JP2003124532A - Thermal stress relaxation material for thermoelectric transducing module and thermoelectric transducing unit using the same - Google Patents

Thermal stress relaxation material for thermoelectric transducing module and thermoelectric transducing unit using the same

Info

Publication number
JP2003124532A
JP2003124532A JP2001314976A JP2001314976A JP2003124532A JP 2003124532 A JP2003124532 A JP 2003124532A JP 2001314976 A JP2001314976 A JP 2001314976A JP 2001314976 A JP2001314976 A JP 2001314976A JP 2003124532 A JP2003124532 A JP 2003124532A
Authority
JP
Japan
Prior art keywords
stress relaxation
thermal stress
relaxation material
temperature side
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001314976A
Other languages
Japanese (ja)
Inventor
Masaru Oishi
勝 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2001314976A priority Critical patent/JP2003124532A/en
Publication of JP2003124532A publication Critical patent/JP2003124532A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermal relaxation material which has heat conductivity higher than a conventional thermal stress relaxation material made of graphite and can have the thermal power generation efficiency improved and a thermoelectric transducing unit which uses it. SOLUTION: The thermal stress relaxation material 6 for the thermoelectric transducing module which is interposed at least either one of between the thermoelectric transducing module and a low-temperature side member or between the thermoelectric transducing module and a high-temperature side member is a sheet type formed by laminating multiple graphite materials 8a, which are arranged almost at right angles to sheet surfaces 6a and 6b. Further, the thermoelectric transducing unit is formed by fixing the thermal stress relaxation material 6 to at least either the low-temperature side or high-temperature side of the thermoelectric transducing module.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は熱電変換モジュール
用の熱応力緩和材およびそれを用いた熱電変換ユニット
に関する。
TECHNICAL FIELD The present invention relates to a thermal stress relaxation material for a thermoelectric conversion module and a thermoelectric conversion unit using the same.

【0002】[0002]

【従来の技術】N型半導体とP型半導体を用いてこれを
高温源と低温源間に介在し、高温源と低温源の温度差に
よって熱エネルギーを電気エネルギーに変換する熱電変
換モジュールが知られており、一般的には前記熱電変換
モジュールの低温側面に低温側熱交換器等の低温側部材
を接触させ、高温側面に高温側熱交換器等の高温側部材
を接触させて熱電変換システムが構成されている。
2. Description of the Related Art A thermoelectric conversion module is known in which an N-type semiconductor and a P-type semiconductor are used and are interposed between a high temperature source and a low temperature source, and heat energy is converted into electric energy by a temperature difference between the high temperature source and the low temperature source. Generally, the low temperature side member such as the low temperature side heat exchanger is brought into contact with the low temperature side surface of the thermoelectric conversion module, and the high temperature side member such as the high temperature side heat exchanger is brought into contact with the high temperature side surface of the thermoelectric conversion system. It is configured.

【0003】ところが、前記熱電変換モジュールと低温
側部材と高温側部材は、それぞれの温度が相互に異なる
とともにそれぞれの熱膨脹量が相互に異なることによ
り、接触面の密着不良と、それによって生じる熱伝導度
の悪化を招き、その結果熱電変換効率が悪化するという
問題がある。
However, the thermoelectric conversion module, the low-temperature side member, and the high-temperature side member have different temperatures and different amounts of thermal expansion from each other, resulting in poor contact between contact surfaces and heat conduction caused thereby. There is a problem in that the thermoelectric conversion efficiency is deteriorated as a result.

【0004】この問題を解決するために、前記各部材間
に、グラファイトからなる熱応力緩和材を介在させる技
術が特許第3056047号公報に開示されている。
In order to solve this problem, Japanese Patent No. 3056047 discloses a technique of interposing a thermal stress relaxation material made of graphite between the respective members.

【0005】[0005]

【発明が解決しようとする課題】しかし、前記従来の熱
電変換システムに用いられるグラファイトからなる熱応
力緩和材は、図11に示すように、箔状のグラファイト
101を多層に積み重ねてシート状に押し固めたもの、
或いはその箔状のグラファイト101間に形状維持のた
めのステンレス箔102を介在したシート状のものであ
り、そのシート面103,104に直交する方向(箔の
積み重ね方向)Aは、シート面103,104に平行な
方向Bに比べて層と層の間が熱伝導抵抗となり熱伝導度
が低いという、熱伝導度の異方性を有する。
However, as shown in FIG. 11, the thermal stress relaxation material made of graphite used in the above-mentioned conventional thermoelectric conversion system has a structure in which foil-like graphite 101 is stacked in multiple layers and pressed into a sheet shape. Hardened,
Alternatively, it is a sheet-like one in which a stainless steel foil 102 for maintaining the shape is interposed between the foil-like graphite 101, and the direction A (foil stacking direction) A orthogonal to the sheet surfaces 103 and 104 is the sheet surface 103, As compared with the direction B parallel to 104, there is anisotropy in thermal conductivity that the thermal conductivity between the layers is low and the thermal conductivity is low.

【0006】したがって、前記のように箔状のグラファ
イトを層状に積み重ねた熱応力緩和材105を、そのシ
ート面103,104側が前記熱電変換モジュールや両
温源側に接触するように配置した従来の熱電変換システ
ムでは、熱応力緩和材105のシート面103,104
と直交する方向Aへの伝熱により熱電変換されるため、
熱電変換効率が悪いという本来的な問題を有する。
Therefore, as described above, the thermal stress relaxation material 105 in which foil-like graphite is stacked in layers is arranged so that the sheet surfaces 103 and 104 contact the thermoelectric conversion module and both heat source sides. In the thermoelectric conversion system, the sheet surfaces 103 and 104 of the thermal stress relaxation material 105 are
Since it is thermoelectrically converted by heat transfer in the direction A orthogonal to
It has an inherent problem of poor thermoelectric conversion efficiency.

【0007】そのため、熱応力緩和に優れたグラファイ
トであって、かつ、前記の問題を解決できる熱電変換シ
ステム用の熱応力緩和材およびそれを用いた熱電変換ユ
ニットの出現が待たれていた。
Therefore, the appearance of a thermal stress relaxation material for a thermoelectric conversion system which is graphite excellent in thermal stress relaxation and which can solve the above problems, and a thermoelectric conversion unit using the same have been awaited.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに、請求項1記載の第1の発明は、熱電変換モジュー
ルと低温側部材との間、および熱電変換モジュールと高
温側部材との間の少なくとも一方に介在されるグラファ
イト製の熱応力緩和材において、熱応力緩和材がグラフ
ァイト材を多重に積層してなるシート状であって、グラ
ファイト材がシート面と略直交する方向に配置されて形
成されていることを特徴とする熱電変換モジュール用の
熱応力緩和材である。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a thermoelectric conversion module and a low temperature side member, and a thermoelectric conversion module and a high temperature side member. In the thermal stress relaxation material made of graphite interposed in at least one of the spaces, the thermal stress relaxation material is a sheet shape formed by stacking multiple graphite materials, and the graphite material is arranged in a direction substantially orthogonal to the sheet surface. It is a thermal stress relaxation material for a thermoelectric conversion module, which is characterized by being formed as follows.

【0009】本発明の熱応力緩和材を、熱電変換モジュ
ールと低温側部材との間、および熱電変換モジュールと
高温側部材との間の少なくとも一方に、熱応力緩和材の
シート面が前記熱電変換モジュールおよび前記部材に向
くようにして介在することにより、その熱応力緩和材に
おけるグラファイト材の方向およびグラファイト材相互
の接合部(層間)の方向が熱電変換モジュール、低温側
部材、高温側部材が位置する方向と一致する。したがっ
て、熱応力緩和材における熱伝導度が高い方向の面が熱
電変換モジュールや温源に接触する。そのため、熱発電
効率が高くなる。
The thermal stress relaxation material of the present invention is provided on at least one of the thermoelectric conversion module and the low temperature side member and between the thermoelectric conversion module and the high temperature side member, and the sheet surface of the thermal stress relaxation material is the thermoelectric conversion material. By interposing them so as to face the module and the member, the direction of the graphite material in the thermal stress relaxation material and the direction of the joint (interlayer) between the graphite materials are such that the thermoelectric conversion module, the low temperature side member, and the high temperature side member are positioned. Match the direction you want to. Therefore, the surface of the thermal stress relaxation material in the direction of high thermal conductivity contacts the thermoelectric conversion module and the heat source. Therefore, thermoelectric power generation efficiency becomes high.

【0010】請求項2記載の第2の発明は、前記第1の
発明において、前記熱応力緩和材は、グラファイト材を
多重に積層した後に、積層方向と略平行方向にスライス
して形成されたことを特徴とする熱電変換モジュール用
の熱応力緩和材である。
According to a second aspect of the present invention, in the first aspect of the present invention, the thermal stress relaxation material is formed by stacking graphite materials in multiple layers and slicing in a direction substantially parallel to the stacking direction. It is a thermal stress relaxation material for a thermoelectric conversion module characterized by the above.

【0011】請求項3記載の第3の発明は、前記第1の
発明において、前記熱応力緩和材は、グラファイト繊維
を多数本積層した後に、積層方向と略平行方向にスライ
スして形成されたことを特徴とする熱電変換モジュール
用の熱応力緩和材である。
According to a third aspect of the present invention, in the first aspect of the present invention, the thermal stress relaxation material is formed by laminating a large number of graphite fibers and then slicing in a direction substantially parallel to the laminating direction. It is a thermal stress relaxation material for a thermoelectric conversion module characterized by the above.

【0012】前記第2及び第3の発明においても、前記
第1の発明と同様な構造の熱応力緩和材が得られ、前記
第1の発明と同様の作用を発揮する。
Also in the second and third inventions, a thermal stress relaxation material having a structure similar to that of the first invention is obtained, and exhibits the same action as that of the first invention.

【0013】請求項4記載の第4の発明は、前記の熱応
力緩和材を使用した熱電変換ユニットであって、熱電変
換モジュールの低温側面と高温側面の少なくとも一方
に、シート状の熱応力緩和材が固着され、その熱応力緩
和材がグラファイト材を多重に積層してなるシート状で
あって、グラファイト材がシート面と略直交する方向に
配置されて形成されていることを特徴とする熱電変換ユ
ニットである。
According to a fourth aspect of the present invention, there is provided a thermoelectric conversion unit using the thermal stress relaxation material, wherein a sheet-shaped thermal stress relaxation is provided on at least one of the low temperature side and the high temperature side of the thermoelectric conversion module. A thermoelectrically relaxing material having a thermal stress relaxation material in the form of a sheet in which graphite materials are laminated in multiple layers, and the graphite material is arranged in a direction substantially orthogonal to the sheet surface. It is a conversion unit.

【0014】本発明においては、その熱応力緩和材が前
記の作用を発揮し、かつ、熱変換モジュールと熱応力緩
和材とが一体ユニットとなり、これらを高温側部材や低
温側部材へ組み付ける作業が、熱変換モジュールと熱応
力緩和材を別体状態から高温側部材や低温側部材に夫々
組み付ける場合に比べて容易に行えるとともに、部品の
管理も容易になる。
In the present invention, the thermal stress relaxation material exerts the above-mentioned action, and the heat conversion module and the thermal stress relaxation material become an integral unit, and the work of assembling these to the high temperature side member or the low temperature side member is performed. As compared with the case where the heat conversion module and the thermal stress relaxation material are separately assembled to the high temperature side member and the low temperature side member, respectively, the management can be facilitated.

【0015】[0015]

【発明の実施の形態】図1乃至図10に示す実施例に基
づいて本発明の実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described based on the embodiments shown in FIGS.

【0016】図1は本発明の熱応力緩和材を用いた熱変
換システムの実施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a heat conversion system using the thermal stress relaxation material of the present invention.

【0017】図1において、1はN型半導体とP型半導
体を用いた熱電変換モジュールで、該熱電変換モジュー
ル1の低温側面と、低温媒体通路2を備えた低温側部材
(低温側熱交換器)3との間、および熱電変換モジュー
ル1の高温側面と高温媒体通路4を備えた高温側部材
(高温側熱交換器)5との間に本発明のグラファイト製
の熱応力緩和材6が介在されている。
In FIG. 1, reference numeral 1 denotes a thermoelectric conversion module using an N-type semiconductor and a P-type semiconductor, which is a low temperature side member of the thermoelectric conversion module 1 and a low temperature side member (low temperature side heat exchanger). ) 3 and between the high temperature side surface of the thermoelectric conversion module 1 and the high temperature side member (high temperature side heat exchanger) 5 provided with the high temperature medium passage 4, the thermal stress relaxation material 6 made of graphite of the present invention intervenes. Has been done.

【0018】そして、ボルト等の結合手段7により、低
温側部材3と高温側部材5のみが相互に結合され、熱電
変換モジュール1と熱応力緩和材6との間で夫々相対的
に摺動でき、かつ、熱応力緩和材6と低温側部材3およ
び高温側部材5との間で夫々相対的に摺動できるように
挟持されている。すなわち、相互が接着剤等の固着手段
を用いず、フローティング支持されている。なお、低温
側部材3と高温側部材5との相互の結合構造は、常時、
該両部材3,5と両熱応力緩和材6との間および熱電変
換モジュール1と両熱応力緩和材6との間に隙間が生じ
ないように、低温側部材3と高温側部材5がボルト7の
軸方向に動かないように固定され、一方、低温側部材3
のボルト貫通孔3aをボルト7の直径よりも大きくする
等して、低温側部材3と高温側部材5がボルト軸と直交
する方向に相対的に移動可能に結合される構造になって
いる。
Then, only the low temperature side member 3 and the high temperature side member 5 are connected to each other by the connecting means 7 such as a bolt, and the thermoelectric conversion module 1 and the thermal stress relaxation material 6 can slide relative to each other. Further, the thermal stress relaxation material 6 and the low temperature side member 3 and the high temperature side member 5 are sandwiched so as to be slidable relative to each other. That is, they are supported in a floating manner without using fixing means such as an adhesive. The mutual connection structure between the low temperature side member 3 and the high temperature side member 5 is always
The low temperature side member 3 and the high temperature side member 5 are bolted so that no gap is created between the members 3 and 5 and the thermal stress relaxation material 6 and between the thermoelectric conversion module 1 and the thermal stress relaxation material 6. 7 is fixed so as not to move in the axial direction, while the low temperature side member 3
The bolt through hole 3a is made larger than the diameter of the bolt 7, and the low temperature side member 3 and the high temperature side member 5 are coupled so as to be relatively movable in the direction orthogonal to the bolt axis.

【0019】なお、前記熱応力緩和材6を形成するグラ
ファイトは電導性であるため、前記低温側部材3、高温
側部材5、熱電変換モジュール1に電気絶縁手段を設け
たり電気絶縁処理を施す。例えば、低温側部材3および
高温側部材5の材質を窒化アルミとしたり、アルマイト
処理したり、また、熱電変換モジュールに電気絶縁基板
を備えたりする。
Since the graphite forming the thermal stress relaxation material 6 is electrically conductive, the low temperature side member 3, the high temperature side member 5 and the thermoelectric conversion module 1 are provided with an electric insulation means or are subjected to an electric insulation treatment. For example, the material of the low temperature side member 3 and the high temperature side member 5 may be aluminum nitride, anodized, or the thermoelectric conversion module may be provided with an electrically insulating substrate.

【0020】次に、前記熱応力緩和材6として使用する
本発明の熱応力緩和材の第1実施例を図2乃至図5によ
り説明する。
Next, a first embodiment of the thermal stress relaxation material of the present invention used as the thermal stress relaxation material 6 will be described with reference to FIGS.

【0021】先ず、図2に示すように、箔状のグラファ
イト材8を多数枚、多重に積層した後に、その積層方向
Cに押し固めて多層グラファイト体9を用意する。な
お、前記多層グラファイト体9の形状を維持するために
箔状のグラファイト材8の層間にステンレス箔等の補強
材を挟んでもよい。しかし、この補強材が熱伝導抵抗と
なるため、この補強材は無いほうが好ましい。
First, as shown in FIG. 2, a plurality of foil-shaped graphite materials 8 are laminated in multiple layers and then pressed in the lamination direction C to prepare a multilayer graphite body 9. In addition, in order to maintain the shape of the multi-layer graphite body 9, a reinforcing material such as a stainless steel foil may be sandwiched between the layers of the foil-shaped graphite material 8. However, it is preferable not to use this reinforcing material, because this reinforcing material has a heat conduction resistance.

【0022】前記のように形成された多層グラファイト
体9は熱伝導度の異方性を有する。すなわち、箔状のグ
ラファイト材8の積層方向Cにおいては、その層と層と
の接合部(層間)10が熱伝導抵抗となって、積層方向
Cと略直交する方向である箔状のグラファイト材8と平
行する方向Dに比べて熱伝導度が低い特性がある。
The multilayer graphite body 9 formed as described above has anisotropy in thermal conductivity. That is, in the laminating direction C of the foil-shaped graphite material 8, the joint portion (interlayer) 10 between the layers serves as heat conduction resistance, and the foil-shaped graphite material is a direction substantially orthogonal to the laminating direction C. 8 has a characteristic that the thermal conductivity is lower than that in the direction D parallel to 8.

【0023】次に、前記多層グラファイト体9を図3に
示すように、その積層方向Cと略平行する方向C′にカ
ッター等の切断手段11により所定の厚みtにスライス
て、熱電変換モジュール用の熱応力緩和材6を得る。こ
のスライスする厚みとしては、例えば0.5mm程であ
る。
Next, as shown in FIG. 3, the multilayer graphite body 9 is sliced in a direction C ', which is substantially parallel to the stacking direction C thereof, to a predetermined thickness t by a cutting means 11 such as a cutter, for use in a thermoelectric conversion module. The thermal stress relaxation material 6 is obtained. The sliced thickness is, for example, about 0.5 mm.

【0024】前記のようにスライスして得られた熱応力
緩和材6は、図4に示すように、前記の箔状のグラファ
イト材8が短冊状に切断され、この短冊状のグラファイ
ト材8aが1平面において多数並列したシート状(この
状態を、グラファイト材を多重に積層してなるシート状
とする)になり、その短冊状のグラファイト材8aの接
合部(層間)10が、そのシート状の熱応力緩和材6の
シート面(表裏面)6a,6bと略直交する方向Eと平
行に形成される。したがって、このシート状の熱応力緩
和材6は、図4に示すように、その熱伝導方向(表裏方
向Eの間)が前記の層間10で分断されない状態とな
り、この表裏方向Eにおいては前記の層間10による熱
伝導度の低下は発生しない。
In the thermal stress relaxation material 6 obtained by slicing as described above, as shown in FIG. 4, the foil-shaped graphite material 8 is cut into strips, and the strip-shaped graphite material 8a is obtained. A large number of sheets are arranged side by side on one plane (this state is referred to as a sheet shape obtained by stacking multiple graphite materials), and the joint portion (interlayer) 10 of the strip-shaped graphite material 8a is formed in the sheet shape. The thermal stress relaxation material 6 is formed parallel to the direction E that is substantially orthogonal to the sheet surfaces (front and back surfaces) 6a and 6b. Therefore, as shown in FIG. 4, the sheet-like thermal stress relaxation material 6 is in a state in which the heat conduction direction (between the front and back direction E) is not divided by the interlayer 10, and in the front and back direction E, The decrease in thermal conductivity due to the interlayer 10 does not occur.

【0025】そして、このシート状の熱応力緩和材6
を、そのスライス面、すなわち、シート面(表裏面)6
a,6bが前記低温側部材3の伝熱面、高温側部材5の
伝熱面、熱電変換モジュール1の低温側面、熱電変換モ
ジュール1の高温側面に接触するようにして前記図1に
示すように使用する。
The sheet-shaped thermal stress relaxation material 6
Is the slice surface, that is, the sheet surface (front and back surfaces) 6
As shown in FIG. 1, a and 6b are in contact with the heat transfer surface of the low temperature side member 3, the heat transfer surface of the high temperature side member 5, the low temperature side surface of the thermoelectric conversion module 1, and the high temperature side surface of the thermoelectric conversion module 1. To use.

【0026】このような使用により、熱伝導度が高い方
向が、低温側部材3および高温側部材5からの熱電変換
モジュール1への熱伝導方向と一致するため、熱伝導が
良好となり、優れた熱電変換効率が得られる。
With such a use, the direction of high thermal conductivity coincides with the direction of heat conduction from the low temperature side member 3 and the high temperature side member 5 to the thermoelectric conversion module 1, so that the heat conduction becomes good and excellent. Thermoelectric conversion efficiency can be obtained.

【0027】なお、前記実施例は多層グラファイト体9
をスライスするようにしたが、予め前記のような短冊状
のグラファイト材8aを形成しておき、これを多数個、
図4に示すように平行に並べて(積層して)押し固めて
シート状の熱応力緩和材6を形成してもよい。
In the above-mentioned embodiment, the multilayer graphite body 9 is used.
Was sliced, but the strip-shaped graphite material 8a as described above was formed in advance, and a large number of this graphite material 8a,
As shown in FIG. 4, the sheet-like thermal stress relaxation material 6 may be formed by lining up in parallel (stacking) and pressing.

【0028】また、熱応力が緩和材6の厚みは、薄いほ
ど熱抵抗が小さくなり、熱伝導性に優れていることが知
られていることから、前記の本発明の実施例において、
極端に薄くスライスしたり、並べたりすると、グラファ
イト材の並列状態が崩れてしまい、シートとしての形状
維持が困難になる場合がある。この場合には図5に示す
ように、シート状の熱応力緩和材6の外周面に固定用外
枠12を設けると良い。この固定用外枠12の材質とし
ては、例えばステンレス等の耐熱性の高いものが望まし
い。
Further, it is known that the thinner the thermal stress relaxation material 6, the smaller the thermal resistance and the better the thermal conductivity. Therefore, in the above-mentioned embodiment of the present invention,
If sliced or arranged extremely thinly, the parallel state of the graphite material may be broken, and it may be difficult to maintain the shape of the sheet. In this case, as shown in FIG. 5, a fixing outer frame 12 may be provided on the outer peripheral surface of the sheet-shaped thermal stress relaxation material 6. As a material of the fixing outer frame 12, a material having high heat resistance such as stainless steel is desirable.

【0029】この固定用外枠12を設ける方法として
は、前記のようにグラファイト材をスライス或いは並設
して前記図4に示すシート状の熱応力緩和材6を得た後
に、固定用外枠12を設けてもよく、また、スライスす
る前段階において、前記多層グラファイト体9の側面、
すなわち、スライスされる面での周囲の側面の全面に固
定用外枠12を予め設け、その後に、多層グラファイト
体9と固定用外枠12とを一体的に前記のようにスライ
スして、固定用外枠付の熱応力緩和材を形成するように
してもよい。
As a method of providing the fixing outer frame 12, after the graphite material is sliced or arranged side by side to obtain the sheet-like thermal stress relaxation material 6 shown in FIG. 4, the fixing outer frame 12 is provided. 12 may be provided, and in the step before slicing, the side surface of the multilayer graphite body 9,
That is, the fixing outer frame 12 is previously provided on the entire peripheral side surface of the sliced surface, and then the multilayer graphite body 9 and the fixing outer frame 12 are integrally sliced as described above and fixed. You may make it form the thermal stress relaxation material with an outer frame.

【0030】図6乃至図9は本発明における熱応力緩和
材の第2実施例を示す。
6 to 9 show a second embodiment of the thermal stress relaxation material according to the present invention.

【0031】本第2実施例では、先ず、グラファイト繊
維を略平行に多数本積層(積集)して押し固め、図6
(a)に示すような多層グラファイト体13を用意する
か、或いは図6(b)に示すように、グラファイト繊維
14aを少数本平行に集合させて短冊状や角棒状等にし
たグラファイト集合体14を複数積層して押し固め、図
6(a)に示すような多層グラファイト体13を用意す
る。
In the second embodiment, first, a large number of graphite fibers are laminated (collected) in a substantially parallel manner and pressed, and then the mixture is pressed as shown in FIG.
A multilayer graphite body 13 as shown in (a) is prepared, or, as shown in FIG. 6 (b), a small number of graphite fibers 14a are gathered in parallel to form a rectangular or rectangular rod-like graphite aggregate 14. Are laminated and pressed to prepare a multilayer graphite body 13 as shown in FIG. 6 (a).

【0032】そして、図7に示すように、前記の多層グ
ラファイト体13を、前記第1実施例と同様に、積層方
向Cと略平行方向C′にカッター等の切断手段11によ
りスライスして、シート状の熱電変換モジュール用の熱
応力緩和材6を得る。
Then, as shown in FIG. 7, the multilayer graphite body 13 is sliced by a cutting means 11 such as a cutter in a direction C'which is substantially parallel to the laminating direction C, as in the first embodiment. A sheet-shaped thermal stress relaxation material 6 for a thermoelectric conversion module is obtained.

【0033】このようなグラファイト繊維を積層したも
のにおいても、繊維方向Dの熱伝導度が繊維方向と直交
する方向Cの熱伝導度よりも高い異方性を有する。した
がって、前記のようにスライスしたシート状の熱応力緩
和材6においては、グラファイトの繊維方向Dが図8に
示すように、シート面6a,6bと略直交する方向(表
裏方向)Eになり、その方向Eの熱伝導度が高くなる。
Even in the case where such graphite fibers are laminated, the thermal conductivity in the fiber direction D is higher than that in the direction C orthogonal to the fiber direction. Therefore, in the sheet-like thermal stress relaxation material 6 sliced as described above, the fiber direction D of graphite is a direction (front and back direction) E substantially orthogonal to the sheet surfaces 6a and 6b, as shown in FIG. The thermal conductivity in the direction E becomes high.

【0034】そして、このシート状の熱応力緩和材6
を、そのスライス面、すなわち、シート面(表裏面)6
a,6bが、前記低温側部材3の伝熱面、高温側部材5
の伝熱面、熱電変換モジュール1の低温側面、熱電変換
モジュール1の高温側面に接触するようにして、前記図
1に示すように使用する。このように使用することによ
り、前記第1実施例と同様に優れた熱電変換効率が得ら
れる。
The sheet-like thermal stress relaxation material 6
Is the slice surface, that is, the sheet surface (front and back surfaces) 6
a and 6b are the heat transfer surface of the low temperature side member 3 and the high temperature side member 5
The heat transfer surface, the low temperature side surface of the thermoelectric conversion module 1, and the high temperature side surface of the thermoelectric conversion module 1 are brought into contact with each other and used as shown in FIG. By using in this way, excellent thermoelectric conversion efficiency can be obtained as in the first embodiment.

【0035】なお、この第2実施例において、前記第1
実施例と同様に極端に薄くスライスすると、グラファイ
トの繊維の配列が崩れてしまい、シートとしての形状維
持が困難になる場合がある。この場合には、図9に示す
ように、シート状の熱応力緩和材6の外周面に固定用外
枠12を設けるとよい。この固定用外枠12の材質とし
ては、例えばステンレス等の耐熱性の高いものが望まし
い。また、この固定用外枠12は、前記第1実施例と同
様に、スライス後に設けてもよく、また、スライス前に
多層グラファイト体13に予め設けておき、多層グラフ
ァイト体13と固定用外枠12とを一体的にスライスし
て設けてもよい。
In the second embodiment, the first
If the slice is extremely thin, as in the example, the arrangement of the graphite fibers may be broken, and it may be difficult to maintain the shape of the sheet. In this case, as shown in FIG. 9, the fixing outer frame 12 may be provided on the outer peripheral surface of the sheet-shaped thermal stress relaxation material 6. As a material of the fixing outer frame 12, a material having high heat resistance such as stainless steel is desirable. The fixing outer frame 12 may be provided after slicing, as in the first embodiment, or may be provided in advance in the multilayer graphite body 13 before slicing so that the multilayer graphite body 13 and the fixing outer frame are provided. 12 and 12 may be integrally sliced and provided.

【0036】図10は、前記第1実施例或いは第2実施
例の熱応力緩和材6を、熱電変換モジュール1の低温側
面および高温側面に貼付けなどにより固着して、熱応力
緩和材6と熱電変換モジュール1とを一体化して熱電変
換ユニット15としたものである。
FIG. 10 shows that the thermal stress relaxation material 6 of the first embodiment or the second embodiment is fixed to the low temperature side surface and the high temperature side surface of the thermoelectric conversion module 1 by sticking or the like, and the thermal stress relaxation material 6 and the thermoelectric relaxation material 6 The thermoelectric conversion unit 15 is integrated with the conversion module 1.

【0037】この熱応力緩和材6と熱電変換モジュール
1との一体化は、熱電変換モジュール1と熱応力緩和材
6との接触面の少なくとも一部を貼付け剤を用いて貼り
付けすればよく、少なくともこれらを低温側部材3と高
温側部材5の間に挟持(セット)するまで剥がれないよ
うに維持されればよい。また、貼付け剤の材質は特に問
わないが、熱伝導性の良いものが好ましい。
The thermal stress relaxation material 6 and the thermoelectric conversion module 1 may be integrated by bonding at least a part of the contact surface between the thermoelectric conversion module 1 and the thermal stress relaxation material 6 using a patch. It suffices to keep them at least until they are sandwiched (set) between the low temperature side member 3 and the high temperature side member 5. The material of the patch is not particularly limited, but one having good thermal conductivity is preferable.

【0038】また、前記図10の実施例では、熱応力緩
和材6を熱電変換モジュール1の低温側面および高温側
面の双方に設けたが、いずれか一方の面に設けるもので
あってもよい。
Although the thermal stress relaxation material 6 is provided on both the low temperature side surface and the high temperature side surface of the thermoelectric conversion module 1 in the embodiment of FIG. 10, it may be provided on either one of the surfaces.

【0039】この熱電変換ユニット15によれば、その
熱応力緩和材6が前記の作用を発揮し、かつ、熱変換モ
ジュール1と熱応力緩和材6とが一体ユニットとなり、
これらを高温側部材5や低温側部材3へ組み付ける作業
が、熱変換モジュール1と熱応力緩和材6を別体状態か
ら高温側部材5や低温側部材3に夫々組み付ける場合に
比べて容易に行えるとともに、部品の管理も容易にな
る。
According to this thermoelectric conversion unit 15, the thermal stress relaxation material 6 exerts the above-mentioned action, and the thermal conversion module 1 and the thermal stress relaxation material 6 are integrated into one unit,
The work of assembling these into the high temperature side member 5 and the low temperature side member 3 can be performed more easily than in the case where the heat conversion module 1 and the thermal stress relaxation material 6 are separately assembled into the high temperature side member 5 and the low temperature side member 3, respectively. At the same time, management of parts becomes easy.

【0040】[0040]

【発明の効果】以上のようであるから、本発明のグラフ
ァイト製の熱応力緩和材によれば、従来のグラファイト
製の熱応力緩和材に比べて、熱伝導性が改善され、熱電
変換効率が向上して、熱発電効率が向上する。
As described above, according to the thermal stress relaxation material made of graphite of the present invention, the thermal conductivity is improved and the thermoelectric conversion efficiency is improved as compared with the conventional thermal stress relaxation material made of graphite. The thermoelectric power generation efficiency is improved.

【0041】また、請求項4記の発明によれば、熱応力
緩和材が前記の効果を発揮し、かつ熱応力緩和材と熱変
換モジュールを高温側部材や低温側部材へ組み付ける作
業が向上するとともに部品の管理も容易になる。
According to the invention described in claim 4, the thermal stress relaxation material exerts the above-mentioned effect, and the work of assembling the thermal stress relaxation material and the heat conversion module to the high temperature side member or the low temperature side member is improved. At the same time, the management of parts becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱応力緩和材を使用した熱電変換シス
テムの実施例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of a thermoelectric conversion system using a thermal stress relaxation material of the present invention.

【図2】本発明の第1実施例の熱応力緩和材を製造する
素材である多層グラファイト体を示す斜視図。
FIG. 2 is a perspective view showing a multilayer graphite body that is a raw material for manufacturing the thermal stress relaxation material of the first embodiment of the present invention.

【図3】図2の多層グラファイト体をスライスして本発
明の熱応力緩和材を得る状態を示す斜視図。
FIG. 3 is a perspective view showing a state where the thermal stress relaxation material of the present invention is obtained by slicing the multilayer graphite body of FIG.

【図4】図3でスライスして得られた本発明の熱応力緩
和材を示す斜視図。
FIG. 4 is a perspective view showing a thermal stress relaxation material of the present invention obtained by slicing in FIG.

【図5】図4の熱応力緩和材に固定用外枠を設けた状態
を示す斜視図。
5 is a perspective view showing a state in which a fixing outer frame is provided on the thermal stress relaxation material of FIG.

【図6】(a)は本発明の第2実施例の熱応力緩和材を
製造する素材である多層グラファイト体を示す斜視図、
(b)は多層グラファイト体を構成するグラファイト集
合体の斜視図。
FIG. 6 (a) is a perspective view showing a multilayer graphite body which is a raw material for manufacturing the thermal stress relaxation material of the second embodiment of the present invention,
(B) is a perspective view of the graphite aggregate which comprises a multilayer graphite body.

【図7】図6(a)の多層グラファイト体をスライスし
て本発明の熱応力緩和材を得る状態を示す斜視図。
FIG. 7 is a perspective view showing a state where the thermal stress relaxation material of the present invention is obtained by slicing the multilayer graphite body of FIG. 6 (a).

【図8】図7でスライスして得られた本発明の熱応力緩
和材を示す斜視図。
8 is a perspective view showing a thermal stress relaxation material of the present invention obtained by slicing in FIG.

【図9】図8の熱応力緩和材に固定用外枠を設けた状態
を示す斜視図。
9 is a perspective view showing a state in which a fixing outer frame is provided on the thermal stress relaxation material of FIG.

【図10】本発明の熱応力緩和材を熱電変換モジュール
に固着した熱電変換ユニットを示す断面図。
FIG. 10 is a cross-sectional view showing a thermoelectric conversion unit in which the thermal stress relaxation material of the present invention is fixed to a thermoelectric conversion module.

【図11】従来の熱応力緩和材を示す斜視図。FIG. 11 is a perspective view showing a conventional thermal stress relaxation material.

【符号の説明】[Explanation of symbols]

1 熱変換モジュール 3 低温側部材 5 高温側部材 6 熱応力緩和材 8 箔状のグラファイト材 8a グラファイト材 14 グラファイト集合体 14a グラファイト繊維 15 熱電変換ユニット 1 Heat conversion module 3 Low temperature side member 5 High temperature side member 6 Thermal stress relaxation material 8 Foil-shaped graphite material 8a Graphite material 14 Graphite aggregate 14a Graphite fiber 15 Thermoelectric conversion unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱電変換モジュールと低温側部材との
間、および熱電変換モジュールと高温側部材との間の少
なくとも一方に介在されるグラファイト製の熱応力緩和
材において、 熱応力緩和材がグラファイト材を多重に積層してなるシ
ート状であって、グラファイト材がシート面と略直交す
る方向に配置されて形成されていることを特徴とする熱
電変換モジュール用の熱応力緩和材。
1. A graphite thermal stress relaxation material interposed between at least one of a thermoelectric conversion module and a low temperature side member and between a thermoelectric conversion module and a high temperature side member, wherein the thermal stress relaxation material is a graphite material. A thermal stress relaxation material for a thermoelectric conversion module, which is in the form of a sheet in which a plurality of layers are laminated, and a graphite material is arranged in a direction substantially orthogonal to the sheet surface.
【請求項2】 前記熱応力緩和材は、グラファイト材を
多重に積層した後に、積層方向と略平行方向にスライス
して形成されたことを特徴とする請求項1記載の熱電変
換モジュール用の熱応力緩和材。
2. The heat for a thermoelectric conversion module according to claim 1, wherein the thermal stress relaxation material is formed by stacking graphite materials in multiple layers and then slicing them in a direction substantially parallel to the stacking direction. Stress relaxation material.
【請求項3】 前記熱応力緩和材は、グラファイト繊維
を多数本積層した後に、積層方向と略平行方向にスライ
スして形成されたことを特徴とする請求項1記載の熱電
変換モジュール用の熱応力緩和材。
3. The heat for a thermoelectric conversion module according to claim 1, wherein the thermal stress relaxation material is formed by stacking a large number of graphite fibers and then slicing them in a direction substantially parallel to the stacking direction. Stress relaxation material.
【請求項4】 熱電変換モジュールの低温側面と高温側
面の少なくとも一方に、シート状の熱応力緩和材が固着
され、その熱応力緩和材がグラファイト材を多重に積層
してなるシート状であって、グラファイト材がシート面
と略直交する方向に配置されて形成されていることを特
徴とする熱電変換ユニット。
4. A sheet-like thermal stress relaxation material is fixed to at least one of a low temperature side and a high temperature side of the thermoelectric conversion module, and the thermal stress relaxation material is a sheet formed by laminating graphite materials in multiple layers. The thermoelectric conversion unit is characterized in that the graphite material is arranged and formed in a direction substantially orthogonal to the sheet surface.
JP2001314976A 2001-10-12 2001-10-12 Thermal stress relaxation material for thermoelectric transducing module and thermoelectric transducing unit using the same Withdrawn JP2003124532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001314976A JP2003124532A (en) 2001-10-12 2001-10-12 Thermal stress relaxation material for thermoelectric transducing module and thermoelectric transducing unit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001314976A JP2003124532A (en) 2001-10-12 2001-10-12 Thermal stress relaxation material for thermoelectric transducing module and thermoelectric transducing unit using the same

Publications (1)

Publication Number Publication Date
JP2003124532A true JP2003124532A (en) 2003-04-25

Family

ID=19133210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001314976A Withdrawn JP2003124532A (en) 2001-10-12 2001-10-12 Thermal stress relaxation material for thermoelectric transducing module and thermoelectric transducing unit using the same

Country Status (1)

Country Link
JP (1) JP2003124532A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024608A (en) * 2004-07-06 2006-01-26 Central Res Inst Of Electric Power Ind Heat transfer cushion and thermoelectric conversion module provided therewith
JP2012114290A (en) * 2010-11-25 2012-06-14 Fujitsu Ltd Thermoelectric module and manufacturing method of the same
JP2015220440A (en) * 2014-05-21 2015-12-07 シチズン電子株式会社 Heat dissipation substrate, method of manufacturing the same and led light-emitting device using heat dissipation substrate
JP2018006609A (en) * 2016-07-04 2018-01-11 株式会社デンソー Thermoelectric power generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024608A (en) * 2004-07-06 2006-01-26 Central Res Inst Of Electric Power Ind Heat transfer cushion and thermoelectric conversion module provided therewith
JP2012114290A (en) * 2010-11-25 2012-06-14 Fujitsu Ltd Thermoelectric module and manufacturing method of the same
JP2015220440A (en) * 2014-05-21 2015-12-07 シチズン電子株式会社 Heat dissipation substrate, method of manufacturing the same and led light-emitting device using heat dissipation substrate
JP2018006609A (en) * 2016-07-04 2018-01-11 株式会社デンソー Thermoelectric power generator
WO2018008507A1 (en) * 2016-07-04 2018-01-11 株式会社デンソー Thermoelectric power generation device

Similar Documents

Publication Publication Date Title
US8536439B2 (en) Thermoelectric device
JP3828924B2 (en) Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion apparatus using the element
US4730459A (en) Thermoelectric modules, used in thermoelectric apparatus and in thermoelectric devices using such thermoelectric modules
JP5197954B2 (en) Thermoelectric element
JPWO2008056466A1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
US20040261830A1 (en) Thermoelectric device having P-type and N-type materials
JPH10303471A (en) Thermoelectric element and thermoelectric element module using the same
JP2008205181A (en) Thermoelectric module
JP2006294935A (en) High efficiency and low loss thermoelectric module
US20080230107A1 (en) Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device
KR20120018245A (en) Manufacturing method of thermoelectric film
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
JP2003124532A (en) Thermal stress relaxation material for thermoelectric transducing module and thermoelectric transducing unit using the same
JP5776700B2 (en) Thermoelectric conversion module
JP2012069626A (en) Thermal power generation device
JPS63253677A (en) Multilayered thermoelectric conversion device
JP2009194309A (en) Thermoelectric module
JP2003229609A (en) Thermal stress relaxation material for thermoelectric conversion module, its manufacturing method and thermoelectric transducer
JP2884070B2 (en) Thermoelectric conversion module
JP2018046275A (en) Thermoelectric power generation device and manufacturing method thereof
JP6134658B2 (en) Thermoelectric conversion module
US20130319491A1 (en) Electricity generation method using thermoelectric generation element, thermoelectric generation element and manufacturing method thereof, and thermoelectric generation device
JPH09321349A (en) Thermoelectric converter
JP5664158B2 (en) Thermoelectric conversion module
JP4124150B2 (en) Thermoelectric module manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104