JP2005174985A - Thermoelement - Google Patents

Thermoelement Download PDF

Info

Publication number
JP2005174985A
JP2005174985A JP2003408768A JP2003408768A JP2005174985A JP 2005174985 A JP2005174985 A JP 2005174985A JP 2003408768 A JP2003408768 A JP 2003408768A JP 2003408768 A JP2003408768 A JP 2003408768A JP 2005174985 A JP2005174985 A JP 2005174985A
Authority
JP
Japan
Prior art keywords
partition plate
semiconductor crystal
thermoelectric semiconductor
electrode
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003408768A
Other languages
Japanese (ja)
Inventor
Isao Morino
勲 森野
Toshinori Hashimoto
敏憲 橋本
Yasuyoshi Uechi
安良 上地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morix Co Ltd
Original Assignee
Morix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morix Co Ltd filed Critical Morix Co Ltd
Priority to JP2003408768A priority Critical patent/JP2005174985A/en
Publication of JP2005174985A publication Critical patent/JP2005174985A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To suppress heat distortion of a diaphragm in a thermoelement having: the diaphragm; a thermoelectric semiconductor crystal fixed in a state in which it penetrates the diaphragm; and electrodes connected to both end faces of the thermoelectric semiconductor crystal. <P>SOLUTION: The thermoelement 1 is provided with the diaphragm 2, the thermoelectric semiconductor crystal 3 fixed to the diaphragm 1 in the state that it penetrates the diaphragm 2, the upper electrode 4 bonded to an upper end of the thermoelectric semiconductor crystal 3 by solder, and a lower electrode 5 bonded to a lower end of the thermoelectric semiconductor crystal 3 by solder. A notch 21 is made near an edge of the diaphragm 2. Since elasticity of the diaphragm 2 is absorbed by the notch 21, heat distortion of the diaphragm 1 is suppressed. Thus, damage of the thermoelectric semiconductor crystal 3 and peeling of the electrodes 4 and 5 are prevented, and therefore life of the thermoelement 1 is prolonged. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ペルチェ効果あるいはゼーベック効果を利用した熱電素子に関し、特に、熱歪みに対する耐久性を向上させた熱電素子に関する。   The present invention relates to a thermoelectric element utilizing the Peltier effect or Seebeck effect, and more particularly to a thermoelectric element having improved durability against thermal strain.

従来、LSIやコンピュータのCPU等の冷却装置や、保温冷蔵庫等の電子加熱冷却装置には、ビスマス・テルル等の熱電半導体結晶を備えた熱電素子が使用されている。図5は、特許文献1に開示されたこのような従来の熱電素子を示すものである。この図において(a)は正面図、(b)は斜視図である。   Conventionally, thermoelectric elements including thermoelectric semiconductor crystals such as bismuth and tellurium have been used in cooling devices such as LSIs and CPUs of computers and electronic heating and cooling devices such as heat-retaining refrigerators. FIG. 5 shows such a conventional thermoelectric element disclosed in Patent Document 1. In FIG. In this figure, (a) is a front view and (b) is a perspective view.

この熱電素子は、熱電半導体結晶101と、アルミナセラミックス等の熱良導性で電気絶縁性を有する材料からなり、熱電半導体結晶101を上下から保持する上側基板102及び下側基板103とを備えている。熱電半導体結晶101は、n型熱電半導体結晶101n及びp型熱電半導体結晶101pが交互に配列されており、n型熱電半導体結晶101n及びp型熱電半導体結晶101pの上下の端面間にそれぞれ銅板などで構成された上側電極104及び下側電極105がハンダ付けされ、n型熱電半導体結晶101n及びp型熱電半導体結晶101pが交互に電気的に直列に接続される。そして、両端の下側電極105にはリード線106,107を介して直流電源が接続されており、この直流電源から電流を流すと、ペルチェ効果により一方の端面側の電極(図では上側電極104 )で吸熱が起こり、他方の端面側の電極(図では下側電極105)で発熱が起こる。そして、この上下の電極104,105が基板102,103に接合され固定されている。この熱電素子は、例えば、吸熱側となる上側基板102の上に冷却対象を配置し、放熱側となる下側基板103の下にヒートシンクとファンとの組み合わせ等からなるの熱交換部材を配置して使用される。   This thermoelectric element comprises a thermoelectric semiconductor crystal 101 and an upper substrate 102 and a lower substrate 103 that are made of a material having thermal conductivity and electrical insulation, such as alumina ceramics, and hold the thermoelectric semiconductor crystal 101 from above and below. Yes. In the thermoelectric semiconductor crystal 101, n-type thermoelectric semiconductor crystals 101n and p-type thermoelectric semiconductor crystals 101p are alternately arranged, and a copper plate or the like is provided between upper and lower end faces of the n-type thermoelectric semiconductor crystal 101n and the p-type thermoelectric semiconductor crystal 101p. The configured upper electrode 104 and lower electrode 105 are soldered, and the n-type thermoelectric semiconductor crystal 101n and the p-type thermoelectric semiconductor crystal 101p are alternately electrically connected in series. A DC power source is connected to the lower electrode 105 at both ends via lead wires 106 and 107. When a current flows from the DC power source, an electrode on one end face side (upper electrode 104 in the figure) is caused by the Peltier effect. Heat absorption occurs, and heat generation occurs at the other end face side electrode (lower electrode 105 in the figure). The upper and lower electrodes 104, 105 are bonded and fixed to the substrates 102, 103. In this thermoelectric element, for example, an object to be cooled is disposed on the upper substrate 102 that is the heat absorption side, and a heat exchange member that is a combination of a heat sink and a fan is disposed under the lower substrate 103 that is the heat dissipation side. Used.

しかし、前述した熱電素子においては、一方の基板が吸熱により冷却されて収縮し、他方の基板が放熱により温度上昇して膨張したときに、熱歪みにより熱電半導体結晶101n,101pと上側電極104,下側電極105との間の接合が外れてしまうことがある。また、熱電半導体結晶101と熱交換部材との間に基板102,103が介在するため、基板102,103の熱抵抗により熱交換効率が低減されてしまう。   However, in the above-described thermoelectric element, when one substrate is cooled and contracted due to heat absorption, and the other substrate expands due to heat dissipation due to heat dissipation, the thermoelectric semiconductor crystals 101n and 101p and the upper electrode 104, The connection with the lower electrode 105 may be disconnected. In addition, since the substrates 102 and 103 are interposed between the thermoelectric semiconductor crystal 101 and the heat exchange member, the heat exchange efficiency is reduced due to the thermal resistance of the substrates 102 and 103.

そこで、本願の出願人等は、図6に示すような上下の基板のない両側スケルトン構造の熱電素子を提案した(特許文献2、3)。この熱電素子は、仕切板201に対して、p型熱電半導体結晶202p及びn型熱電半導体結晶202nからなる熱電半導体結晶202が貫通した状態で固定された構造を有する。熱電半導体結晶202の上面には銅板などで構成された上側電極203が、下面には銅板などで構成された下側電極204が、いずれもハンダにより接合されており、これらの電極(上側電極203及び下側電極204)により、p型熱電半導体結晶202p及びn型熱電半導体結晶202nが交互に電気的に直列に接続される。この直列接続の両端の電極にはリード線(図示せず)が接続されており、直流電源から電流を所定の方向に供給すると、ペルチェ効果により上側電極203で吸熱が起こり、下側電極204で発熱が起こる。電流を逆方向に供給することにより、下側電極204で吸熱させ、上側電極203で発熱させることも可能である。   Therefore, the applicant of the present application has proposed a thermoelectric element having a double-sided skeleton structure without upper and lower substrates as shown in FIG. 6 (Patent Documents 2 and 3). This thermoelectric element has a structure in which a thermoelectric semiconductor crystal 202 composed of a p-type thermoelectric semiconductor crystal 202p and an n-type thermoelectric semiconductor crystal 202n is fixed to the partition plate 201 in a penetrating state. An upper electrode 203 made of a copper plate or the like is bonded to the upper surface of the thermoelectric semiconductor crystal 202, and a lower electrode 204 made of a copper plate or the like is bonded to the lower surface by solder. These electrodes (upper electrode 203 In addition, the p-type thermoelectric semiconductor crystal 202p and the n-type thermoelectric semiconductor crystal 202n are alternately electrically connected in series by the lower electrode 204). Lead wires (not shown) are connected to the electrodes at both ends of the series connection. When a current is supplied from a DC power source in a predetermined direction, heat is absorbed by the upper electrode 203 due to the Peltier effect, and the lower electrode 204 A fever occurs. By supplying a current in the opposite direction, the lower electrode 204 can absorb heat and the upper electrode 203 can generate heat.

この熱電素子によれば、仕切板201により冷却側と放熱側との間の空気の対流を防ぐことができるため、従来型に比し、大きな温度差を実現することができる。また、仕切板201 が熱電半導体結晶をほぼ中央で保持し、上下の電極がアルミナセラミックス等の基板に接着あるいは溶着されていない柔構造であるため、剛構造の従来型に比し、駆動電圧のオン/オフ制御、あるいは駆動電圧の極性可逆制御等、熱歪みの影響を大きく受ける制御方式で制御したときに比類のない長寿命を実現することができた。即ち、常温室内で、例えば吸熱側となる上側電極202の上端が−10℃〜0℃程度、放熱側となる下側電極203の下端が50℃前後に保たれると、仕切板201はほぼ20℃〜30℃に保たれ、仕切板及び柔構造が熱応力を充分に吸収するので、長寿命を実現できる。   According to this thermoelectric element, since the partition plate 201 can prevent air convection between the cooling side and the heat radiation side, a large temperature difference can be realized as compared with the conventional type. In addition, since the partition plate 201 holds the thermoelectric semiconductor crystal substantially at the center and the upper and lower electrodes have a flexible structure that is not bonded or welded to a substrate such as alumina ceramics, the drive voltage is higher than that of a conventional rigid structure. When controlled by a control method that is greatly affected by thermal distortion such as on / off control or polarity reversal control of drive voltage, an unparalleled long life could be realized. That is, in the room temperature room, for example, when the upper end of the upper electrode 202 on the heat absorption side is maintained at about −10 ° C. to 0 ° C. and the lower end of the lower electrode 203 on the heat dissipation side is maintained at about 50 ° C., the partition plate 201 is almost Since the partition plate and the flexible structure sufficiently absorb the thermal stress, the long life can be realized.

また、この仕切板201の持つ熱電半導体結晶202の保持力と、電極部の柔構造とが、従来型では基板サイズ;4cm×4cmが限界とされていたものが、仕切板サイズ;7cm×7cmまで製造可能になった。また、仕切板サイズ;10cm×10cm、12cm×12cmのものまで製造可能になってきた。そして、用途も多様化してきた。
特開昭63-110680号公報(図1) 特開平10-178217号公報 特開2000-124509号公報
Further, the holding power of the thermoelectric semiconductor crystal 202 possessed by the partition plate 201 and the flexible structure of the electrode portion are limited to the substrate size; 4 cm × 4 cm in the conventional type, but the partition plate size: 7 cm × 7 cm. Can now be manufactured. In addition, it has become possible to manufacture a partition plate size of 10 cm × 10 cm and 12 cm × 12 cm. And the uses have also diversified.
JP 63-110680 A (FIG. 1) Japanese Patent Laid-Open No. 10-178217 JP 2000-124509 A

一般的に、熱電素子を冷却装置あるいは加熱装置として用いる場合、例えば特許文献3に開示されているように、ジャケット状に組み込むか又は熱電素子を冷却板と放熱板とで挟み込み、熱伝導を良くするために、かなりの圧力で締め付ける。特許文献2、3に開示された熱電素子の場合、柔構造であるため、上下から大きな圧力で押さえつけた状態で使用することになる。   In general, when a thermoelectric element is used as a cooling device or a heating device, for example, as disclosed in Patent Document 3, it is incorporated in a jacket shape, or the thermoelectric element is sandwiched between a cooling plate and a heat radiating plate to improve heat conduction. To tighten with considerable pressure. Since the thermoelectric elements disclosed in Patent Documents 2 and 3 have a flexible structure, they are used in a state where they are pressed from above and below with a large pressure.

このとき、吸熱部、放熱部共に、常温を越える高温対象の冷却あるいは加熱に使用する場合、又は放熱部を冷却水で冷却し、吸熱部を超低温冷却に使用する場合(例えば、放熱部を0℃近くの冷却水で冷却し、吸熱部を−50℃前後で冷却する場合、あるいは熱電素子を2段以上の多段配置して、−60℃ないし−80℃の超低温冷却を行う場合等)においては、電極の材料である銅の線膨張率;16.6×10-6m/Kに対して、仕切板の材料であるポリエステル系の樹脂では、その線膨張率が縦方向(板の厚さ方向);4.0×10-5m/K、横方向(板の平面に平行な方向);7.04×10-5m/Kであり、仕切板の線膨張率が電極の線膨張率の約5〜20倍程度大きいため、仕切板の201の縁付近における膨張あるいは収縮が無視できない大きさとなる。この点について図7及び図8を参照しながら説明する。 At this time, when both the heat absorbing part and the heat radiating part are used for cooling or heating a high temperature target exceeding normal temperature, or when the heat radiating part is cooled with cooling water and the heat absorbing part is used for ultra-low temperature cooling (for example, the heat radiating part is set to 0). In the case of cooling with cooling water close to ℃ and cooling the endothermic part at around -50 ℃, or in the case of ultra-low temperature cooling of -60 ℃ to -80 ℃ by arranging two or more thermoelectric elements Is the linear expansion coefficient of copper, which is the material of the electrode; 16.6 × 10 -6 m / K, whereas the polyester-based resin, which is the material of the partition plate, has a linear expansion coefficient (in the thickness direction of the plate). ); 4.0 × 10 −5 m / K, lateral direction (direction parallel to the plane of the plate); 7.04 × 10 −5 m / K, and the linear expansion coefficient of the partition plate is about 5 to 5 of the linear expansion coefficient of the electrode. Since it is about 20 times larger, the expansion or contraction in the vicinity of the edge of the partition plate 201 cannot be ignored. This point will be described with reference to FIGS.

図7において、(a)は図6と同様な構成の熱電素子が常温(常温:本明細書では、25℃±3℃程度に温度管理された室内温とする)で通電していない状態を示す正面図であり、(b)は常温で通電し、吸熱側が常温より低く、放熱側が常温より高い状態、即ち通常の使用状態の仕切板201の伸縮を示す図である。なお、図7(b)において、外向きの矢印は膨張を表し、内向きの矢印は収縮を表す。ここで、仕切板201はユニレート(登録商標:ポリエステル系樹脂)製であり、そのサイズは7cm×7cm×0.8mmである。また、熱電半導体結晶202のサイズは直径2.3mm、長さ2.3mmである。さらに、電極203,204は銅製であり、そのサイズは5.5mm×2.5mm×300μmである。なお、ユニレートの線膨張率は縦方向;4.0×10-5m/K、横方向;7.04×10-5m/Kである。 7A shows a state in which a thermoelectric element having the same configuration as in FIG. 6 is not energized at normal temperature (normal temperature: in this specification, the room temperature is controlled to about 25 ° C. ± 3 ° C.). FIG. 4B is a diagram illustrating expansion and contraction of the partition plate 201 in a state where the energization is performed at room temperature, the heat absorption side is lower than room temperature, and the heat dissipation side is higher than room temperature, that is, in a normal use state. In FIG. 7B, the outward arrow represents expansion, and the inward arrow represents contraction. Here, the partition plate 201 is made of unilate (registered trademark: polyester resin), and its size is 7 cm × 7 cm × 0.8 mm. The thermoelectric semiconductor crystal 202 has a diameter of 2.3 mm and a length of 2.3 mm. Furthermore, the electrodes 203 and 204 are made of copper, and the size thereof is 5.5 mm × 2.5 mm × 300 μm. In addition, the linear expansion coefficient of the unilate is longitudinal direction: 4.0 × 10 −5 m / K, lateral direction: 7.04 × 10 −5 m / K.

図7(b)において、室温が25℃、図示されていない放熱部がフィン及びファン等により50℃程度に維持され、図示されていない冷却部(吸熱側)が−10℃〜0℃で冷却されている場合、仕切板201の温度は20℃〜30℃となる。したがって、放熱側の電極204 の膨張は5.5mm ×(50℃−25℃)×16.6×10-6≒2.28μm、吸熱側の電極203の収縮は5.5×(0℃−25℃)×16.6×10-6≒−2.28μmである。一方、仕切板201の中心部から21mmの位置における膨張は21mm×(30℃−25℃)×7.04×10-5≒7.40μmである。また、同じ位置における吸熱側の電極203の膨張累積値は−3.5×2.28≒−7.98μm、放熱側の電極204の膨張累積値は3.5×2.28≒7.98μmであるため、吸熱側の電極203及び放熱側の電極204の伸縮は相殺され、累積値はほぼゼロとなる。さらに、仕切板201の中心部から30mmの位置では、仕切板201の膨張は10.56μmとなるが、この位置でも吸熱側の電極203及び放熱側の電極204の伸縮の累積値は相殺されてほぼゼロとなる。このように伸縮することにより、仕切板201が放熱側に撓み、僅かではあるが熱歪みが発生する。 In FIG. 7B, the room temperature is 25 ° C., the heat dissipating part (not shown) is maintained at about 50 ° C. by fins and fans, etc., and the cooling part (heat absorption side) not shown is cooled at −10 ° C. to 0 ° C. If it is, the temperature of the partition plate 201 is 20 ° C to 30 ° C. Therefore, the expansion of the electrode 204 on the heat dissipation side is 5.5 mm x (50 ° C-25 ° C) x 16.6 x 10 -6 ≈ 2.28 µm, and the shrinkage of the electrode 203 on the heat absorption side is 5.5 x (0 ° C-25 ° C) x 16.6 x 10 -6 ≒ -2.28μm. On the other hand, the expansion at a position 21 mm from the center of the partition plate 201 is 21 mm × (30 ° C.−25 ° C.) × 7.04 × 10 −5 ≈7.40 μm. The cumulative expansion value of the heat absorption side electrode 203 at the same position is −3.5 × 2.28≈−7.98 μm, and the cumulative expansion value of the heat radiation side electrode 204 is 3.5 × 2.28≈7.98 μm. The expansion and contraction of the electrode 204 on the heat dissipation side is canceled out, and the accumulated value becomes almost zero. Furthermore, at the position 30 mm from the center of the partition plate 201, the expansion of the partition plate 201 is 10.56 μm, but even at this position, the cumulative expansion and contraction values of the heat absorption side electrode 203 and the heat dissipation side electrode 204 are offset and almost equal. It becomes zero. By expanding and contracting in this way, the partition plate 201 is bent toward the heat radiation side, and a slight thermal distortion occurs.

図8は図7(a)に示す熱電素子を図7(b)のような一般的な使用方法とは異なる温度、つまり図8(a)では常温で通電し、吸熱側、放熱側共に常温より高い状態、図8(b)では常温で通電し、吸熱側、放熱側共に常温より低い状態で使用した場合の仕切板201の伸縮を示す図である。以下、これらの場合における電極203,204及び仕切板210の伸縮について説明する。   FIG. 8 shows that the thermoelectric element shown in FIG. 7A is energized at a temperature different from the general usage as shown in FIG. 7B, that is, the normal temperature in FIG. In a higher state, FIG. 8B shows the expansion and contraction of the partition plate 201 when energized at room temperature and used on the heat absorption side and the heat radiation side below room temperature. Hereinafter, the expansion and contraction of the electrodes 203 and 204 and the partition plate 210 in these cases will be described.

図8(a)において、室温が25℃、図示されていない吸熱部を50℃程度に維持し、図示されていない加熱部(放熱側)を100℃で加熱する加熱装置として使用した場合、仕切板201の温度は50℃と100℃の中間の75℃程度となる。したがって、放熱側の電極204の膨張は5.5mm×(100℃−25℃)×16.6×10-6≒6.85μm、吸熱側の電極203の膨張は5.5mm×(50℃−25℃)×16.6×10-6≒2.28μmである。一方、仕切板201の中心部から21mmの位置における膨張は21mm×(75℃−25℃)×7.04×10-5≒73.92μmである。また、同じ位置における吸熱側の電極203の膨張累積値は3.5×6.85≒23.98μm、放熱側の電極204の膨張累積値は3.5×2.28≒7.98μmであるから、吸熱側の電極203及び放熱側の電極204の膨張累積値は31.96μmとなる。さらに、仕切板201の中心部から30mmの位置では仕切板201の膨張は105.60μmとなる。また、この位置における吸熱側の電極203の伸縮の累積値は5×6.85≒34.25μmとなり、放熱側の電極204の伸縮の累積値は5×2.28≒11.40μmとなるから、吸熱側の電極203及び放熱側の電極204の伸縮の累積値は45.65μmとなる。したがって、仕切板201の膨張との差異は約−59.95μmとなる。 In FIG. 8 (a), when the room temperature is 25 ° C., the heat absorption part (not shown) is maintained at about 50 ° C., and the heating part (heat radiation side) not shown is used as a heating device for heating at 100 ° C., The temperature of the plate 201 is about 75 ° C. between 50 ° C. and 100 ° C. Therefore, the expansion of electrode 204 on the heat dissipation side is 5.5 mm x (100 ° C-25 ° C) x 16.6 x 10 -6 ≈ 6.85 µm, and the expansion of electrode 203 on the heat absorption side is 5.5 mm x (50 ° C-25 ° C) x 16.6 × 10 -6 ≒ 2.28μm. On the other hand, the expansion at a position 21 mm from the center of the partition plate 201 is 21 mm × (75 ° C.-25 ° C.) × 7.04 × 10 −5 ≈73.92 μm. Also, the cumulative expansion value of the heat absorption side electrode 203 at the same position is 3.5 × 6.85≈23.98 μm, and the cumulative expansion value of the heat radiation side electrode 204 is 3.5 × 2.28≈7.98 μm, so the heat absorption side electrode 203 and the heat radiation side The accumulated expansion value of the electrode 204 is 31.96 μm. Furthermore, the expansion of the partition plate 201 is 105.60 μm at a position 30 mm from the center of the partition plate 201. Further, the cumulative value of expansion and contraction of the heat absorption side electrode 203 at this position is 5 × 6.85≈34.25 μm, and the cumulative value of expansion and contraction of the heat dissipation side electrode 204 is 5 × 2.28≈11.40 μm. And the cumulative value of expansion and contraction of the electrode 204 on the heat radiation side is 45.65 μm. Therefore, the difference from the expansion of the partition plate 201 is about −59.95 μm.

図8(b)において、室温が25℃、図示されていない放熱部を0℃の冷却水で冷却し、図示されていない吸熱部を−50℃で冷却する冷却装置として使用した場合、仕切板201の温度は0℃と−50℃の中間の−25℃程度となる。したがって、放熱側の電極204の収縮は5.5mm×(0℃−25℃)×16.6×10-6≒−2.28μm、吸熱側の電極203の収縮は5.5mm×(−50℃−25℃)×16.6×10-6≒−6.85μmである。一方、仕切板201の中心部から21mmの位置における膨張は21mm×(−25℃−25℃)×7.04×10-5≒−73.92μmである。また、同じ位置における吸熱側の電極203の膨張累積値は3.5×(−6.85)≒−23.98μm、放熱側の電極204の膨張累積値は3.5×(−2.28)≒−7.98μmであるから、吸熱側の電極203及び放熱側の電極20 の膨張累積値は−31.96μmとなる。さらに、仕切板201の中心部から30mmの位置では仕切板201の膨張は−105.60μmとなる。また、この位置における吸熱側の電極203の伸縮の累積値は5×(−6.85)≒−34.25μmとなり、放熱側の電極204の伸縮の累積値は5×(−2.28)≒−11.40μmとなるから、吸熱側の電極203及び放熱側の電極204の伸縮の累積値は−45.65μmとなる。したがって、仕切板201の膨張との差異は約59.95μmとなる。 In FIG. 8 (b), when the room temperature is 25 ° C., the heat radiating portion (not shown) is cooled with 0 ° C. cooling water, and the heat absorption portion (not shown) is cooled at −50 ° C. The temperature of 201 is about −25 ° C. between 0 ° C. and −50 ° C. Therefore, the shrinkage of the electrode 204 on the heat dissipation side is 5.5 mm x (0 ° C-25 ° C) x 16.6 x 10 -6 ≒ -2.28 µm, and the shrinkage of the electrode 203 on the heat absorption side is 5.5 mm x (-50 ° C-25 ° C) × 16.6 × 10 −6 ≒ −6.85μm. On the other hand, the expansion at a position 21 mm from the center of the partition plate 201 is 21 mm × (−25 ° C.−25 ° C.) × 7.04 × 10 −5 ≈−73.92 μm. Further, the cumulative expansion value of the heat absorption side electrode 203 at the same position is 3.5 × (−6.85) ≈−23.98 μm, and the cumulative expansion value of the heat radiation side electrode 204 is 3.5 × (−2.28) ≈−7.98 μm. The cumulative expansion value of the heat absorption side electrode 203 and the heat dissipation side electrode 20 is −31.96 μm. Furthermore, the expansion of the partition plate 201 is −105.60 μm at a position 30 mm from the center of the partition plate 201. In this position, the cumulative expansion / contraction value of the heat absorption side electrode 203 is 5 × (−6.85) ≈−34.25 μm, and the cumulative expansion / contraction value of the heat radiation side electrode 204 is 5 × (−2.28) ≈−11.40 μm. Therefore, the cumulative expansion / contraction value of the heat absorption side electrode 203 and the heat dissipation side electrode 204 is −45.65 μm. Therefore, the difference from the expansion of the partition plate 201 is about 59.95 μm.

図7及び図8を参照した以上の説明から、下記(イ)〜(ハ)のことが分かる
(イ))通常の使用形態、即ち常温で通電し、吸熱側が常温より低く、放熱側が常温より高くなるように使用する場合は、電極203,204、及び仕切板201の伸縮が比較的小さいため、仕切板201及び電極203,204にかかる熱応力は比較的小さい。
(ロ)図8(a)に示すような吸熱部及び放熱部が常温よりも高い使用形態、あるいは図8(b)に示すような吸熱部及び放熱部が常温よりも高い使用形態では、仕切板201にかかる熱応力がは無視できない程大きくなる。
(ハ)仕切板201の伸縮は、中心部から遠い縁付近程大きくなり、従って熱応力も縁付近程大きくなる。
From the above description with reference to FIG. 7 and FIG. 8, the following (a) to (c) can be understood. (B) Normal use, that is, energized at normal temperature, the heat absorption side is lower than normal temperature, and the heat dissipation side is higher than normal temperature When used so as to be higher, since the expansion and contraction of the electrodes 203 and 204 and the partition plate 201 is relatively small, the thermal stress applied to the partition plate 201 and the electrodes 203 and 204 is relatively small.
(B) In the usage pattern in which the heat absorption part and the heat radiation part are higher than room temperature as shown in FIG. 8A, or in the usage pattern in which the heat absorption part and the heat radiation part are higher than room temperature as shown in FIG. The thermal stress applied to the plate 201 becomes so large that it cannot be ignored.
(C) The expansion and contraction of the partition plate 201 is increased near the edge far from the center, and therefore the thermal stress is increased near the edge.

仕切板201のサイズが10cm×10cm、12cm×12cmと大型になれば、縁付近の熱応力はさらに大きくなるので、仕切板201の熱歪みも大きくなる。この大きな熱歪みにより熱電半導体結晶202n,202pと電極203,電極204との間の接合が外れてしまうことがある。また、仕切板210や電極203,204と比較して脆い材質からなる熱電半導体結晶202が破損してしまうことがある。   If the size of the partition plate 201 is increased to 10 cm × 10 cm or 12 cm × 12 cm, the thermal stress in the vicinity of the edge further increases, so that the thermal strain of the partition plate 201 also increases. Due to this large thermal strain, the junction between the thermoelectric semiconductor crystals 202n and 202p and the electrodes 203 and 204 may be disconnected. In addition, the thermoelectric semiconductor crystal 202 made of a material that is brittle compared to the partition plate 210 and the electrodes 203 and 204 may be damaged.

本発明は、このような問題点に鑑みてなされたものであり、仕切板と、その仕切板に貫通された状態で固定された熱電半導体結晶と、その熱電半導体結晶の両端面に接続された電極とを具備した熱電素子において、仕切板の熱歪みを抑制することを目的とする。   The present invention has been made in view of such problems, and is connected to a partition plate, a thermoelectric semiconductor crystal fixed in a state of being penetrated through the partition plate, and both end faces of the thermoelectric semiconductor crystal. An object of the present invention is to suppress thermal distortion of a partition plate in a thermoelectric element including an electrode.

本発明に係る熱電素子は、仕切板と、前記仕切板を貫通した状態で前記仕切板に固定された熱電半導体結晶と、前記熱電半導体結晶の両端面に接続された電極とを具備した熱電素子において、前記仕切板の縁付近に切り込みを複数個設けたことを特徴とする熱電素子である。この構成により、熱電素子の仕切板の伸縮が切り込みにより吸収されるため、仕切板の熱歪みが抑制される。   A thermoelectric element according to the present invention comprises a partition plate, a thermoelectric semiconductor crystal fixed to the partition plate in a state of passing through the partition plate, and electrodes connected to both end faces of the thermoelectric semiconductor crystal. In the thermoelectric element, a plurality of cuts are provided in the vicinity of the edge of the partition plate. With this configuration, the expansion and contraction of the partition plate of the thermoelectric element is absorbed by the cut, so that thermal distortion of the partition plate is suppressed.

ここで、仕切板の伸縮は、仕切板の中心部から外側に向かう程大きくなるので、切り込みは少なくとも縁付近に設ける。また、機械的強度を損なわない範囲で、出来るだけ多く設けることが望ましい。さらに、切り込みは、仕切板の縁にかかるように形成しても良いし、縁にかからないように形成しても良い。また、隣接する熱電半導体結晶の間に形成しても良い。   Here, since the expansion and contraction of the partition plate increases toward the outside from the center portion of the partition plate, the cut is provided at least near the edge. Further, it is desirable to provide as much as possible within a range not impairing the mechanical strength. Further, the notch may be formed so as to cover the edge of the partition plate, or may be formed so as not to be applied to the edge. Further, it may be formed between adjacent thermoelectric semiconductor crystals.

本発明によれば、仕切板と、前記仕切板を貫通した状態でその仕切板に固定された熱電半導体結晶と、その熱電半導体結晶の両端に固定された電極と具備した熱電素子において、仕切板に切り込みを形成したので、仕切板の伸縮を切り込みにより吸収して仕切板の熱歪みを抑制することができる。このため、仕切板の熱歪みによる熱電半導体結晶の破損及び電極の剥離が防止される。したがって、熱電素子のさらなる長寿命化を実現することができ、特に大型の仕切板を備えた熱電素子の長寿命化に有効である。   According to the present invention, in a thermoelectric element comprising a partition plate, a thermoelectric semiconductor crystal fixed to the partition plate in a state of passing through the partition plate, and electrodes fixed to both ends of the thermoelectric semiconductor crystal, the partition plate Since the notch is formed in the slit, the expansion and contraction of the partition plate can be absorbed by the notch and the thermal distortion of the partition plate can be suppressed. For this reason, breakage of the thermoelectric semiconductor crystal and peeling of the electrode due to thermal distortion of the partition plate are prevented. Therefore, the lifetime of the thermoelectric element can be further increased, and it is particularly effective for extending the lifetime of the thermoelectric element having a large partition plate.

以下、図面を参照しながら本発明の実施形態について説明する。
〔第1の実施形態〕
図1乃至図3は本発明の第1の実施形態の熱電素子の構成を示す図である。ここで、図1(a)は平面(上面)図、図1(b)は図1(a)におけるX−X断面図である。また、図2は底面図、図3は図1(a)から平面側の電極を取り除いた様子を示す平面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
1 to 3 are diagrams showing the configuration of the thermoelectric element according to the first embodiment of the present invention. Here, FIG. 1A is a plan (top) view, and FIG. 1B is a cross-sectional view taken along line XX in FIG. FIG. 2 is a bottom view, and FIG. 3 is a plan view showing a state in which the planar electrode is removed from FIG.

図1(a)、(b)、図2、及び図3に示すように、熱電素子1は、仕切板2と、仕切板2を貫通した状態で仕切板1に固定された熱電半導体結晶3と、熱電半導体結晶3の上端にハンダにより接合された上側電極4と、熱電半導体結晶3の下端にハンダにより接合された下側電極5とを備えている。熱電半導体結晶3は、図5あるいは図6と同じく、n型熱電半導体結晶及びp型熱電半導体結晶からなり、それらが仕切板1に交互に配列され、電気的に直列に接続される。仕切板2はユニレート(登録商標)等のポリエステル系樹脂製であり、そのサイズはほぼ7cm×7cm×0.8mmである。熱電半導体結晶3のサイズは直径2.3mm、長さ2.3mmである。上側電極4及び下側電極5はいずれも銅製であり、そのサイズは5.5mm×2.5mm×300μmである。ただし、熱電半導体結晶3、及び電極4,5については、図示の便宜上、小さめに記載した。   As shown in FIGS. 1A, 1 </ b> B, 2, and 3, the thermoelectric element 1 includes a partition plate 2 and a thermoelectric semiconductor crystal 3 that is fixed to the partition plate 1 in a state of penetrating the partition plate 2. And an upper electrode 4 joined to the upper end of the thermoelectric semiconductor crystal 3 by solder, and a lower electrode 5 joined to the lower end of the thermoelectric semiconductor crystal 3 by solder. The thermoelectric semiconductor crystal 3 is composed of an n-type thermoelectric semiconductor crystal and a p-type thermoelectric semiconductor crystal as in FIG. 5 or FIG. 6, which are alternately arranged on the partition plate 1 and electrically connected in series. The partition plate 2 is made of a polyester resin such as Unilate (registered trademark), and its size is approximately 7 cm × 7 cm × 0.8 mm. The size of the thermoelectric semiconductor crystal 3 is 2.3 mm in diameter and 2.3 mm in length. The upper electrode 4 and the lower electrode 5 are both made of copper and have a size of 5.5 mm × 2.5 mm × 300 μm. However, the thermoelectric semiconductor crystal 3 and the electrodes 4 and 5 are shown smaller for convenience of illustration.

本実施の形態の熱電素子1では、仕切板2の四辺における隅の付近には、各辺毎に一つずつ切り込み21を設けた。切り込み21の形状は短冊状つまり平面形状(仕切板2の上面から見た形状)は細長い矩形であり、その外側は仕切板2の縁に達している。つまり、仕切板2の縁にかかるように縁からその内側に形成されている。   In the thermoelectric element 1 according to the present embodiment, one notch 21 is provided for each side near the corners on the four sides of the partition plate 2. The shape of the notch 21 is a strip shape, that is, a planar shape (a shape viewed from the upper surface of the partition plate 2) is an elongated rectangle, and the outer side reaches the edge of the partition plate 2. That is, it is formed from the edge to the inside so as to cover the edge of the partition plate 2.

以上のように構成された熱電素子1に対して、常温において図示されていない直流電源から通電されると、吸熱側、放熱側共に、それぞれの温度と常温との温度差に応じて伸縮する。ここで、図1における左右方向の伸縮について説明する。図7及び図8を参照しながら説明したように、仕切板2の左右方向の伸縮は、仕切板1の中心部から遠ざかり縁部に近づくに従って大きくなる。このとき、図1に示す熱電素子1において仕切板2のX−X線上の伸縮は切り込み21において不連続となる。つまり、切り込み21がない場合、仕切板2の伸縮量は、X−X線に沿って中央から左右に進むに従って大きくなるが、切り込み21があることで、それらの切り込み毎に伸縮量がゼロにリセットされた状態になる。この結果、切り込み21がない場合に伸縮量が最大となる縁付近における伸縮量を小さくすることが可能となる。X−X線と直交し、かつ切り込み21を通る線上についても同様である。この結果、仕切板2の熱歪みを抑制し、熱電半導体結晶3及び電極4,5にかかる応力を低減することにより、熱電半導体結晶3の破損及び電極4,5の剥離を防止できるので、熱電素子1の長寿命化を実現することができる。   When the thermoelectric element 1 configured as described above is energized from a DC power source (not shown) at normal temperature, both the heat absorption side and the heat dissipation side expand and contract according to the temperature difference between the temperature and normal temperature. Here, the expansion and contraction in the left-right direction in FIG. 1 will be described. As described with reference to FIGS. 7 and 8, the expansion and contraction of the partition plate 2 in the left-right direction increases away from the center of the partition plate 1 and approaches the edge. At this time, in the thermoelectric element 1 shown in FIG. 1, the expansion and contraction on the line XX of the partition plate 2 becomes discontinuous at the cuts 21. That is, when there is no notch 21, the expansion / contraction amount of the partition plate 2 increases as it goes from the center to the left and right along the line XX. It will be in a reset state. As a result, when there is no notch 21, it becomes possible to reduce the amount of expansion / contraction near the edge where the amount of expansion / contraction becomes maximum. The same applies to a line that is orthogonal to the line XX and passes through the notch 21. As a result, since the thermal strain of the partition plate 2 is suppressed and the stress applied to the thermoelectric semiconductor crystal 3 and the electrodes 4 and 5 is reduced, damage to the thermoelectric semiconductor crystal 3 and peeling of the electrodes 4 and 5 can be prevented. The lifetime of the element 1 can be increased.

なお、仕切板2の二つの隅(図1では下端の左右の隅)の付近は短冊状の切り込みからなるカシメ端子取り付け用加工孔22,23が設けられている。このカシメ端子取り付け用加工孔22,23は熱電素子1にリード線を接続するために使用される。また、仕切板2の一つの角に設けた三角形の切り欠き24、切り欠き24の右側の縁の中央に設けた半円形の切り欠き25、及び半円形の切り欠き25を設けた縁と対向する縁の付近に設けた孔26は、いずれも熱電素子1の製造時に使用されるものであるが、孔26は図1における仕切板2の横方向については切り込み21と同様、仕切板2の熱歪みを抑制するはたらきをする。   In the vicinity of the two corners of the partition plate 2 (left and right corners in FIG. 1), crimping terminal mounting holes 22 and 23 made of strip-shaped cuts are provided. The crimping terminal mounting holes 22 and 23 are used for connecting lead wires to the thermoelectric element 1. In addition, a triangular notch 24 provided at one corner of the partition plate 2, a semicircular notch 25 provided at the center of the right edge of the notch 24, and an edge provided with a semicircular notch 25 The holes 26 provided in the vicinity of the edge to be used are all used when the thermoelectric element 1 is manufactured. However, the holes 26 are formed in the horizontal direction of the partition plate 2 in FIG. It works to suppress thermal distortion.

〔第2の実施形態〕
図4は本発明の第2の実施形態の熱電素子の構成を示す図である。この図は平面側の電極を取り除いた様子を示す平面図である。この図において、図3と同一又は対応する構成要素には図3で使用した符号を付した。また、本実施形態において、平面側及び底面側の電極のパターンは図1及び図2と同一であるため、図示を省略した。
[Second Embodiment]
FIG. 4 is a diagram showing the configuration of the thermoelectric element according to the second embodiment of the present invention. This figure is a plan view showing a state in which the electrode on the plane side is removed. In this figure, the same or corresponding components as those in FIG. 3 are denoted by the reference numerals used in FIG. In the present embodiment, the electrode patterns on the plane side and the bottom side are the same as those in FIGS.

本実施の形態では、切り込みの配置が第1の実施の形態と異なる。即ち、第1の実施形態において縦方向に延びている左右の縁の付近にそれぞれ一対ずつ形成されていた切り込みを設けずに、横方向に延びている上下の縁(辺)の付近において、隣接する熱電半導体結晶3の間に切り込み27を形成した。切り込み27の平面形状はほぼ矩形であり、横方向に延びている上下の縁とほぼ平行に形成されており、長さは切り込み21より短い。また、切り込み27は、図4の横方向について、第1の実施形態とは異なり、仕切板2の縁付近だけでなく、仕切板2の中心付近にも形成した。このため、横方向については、第1の実施形態よりもさらに熱歪みが小さくなる。また、切り込み27を、熱歪みに対して最も弱い熱電半導体結晶3に接触するように設けたので、熱電半導体結晶3にかかる熱応力を最大限に抑制し、その結果、熱電半導体結晶3の破損及び電極4,5の剥離を最小限にし、熱電素子1の長寿命化を実現することができる。   In the present embodiment, the arrangement of the cuts is different from that of the first embodiment. That is, in the first embodiment, adjacent to each other in the vicinity of the upper and lower edges (sides) extending in the horizontal direction without providing the notches formed in pairs near the left and right edges extending in the vertical direction. A cut 27 was formed between the thermoelectric semiconductor crystals 3 to be formed. The planar shape of the cut 27 is substantially rectangular, is formed substantially parallel to the upper and lower edges extending in the lateral direction, and is shorter than the cut 21. Further, in the horizontal direction of FIG. 4, the cuts 27 are formed not only near the edge of the partition plate 2 but also near the center of the partition plate 2, unlike the first embodiment. For this reason, in the lateral direction, thermal strain is further reduced as compared with the first embodiment. Further, since the notch 27 is provided so as to be in contact with the thermoelectric semiconductor crystal 3 that is the weakest against thermal strain, the thermal stress applied to the thermoelectric semiconductor crystal 3 is suppressed to the maximum, and as a result, the thermoelectric semiconductor crystal 3 is damaged. Further, the peeling of the electrodes 4 and 5 can be minimized, and the life of the thermoelectric element 1 can be extended.

なお、以上説明した第1及び第2の実施形態では、仕切板2のサイズを7cm×7cmとしたが、本発明はより大きなサイズの仕切板を備えた熱電素子に対しても同様に適用可能であり、仕切板のサイズが大きい程、本発明による熱歪み抑制効果が有効に発揮される。また、切り込みの数は、仕切板1の機械的強度を損なわない範囲で、出来るだけ多く設けることが望ましい。さらに、切り込みの形状も矩形に限定されるものではなく、他の形状でも良い。また、第1及び第2の実施形態では、切り込み21が仕切板2の縁にかかるように形成したが、切り込み21が縁にかからないように縁の内側からさらに内側に向けて形成しても良い。   In the first and second embodiments described above, the size of the partition plate 2 is 7 cm × 7 cm. However, the present invention can be similarly applied to a thermoelectric element having a larger size partition plate. As the size of the partition plate is larger, the thermal strain suppressing effect according to the present invention is more effectively exhibited. Further, it is desirable to provide as many cuts as possible within a range that does not impair the mechanical strength of the partition plate 1. Furthermore, the shape of the cut is not limited to a rectangle, and may be another shape. In the first and second embodiments, the cuts 21 are formed so as to cover the edges of the partition plate 2. However, the cuts 21 may be formed further from the inside of the edges toward the inside so as not to cover the edges. .

本発明の第1の実施形態の熱電素子の平面図及び断面図である。It is the top view and sectional drawing of the thermoelectric element of the 1st Embodiment of this invention. 本発明の第1の実施形態の熱電素子の底面図である。It is a bottom view of the thermoelectric element of the 1st Embodiment of this invention. 本発明の第1の実施形態の熱電素子から平面側の電極を取り除いた様子を示す平面図である。It is a top view which shows a mode that the electrode of the plane side was removed from the thermoelectric element of the 1st Embodiment of this invention. 本発明の第2の実施形態の熱電素子から平面側の電極を取り除いた様子を示す平面図である。It is a top view which shows a mode that the electrode of the plane side was removed from the thermoelectric element of the 2nd Embodiment of this invention. 従来の熱電素子の正面図及び斜視図である。It is the front view and perspective view of the conventional thermoelectric element. 両側スケルトン構造の熱電素子の正面図である。It is a front view of the thermoelectric element of a both-sides skeleton structure. 図6に示した熱電素子の通常の使用時における仕切板の伸縮を説明するための図である。It is a figure for demonstrating expansion / contraction of the partition plate at the time of normal use of the thermoelectric element shown in FIG. 図6に示した熱電素子の通常とは異なる使用時における仕切板の伸縮を説明するための図である。It is a figure for demonstrating expansion / contraction of the partition plate at the time of use different from the normal use of the thermoelectric element shown in FIG.

符号の説明Explanation of symbols

1…熱電素子、2…仕切板、3…熱電半導体結晶、4,5…電極、21,27…切り込み。

DESCRIPTION OF SYMBOLS 1 ... Thermoelectric element, 2 ... Partition plate, 3 ... Thermoelectric semiconductor crystal, 4, 5 ... Electrode, 21, 27 ... Cut.

Claims (6)

仕切板と、前記仕切板を貫通した状態で前記仕切板に固定された熱電半導体結晶と、前記熱電半導体結晶の両端面に接続された電極とを具備した熱電素子において、前記仕切板の縁の付近に切り込みを複数個設けたことを特徴とする熱電素子。   A thermoelectric element comprising: a partition plate; a thermoelectric semiconductor crystal fixed to the partition plate in a state of penetrating the partition plate; and an electrode connected to both end faces of the thermoelectric semiconductor crystal. A thermoelectric element characterized in that a plurality of cuts are provided in the vicinity. 前記切り込みは前記縁にかかるように形成されていることを特徴とする請求項1記載の熱電素子。   The thermoelectric element according to claim 1, wherein the cut is formed so as to extend over the edge. 前記切り込みは前記縁にかからないように形成されていることを特徴とする請求項1記載の熱電素子。   The thermoelectric element according to claim 1, wherein the cut is formed so as not to reach the edge. 前記切り込みは隣接する熱電半導体結晶の間に形成されていることを特徴とする請求項1記載の熱電素子。   The thermoelectric element according to claim 1, wherein the cut is formed between adjacent thermoelectric semiconductor crystals. 前記仕切板の平面形状はほぼ矩形であることを特徴とする請求項1記載の熱電素子。   The thermoelectric element according to claim 1, wherein the planar shape of the partition plate is substantially rectangular. 前記切り込みの平面形状はほぼ矩形であることを特徴とする請求項1記載の熱電素子。


The thermoelectric element according to claim 1, wherein the planar shape of the cut is substantially rectangular.


JP2003408768A 2003-12-08 2003-12-08 Thermoelement Pending JP2005174985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003408768A JP2005174985A (en) 2003-12-08 2003-12-08 Thermoelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003408768A JP2005174985A (en) 2003-12-08 2003-12-08 Thermoelement

Publications (1)

Publication Number Publication Date
JP2005174985A true JP2005174985A (en) 2005-06-30

Family

ID=34730353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408768A Pending JP2005174985A (en) 2003-12-08 2003-12-08 Thermoelement

Country Status (1)

Country Link
JP (1) JP2005174985A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105510A1 (en) * 2006-03-10 2007-09-20 Morix Co., Ltd. Thermoelectric module and process for producing the same
WO2010082541A1 (en) * 2009-01-15 2010-07-22 住友化学株式会社 Thermoelectric conversion module
WO2011013529A1 (en) * 2009-07-31 2011-02-03 住友化学株式会社 Thermoelectric conversion material, and thermoelectric conversion module using same
WO2018056440A1 (en) * 2016-09-26 2018-03-29 株式会社フェローテックホールディングス Temperature adjustment device and peltier module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722657A (en) * 1993-06-30 1995-01-24 Nippon Buroaa Kk Thermo module
JP2000068564A (en) * 1998-08-18 2000-03-03 Dainippon Screen Mfg Co Ltd Peltier element
JP2001156343A (en) * 1999-11-30 2001-06-08 Morix Co Ltd Thermoelectric element and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722657A (en) * 1993-06-30 1995-01-24 Nippon Buroaa Kk Thermo module
JP2000068564A (en) * 1998-08-18 2000-03-03 Dainippon Screen Mfg Co Ltd Peltier element
JP2001156343A (en) * 1999-11-30 2001-06-08 Morix Co Ltd Thermoelectric element and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105510A1 (en) * 2006-03-10 2007-09-20 Morix Co., Ltd. Thermoelectric module and process for producing the same
WO2010082541A1 (en) * 2009-01-15 2010-07-22 住友化学株式会社 Thermoelectric conversion module
JP2010165842A (en) * 2009-01-15 2010-07-29 Sumitomo Chemical Co Ltd Thermoelectric conversion module
WO2011013529A1 (en) * 2009-07-31 2011-02-03 住友化学株式会社 Thermoelectric conversion material, and thermoelectric conversion module using same
CN102473832A (en) * 2009-07-31 2012-05-23 住友化学株式会社 Thermoelectric conversion material, and thermoelectric conversion module using same
WO2018056440A1 (en) * 2016-09-26 2018-03-29 株式会社フェローテックホールディングス Temperature adjustment device and peltier module
JP2018056172A (en) * 2016-09-26 2018-04-05 株式会社フェローテックホールディングス Temperature control unit and peltier module

Similar Documents

Publication Publication Date Title
EP2790474B1 (en) Thermoelectric cooler/heater integrated in printed circuit board
US11075331B2 (en) Thermoelectric device having circuitry with structural rigidity
WO2014084363A1 (en) Thermoelectric module
JP4296881B2 (en) Thermoelectric converter
JP6862896B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP4622577B2 (en) Cascade module for thermoelectric conversion
JP2006294935A (en) High efficiency and low loss thermoelectric module
KR100620913B1 (en) Thermoelectric module
JPWO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic device using the same
KR101998697B1 (en) Thermoelectric cooling module and manufacturing method thereof
JP2008028163A (en) Power module device
JP2006032850A (en) Thermoelectric conversion module
JP2007048916A (en) Thermoelectric module
JP2008021810A (en) Semiconductor module and radiation plate
JP2004363295A (en) Semiconductor device
JP2005045960A (en) Power converter
JP2005174985A (en) Thermoelement
JP2002208741A (en) Thermoelectric semiconductor device, cooler-heater using thermoelectric semiconductor device and manufacturing method therefor
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
JP2010021410A (en) Thermo-module
JP2005228915A (en) Separated peltier system
JP2008016598A (en) Thermoelectric module
JP2009231655A (en) Thermoelectric conversion module
JP2008186977A (en) Thermo-module and its manufacturing method
JP4795103B2 (en) Thermo module and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100602