JPH09321349A - Thermoelectric converter - Google Patents

Thermoelectric converter

Info

Publication number
JPH09321349A
JPH09321349A JP8132216A JP13221696A JPH09321349A JP H09321349 A JPH09321349 A JP H09321349A JP 8132216 A JP8132216 A JP 8132216A JP 13221696 A JP13221696 A JP 13221696A JP H09321349 A JPH09321349 A JP H09321349A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
electrode
conversion element
conversion device
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8132216A
Other languages
Japanese (ja)
Inventor
Gakuyuu Seto
学雄 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8132216A priority Critical patent/JPH09321349A/en
Publication of JPH09321349A publication Critical patent/JPH09321349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric converter whose thermoelectric converter element does not break and has high reliability. SOLUTION: A thermoelectric converter device 2 is provided with a heat exchanger board 20, which is provided by forming an electrode on the rear side of a plane joined to an endothermal object A, a heat converter board 21, which is provided by forming an electrode on the rear side of a plane joined to a heating object B and a plurality of thermoelectric converter elements sandwiched between the electrodes. The junction part between the thermoelectric converter element and the electrodes is provided as a slidable contact structure. The thermoelectric converter element has a columnar shape, and parallel flat planes for sandwiching the cylindrical plane of the columnar heat converter element are provided for both electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸熱対象と加熱対
象との温度差の大きい熱電気変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion device having a large temperature difference between a heat absorbing object and a heating object.

【0002】[0002]

【従来の技術】P型半導体とN型半導体とを禁則を介し
て接合してPN素子対を形成し、この接合部に流れる電
流の方向によって、一方の端部が発熱するとともに他方
の端部が冷却するペルチェ効果を利用した熱電変換素子
は、小型で構造が簡単なことから、様々な装置に対して
幅広い利用が期待されている。
2. Description of the Related Art A P-type semiconductor and an N-type semiconductor are joined with each other through a prohibition to form a PN element pair, and one end portion generates heat and the other end portion depending on the direction of a current flowing through this joint portion. The thermoelectric conversion element utilizing the Peltier effect for cooling is expected to be widely used for various devices because of its small size and simple structure.

【0003】この様な熱電変換素子を多数個集めサーモ
モジュールとして構成した熱電気変換装置1は、図11
に示すように、吸熱対象との接合面の裏面に電極10a
を形成してなる熱交換基板10と、加熱対象との接合面
の裏面に電極11aを形成してなる熱交換基板11と、
前記両電極10a,11a間に挟持接合される複数の熱
電変換素子12,…とを備える。
A thermoelectric conversion device 1 in which a large number of such thermoelectric conversion elements are assembled as a thermomodule is shown in FIG.
As shown in FIG.
A heat exchange substrate 10 formed by forming an electrode, and a heat exchange substrate 11 formed by forming an electrode 11a on the back surface of the bonding surface to be heated.
A plurality of thermoelectric conversion elements 12 are sandwiched and joined between the electrodes 10a and 11a.

【0004】熱交換基板10,11としては、例えば、
アルミナセラミックス基板などの熱伝導性の良好な絶縁
性基板が用いられる。また、電極10a,11aは、そ
れぞの熱交換基板の対向面にパターン形成された銅板な
どであり、各熱電変換素子12,…を挟持接合して、そ
れぞれの熱電変換素子12,…を直列接続する。熱電変
換素子12は、対向する電極10a,11a間に挟持接
合され、半田などの導電性接着剤(図示せず)を介して
固着される。
As the heat exchange substrates 10 and 11, for example,
An insulating substrate having good thermal conductivity such as an alumina ceramic substrate is used. The electrodes 10a and 11a are copper plates or the like that are patterned on the opposite surfaces of the respective heat exchange substrates. The thermoelectric conversion elements 12, ... Are sandwiched and joined, and the thermoelectric conversion elements 12 ,. Connecting. The thermoelectric conversion element 12 is sandwiched and joined between the opposing electrodes 10a and 11a, and fixed by a conductive adhesive (not shown) such as solder.

【0005】ところで、熱交換効率の増大を図るには、
熱交換基板を熱伝導性の良好な絶縁性材料で構成する必
要がある。また、熱電変換素子の熱歪みによる劣化を防
止するには、熱交換基板を熱膨張率の小さなもので構成
する必要がある。しかしながら、従来から、熱交換基板
材料として、アルミナセラミックス基板が用いられてい
る。アルミナセラミックス基板は線膨張係数7×10-6
/°Cと大きい。そして、該アルミナセラミックス基板
に線膨張係数16.5×10-6/°Cの銅電極が形成さ
れる。
By the way, in order to increase the heat exchange efficiency,
The heat exchange substrate needs to be made of an insulating material having good thermal conductivity. Further, in order to prevent deterioration of the thermoelectric conversion element due to thermal strain, it is necessary to configure the heat exchange substrate with one having a small coefficient of thermal expansion. However, conventionally, an alumina ceramics substrate has been used as a heat exchange substrate material. Alumina ceramics substrate has a linear expansion coefficient of 7 × 10 -6
It is as large as / ° C. Then, a copper electrode having a linear expansion coefficient of 16.5 × 10 −6 / ° C is formed on the alumina ceramic substrate.

【0006】従って、高温側のアルミナセラミックス基
板はかなり膨張するし、低温側のアルミナセラミックス
基板はかなり収縮する。よって、アルミナセラミックス
基板の周縁近傍部の熱電変換素子にあっては、熱電変換
素子と電極との間に大きな応力が加わり、熱電変換素子
が破損したりする。そこで、応力を緩和するために、ア
ルミナセラミックス基板を分割構造としたり、アルミナ
セラミックス基板を用いること無く、電極のみで構成す
るスケルトン構造にしたりする方法が採られているが、
構造が複雑になる。
Therefore, the alumina ceramics substrate on the high temperature side expands considerably, and the alumina ceramics substrate on the low temperature side contracts considerably. Therefore, in the thermoelectric conversion element near the peripheral edge of the alumina ceramic substrate, a large stress is applied between the thermoelectric conversion element and the electrode, and the thermoelectric conversion element is damaged. Therefore, in order to relieve the stress, a method of adopting a divided structure of the alumina ceramic substrate or a skeleton structure composed of only electrodes without using the alumina ceramic substrate is adopted.
The structure becomes complicated.

【0007】[0007]

【発明が解決しようとする課題】つまり、従来の熱電気
変換装置にあっては、吸熱対象に接合する熱交換基板と
加熱対象に接合する熱交換基板との温度差が大きくなる
に伴い、熱電変換素子の破損や脱落が生じたりするとい
う問題点があった。
That is, in the conventional thermoelectric conversion device, as the temperature difference between the heat exchange substrate to be joined to the heat absorbing object and the heat exchange substrate to be joined to the heating object is increased, the thermoelectric conversion is performed. There is a problem that the conversion element may be damaged or come off.

【0008】本発明は、上記の問題点を解決するために
なされたもので、その目的とするところは、吸熱対象に
接合する熱交換基板と加熱対象に接合する熱交換基板と
の温度差が大きい場合でも、熱電変換素子が破損したり
脱落したりしない、信頼性の高い熱電気変換装置を提供
することにある。
The present invention has been made in order to solve the above problems, and an object of the present invention is to reduce a temperature difference between a heat exchange substrate joined to an endothermic object and a heat exchange substrate joined to a heated object. An object of the present invention is to provide a highly reliable thermoelectric conversion device in which the thermoelectric conversion element does not break or fall off even if it is large.

【0009】[0009]

【課題を解決するための手段】本発明は上記の問題点を
解決するため、請求項1記載の発明にあっては、吸熱対
象との接合面の裏面に電極を形成してなる熱交換基板
と、加熱対象との接合面の裏面に電極を形成してなる熱
交換基板と、前記両電極間に挟持接合される複数の熱電
変換素子とを備える熱電気変換装置において、前記熱電
変換素子と前記電極との接合部を摺動可能接触構造とし
たことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a heat exchange substrate having an electrode formed on the back surface of a surface to be joined with a heat absorbing object. A thermoelectric conversion device comprising a heat exchange substrate having an electrode formed on the back surface of the surface to be joined with the heating target, and a plurality of thermoelectric conversion elements sandwiched and bonded between the electrodes, wherein the thermoelectric conversion element is It is characterized in that the joint with the electrode has a slidable contact structure.

【0010】請求項2記載の発明にあっては、前記摺動
可能接触構造は、同曲率の、熱電変換素子に形成した凹
面と、電極に形成した凸面とにより構成したことを特徴
とする。
According to a second aspect of the invention, the slidable contact structure is composed of a concave surface having the same curvature and formed on the thermoelectric conversion element and a convex surface formed on the electrode.

【0011】請求項3記載の発明にあっては、前記摺動
可能接触構造は、同曲率の、熱電変換素子に形成した凸
面と、電極に形成した凹面とにより構成したことを特徴
とする。
According to a third aspect of the present invention, the slidable contact structure is composed of a convex surface formed on the thermoelectric conversion element and a concave surface formed on the electrode, which have the same curvature.

【0012】請求項4記載の発明にあっては、前記凸面
と前記凹面とはそれぞれ球面であることを特徴とする。
According to a fourth aspect of the present invention, the convex surface and the concave surface are spherical surfaces, respectively.

【0013】請求項5記載の発明にあっては、前記熱電
変換素子の摺動部近傍に絶縁性の過剰回動抑止部を設け
たことを特徴とする。
According to a fifth aspect of the invention, an insulating excessive rotation inhibiting portion is provided near the sliding portion of the thermoelectric conversion element.

【0014】請求項6記載の発明にあっては、吸熱対象
との接合面の裏面に電極を形成してなる熱交換基板と、
加熱対象との接合面の裏面に電極を形成してなる熱交換
基板と、前記両電極間に挟持接合される複数の熱電変換
素子とを備える熱電気変換装置において、前記熱電変換
素子を円柱状となすとともに、前記両電極に、前記円柱
状の熱電変換素子の円筒面を挟持するための平行な平面
を設けたことを特徴とする。
According to a sixth aspect of the invention, there is provided a heat exchange substrate having electrodes formed on the back surface of the surface to be joined with the heat absorption target,
In a thermoelectric conversion device comprising a heat exchange substrate having electrodes formed on the back surface of a surface to be joined with a heating object, and a plurality of thermoelectric conversion elements sandwiched and joined between the electrodes, the thermoelectric conversion elements are cylindrical. In addition, the both electrodes are provided with parallel flat surfaces for sandwiching the cylindrical surface of the cylindrical thermoelectric conversion element.

【0015】請求項7記載の発明にあっては、前記円柱
状の熱電変換素子に、流通電流を遮断するための絶縁面
を設けたことを特徴とする。
The invention according to claim 7 is characterized in that the cylindrical thermoelectric conversion element is provided with an insulating surface for interrupting a flowing current.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る熱電気変換装
置の、第1の実施の形態を図1〜図3に基づいて、第2
の実施の形態を図4および図5に基づいて、第3の実施
の形態を図6〜図8に基づいて、第4の実施の形態を図
9および図10に基づいて、それぞれ詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of a thermoelectric conversion device according to the present invention will be described below with reference to FIGS.
An embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5, a third embodiment will be described with reference to FIGS. 6 to 8, and a fourth embodiment will be described with reference to FIGS. 9 and 10. To do.

【0017】〔第1の実施の形態〕図1は熱電気変換装
置の用い方を示す断面側面図である。図2は熱電気変換
装置の要部を示す説明図であり、図2(a)は電極と熱
電変換素子との接合を示す要部断面側面図、図2(b)
は熱電変換素子の形状を示す斜視図、図2(c)は電極
の形状を示す要部斜視図である。図3は他の熱電変換素
子の形状を示す斜視図である。
[First Embodiment] FIG. 1 is a sectional side view showing how to use a thermoelectric converter. FIG. 2 is an explanatory view showing a main part of the thermoelectric conversion device, and FIG. 2 (a) is a cross-sectional side view of a main part showing joining of an electrode and a thermoelectric conversion element, FIG. 2 (b).
2 is a perspective view showing the shape of the thermoelectric conversion element, and FIG. 2 (c) is a perspective view showing the shape of the electrode. FIG. 3 is a perspective view showing the shape of another thermoelectric conversion element.

【0018】図1に示すように、熱電気変換装置2は、
例えば、吸熱対象に相当する冷却部Aと加熱対象に相当
する放熱部Bとの間に、挟持されるように配設される。
熱電気変換装置2は、通電することにより、熱を冷却部
Aから放熱部Bへ移送する。また、熱電気変換装置2に
対する過大挟持力の防止および熱交換効率の向上のため
に、蔓巻バネC,Dを介しビスEを用いて冷却部Aと放
熱部Bとを連結することによって、熱電気変換装置2の
一方の面は程良い力で常に冷却部Aに密着し、且つ、熱
電気変換装置2の他方の面は程良い力で常に放熱部Bに
密着するようにされている。
As shown in FIG. 1, the thermoelectric conversion device 2 includes:
For example, it is disposed so as to be sandwiched between a cooling unit A corresponding to a heat absorbing target and a heat radiating unit B corresponding to a heating target.
The thermoelectric conversion device 2 transfers heat from the cooling unit A to the heat radiating unit B by being energized. Further, in order to prevent an excessive clamping force with respect to the thermoelectric conversion device 2 and to improve heat exchange efficiency, by connecting the cooling unit A and the heat radiating unit B with screws E via the spiral springs C and D, One surface of the thermoelectric conversion device 2 is always in close contact with the cooling part A with a moderate force, and the other surface of the thermoelectric conversion device 2 is always in close contact with the heat dissipation part B with a moderate force. .

【0019】熱電気変換装置2は、冷却部Aに密着する
熱交換基板20と、放熱部Bに密着する熱交換基板21
とを備える。熱交換基板20は、冷却部Aとの接合面の
裏面に、図2(a)に示すような銅製の電極20aを複
数備える。また、熱交換基板21は、放熱部Bとの接合
面の裏面に、図2(a)に示すような銅製の電極21a
を複数備える。
The thermoelectric conversion device 2 includes a heat exchange substrate 20 that is in close contact with the cooling unit A and a heat exchange substrate 21 that is in close contact with the heat radiating unit B.
With. The heat exchange substrate 20 is provided with a plurality of copper electrodes 20a as shown in FIG. 2A on the back surface of the joint surface with the cooling unit A. In addition, the heat exchange substrate 21 has a copper electrode 21a as shown in FIG.
Is equipped with a plurality of.

【0020】電極20aは平面視略正方形の凹部20b
を備える。凹部20bの底面20cは凸状円筒面に成形
されている。電極21aは平面視略正方形の凹部21b
を備える。凹部21bの底面21cは凸状円筒面に成形
されている。凹部20bと凹部21bとはそれぞれ対向
している。底面20cの凸状円筒面の軸と底面21cの
凸状円筒面の軸とは、平行にされている。なお、電極2
0aの凹部20bの近傍、および、電極21aの凹部2
1bの近傍の形状は、図2(c)に示すようにされてい
る。
The electrode 20a is a recess 20b having a substantially square shape in plan view.
Is provided. The bottom surface 20c of the recess 20b is formed into a convex cylindrical surface. The electrode 21a is a recess 21b having a substantially square shape in plan view.
Is provided. The bottom surface 21c of the recess 21b is formed into a convex cylindrical surface. The recess 20b and the recess 21b face each other. The axis of the convex cylindrical surface of the bottom surface 20c and the axis of the convex cylindrical surface of the bottom surface 21c are parallel to each other. The electrode 2
0a in the vicinity of the recess 20b and the electrode 21a in the recess 2
The shape in the vicinity of 1b is as shown in FIG.

【0021】熱電変換素子22は、図2(b)に示すよ
うに、断面略正方形の棒状に成形されている。熱電変換
素子22の断面は、電極20a,21aの平面視略正方
形の凹部20b,21bよりも、余裕を以て小さくされ
ている。熱電変換素子22の両端面は、それぞれ凹状円
筒面22a,22bに成形され、凹状円筒面22a,2
2bの軸は平行にされている。また、熱電変換素子22
の両端の凹状円筒面22a,22bの曲率と、電極20
aの凹部20bの底面20cの凸状円筒面の曲率と、電
極21aの凹部21bの底面21cの凸状円筒面の曲率
とは、それぞれ等しくされている。
As shown in FIG. 2B, the thermoelectric conversion element 22 is formed in a rod shape having a substantially square cross section. The cross section of the thermoelectric conversion element 22 is made smaller than the recesses 20b and 21b of the electrodes 20a and 21a, which are substantially square in plan view, with a margin. Both end surfaces of the thermoelectric conversion element 22 are formed into concave cylindrical surfaces 22a and 22b, respectively.
The axes of 2b are parallel. In addition, the thermoelectric conversion element 22
Of the concave cylindrical surfaces 22a and 22b at both ends of the electrode 20
The curvature of the convex cylindrical surface of the bottom surface 20c of the concave portion 20b of a and the curvature of the convex cylindrical surface of the bottom surface 21c of the concave portion 21b of the electrode 21a are equal.

【0022】このような熱電変換素子22の端部22a
は電極20aの凹部20bに挿入され、端部22bは電
極21aの凹部21bに挿入され、熱電変換素子22は
蔓巻バネC,Dの付勢力を以て電極20aと電極21a
とで挟持される。また、それぞれの円筒面は滑らかに仕
上げ加工がなされている。
The end portion 22a of such a thermoelectric conversion element 22
Is inserted into the recess 20b of the electrode 20a, the end 22b is inserted into the recess 21b of the electrode 21a, and the thermoelectric conversion element 22 is applied to the electrodes 20a and 21a by the biasing forces of the spiral springs C and D.
It is sandwiched between and. In addition, each cylindrical surface is smoothly finished.

【0023】従って、熱交換基板20が熱収縮し、且
つ、熱交換基板21が熱膨張し、例えば、図2(a)に
示す矢印の方向に応力が加わった場合、熱電変換素子2
2の凹状円筒面をなす端面22aは、電極20aの凹部
20bの底面20cの凸状円筒面を摺動回動でき、熱電
変換素子22の凹状円筒面をなす端面22bは、電極2
1aの凹部21bの底面21cの凸状円筒面を摺動回動
できる。
Therefore, when the heat exchange substrate 20 thermally contracts and the heat exchange substrate 21 thermally expands, for example, when stress is applied in the direction of the arrow shown in FIG.
The end surface 22a forming the concave cylindrical surface of No. 2 can slide and rotate on the convex cylindrical surface of the bottom surface 20c of the concave portion 20b of the electrode 20a, and the end surface 22b forming the concave cylindrical surface of the thermoelectric conversion element 22 is
The convex cylindrical surface of the bottom surface 21c of the concave portion 21b of 1a can be slid and rotated.

【0024】また、図2(a)に示す矢印の方向と直交
する方向(円筒面の軸方向)に応力が加わった場合、熱
電変換素子22の凹状円筒面をなす端面22aは、電極
20aの凹部20bの底面20cの凸状円筒面を摺動し
て平行移動でき、熱電変換素子22の凹状円筒面をなす
端面22bは、電極21aの凹部21bの底面21cの
凸状円筒面を摺動して平行移動できる。
When stress is applied in the direction orthogonal to the direction of the arrow shown in FIG. 2A (axial direction of the cylindrical surface), the end surface 22a forming the concave cylindrical surface of the thermoelectric conversion element 22 has the electrode 20a. The convex cylindrical surface of the bottom surface 20c of the concave portion 20b can be slid and moved in parallel, and the end surface 22b forming the concave cylindrical surface of the thermoelectric conversion element 22 slides on the convex cylindrical surface of the bottom surface 21c of the concave portion 21b of the electrode 21a. Can be moved in parallel.

【0025】つまり、上述のような熱電気変換装置2に
あっては、熱交換基板20,21が線膨張係数の大きい
アルミナセラミックス基板などであって、しかも、利用
のされ方として熱交換基板20,21の温度差が大きく
ても、熱電変換素子22が破損したり脱落したりするこ
とのない、信頼性の高いものにできる。
That is, in the thermoelectric conversion device 2 as described above, the heat exchange substrates 20 and 21 are alumina ceramics substrates having a large linear expansion coefficient, and the heat exchange substrate 20 is used as a method. , 21, the thermoelectric conversion element 22 will not be damaged or fall off, and can be made highly reliable.

【0026】なお、熱電変換素子の両端面22a,22
bを図3に示すように凹状球面にするとともに、電極2
0aの凹部20bの底面20cと電極21aの凹部21
bの底面21cとを、同曲率の凸状球面にすることがで
きる。この場合、それぞれの熱交換基板が、各平面の何
方の方向に熱収縮したり熱膨張したりしても、熱電変換
素子の一方の凹状球面の端面は、一方の電極の凹部の底
面の凸状球面を摺動回動でき、熱電変換素子の他方の凹
状球面の端面は、他方の電極の凹部の底面の凸状球面を
摺動回動できる。つまり、熱電気変換装置を、熱電変換
素子が破損したり脱落したりすることのない、信頼性の
高いものにできる。
Both end faces 22a, 22 of the thermoelectric conversion element
b is a concave spherical surface as shown in FIG.
Bottom surface 20c of the concave portion 20b of 0a and the concave portion 21 of the electrode 21a
The bottom surface 21c of b can be a convex spherical surface having the same curvature. In this case, even if each heat exchange substrate undergoes thermal contraction or thermal expansion in any direction of each plane, one end surface of the concave spherical surface of the thermoelectric conversion element has the convex surface of the bottom surface of the concave portion of one electrode. The spherical surface can be slidably rotated, and the end surface of the other concave spherical surface of the thermoelectric conversion element can be slidably rotated on the convex spherical surface of the bottom surface of the concave portion of the other electrode. That is, the thermoelectric conversion device can be made highly reliable without damaging or dropping the thermoelectric conversion element.

【0027】〔第2の実施の形態〕図4は熱電気変換装
置の要部を示す説明図であり、図4(a)は電極と熱電
変換素子との接合を示す要部断面側面図、図4(b)は
熱電変換素子の形状を示す斜視図、図4(c)は電極の
形状を示す斜視図である。図5は他の熱電変換素子の形
状を示す要部斜視図である。なお、前述の第1の実施の
形態の熱電気変換装置と同等の部分には同じ符号を付し
てあるので、同じ符号を付した部分の詳細な説明は省略
する。
[Second Embodiment] FIG. 4 is an explanatory view showing a main part of a thermoelectric conversion device, and FIG. 4 (a) is a cross-sectional side view of a main part showing joining of an electrode and a thermoelectric conversion element. FIG. 4B is a perspective view showing the shape of the thermoelectric conversion element, and FIG. 4C is a perspective view showing the shape of the electrode. FIG. 5 is a main part perspective view showing the shape of another thermoelectric conversion element. Since the same parts as those of the thermoelectric conversion device according to the first embodiment described above are designated by the same reference numerals, detailed description of the parts designated by the same reference numerals is omitted.

【0028】図4に示すように、この熱電気変換装置
が、前述の第1の実施の形態の熱電気変換装置と異なり
特徴となるのは次の構成である。すなわち、前述の第1
の実施の形態の熱電気変換装置にあっては、電極20a
の凹部20bの底面20cおよび電極21aの凹部21
bの底面21cを凸状円筒面あるいは球面に成形すると
ともに、熱電変換素子22の両端面22a,22bを凹
状円筒面あるいは球面に成形しているのに対し、第2の
実施の形態の熱電気変換装置にあっては、電極20aの
凹部20bの底面20dおよび電極21aの凹部21b
の底面21dを凹状円筒面に成形するとともに、熱電変
換素子22の両端面22c,22dを凸状円筒面に成形
し、且つ、両端面22c,22dの凸状円筒面の軸を平
行にしている構成である。なお、電極20aの凹部20
bの近傍、および、電極21aの凹部21bの近傍の形
状は、図4(c)に示すようにされている。
As shown in FIG. 4, this thermoelectric conversion device is different from the thermoelectric conversion device of the first embodiment in that it has the following features. That is, the first
In the thermoelectric conversion device according to the embodiment, the electrode 20a
Bottom surface 20c of the recess 20b and recess 21 of the electrode 21a
The bottom surface 21c of b is formed into a convex cylindrical surface or a spherical surface, and both end surfaces 22a and 22b of the thermoelectric conversion element 22 are formed into a concave cylindrical surface or a spherical surface. In the converter, the bottom surface 20d of the recess 20b of the electrode 20a and the recess 21b of the electrode 21a are included.
Bottom surface 21d of the thermoelectric conversion element 22 is formed into a concave cylindrical surface, both end surfaces 22c and 22d of the thermoelectric conversion element 22 are formed into convex cylindrical surfaces, and the axes of the convex cylindrical surfaces of both end surfaces 22c and 22d are parallel. It is a composition. The recess 20 of the electrode 20a
The shape of the vicinity of b and the vicinity of the concave portion 21b of the electrode 21a are as shown in FIG. 4 (c).

【0029】このような熱電変換素子22の端部22c
は電極20aの凹部20bに挿入され、端部22dは電
極21aの凹部21bに挿入され、熱電変換素子22は
蔓巻バネC,D(図1に示す)の付勢力を以て電極20
aと電極21aとで挟持される。また、それぞれの円筒
面は滑らかに仕上げ加工がなされている。
The end portion 22c of such a thermoelectric conversion element 22
Is inserted into the recess 20b of the electrode 20a, the end 22d is inserted into the recess 21b of the electrode 21a, and the thermoelectric conversion element 22 is applied to the electrode 20 with the biasing force of the spiral springs C and D (shown in FIG. 1).
It is sandwiched between a and the electrode 21a. In addition, each cylindrical surface is smoothly finished.

【0030】従って、冷却部側の熱交換基板が熱収縮
し、且つ、放熱部側の熱交換基板が熱膨張し、例えば、
図4(a)に示す矢印の方向に応力が加わった場合、熱
電変換素子22の凸状円筒面をなす端面22cは、電極
20aの凹部20bの底面20dの凹状円筒面を摺動回
動でき、熱電変換素子22の凸状円筒面をなす端面22
dは、電極21aの凹部21bの底面21dの凹状円筒
面を摺動回動できる。
Therefore, the heat exchange substrate on the cooling unit side contracts thermally, and the heat exchange substrate on the heat radiating unit side thermally expands.
When stress is applied in the direction of the arrow shown in FIG. 4A, the end surface 22c forming the convex cylindrical surface of the thermoelectric conversion element 22 can slide and rotate on the concave cylindrical surface of the bottom surface 20d of the concave portion 20b of the electrode 20a. , End surface 22 forming a convex cylindrical surface of thermoelectric conversion element 22
d can slide and rotate on the concave cylindrical surface of the bottom surface 21d of the concave portion 21b of the electrode 21a.

【0031】つまり、上述のような熱電気変換装置にあ
っては、熱交換基板が線膨張係数の大きいアルミナセラ
ミックス基板などであって、しかも、利用のされ方とし
て、冷却部側の熱交換基板と放熱部側の熱交換基板との
温度差が大きくても、熱電変換素子22が破損したり脱
落したりすることのない、信頼性の高いものにできる。
しかもこの場合、前述の第1の実施の形態の熱電気変換
装置に比べて、電極20aの凹部20bの側面と底面2
0dとのなす角および熱電変換素子22のエッジは鈍角
となり、振動などの衝撃でも熱電変換素子22の欠けが
防止できる利点がある。
That is, in the thermoelectric conversion device as described above, the heat exchange substrate is an alumina ceramics substrate or the like having a large linear expansion coefficient, and moreover, it is used as a heat exchange substrate on the cooling section side. Even if there is a large difference in temperature between the heat exchange substrate and the heat exchange substrate on the heat radiating portion side, the thermoelectric conversion element 22 can be made highly reliable without being damaged or dropped.
Moreover, in this case, the side surface and the bottom surface 2 of the recess 20b of the electrode 20a are different from those of the thermoelectric conversion device according to the first embodiment.
The angle formed by 0d and the edge of the thermoelectric conversion element 22 are obtuse angles, and there is an advantage that the thermoelectric conversion element 22 can be prevented from being chipped even by shock such as vibration.

【0032】なお、熱電変換素子22の両端面22c,
22dを図5に示すように凸状球面にするとともに、電
極20aの凹部20bの底面20dと電極21aの凹部
21bの底面21dとを凹状球面にすることができる。
勿論、それぞれの球面は同曲率とされる。この場合、そ
れぞれの熱交換基板が、各平面の何方の方向に熱収縮し
たり熱膨張したりしても、熱電変換素子の一方の凸状球
面の端面は、一方の電極の凹部の底面の凹状球面を摺動
回動でき、熱電変換素子の他方の凸状球面の端面は、他
方の電極の凹部の底面の凹状球面を摺動回動できる。つ
まり、熱電気変換装置を、熱電変換素子が破損したり脱
落したりすることのない、信頼性の高いものにできる。
Both end faces 22c of the thermoelectric conversion element 22,
22d can be a convex spherical surface as shown in FIG. 5, and the bottom surface 20d of the concave portion 20b of the electrode 20a and the bottom surface 21d of the concave portion 21b of the electrode 21a can be a concave spherical surface.
Of course, each spherical surface has the same curvature. In this case, even if each heat exchange substrate undergoes thermal contraction or thermal expansion in any direction of each plane, one end surface of the convex spherical surface of the thermoelectric conversion element has a bottom surface of the concave portion of one electrode. The concave spherical surface can slide and rotate, and the end surface of the other convex spherical surface of the thermoelectric conversion element can slide and rotate on the concave spherical surface of the bottom surface of the concave portion of the other electrode. That is, the thermoelectric conversion device can be made highly reliable without damaging or dropping the thermoelectric conversion element.

【0033】〔第3の実施の形態〕図6は熱電気変換装
置の要部を示す説明図であり、図6(a)は電極と熱電
変換素子との接合を示す要部断面側面図、図6(b)は
熱電変換素子の形状を示す斜視図、図6(c)は電極の
形状を示す斜視図である。図7は熱電変換素子の動作を
示す断面側面図、図8は他の熱電変換素子の形状を示す
斜視図である。なお、前述の第2の実施の形態の熱電気
変換装置と同等の部分には同じ符号を付してあるので、
同じ符号を付した部分の詳細な説明は省略する。
[Third Embodiment] FIG. 6 is an explanatory view showing a main part of a thermoelectric conversion device, and FIG. 6 (a) is a cross-sectional side view of a main part showing joining of an electrode and a thermoelectric conversion element. FIG. 6B is a perspective view showing the shape of the thermoelectric conversion element, and FIG. 6C is a perspective view showing the shape of the electrode. 7 is a sectional side view showing the operation of the thermoelectric conversion element, and FIG. 8 is a perspective view showing the shape of another thermoelectric conversion element. Since the same parts as those of the thermoelectric conversion device of the second embodiment described above are designated by the same reference numerals,
Detailed description of the parts denoted by the same reference numerals is omitted.

【0034】図6に示すように、この熱電気変換装置
が、前述の第2の実施の形態の熱電気変換装置と異なり
特徴となるのは次の構成である。すなわち、前述の第2
の実施の形態の熱電気変換装置にあっては、電極20a
の凹部20bの底面20dおよび電極21aの凹部21
bの底面21dを凹状円筒面あるいは球面に成形すると
ともに、熱電変換素子22の両端面22c,22dを凸
状円筒面あるいは球面に成形しているのに対し、第3の
実施の形態の熱電気変換装置にあっては、電極20aの
平面部に凹状円筒面部20eを、電極21aの平面部に
凹状円筒面部21eを、それぞれ直接に成形するととも
に、熱電変換素子22の両端面の中央部に凸状円筒面を
なす導電摺動部22e,22fをそれぞれ成形し、且
つ、導電摺動部22e,22fの凸状円筒面の軸を平行
にし、更に、導電摺動部22e,22fの周縁面全体に
硬質の絶縁層22gを形成している構成である。
As shown in FIG. 6, this thermoelectric conversion device is different from the thermoelectric conversion device of the second embodiment in that it has the following features. That is, the above-mentioned second
In the thermoelectric conversion device according to the embodiment, the electrode 20a
Bottom surface 20d of the concave portion 20b and concave portion 21 of the electrode 21a
While the bottom surface 21d of b is formed into a concave cylindrical surface or a spherical surface, and both end surfaces 22c and 22d of the thermoelectric conversion element 22 are formed into a convex cylindrical surface or spherical surface, the thermoelectric conversion of the third embodiment is performed. In the conversion device, the concave cylindrical surface portion 20e is directly formed on the flat surface portion of the electrode 20a, and the concave cylindrical surface portion 21e is directly formed on the flat surface portion of the electrode 21a, and the concave cylindrical surface portion 21e is formed on the central portion of both end surfaces of the thermoelectric conversion element 22. The conductive sliding portions 22e and 22f forming a cylindrical surface, and the axes of the convex cylindrical surfaces of the conductive sliding portions 22e and 22f are made parallel to each other, and further, the entire peripheral surface of the conductive sliding portions 22e and 22f. In this structure, a hard insulating layer 22g is formed.

【0035】なお、電極20aの凹状円筒面部20eの
近傍および電極21aの凹状円筒面部21eの近傍の形
状は、図6(c)に示すようにされている。また、凹状
円筒面部20e,21e,導電摺動部22e,22fの
それぞれの円筒面の曲率は等しくされている。
The shape of the electrode 20a in the vicinity of the concave cylindrical surface portion 20e and the shape of the electrode 21a in the vicinity of the concave cylindrical surface portion 21e are as shown in FIG. 6 (c). Also, the concave cylindrical surface portions 20e and 21e and the conductive sliding portions 22e and 22f have the same cylindrical surface curvature.

【0036】このような、熱電変換素子22の一端部の
導電摺動部22eは電極20aの凹状円筒面部20eに
挿入され、熱電変換素子22の他端部の導電摺動部22
fは電極21aの凹状円筒面部21eに挿入され、熱電
変換素子22は蔓巻バネC,D(図1に示す)の付勢力
を以て電極20aと電極21aとで挟持される。また、
それぞれの円筒面は滑らかに仕上げ加工がなされてい
る。
The conductive sliding portion 22e at one end of the thermoelectric conversion element 22 is inserted into the concave cylindrical surface portion 20e of the electrode 20a, and the conductive sliding portion 22 at the other end of the thermoelectric conversion element 22 is inserted.
f is inserted into the concave cylindrical surface portion 21e of the electrode 21a, and the thermoelectric conversion element 22 is sandwiched between the electrode 20a and the electrode 21a by the biasing force of the spiral springs C and D (shown in FIG. 1). Also,
Each cylindrical surface is smoothly finished.

【0037】従って、冷却部側の熱交換基板が熱収縮
し、且つ、放熱部側の熱交換基板が熱膨張し、例えば、
図6(a)に示す矢印の方向に応力が加わった場合、変
位が小さいうちは、熱電変換素子22の導電摺動部22
eは、電極20aの凹状円筒面部20eを摺動回動で
き、熱電変換素子22の導電摺動部22fは、電極21
aの凹状円筒面部21eを摺動回動できる。また、例え
ば図7に示すように、変位が大きくなり、電極20aが
右に電極21aが左に、熱電変換素子22の導電摺動部
22e,22fの摺動範囲を超える変位があると、熱電
変換素子22は過剰回動抑止部に相当する対角の角部2
2P,22Pを支点として、回動するようになり、導電
摺動部22eは電極20aから離隔するとともに導電摺
動部22fは電極21aから離隔し、熱電変換素子22
の通電が遮断し、熱電変換素子22は熱移送機能を停止
して、現在以上の熱収縮および熱膨張の影響を防止す
る。
Therefore, the heat exchange substrate on the cooling unit side thermally contracts, and the heat exchange substrate on the heat radiating unit side thermally expands.
When stress is applied in the direction of the arrow shown in FIG. 6 (a), the conductive sliding portion 22 of the thermoelectric conversion element 22 is provided while the displacement is small.
e is slidably rotatable on the concave cylindrical surface portion 20e of the electrode 20a, and the conductive sliding portion 22f of the thermoelectric conversion element 22 is connected to the electrode 21a.
The concave cylindrical surface portion 21e of a can be slid and rotated. Further, for example, as shown in FIG. 7, when the displacement becomes large and the electrode 20a is on the right, the electrode 21a is on the left, and the displacement exceeds the sliding range of the conductive sliding portions 22e, 22f of the thermoelectric conversion element 22, the thermoelectric conversion is performed. The conversion element 22 is a diagonal corner portion 2 corresponding to an excessive rotation inhibiting portion.
2P and 22P rotate about the fulcrum, the conductive sliding portion 22e separates from the electrode 20a, and the conductive sliding portion 22f separates from the electrode 21a.
Is cut off and the thermoelectric conversion element 22 stops its heat transfer function to prevent the effects of thermal contraction and thermal expansion beyond the present.

【0038】つまり、上述のような熱電気変換装置にあ
っては、熱交換基板が線膨張係数の大きいアルミナセラ
ミックス基板などであって、しかも、利用のされ方とし
て、冷却部側の熱交換基板と放熱部側の熱交換基板との
温度差が大きくても、熱電変換素子22が破損したり脱
落したりすることのない、信頼性の高いものにできる。
また、熱収縮および熱膨張による変位が所定以上なると
熱電変換素子22の熱移送機能を停止させることがで
き、冷却部側の熱交換基板と放熱部側の熱交換基板との
温度差が、所定温度差以上に拡大することを防止でき
る、熱電気変換装置とすることができる。
That is, in the thermoelectric conversion device as described above, the heat exchange substrate is an alumina ceramics substrate or the like having a large linear expansion coefficient, and moreover, it is used as a heat exchange substrate on the cooling section side. Even if there is a large difference in temperature between the heat exchange substrate and the heat exchange substrate on the heat radiating portion side, the thermoelectric conversion element 22 can be made highly reliable without being damaged or dropped.
Further, when the displacement due to thermal contraction and thermal expansion exceeds a predetermined value, the heat transfer function of the thermoelectric conversion element 22 can be stopped, and the temperature difference between the heat exchange substrate on the cooling unit side and the heat exchange substrate on the heat radiating unit side becomes a predetermined value. The thermoelectric conversion device can prevent expansion beyond the temperature difference.

【0039】なお、熱電変換素子22を円柱状のものに
し、熱電変換素子22の両端面22e,22fを図8に
示すように凸状球面にするとともに、電極20aの凹状
円筒面部20eと電極21aの凹状円筒面部21eと
を、凹状球面にすることができる。勿論、それぞれの球
面は同曲率とされる。この場合、それぞれの熱交換基板
が、各平面の何方の方向に熱収縮したり熱膨張したりし
ても、熱電変換素子の一方の凸状球面の端面は、一方の
電極の凹部の底面の凹状球面を摺動回動でき、熱電変換
素子の他方の凸状球面の端面は、他方の電極の凹部の底
面の凹状球面を摺動回動できる。更に、熱収縮および熱
膨張による変位が所定以上なると熱電変換素子22の熱
移送機能を停止させることができる。つまり、熱電気変
換装置を、熱電変換素子が破損したり脱落したりするこ
とのない、信頼性の高いものにできる。
The thermoelectric conversion element 22 has a columnar shape, both end surfaces 22e and 22f of the thermoelectric conversion element 22 are convex spherical surfaces as shown in FIG. 8, and the concave cylindrical surface portion 20e of the electrode 20a and the electrode 21a are formed. The concave cylindrical surface portion 21e can be a concave spherical surface. Of course, each spherical surface has the same curvature. In this case, even if each heat exchange substrate undergoes thermal contraction or thermal expansion in any direction of each plane, one end surface of the convex spherical surface of the thermoelectric conversion element has a bottom surface of the concave portion of one electrode. The concave spherical surface can slide and rotate, and the end surface of the other convex spherical surface of the thermoelectric conversion element can slide and rotate on the concave spherical surface of the bottom surface of the concave portion of the other electrode. Furthermore, when the displacement due to thermal contraction and thermal expansion exceeds a predetermined value, the heat transfer function of the thermoelectric conversion element 22 can be stopped. That is, the thermoelectric conversion device can be made highly reliable without damaging or dropping the thermoelectric conversion element.

【0040】〔第4の実施の形態〕図9は熱電気変換装
置の要部を示す説明図であり、図9(a)は電極と熱電
変換素子との接合を示す要部断面側面図、図9(b)は
熱電変換素子の形状を示す斜視図である。図10は他の
熱電変換素子の形状を示す要部斜視図である。なお、前
述の第3の実施の形態の熱電気変換装置と同等の部分に
は同じ符号を付してあるので、同じ符号を付した部分の
詳細な説明は省略する。
[Fourth Embodiment] FIG. 9 is an explanatory view showing a main part of a thermoelectric conversion device, and FIG. 9 (a) is a cross-sectional side view of a main part showing joining of an electrode and a thermoelectric conversion element. FIG. 9B is a perspective view showing the shape of the thermoelectric conversion element. FIG. 10 is a perspective view of an essential part showing the shape of another thermoelectric conversion element. Since the same parts as those of the thermoelectric conversion device according to the third embodiment described above are designated by the same reference numerals, detailed description of the parts designated by the same reference numerals is omitted.

【0041】図9に示すように、この熱電気変換装置
が、前述の第3の実施の形態の熱電気変換装置と異なり
特徴となるのは次の構成である。すなわち、前述の第3
の実施の形態の熱電気変換装置にあっては、電極20a
の平面部に凹状円筒面部20eを、電極21aの平面部
に凹状円筒面部21eを、それぞれ直接に成形するとと
もに、熱電変換素子22の両端面の中央部に凸状円筒面
あるいは球面をなす導電摺動部22e,22fをそれぞ
れ成形し、更に、導電摺動部22e,22fの周縁面全
体に硬質の絶縁層22gを形成しているのに対し、第4
の実施の形態の熱電気変換装置にあっては、電極20a
に段平面部20fを、電極21aに段平面部21fを成
形するとともに、熱電変換素子22を円柱状に成形し、
段平面部20fと段平面部21fとで円柱状の熱電変換
素子22の円筒面を挟持する構成である。そして、円柱
状の熱電変換素子22は、蔓巻バネC,D(図1に示
す)の付勢力を以て電極20aと電極21aとで挟持さ
れる。
As shown in FIG. 9, this thermoelectric conversion device is different from the thermoelectric conversion device of the third embodiment in that it has the following features. That is, the third
In the thermoelectric conversion device according to the embodiment, the electrode 20a
The concave cylindrical surface portion 20e is directly formed on the flat surface portion of the electrode 21a, and the concave cylindrical surface portion 21e is formed on the flat surface portion of the electrode 21a. The moving parts 22e and 22f are respectively molded, and further, the hard insulating layer 22g is formed on the entire peripheral surface of the conductive sliding parts 22e and 22f.
In the thermoelectric conversion device according to the embodiment, the electrode 20a
The stepped flat portion 20f, the electrode 21a the stepped flat portion 21f, and the thermoelectric conversion element 22 in a cylindrical shape.
The stepped plane portion 20f and the stepped plane portion 21f sandwich the cylindrical surface of the cylindrical thermoelectric conversion element 22. The columnar thermoelectric conversion element 22 is sandwiched between the electrodes 20a and 21a by the biasing forces of the coil springs C and D (shown in FIG. 1).

【0042】従って、冷却部側の熱交換基板が熱収縮
し、且つ、放熱部側の熱交換基板が熱膨張し、例えば、
図9(a)に示す矢印の方向に応力が加わった場合、円
柱状の熱電変換素子22は転がることができ、剪断応力
が加わるようなことを無くすことができる。つまり、上
述のような熱電気変換装置にあっては、熱交換基板が線
膨張係数の大きいアルミナセラミックス基板などであっ
て、しかも、利用のされ方として、冷却部側の熱交換基
板と放熱部側の熱交換基板との温度差が大きくても、熱
電変換素子22が破損したり脱落したりすることのな
い、信頼性の高いものにできる。
Therefore, the heat exchange substrate on the cooling unit side contracts heat, and the heat exchange substrate on the heat radiating unit side thermally expands.
When stress is applied in the direction of the arrow shown in FIG. 9A, the cylindrical thermoelectric conversion element 22 can roll, and the application of shear stress can be eliminated. That is, in the thermoelectric conversion device as described above, the heat exchange substrate is an alumina ceramics substrate or the like having a large linear expansion coefficient, and moreover, it is used as a cooling unit side heat exchange substrate and a heat radiation unit. Even if there is a large temperature difference with the heat exchange substrate on the side, the thermoelectric conversion element 22 is not damaged or fallen off, and can be made highly reliable.

【0043】なお、図10に示すように、熱電変換素子
22は、円柱状に成形するとともに、この円柱状に成形
した熱電変換素子22の円筒面に、この円筒面の軸に平
行な帯状の絶縁部22hを形成することができる。この
場合、円柱状の熱電変換素子22が転がり、絶縁部22
hが電極20aまたは電極21aと接触するようになる
と、熱電変換素子22の通電が遮断し、熱電変換素子2
2の熱移送機能を停止させることができ、冷却部側の熱
交換基板と放熱部側の熱交換基板との温度差が所定以上
に拡大することを防止できる、熱電気変換装置とするこ
とができる。
As shown in FIG. 10, the thermoelectric conversion element 22 is formed into a columnar shape, and the thermoelectric conversion element 22 formed into the columnar shape has a strip-shaped surface parallel to the axis of the cylindrical surface. The insulating portion 22h can be formed. In this case, the cylindrical thermoelectric conversion element 22 rolls and the insulating portion 22
When h comes into contact with the electrode 20a or the electrode 21a, energization of the thermoelectric conversion element 22 is cut off, and the thermoelectric conversion element 2
A thermoelectric conversion device capable of stopping the heat transfer function of No. 2 and preventing the temperature difference between the heat exchange substrate on the cooling unit side and the heat exchange substrate on the heat radiating unit side from expanding beyond a predetermined level. it can.

【0044】[0044]

【発明の効果】請求項1記載の発明によれば、熱電変換
素子と電極との接合部を摺動可能接触構造としたので、
吸熱対象に接合する熱交換基板と加熱対象に接合する熱
交換基板との温度差が大きい場合でも、熱電変換素子と
電極とが摺動し、熱電変換素子に大きな応力が加わら
ず、熱電変換素子が破損したり脱落したりすることのな
い信頼性の高い熱電気変換装置を提供できるという効果
を奏する。
According to the invention of claim 1, since the joint portion between the thermoelectric conversion element and the electrode has a slidable contact structure,
Even if there is a large temperature difference between the heat exchange substrate that is joined to the heat absorbing object and the heat exchange substrate that is joined to the heating object, the thermoelectric conversion element and the electrode slide, and no large stress is applied to the thermoelectric conversion element. It is possible to provide a highly reliable thermoelectric conversion device that is not damaged or dropped.

【0045】請求項2記載の発明によれば、請求項1記
載の発明の効果に加えて、熱電変換素子と電極とが同曲
率の面で接触するので、接触面積を大きくすることがで
き、接触抵抗損失の少ない、熱電気変換装置を提供でき
るという効果を奏する。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, since the thermoelectric conversion element and the electrode are in contact with each other on the surface of the same curvature, the contact area can be increased, It is possible to provide a thermoelectric conversion device with less contact resistance loss.

【0046】請求項3記載の発明によれば、請求項1記
載の発明の効果に加えて、熱電変換素子のエッジ部を鈍
角にすることができ、エッジ部からの破損の少ない、更
に信頼性の高い熱電気変換装置を提供できるという効果
を奏する。
According to the third aspect of the invention, in addition to the effect of the first aspect of the invention, the edge portion of the thermoelectric conversion element can be made an obtuse angle, the damage from the edge portion is small, and the reliability is high. The effect that a high thermoelectric conversion device can be provided is exhibited.

【0047】請求項4記載の発明によれば、請求項2ま
たは請求項3記載の発明の効果に加えて、熱交換基板の
面内のあらゆる方向の変位に対して、略等しい条件で熱
電変換素子を摺動回動できる、熱電気変換装置を提供で
きるという効果を奏する。
According to the invention of claim 4, in addition to the effect of the invention of claim 2 or 3, thermoelectric conversion is performed under substantially equal conditions with respect to displacements in all directions within the plane of the heat exchange substrate. It is possible to provide a thermoelectric conversion device capable of slidingly rotating the element.

【0048】請求項5記載の発明によれば、請求項2乃
至4記載の発明の効果に加えて、熱収縮および熱膨張に
よる熱交換基板相互の所定以上の変位に対し、通電を遮
断し熱移送機能を停止させて、所定以上の熱交換基板相
互の温度差を防止できる、熱電気変換装置を提供できる
という効果を奏する。
According to the invention of claim 5, in addition to the effects of the inventions of claims 2 to 4, heat is turned off by shutting off energization with respect to a predetermined displacement or more between the heat exchange substrates due to thermal contraction and thermal expansion. It is possible to provide a thermoelectric conversion device that can stop the transfer function and prevent a temperature difference between the heat exchange substrates that is equal to or more than a predetermined value.

【0049】請求項6記載の発明によれば、熱電変換素
子の転がりで、熱収縮および熱膨張による熱交換基板相
互の変位に対する応力を逃がすことができ、熱電変換素
子が破損したり脱落したりすることのない、信頼性の高
い熱電気変換装置を提供できるという効果を奏する。
According to the sixth aspect of the invention, the rolling of the thermoelectric conversion element can relieve the stress due to the mutual displacement of the heat exchange substrates due to the thermal contraction and the thermal expansion, and the thermoelectric conversion element can be damaged or fall off. There is an effect that it is possible to provide a highly reliable thermoelectric conversion device.

【0050】請求項7記載の発明によれば、請求項6記
載の発明の効果に加えて、熱収縮および熱膨張による熱
交換基板相互の所定以上の変位に対し、通電を遮断し熱
移送機能を停止させて、所定以上の熱交換基板相互の温
度差を防止できる、熱電気変換装置を提供できるという
効果を奏する。
According to the seventh aspect of the invention, in addition to the effect of the sixth aspect of the invention, in addition to the effect of the thermal contraction and thermal expansion, the heat transfer function is cut off when the heat exchange substrates are displaced by a predetermined amount or more. There is an effect that it is possible to provide a thermoelectric conversion device in which the temperature difference between the heat exchanging substrates can be prevented by stopping the heat exchange substrate above a predetermined level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱電気変換装置の用い方を示す断
面側面図である。
FIG. 1 is a sectional side view showing how to use a thermoelectric conversion device according to the present invention.

【図2】本発明に係る第1の実施の形態の熱電気変換装
置の要部を示す説明図である。
FIG. 2 is an explanatory diagram showing a main part of the thermoelectric conversion device according to the first embodiment of the present invention.

【図3】上記熱電気変換装置の他の熱電変換素子の形状
を示す斜視図である。
FIG. 3 is a perspective view showing the shape of another thermoelectric conversion element of the thermoelectric conversion device.

【図4】本発明に係る第2の実施の形態の熱電気変換装
置の要部を示す説明図である。
FIG. 4 is an explanatory diagram showing a main part of a thermoelectric conversion device according to a second embodiment of the present invention.

【図5】上記熱電気変換装置の他の熱電変換素子の形状
を示す斜視図である。
FIG. 5 is a perspective view showing the shape of another thermoelectric conversion element of the thermoelectric conversion device.

【図6】本発明に係る第3の実施の形態の熱電気変換装
置の要部を示す説明図である。
FIG. 6 is an explanatory diagram showing a main part of a thermoelectric conversion device according to a third embodiment of the present invention.

【図7】上記熱電気変換装置の熱電変換素子の動作を示
す断面側面図である。
FIG. 7 is a sectional side view showing the operation of the thermoelectric conversion element of the thermoelectric conversion device.

【図8】上記熱電気変換装置の他の熱電変換素子の形状
を示す斜視図である。
FIG. 8 is a perspective view showing the shape of another thermoelectric conversion element of the thermoelectric conversion device.

【図9】本発明に係る第4の実施の形態の熱電気変換装
置の要部を示す説明図である。
FIG. 9 is an explanatory diagram showing a main part of a thermoelectric conversion device according to a fourth embodiment of the present invention.

【図10】上記熱電気変換装置の他の熱電変換素子の形
状を示す斜視図である。
FIG. 10 is a perspective view showing a shape of another thermoelectric conversion element of the thermoelectric conversion device.

【図11】従来の熱電気変換装置を示す斜視図である。FIG. 11 is a perspective view showing a conventional thermoelectric conversion device.

【符号の説明】[Explanation of symbols]

2 熱電気変換装置 20 熱交換基板 20a 電極 20c 電極に形成した凸面 20d 電極に形成した凹面 21 熱交換基板 21a 電極 21c 電極に形成した凸面 21d 電極に形成した凹面 22 熱電変換素子 22a 熱電変換素子に形成した凹面 22b 熱電変換素子に形成した凹面 22c 熱電変換素子に形成した凸面 22d 熱電変換素子に形成した凸面 22h 流通電流を遮断するための絶縁面 22p 過剰回動抑止部 A 吸熱対象 B 加熱対象 2 thermoelectric conversion device 20 heat exchange substrate 20a electrode 20c convex surface formed on electrode 20d concave surface formed on electrode 21 heat exchange substrate 21a electrode 21c convex surface formed on electrode 21d concave surface formed on electrode 22 thermoelectric conversion element 22a for thermoelectric conversion element Formed concave surface 22b Concave surface formed on thermoelectric conversion element 22c Convex surface formed on thermoelectric conversion element 22d Convex surface formed on thermoelectric conversion element 22h Insulation surface for cutting off flowing current 22p Excessive rotation suppression part A Heat absorption target B Heating target

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 吸熱対象との接合面の裏面に電極を形成
してなる熱交換基板と、加熱対象との接合面の裏面に電
極を形成してなる熱交換基板と、前記両電極間に挟持接
合される複数の熱電変換素子とを備える熱電気変換装置
において、前記熱電変換素子と前記電極との接合部を摺
動可能接触構造としたことを特徴とする熱電気変換装
置。
1. A heat exchange substrate having an electrode formed on the back surface of a surface to be joined with a heat absorbing object, a heat exchange substrate having an electrode formed on the back surface of a surface to be joined with a heating object, and between the electrodes. A thermoelectric conversion device comprising a plurality of thermoelectric conversion elements to be sandwiched and joined, wherein a joint between the thermoelectric conversion element and the electrode has a slidable contact structure.
【請求項2】 前記摺動可能接触構造は、同曲率の、熱
電変換素子に形成した凹面と、電極に形成した凸面とに
より構成したことを特徴とする請求項1記載の熱電気変
換装置。
2. The thermoelectric conversion device according to claim 1, wherein the slidable contact structure is composed of a concave surface having the same curvature and formed on the thermoelectric conversion element and a convex surface formed on the electrode.
【請求項3】 前記摺動可能接触構造は、同曲率の、熱
電変換素子に形成した凸面と、電極に形成した凹面とに
より構成したことを特徴とする請求項1記載の熱電気変
換装置。
3. The thermoelectric conversion device according to claim 1, wherein the slidable contact structure comprises a convex surface formed on the thermoelectric conversion element and a concave surface formed on the electrode, which have the same curvature.
【請求項4】 前記凸面と前記凹面とはそれぞれ球面で
あることを特徴とする請求項2または3記載の熱電気変
換装置。
4. The thermoelectric conversion device according to claim 2, wherein each of the convex surface and the concave surface is a spherical surface.
【請求項5】 前記熱電変換素子の摺動部近傍に絶縁性
の過剰回動抑止部を設けたことを特徴とする請求項2乃
至4記載の熱電気変換装置。
5. The thermoelectric conversion device according to claim 2, further comprising an insulative excessive rotation suppressing portion provided near the sliding portion of the thermoelectric conversion element.
【請求項6】 吸熱対象との接合面の裏面に電極を形成
してなる熱交換基板と、加熱対象との接合面の裏面に電
極を形成してなる熱交換基板と、前記両電極間に挟持接
合される複数の熱電変換素子とを備える熱電気変換装置
において、前記熱電変換素子を円柱状となすとともに、
前記両電極に、前記円柱状の熱電変換素子の円筒面を挟
持するための平行な平面を設けたことを特徴とする熱電
気変換装置。
6. A heat exchange substrate having an electrode formed on the back surface of the surface to be joined with the heat absorption target, a heat exchange substrate having an electrode formed on the back surface of the surface to be joined with the heating object, and between the electrodes. In a thermoelectric conversion device comprising a plurality of thermoelectric conversion elements to be sandwiched and joined, while making the thermoelectric conversion element into a columnar shape,
A thermoelectric conversion device, wherein parallel flat surfaces for sandwiching a cylindrical surface of the cylindrical thermoelectric conversion element are provided on the both electrodes.
【請求項7】 前記円柱状の熱電変換素子に、流通電流
を遮断するための絶縁面を設けたことを特徴とする請求
項6記載の熱電気変換装置。
7. The thermoelectric conversion device according to claim 6, wherein the cylindrical thermoelectric conversion element is provided with an insulating surface for cutting off a flowing current.
JP8132216A 1996-05-27 1996-05-27 Thermoelectric converter Pending JPH09321349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132216A JPH09321349A (en) 1996-05-27 1996-05-27 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132216A JPH09321349A (en) 1996-05-27 1996-05-27 Thermoelectric converter

Publications (1)

Publication Number Publication Date
JPH09321349A true JPH09321349A (en) 1997-12-12

Family

ID=15076111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132216A Pending JPH09321349A (en) 1996-05-27 1996-05-27 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JPH09321349A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064457A (en) * 2003-07-25 2005-03-10 Toshiba Corp Thermoelectric converter
JP2005277206A (en) * 2004-03-25 2005-10-06 Toshiba Corp Thermoelectric converter
JP2006049872A (en) * 2004-07-06 2006-02-16 Central Res Inst Of Electric Power Ind Thermoelectric conversion module
JP2007294689A (en) * 2006-04-25 2007-11-08 Toyota Motor Corp Thermoelectric conversion element
JP2008182011A (en) * 2007-01-24 2008-08-07 Toshiba Corp Device and method for evaluating reliability on thermoelectric conversion system
JP2008235702A (en) * 2007-03-22 2008-10-02 Toyota Motor Corp Thermoelectric power generation unit
JP2018137374A (en) * 2017-02-23 2018-08-30 三菱マテリアル株式会社 Thermoelectric conversion module and method of manufacturing thermoelectric conversion module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064457A (en) * 2003-07-25 2005-03-10 Toshiba Corp Thermoelectric converter
JP2005277206A (en) * 2004-03-25 2005-10-06 Toshiba Corp Thermoelectric converter
JP2006049872A (en) * 2004-07-06 2006-02-16 Central Res Inst Of Electric Power Ind Thermoelectric conversion module
JP2007294689A (en) * 2006-04-25 2007-11-08 Toyota Motor Corp Thermoelectric conversion element
JP2008182011A (en) * 2007-01-24 2008-08-07 Toshiba Corp Device and method for evaluating reliability on thermoelectric conversion system
JP2008235702A (en) * 2007-03-22 2008-10-02 Toyota Motor Corp Thermoelectric power generation unit
JP2018137374A (en) * 2017-02-23 2018-08-30 三菱マテリアル株式会社 Thermoelectric conversion module and method of manufacturing thermoelectric conversion module

Similar Documents

Publication Publication Date Title
US7222489B2 (en) Integrated thermoelectric module
CN100356602C (en) Thermoelectric module with thin film substrates
JP4345279B2 (en) Method for manufacturing thermoelectric conversion device
JP3166228B2 (en) Thermoelectric converter
US4730459A (en) Thermoelectric modules, used in thermoelectric apparatus and in thermoelectric devices using such thermoelectric modules
JP5298532B2 (en) Thermoelectric element
JP4622577B2 (en) Cascade module for thermoelectric conversion
JPWO2005124883A1 (en) Thermoelectric element
JP2000068564A (en) Peltier element
WO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic apparatus using it
JPH09321349A (en) Thermoelectric converter
JP2012119451A (en) Thermoelectric conversion module
JP2002299495A (en) Semiconductor circuit board
JP2012119450A (en) Thermoelectric conversion module
US20040178517A9 (en) Split body peltier device for cooling and power generation applications
JP2006245224A (en) Cascade module for thermoelectric conversion
JPH04256397A (en) Heat pipe type semiconductor stack
US8763680B2 (en) Heat exchange for a thermoelectric thin film element
JPH08162680A (en) Thermo-electric converter
JPS63128681A (en) Thermoelectric conversion device
JPH10117077A (en) Heat sink
JP2005174985A (en) Thermoelement
JP2013161823A (en) Thermoelectric conversion module
JPH1117234A (en) Thermoelectric transducer
JP2013021048A (en) Thermoelectric conversion device