a good contact state with the heating surface S1 and the heat receiving surface S2.

ここで、シェル5の加熱面S1と対向する面または受熱面S2と対向する面の一方または双方に、加熱面S1または受熱面S2が接触し且つ摺動可能なシート材7を設けることがより好ましい。この場合、加熱面S1や受熱面S2が熱により大きく変化しても、加熱面S1や受熱面S2がシート材7上を滑りスライド移動するので、当該熱膨張変位を柔軟に許容し、シェル5にせん断応力が作用することを防ぎ、シェル5が破壊されてしまうことを防止できる。加熱面S1や受熱面S2の熱による変位量は、加熱面S1や受熱面S2の大きさ(拘束点からの距離)にほぼ比例するため、加熱面S1や受熱面S2が大型の場合に特に有効である。一般に加熱面S1の方が受熱面S2よりも熱膨張による変位量が大きいため、本実施形態では、シェル5の加熱面S1と対向する面にシート材7を設けている。但し、シェル5の受熱面S2と対向する面のみ、または加熱面S1および受熱面S2と対向する2面の双方に、シート材7を設けても良い。   Here, it is more preferable to provide a sheet material 7 on which the heating surface S1 or the heat receiving surface S2 is in contact with and slidable on one or both of the surface facing the heating surface S1 of the shell 5 or the surface facing the heat receiving surface S2. preferable. In this case, even if the heating surface S1 and the heat receiving surface S2 change greatly due to heat, the heating surface S1 and the heat receiving surface S2 slide and slide on the sheet material 7, so that the thermal expansion displacement is allowed flexibly, and the shell 5 It is possible to prevent the shear stress from acting on the shell 5 and to prevent the shell 5 from being destroyed. The amount of displacement of the heating surface S1 and the heat receiving surface S2 due to the heat is substantially proportional to the size of the heating surface S1 and the heat receiving surface S2 (distance from the restraint point), so that the heating surface S1 and the heat receiving surface S2 are particularly large. It is valid. In general, the heating surface S1 has a larger amount of displacement due to thermal expansion than the heat receiving surface S2. Therefore, in the present embodiment, the sheet material 7 is provided on the surface of the shell 5 that faces the heating surface S1. However, the sheet material 7 may be provided only on the surface of the shell 5 facing the heat receiving surface S2 or on both the heating surface S1 and the two surfaces facing the heat receiving surface S2.

シート材7の材質は、接触熱抵抗を低減でき、且つ高い摺動性(即ち低摩擦係数)、耐熱性、シェル5の変形に追従できる柔軟性を備えるものが選択される。より望ましくは、厚さ方向に高い熱伝導率を有する材質が選択される。例えば、カーボンシートや高分子シートなどの利用が好ましい。   As the material of the sheet material 7, a material that can reduce the contact thermal resistance and has high slidability (that is, low friction coefficient), heat resistance, and flexibility that can follow the deformation of the shell 5 is selected. More desirably, a material having a high thermal conductivity in the thickness direction is selected. For example, use of a carbon sheet or a polymer sheet is preferable.

例えば本実施形態では、シート材7として既存のカーボンシートを用いている。ここで、シート材7の厚さ方向の熱伝導率は高いことが好ましいが、既存のカーボンシートは、面方向の熱伝導率は高いが、厚さ方向の熱伝導率が低いものが一般的である。しかし、このような既存のカーボンシートでも、接触熱抵抗を大きく低減できる効果が得られることが、本願発明者の実験により明らかになった。以下に当該実験について説明する。   For example, in the present embodiment, an existing carbon sheet is used as the sheet material 7. Here, the sheet material 7 preferably has a high thermal conductivity in the thickness direction, but existing carbon sheets generally have a high thermal conductivity in the plane direction but a low thermal conductivity in the thickness direction. It is. However, it has been clarified by experiments of the present inventor that an effect of greatly reducing the contact thermal resistance can be obtained even with such an existing carbon sheet. The experiment will be described below.

例えば厚さ方向の熱伝導率が5(W/mK)であり厚さ0.15(mm)のカーボンシートを、銅製の2つのブロックの間に介在させて、0.4(kg/cm)で加圧して、熱抵抗を測定した。また、比較例として、カーボンシートを介在させずに、上記2つのブロックを上記と同じ圧力で加圧して、熱抵抗を測定した。さらに上記測定を温度条件を変化させて行った。測定結果を表1に示す。 For example, a carbon sheet having a thermal conductivity in the thickness direction of 5 (W / mK) and a thickness of 0.15 (mm) is interposed between two copper blocks to obtain 0.4 (kg / cm 2). ) And the thermal resistance was measured. In addition, as a comparative example, the two blocks were pressurized at the same pressure as described above without a carbon sheet interposed therebetween, and the thermal resistance was measured. Further, the above measurement was performed while changing the temperature condition. The measurement results are shown in Table 1.

Figure 0004775932
Figure 0004775932

表1に示すカーボンシート使用時の熱抵抗の値はカーボンシートを挟む2個の銅ブロックをカーボンシートの面と平行に相対変位させてもほとんど変化しない。また、表1に示すカーボンシート使用時の熱抵抗は、カーボンシートの上下面における銅ブロックとの接触熱抵抗およびカーボンシート自体の熱抵抗の合計である。このうちカーボンシート自体の熱抵抗(Rc)は以下の計算で求めることができる。   The value of the thermal resistance when using the carbon sheet shown in Table 1 hardly changes even if the two copper blocks sandwiching the carbon sheet are relatively displaced parallel to the surface of the carbon sheet. Moreover, the thermal resistance at the time of using the carbon sheet shown in Table 1 is the total of the thermal resistance of contact with the copper block on the upper and lower surfaces of the carbon sheet and the thermal resistance of the carbon sheet itself. Among these, the thermal resistance (Rc) of the carbon sheet itself can be obtained by the following calculation.

<数式2>
カーボンシート自体の熱抵抗(Rc)=(厚さ)/(熱伝導率)
=0.15×10−3(m)/5(W/mK)
=3×10−5(mK/W)
<Formula 2>
Thermal resistance of carbon sheet itself (Rc) = (thickness) / (thermal conductivity)
= 0.15 × 10 −3 (m) / 5 (W / mK)
= 3 × 10 −5 (m 2 K / W)

一方、熱抵抗の合計をRとすると、カーボンシートの上下面における銅ブロックとの接触熱抵抗は(R−Rc)/2で計算される。即ち、カーボンシートの上下面における銅ブロックとの接触熱抵抗は、150〜200℃で3.5×10−5(mK/W)、300〜400℃で3×10−5(mK/W)と推定される。 On the other hand, when the total thermal resistance is R, the thermal contact resistance with the copper block on the upper and lower surfaces of the carbon sheet is calculated by (R−Rc) / 2. That is, the contact thermal resistance with the copper block on the upper and lower surfaces of the carbon sheet is 3.5 × 10 −5 (m 2 K / W) at 150 to 200 ° C., and 3 × 10 −5 (m 2 at 300 to 400 ° C. K / W).

他方、カーボンシートを介在させない場合の2個の銅ブロックの接触熱抵抗は、100×10−5(mK/W)以上である。従ってカーボンシートを採用することにより、熱抵抗を1/10以下に低減できる。また、上記実験結果から、カーボンシートが接触熱抵抗を低減する効果を発揮するために、0.4(kg/cm)以上の加圧力をカーボンシートに作用させることが望ましいと考えられる。尚、厚さ方向の熱伝導率を高くしたカーボンシートも開発される途上にあり、このようなカーボンシートを採用すれば、上記熱抵抗をさらに低減することができる。カーボンシートは、一般に、空気中では400℃程度まで、真空および不活性雰囲気中では1100℃程度まで使用可能である。 On the other hand, the contact thermal resistance of the two copper blocks when no carbon sheet is interposed is 100 × 10 −5 (m 2 K / W) or more. Therefore, the heat resistance can be reduced to 1/10 or less by using the carbon sheet. From the above experimental results, it is considered desirable to apply a pressure of 0.4 (kg / cm 2 ) or more to the carbon sheet so that the carbon sheet exhibits the effect of reducing the contact thermal resistance. Incidentally, a carbon sheet having a high thermal conductivity in the thickness direction is being developed, and if such a carbon sheet is employed, the thermal resistance can be further reduced. In general, the carbon sheet can be used up to about 400 ° C. in air and up to about 1100 ° C. in a vacuum and an inert atmosphere.

シート材7としてのカーボンシートは、例えば接合材(例えば接着剤やろう材)を用いて、シェル5の加熱面S1と対向する面に貼り付けられる。また、例えば本実施形態では、接合材(例えば接着剤やろう材)を用いて、シェル5の受熱面S2と対向する面を、受熱面S2に貼り付けている。図1の符号9は、シェル5と受熱面S2を接合する接合材を示す。尚、シート材7とシェル5およびシェル5と受熱面S2の接合に用いる接合材は、高い熱伝導率を備えるものを用いることが好ましい。   The carbon sheet as the sheet material 7 is attached to the surface of the shell 5 facing the heating surface S1 using, for example, a bonding material (for example, an adhesive or a brazing material). For example, in this embodiment, the surface facing the heat receiving surface S2 of the shell 5 is attached to the heat receiving surface S2 using a bonding material (for example, an adhesive or a brazing material). Reference numeral 9 in FIG. 1 indicates a bonding material for bonding the shell 5 and the heat receiving surface S2. In addition, it is preferable to use what has high heat conductivity for the joining material used for joining of the sheet | seat material 7 and the shell 5, and the shell 5 and the heat receiving surface S2.

以上のように構成された伝熱用クッション1によれば、液状の低融点材料4およびこの低融点材料4を封入する柔軟なシェル5が、加熱面S1や受熱面S2の曲面状の変形(面外変形)に追従して、加熱面S1と受熱面S2との間を良好に充填し、加熱面S1と受熱面S2の間に空隙が生じてしまうことを防ぐ。従って、伝熱用クッション1は加熱面S1および受熱面S2と常に良好な密着状態を保つ。しかも、溶融した金属である低融点材料4は熱伝導率が高く、シェル5は金属製であり且つ柔軟性を達成するように薄く形成されているので、伝熱用クッション1自体の熱抵抗は低く、効率的に加熱面S1から受熱面S2へと熱を伝えることができる。この伝熱用クッション1を用いることにより、加熱面S1および受熱面S2の平面度および表面粗さに対する要求条件を緩和でき、また、加熱面S1と受熱面S2を直接接合しないので、加熱面S1と受熱面S2の熱膨張差によって熱源2や受熱部材3を破損してしまうこともない。   According to the heat transfer cushion 1 configured as described above, the liquid low-melting-point material 4 and the flexible shell 5 enclosing the low-melting-point material 4 are deformed in the curved shape of the heating surface S1 and the heat receiving surface S2 ( Following the out-of-plane deformation), the space between the heating surface S1 and the heat receiving surface S2 is satisfactorily filled, and a gap is prevented from being generated between the heating surface S1 and the heat receiving surface S2. Therefore, the heat transfer cushion 1 always maintains a good contact state with the heating surface S1 and the heat receiving surface S2. Moreover, the low melting point material 4 that is a molten metal has a high thermal conductivity, and the shell 5 is made of metal and thinly formed so as to achieve flexibility. Therefore, the thermal resistance of the heat transfer cushion 1 itself is Heat can be efficiently transferred from the heating surface S1 to the heat receiving surface S2. By using this heat transfer cushion 1, the requirements for the flatness and surface roughness of the heating surface S1 and the heat receiving surface S2 can be relaxed, and the heating surface S1 and the heat receiving surface S2 are not directly joined. The heat source 2 and the heat receiving member 3 are not damaged by the difference in thermal expansion between the heat receiving surface S2 and the heat receiving surface S2.

さらに、加熱面S1側が熱膨張した場合でも、加熱面S1をシート材7上で滑らせて面方向(図1中の矢印A方向)にスライド移動させるので、シェル5に作用しようとするせん断応力を逃がし、シェル5の破壊を防止する。これにより、大型の加熱面S1の熱膨張変位、例えば大型の加熱ダクトの運転・停止中の温度差に起因する熱膨張変位を許容できる。また、シート材7としてのカーボンシートが介在する界面の熱抵抗を、これがない場合の1/10以下に低減することができる。   Furthermore, even when the heating surface S1 side is thermally expanded, the heating surface S1 is slid on the sheet material 7 and slid in the surface direction (the direction of arrow A in FIG. 1), so that the shear stress that tends to act on the shell 5 To prevent the shell 5 from being destroyed. Thereby, the thermal expansion displacement of large heating surface S1, for example, the thermal expansion displacement resulting from the temperature difference during operation / stop of the large heating duct can be allowed. Moreover, the thermal resistance of the interface where the carbon sheet as the sheet material 7 is interposed can be reduced to 1/10 or less of the case without this.

次に、本発明の熱電変換モジュール20の実施形態について説明する。尚、以下の説明において上述の実施形態と同様の構成要素については、同一符号を付してその詳細な説明を省略する。この熱電変換モジュール20は、少なくとも一対の熱電素子10と、熱源2から熱を受ける受熱部と、熱電素子10を挟んで受熱部の反対側に位置して冷媒により冷却される放熱部とを備え、受熱部と放熱部との温度差により発電するものであり、受熱部または放熱部の一方または双方に、伝熱用クッション1を備えている。   Next, an embodiment of the thermoelectric conversion module 20 of the present invention will be described. In the following description, the same components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The thermoelectric conversion module 20 includes at least a pair of thermoelectric elements 10, a heat receiving part that receives heat from the heat source 2, and a heat radiating part that is located on the opposite side of the heat receiving part across the thermoelectric element 10 and is cooled by the refrigerant. The power is generated by the temperature difference between the heat receiving part and the heat radiating part, and one or both of the heat receiving part and the heat radiating part are provided with a heat transfer cushion 1.

例えば図2に示す熱電変換モジュール20は、交互に並ぶ複数の熱電素子10としてのP型熱電半導体10aとN型熱電半導体10bと、隣接するP型熱電半導体10aとN型熱電半導体10bとを受熱部側と放熱部側とで交互に電気的に連結する電極11と、熱源2側の電極11に積層されて受熱部を構成する受熱板12と、熱源2とは反対側の電極11に積層されて放熱部を構成する冷却板13とを有している。受熱板12および冷却板13は電気絶縁性材料、例えばセラミックスなどで構成される。   For example, the thermoelectric conversion module 20 shown in FIG. 2 receives P-type thermoelectric semiconductors 10a and N-type thermoelectric semiconductors 10b as a plurality of alternately arranged thermoelectric elements 10, and receives adjacent P-type thermoelectric semiconductors 10a and N-type thermoelectric semiconductors 10b. Laminated on the electrode 11 on the opposite side of the heat source 2, the electrode 11 that is electrically connected alternately on the heat source side, and the heat receiving plate 12 that is laminated on the electrode 11 on the heat source 2 side to constitute the heat receiving part And a cooling plate 13 constituting a heat radiating portion. The heat receiving plate 12 and the cooling plate 13 are made of an electrically insulating material such as ceramics.

但し、図2に示す熱電変換モジュール20は一例であり、図示の構成に限定されず、既知の又は新規の構成を適宜採用できる。例えば、熱電素子10(P型熱電半導体10a,N型熱電半導体10b)の上下面の両方または一方の電極11の代わりに、電極層と電気絶縁層を有する傾斜機能材料から成るコンプライアント・パッド(FGMコンプライアント・パッド)を用いても良い。FGMコンプライアント・パッドは、例えば熱電素子10側が電極層、その反対側が電気絶縁層で、両者の組成が連続的に変化するものであり、例えば特許第3056047号や特許第3482094号に開示された物を利用することができる。尚、両面が電極層、内部が電気絶縁層から成るFGMコンプライアント・パッドを用いても良い。FGMコンプライアント・パッドを用いる場合、受熱板12または冷却板13は電気絶縁性材料製とする必要はなく、金属製でも良い。また、例えば冷却板13を省略してFGMコンプライアント・パッドを放熱部として機能させても良い。また、受熱板12を省略してFGMコンプライアント・パッドを受熱部として機能させても良い。また、熱電変換モジュール20を最小単位の熱電素子10を有するものにする、例えばP型とN型の熱電半導体を各1個備えるユニ・カップル型としても構わない。   However, the thermoelectric conversion module 20 illustrated in FIG. 2 is an example, and is not limited to the illustrated configuration, and a known or new configuration can be appropriately employed. For example, a compliant pad made of a functionally graded material having an electrode layer and an electrical insulating layer in place of both or one of the electrodes 11 on the upper and lower surfaces of the thermoelectric element 10 (P-type thermoelectric semiconductor 10a, N-type thermoelectric semiconductor 10b) ( FGM compliant pad) may be used. The FGM compliant pad is, for example, an electrode layer on the thermoelectric element 10 side and an electrically insulating layer on the opposite side, and the composition of both is continuously changed. For example, it is disclosed in Japanese Patent No. 3056047 and Japanese Patent No. 3482094. You can use things. In addition, you may use the FGM compliant pad which both surfaces consist of an electrode layer and an inside is an electrically insulating layer. When the FGM compliant pad is used, the heat receiving plate 12 or the cooling plate 13 does not need to be made of an electrically insulating material, and may be made of metal. Further, for example, the cooling plate 13 may be omitted and the FGM compliant pad may function as a heat radiating portion. Further, the heat receiving plate 12 may be omitted and the FGM compliant pad may function as the heat receiving portion. Further, the thermoelectric conversion module 20 having the thermoelectric element 10 of the minimum unit may be used, for example, a uni-couple type including one P-type and one N-type thermoelectric semiconductor.

図2の例では受熱部となる受熱板12に、伝熱用クッション1を備えている。熱源2は、例えば加熱ダクトであり、伝熱用クッション1は熱源2と受熱板12との間に介在する。シート材7は、例えば接合材(例えば接着剤)を用いて、シェル5の加熱面S1と対向する面に貼り付けられる。また、シェル5の受熱板12と対向する面は、接合材(例えば接着剤)9を用いて、受熱板12に貼り付けられる。受熱板12の表面が受熱面S2となる。熱電変換モジュール20の放熱部となる冷却板13は、冷媒が内部を通過する冷却ダクト14に、例えば高い熱伝導率を有する接合材(例えば接着剤やろう材)を用いて接合される。図2中の符号15は、冷却板13を冷却ダクト14に接合する接合材を示す。但し、受熱部のみに伝熱用クッション1を備える構成に限定されず、放熱部のみ又は受熱部と放熱部の双方に、伝熱用クッション1を備える構成としても良い。   In the example of FIG. 2, a heat transfer cushion 1 is provided on a heat receiving plate 12 serving as a heat receiving portion. The heat source 2 is, for example, a heating duct, and the heat transfer cushion 1 is interposed between the heat source 2 and the heat receiving plate 12. The sheet material 7 is affixed to the surface facing the heating surface S1 of the shell 5 using, for example, a bonding material (for example, an adhesive). The surface of the shell 5 that faces the heat receiving plate 12 is attached to the heat receiving plate 12 using a bonding material (for example, an adhesive) 9. The surface of the heat receiving plate 12 becomes the heat receiving surface S2. The cooling plate 13 serving as a heat radiating portion of the thermoelectric conversion module 20 is joined to the cooling duct 14 through which the refrigerant passes, using, for example, a joining material (for example, an adhesive or a brazing material) having high thermal conductivity. Reference numeral 15 in FIG. 2 indicates a bonding material for bonding the cooling plate 13 to the cooling duct 14. However, the configuration is not limited to the configuration in which the heat transfer cushion 1 is provided only in the heat receiving portion, and the heat transfer cushion 1 may be provided only in the heat dissipation portion or in both the heat receiving portion and the heat dissipation portion.

熱源2としての加熱ダクトと冷却手段としての冷却ダクト14には、熱電変換モジュール20を押圧する力が作用する。例えば冷却ダクト14が固定され熱源2が移動可能となる構成とし、熱源2を冷却ダクト14側に移動させて、図2に示す加圧力Pを作用させる。   A force that presses the thermoelectric conversion module 20 acts on the heating duct as the heat source 2 and the cooling duct 14 as the cooling means. For example, the cooling duct 14 is fixed and the heat source 2 is movable, the heat source 2 is moved to the cooling duct 14 side, and the pressure P shown in FIG. 2 is applied.

以上のように構成された熱電変換モジュール20によれば、液状の低融点材料4およびこの低融点材料4を封入する柔軟なシェル5が、熱源2や受熱板12の曲面状の変形(面外変形)に追従して、熱源2と受熱板12との間を良好に充填し、熱源2と受熱板12との間に空隙が生じてしまうことを防ぐ。従って、伝熱用クッション1は熱源2および受熱板12と常に良好な密着状態を保つ。しかも、溶融した金属である低融点材料4は熱伝導率が高く、シェル5は金属製であり且つ柔軟性を達成するように薄く形成されているので、伝熱用クッション1自体の熱抵抗は低く、効率的に熱源2から受熱板12へと熱を伝えることができる。この伝熱用クッション1を用いることにより、熱源2としての加熱ダクトおよび受熱板12の平面度および表面粗さに対する要求条件を緩和できる。また、液状の低融点材料4を封入した柔軟なシェル5がクッションとして機能し、熱電変換モジュール20に作用する加圧力により熱電素子10が破壊してしまうことを防止する。   According to the thermoelectric conversion module 20 configured as described above, the liquid low-melting point material 4 and the flexible shell 5 enclosing the low-melting point material 4 are deformed in a curved shape (out-of-plane) of the heat source 2 and the heat receiving plate 12. Following the deformation), the space between the heat source 2 and the heat receiving plate 12 is satisfactorily filled, and a gap is prevented from being generated between the heat source 2 and the heat receiving plate 12. Therefore, the heat transfer cushion 1 is always kept in good contact with the heat source 2 and the heat receiving plate 12. Moreover, the low melting point material 4 that is a molten metal has a high thermal conductivity, and the shell 5 is made of metal and thinly formed so as to achieve flexibility. Therefore, the thermal resistance of the heat transfer cushion 1 itself is Heat can be transferred from the heat source 2 to the heat receiving plate 12 efficiently. By using this heat transfer cushion 1, the requirements for the flatness and surface roughness of the heating duct as the heat source 2 and the heat receiving plate 12 can be relaxed. In addition, the flexible shell 5 enclosing the liquid low-melting-point material 4 functions as a cushion, and prevents the thermoelectric element 10 from being destroyed by the applied pressure acting on the thermoelectric conversion module 20.

さらに、熱源2としての加熱ダクトが熱膨張した場合でも、熱源2の熱電変換モジュール20に対する接触面(加熱面S1)をシート材7上で滑らせて面方向(図2中の矢印A方向)にスライド移動させるので、シェル5に作用しようとするせん断応力を逃がし、シェル5の破壊を防止する。これにより、加熱ダクトの運転・停止中の温度差に起因する熱膨張変位を許容できる。また、シート材7としてのカーボンシートが介在する界面の熱抵抗を、これがない場合の1/10以下に低減することができる。   Furthermore, even when the heating duct as the heat source 2 is thermally expanded, the contact surface (heating surface S1) of the heat source 2 with respect to the thermoelectric conversion module 20 is slid on the sheet material 7 and is in the surface direction (the direction of arrow A in FIG. 2). Therefore, the shearing stress that acts on the shell 5 is released, and the shell 5 is prevented from being broken. Thereby, the thermal expansion displacement resulting from the temperature difference during operation / stop of the heating duct can be allowed. Moreover, the thermal resistance of the interface where the carbon sheet as the sheet material 7 is interposed can be reduced to 1/10 or less of the case without this.

以上により、熱電変換モジュール20に負荷できる温度差を従来型の1.8倍程度に増大できる。熱電変換モジュール20の発電電力は温度差の2乗にほぼ比例するため、同一の熱電変換モジュール20を使用しても、本発明により熱電変換モジュール20の発電電力を約3倍に向上できる。すなわち実質的なエネルギー変換効率を約3倍に向上できる。これにより熱電変換システムの発電単価を約1/3に低減できる。   As described above, the temperature difference that can be applied to the thermoelectric conversion module 20 can be increased to about 1.8 times that of the conventional type. Since the generated electric power of the thermoelectric conversion module 20 is substantially proportional to the square of the temperature difference, even if the same thermoelectric conversion module 20 is used, the generated electric power of the thermoelectric conversion module 20 can be improved about three times by the present invention. That is, the substantial energy conversion efficiency can be improved about three times. Thereby, the power generation unit price of the thermoelectric conversion system can be reduced to about 1/3.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本発明は、大型の加熱・冷却ダクトを備える熱電変換システム、例えば各種産業機器などの廃熱を熱源とする熱電変換システムへの適用が有効であるが、これに限定されず、発熱をともなう機器から熱を効果的に除去するするシステム、例えば自動車などの交通機関、宇宙システムおよび各種産業機器などに適用可能である。また、伝熱用クッション1には、シート材7を備えることが好ましいが、加熱面S1や受熱面S2が比較的小型である場合などには、シート材7を省略しても良い。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, the present invention is effective for application to a thermoelectric conversion system having a large heating / cooling duct, for example, a thermoelectric conversion system using waste heat from various industrial equipment as a heat source. The present invention can be applied to a system that effectively removes heat from accompanying devices, such as transportation such as automobiles, space systems, and various industrial devices. The heat transfer cushion 1 is preferably provided with a sheet material 7, but the sheet material 7 may be omitted when the heating surface S1 and the heat receiving surface S2 are relatively small.

本発明の伝熱用クッションの実施の一形態を示す側面図であり、一部を断面で示す。It is a side view which shows one Embodiment of the cushion for heat transfer of this invention, and shows a part in cross section. 本発明の熱電変換モジュールの実施の一形態を示す側面図であり、一部を断面で示す。It is a side view which shows one Embodiment of the thermoelectric conversion module of this invention, and shows a part in cross section. 従来の発熱機器から放熱設備まで熱を輸送する熱輸送手段を示す概略構成図である。It is a schematic block diagram which shows the heat transport means which conveys heat from the conventional heat-emitting device to a thermal radiation installation. 従来の熱電変換モジュールを示し、(A)は熱電変換モジュールを加熱ダクトおよび冷却ダクトの間に挟み、ダクトの上下から加圧力を作用させる様子を示し、(B)は熱電変換モジュールと加熱ダクトおよび冷却ダクトの間にゴムシートを介在させる場合を示し、(C)は熱電変換モジュールと加熱ダクトおよび冷却ダクトの間にグリースを介在させる場合を示す。A conventional thermoelectric conversion module is shown, (A) shows a state in which a thermoelectric conversion module is sandwiched between a heating duct and a cooling duct and pressure is applied from above and below the duct, and (B) shows a thermoelectric conversion module, a heating duct, and The case where a rubber sheet is interposed between cooling ducts is shown, and (C) shows the case where grease is interposed between a thermoelectric conversion module, a heating duct and a cooling duct.

符号の説明Explanation of symbols

S1 高温側の面(加熱面)
S2 低温側の面(受熱面)
1 伝熱用クッション
4 低融点材料
5 シェル
6 シェル内部の隙間
7 シート材
10 熱電素子
12 受熱部(受熱板)
13 放熱部(冷却板)
20 熱電変換モジュール
S1 High temperature surface (heating surface)
S2 Low temperature side (heat receiving surface)
DESCRIPTION OF SYMBOLS 1 Heat transfer cushion 4 Low melting point material 5 Shell 6 Crevice inside shell 7 Sheet material 10 Thermoelectric element 12 Heat receiving part (heat receiving plate)
13 Heat radiation part (cooling plate)
20 Thermoelectric conversion module

Claims (7)

温度差のある2面の間に介在しこれら2面から加圧力を受けると共に高温側の面から低温側の面へと熱を伝える伝熱用クッションであり、使用温度下で液状を呈する低融点材料と、この低融点材料を封入し且つ液状の前記低融点材料の変形を許容する柔軟性を備えると共に前記使用温度よりも融点が高い材料から成るシェルとを有し、前記シェルの前記高温側の面と対向する面または前記低温側の面と対向する面の一方または双方にカーボンシートが設けられていることを特徴とする伝熱用クッション。 A low-melting-point cushion that is interposed between two surfaces with a temperature difference and receives heat from these two surfaces and conducts heat from the high-temperature side to the low-temperature side. It possesses a material and a shell made of a material higher melting point than the operating temperature provided with a flexibility that permits deformation of the low melting point material and a liquid encapsulating the low-melting material, the hot side of the shell A heat transfer cushion, characterized in that a carbon sheet is provided on one or both of the surface facing the surface and the surface facing the low temperature side surface . 前記シェルは金属フォイルよりなることを特徴とする請求項1記載の伝熱用クッション。 2. The heat transfer cushion according to claim 1, wherein the shell is made of a metal foil . 前記低融点材料は融点が使用温度以下の金属であることを特徴とする請求項1または2記載の伝熱用クッション。 The cushion for heat transfer according to claim 1 or 2, wherein the low melting point material is a metal having a melting point equal to or lower than a use temperature . 前記低融点材料は、融点が使用温度以下の金属に、当該金属よりも熱伝導率の高い微粒子を添加してなることを特徴とする請求項1または2記載の伝熱用クッション。 The heat transfer cushion according to claim 1 or 2, wherein the low melting point material is obtained by adding fine particles having a higher thermal conductivity to a metal having a melting point equal to or lower than a use temperature . 前記低融点材料を封入した状態で前記シェルの内部に隙間ができるようにしたことを特徴とする請求項1から4のいずれか1つに記載の伝熱用クッション。 The heat transfer cushion according to any one of claims 1 to 4, wherein a gap is formed inside the shell in a state where the low melting point material is sealed . 前記隙間を真空とする又は不活性雰囲気とすることを特徴とする請求項5記載の伝熱用クッション。 6. The heat transfer cushion according to claim 5, wherein the gap is evacuated or inert . 少なくとも一対の熱電素子と、熱源から熱を受ける受熱部と、前記熱電素子を挟んで前記受熱部の反対側に位置して冷媒により冷却される放熱部とを備え、前記受熱部と前記放熱部との温度差により発電する熱電変換モジュールにおいて、前記受熱部または前記放熱部の一方または双方に、請求項1から6のいずれか1つに記載の伝熱用クッションを備えることを特徴とする熱電変換モジュール。At least a pair of thermoelectric elements, a heat receiving part that receives heat from a heat source, and a heat radiating part that is located on the opposite side of the heat receiving part and is cooled by a refrigerant across the thermoelectric element, the heat receiving part and the heat radiating part A thermoelectric conversion module that generates electric power due to a temperature difference between the heat receiving portion and the heat radiating portion is provided with a heat transfer cushion according to any one of claims 1 to 6. Conversion module.
JP2004198981A 2004-07-06 2004-07-06 Cushion for heat transfer and thermoelectric conversion module having the same Expired - Fee Related JP4775932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198981A JP4775932B2 (en) 2004-07-06 2004-07-06 Cushion for heat transfer and thermoelectric conversion module having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198981A JP4775932B2 (en) 2004-07-06 2004-07-06 Cushion for heat transfer and thermoelectric conversion module having the same

Publications (2)

Publication Number Publication Date
JP2006024608A JP2006024608A (en) 2006-01-26
JP4775932B2 true JP4775932B2 (en) 2011-09-21

Family

ID=35797695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198981A Expired - Fee Related JP4775932B2 (en) 2004-07-06 2004-07-06 Cushion for heat transfer and thermoelectric conversion module having the same

Country Status (1)

Country Link
JP (1) JP4775932B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815914B2 (en) * 2005-07-19 2011-11-16 トヨタ自動車株式会社 Thermoelectric generator
JP4867388B2 (en) * 2006-02-21 2012-02-01 トヨタ自動車株式会社 Thermoelectric generator
JP4801466B2 (en) * 2006-02-24 2011-10-26 財団法人電力中央研究所 Thermal stress relaxation pad, thermoelectric conversion system using the same, and Peltier cooling system
JP4826310B2 (en) * 2006-03-27 2011-11-30 ヤマハ株式会社 Thermoelectric module
JP4934490B2 (en) * 2007-05-07 2012-05-16 株式会社リコー Image forming apparatus
JP4950255B2 (en) * 2009-07-16 2012-06-13 昭和電線ケーブルシステム株式会社 Thermoelectric conversion generator
JP5742106B2 (en) * 2010-03-31 2015-07-01 Jfeスチール株式会社 Thermoelectric power generation unit and thermoelectric power generation method using the same
JP5637020B2 (en) * 2011-03-11 2014-12-10 株式会社デンソー Heat transfer device
JP6064591B2 (en) * 2012-12-27 2017-01-25 トヨタ自動車株式会社 Thermoelectric generator
KR102017275B1 (en) * 2015-06-10 2019-09-02 젠썸 인코포레이티드 Automotive battery thermoelectric module with integrated cold plate assembly and its assembly method
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
JP7552023B2 (en) 2020-02-07 2024-09-18 三菱マテリアル株式会社 Thermoelectric conversion structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336794A (en) * 1989-07-04 1991-02-18 Furukawa Electric Co Ltd:The Heat pipe type heat sink device
JP3175177B2 (en) * 1991-03-08 2001-06-11 株式会社日立製作所 Semiconductor cooling device
JPH077976A (en) * 1993-06-17 1995-01-10 Hitachi Ltd Generating unit and generating system using the same and driving method therefor
JPH088567A (en) * 1994-06-23 1996-01-12 Fujitsu Ltd Cooling device and heat conducting mechanism section of part
JPH11177264A (en) * 1997-12-16 1999-07-02 Pfu Ltd Accommodation case for portable electronic apparatus
JP3094094B2 (en) * 1998-02-02 2000-10-03 科学技術庁航空宇宙技術研究所長 Joining medium
JP2001076774A (en) * 1999-09-07 2001-03-23 Idemitsu Kosan Co Ltd Dye-sensitized solar battery
JP3573448B2 (en) * 2000-12-18 2004-10-06 財団法人電力中央研究所 Thermoelectric conversion element
JP2003111459A (en) * 2001-09-27 2003-04-11 Yaskawa Electric Corp Thermoelectric converter
JP2003124532A (en) * 2001-10-12 2003-04-25 Sango Co Ltd Thermal stress relaxation material for thermoelectric transducing module and thermoelectric transducing unit using the same
JP2004186642A (en) * 2002-12-06 2004-07-02 Matsushita Electric Ind Co Ltd Electrolytic capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006024608A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4829552B2 (en) Thermoelectric conversion module
EP1615274A2 (en) Thermoelectric conversion module
JP4775932B2 (en) Cushion for heat transfer and thermoelectric conversion module having the same
JP4617209B2 (en) Heat dissipation device
CN108140713B (en) Thermoelectric conversion module and thermoelectric conversion device
EP2383809A1 (en) Packaged thermoelectric conversion module
AU2008344797B2 (en) Thermoelectric device
US20050045372A1 (en) Heat spreading thermal interface structure
WO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic apparatus using it
JP2005210035A (en) Graphite composite material
JP5478518B2 (en) Power generator
JP2006294921A (en) Power converter
WO2018180131A1 (en) Thermoelectric power generation cell and thermoelectric power generation module
JP5654369B2 (en) Laminate production method
JP4937951B2 (en) Power semiconductor device and manufacturing method thereof
JPH07221352A (en) Layered thermoelectric conversion device, subunit for thermoelectric power generation, and power generating unit
JP3175039B2 (en) Thermoelectric conversion module, laminated thermoelectric conversion device, thermoelectric power generation subunit, and power generation system
JPH08204241A (en) Thermoelectric conversion system
JP3573448B2 (en) Thermoelectric conversion element
JPH0992890A (en) Thermoelectric converter
JP6424883B2 (en) Thermoelectric generator
JP2013191801A (en) Airtight case-enclosed thermoelectric conversion module
JP2011082272A (en) Thermoelectric cooling device
JPH08306965A (en) Thermoelectric conversion module for generation
JP2017063091A (en) Thermoelectric conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees