JPH1117234A - Thermoelectric transducer - Google Patents

Thermoelectric transducer

Info

Publication number
JPH1117234A
JPH1117234A JP9169238A JP16923897A JPH1117234A JP H1117234 A JPH1117234 A JP H1117234A JP 9169238 A JP9169238 A JP 9169238A JP 16923897 A JP16923897 A JP 16923897A JP H1117234 A JPH1117234 A JP H1117234A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
thermal stress
stress relaxation
electrode
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9169238A
Other languages
Japanese (ja)
Inventor
Satoo Seto
学雄 瀬戸
Yoshinobu Momoi
義宣 桃井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP9169238A priority Critical patent/JPH1117234A/en
Publication of JPH1117234A publication Critical patent/JPH1117234A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid cracking a device by mounting a thermal stress relaxing member slidably between an electrode and a thermoelectric transducer to allow this transducer and relaxing member to follow up the deformation due to the temp. difference between opposed substrates. SOLUTION: A thermal stress relaxing member 10 is bonded to a thermoelectric transducer 3. The member 10 is formed as a cone 11 to reduce a part near electrode 6 with a convex spherical part 12 formed at the top of the cone 11, spot facings 30 with concave spherical recesses 31 at their centers are formed into the opposed upper and lower electrodes 6, thus making the member 10 slidable between the electrode 6 and transducer 3. This avoids stressing the transducer 3 as the member 10 rotates around the spherical part 12 of the electrode 6 if the top and bottom relative center positions of the transducer 3 change due to the thermal deformation of a heat exchange board 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電気変換装置に
関する。
[0001] The present invention relates to a thermoelectric converter.

【0002】[0002]

【従来の技術】従来、ぺルチェ効果を利用して電気エネ
ルギーを熱に、ゼーベック効果を利用して熱を電気エネ
ルギーに変換するものとして熱電気変換装置がある。こ
の熱電気変換装置は、図10及び図11に示すように、
相対向するように配設された略平板状の2枚の熱交換基
板1,2と、熱交換基板1,2の間にあって並設される
複数個のP型半導体4とN型半導体5とを有する熱電変
換素子3と、熱電変換素子3のP型半導体4とN型半導
体5とが交互に直列に配設されるよう連結するとともに
熱交換基板1,2に取着される電極6とを具備してい
る。
2. Description of the Related Art Conventionally, there is a thermoelectric converter which converts electric energy into heat using the Peltier effect and converts heat into electric energy using the Seebeck effect. This thermoelectric converter, as shown in FIGS. 10 and 11,
Two substantially flat heat exchange substrates 1 and 2 disposed so as to face each other, and a plurality of P-type semiconductors 4 and N-type semiconductors 5 arranged in parallel between the heat exchange substrates 1 and 2 And an electrode 6 attached to the heat exchange substrates 1 and 2 while connecting the P-type semiconductors 4 and the N-type semiconductors 5 of the thermoelectric conversion element 3 so as to be alternately arranged in series. Is provided.

【0003】このP型半導体4とN型半導体5は、焼結
等で形成された重金属製の略直方体形状であって、P型
半導体4及びN型半導体5と電極6,6とは、半田7,
7等で接合されている。そしてこの電極6,6は熱交換
基板1,2と接着剤等で固着されている。
The P-type semiconductor 4 and the N-type semiconductor 5 have a substantially rectangular parallelepiped shape made of heavy metal formed by sintering or the like, and the P-type semiconductor 4 and the N-type semiconductor 5 and the electrodes 6 and 6 are soldered. 7,
7 and so on. The electrodes 6 and 6 are fixed to the heat exchange substrates 1 and 2 with an adhesive or the like.

【0004】また通常、熱交換基板1,2としては絶縁
性が良好でかつ熱伝導性の良好なアルミナセラミックス
基板等が用いられる。電極6,6としては、熱交換基板
1,2に固着された銅パターンが用いられる。
In general, as the heat exchange substrates 1 and 2, an alumina ceramic substrate having good insulation and good heat conductivity is used. Copper patterns fixed to the heat exchange substrates 1 and 2 are used as the electrodes 6 and 6.

【0005】[0005]

【発明が解決使用とする課題】しかし前述した従来の熱
電気変換装置は、特に上下相対する熱交換基板1,2の
熱膨張、熱収縮に伴う変形によるストレスが発生し、こ
の熱ストレスが繰り返されることにより、図12に示す
ように熱電変換素子3と電極6との接合部の外周付近に
おいて、熱電変換素子3の側面からクラックAが発生
し、このクラックAが伸展して破断に至り、熱電気変換
装置の寿命が短くなるという問題点があった。
However, in the above-described conventional thermoelectric converter, stress is generated due to deformation caused by thermal expansion and contraction of the heat exchange substrates 1 and 2, which are vertically opposed to each other, and this thermal stress is repeated. As a result, as shown in FIG. 12, a crack A is generated from the side surface of the thermoelectric conversion element 3 near the outer periphery of the junction between the thermoelectric conversion element 3 and the electrode 6, and the crack A extends to break. There is a problem that the life of the thermoelectric converter is shortened.

【0006】上記の問題点を解決するための特許出願と
して、特開平8−321636号公報があるが、緩和部
材を半田で接合電極に取り付けているため、所謂ラーメ
ン構造を形成することになり、基板の熱膨張、収縮によ
り接合電極が初期位置より変化した場合、緩和部材と熱
電変換素子をあわせた構造体にモーメントが作用するこ
とは避けられない。
As a patent application for solving the above problem, there is Japanese Patent Application Laid-Open No. 8-321636. However, since the relaxation member is attached to the bonding electrode by solder, a so-called ramen structure is formed. When the bonding electrode changes from the initial position due to thermal expansion and contraction of the substrate, it is inevitable that a moment acts on the structure in which the relaxation member and the thermoelectric conversion element are combined.

【0007】また特開平8−204241号公報では、
熱電変換素子を直接に電極に接合しているため、高温
側、低温側の距離が接近しており、この構造では輻射の
影響を受けやすく、熱の逆流が起こり効率的でない。
In Japanese Patent Application Laid-Open No. 8-204241,
Since the thermoelectric conversion element is directly joined to the electrode, the high-temperature side and the low-temperature side are close to each other, and this structure is easily affected by radiation, causing heat to flow backward and being inefficient.

【0008】本発明は上記の問題点を解決するためにな
されたものであり、その目的とするところは、熱ストレ
スによる熱電変換素子のクラックの発生,伸展を抑制
し、耐熱ストレス性に優れかつ長寿命化の図れる熱電気
変換装置を提供することにある。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to suppress the generation and extension of cracks in a thermoelectric conversion element due to thermal stress, to provide an excellent heat-resistant stress resistance. An object of the present invention is to provide a thermoelectric conversion device that can have a long life.

【0009】[0009]

【課題を解決するための手段】前記の課題を解決するた
めに、請求項1記載の発明では、相対向するように配設
された略平板状の熱交換基板と、前記熱交換基板の間に
あって並設される少なくとも1対のP型半導体とN型半
導体とを有する熱電変換素子と、前記熱電変換素子のP
型半導体とN型半導体とが交互に直列に接続されるよう
連結するとともに熱交換基板に取着される電極とを具備
する熱電気変換装置において、熱電変換素子の両側に取
着されて電極と熱電変換素子間に摺動可能な状態で介在
する熱応力緩和部材を設ける。
In order to solve the above-mentioned problems, according to the present invention, there is provided a heat exchange substrate between a substantially flat heat exchange substrate disposed so as to face each other. A thermoelectric conversion element having at least one pair of a P-type semiconductor and an N-type semiconductor
And an N-type semiconductor are connected so that they are connected in series alternately and have electrodes attached to the heat exchange substrate. A thermal stress relaxation member is provided between the thermoelectric conversion elements in a slidable state.

【0010】請求項2記載の発明では、熱応力緩和部材
は熱電変換素子の上下に取着しかつ錐状形状の先端に凸
型の球状部を形成し、対応する上下電極には錐状の座ぐ
りを形成しかつ座ぐりの中央に凹型球状の窪みを形成す
る。
According to the second aspect of the present invention, the thermal stress relaxation member is attached to the upper and lower sides of the thermoelectric conversion element and forms a convex spherical portion at the tip of the conical shape. A counterbore is formed and a concave spherical depression is formed in the center of the counterbore.

【0011】請求項3記載の発明では、熱応力緩和部材
は電極側先端を凸型の球状に形成し、対応する電極は凹
型の球状に形成する。
According to the third aspect of the present invention, the thermal stress relaxation member is formed such that the tip on the electrode side has a convex spherical shape, and the corresponding electrode has a concave spherical shape.

【0012】請求項4記載の発明では、少なくとも一方
の熱応力緩和部材は断面が凸型三角形で、対応する部分
の電極は断面が凹型三角形に形成する。
According to the fourth aspect of the present invention, at least one of the thermal stress relieving members has a convex triangular cross section, and the corresponding portion of the electrode has a concave triangular cross section.

【0013】請求項5記載の発明では、少なくとも一方
の熱応力緩和部材は断面が凸型四角形で、対応する部分
の電極は断面が凹型四角形に形成する。
According to the fifth aspect of the invention, at least one of the thermal stress relieving members has a convex quadrangular cross section, and the corresponding portion of the electrode has a concave quadrangular cross section.

【0014】請求項6記載の発明では、少なくとも一方
の熱応力緩和部材は断面が凸型円形で、対応する部分の
電極は断面が凹型円形に形成する。
According to the sixth aspect of the present invention, at least one of the thermal stress relieving members has a convex circular cross section, and the corresponding portion of the electrode has a concave circular cross section.

【0015】請求項7記載の発明では、電極がスライド
する熱応力緩和部材の特定位置に電気絶縁層を設ける。
According to the present invention, an electric insulating layer is provided at a specific position of the thermal stress relaxation member on which the electrode slides.

【0016】請求項8記載の発明では、熱電変換素子及
び熱応力緩和部材の変位方向と同方向の貫通孔を熱応力
緩和部材に形成してガイド部とし、隣接する熱応力緩和
部材に前記ガイド部を貫通する軸状の電気導通部を形成
する。
According to the present invention, a through-hole in the same direction as the displacement direction of the thermoelectric conversion element and the thermal stress relaxation member is formed in the thermal stress relaxation member to serve as a guide portion, and the guide hole is formed in the adjacent thermal stress relaxation member. A shaft-shaped electric conduction part penetrating the part is formed.

【0017】請求項9記載の発明では、ガイド部と軸部
の断面形状を円形とする。請求項10記載の発明では、
相対向するように配設された略平板状の2個の熱交換基
板と、前記熱交換基板の間にあって並設される少なくと
も1対のP型半導体とN型半導体とを有する熱電変換素
子と、前記熱電変換素子のP型半導体とN型半導体とが
交互に直列に接続されるよう連結するとともに熱交換基
板に取着される電極とを具備する熱電気変換装置におい
て、熱電変換素子に熱応力緩和部材を取着し、第1の熱
応力緩和部材は熱交換基板に固定し、隣接する第2の熱
応力緩和部材は熱交換基板に対して摺動可能に当接し、
第1の熱応力緩和部材と第2の熱応力緩和部材は湾曲又
は伸縮可能な電極により連結する。
According to the ninth aspect of the present invention, the cross-sectional shape of the guide portion and the shaft portion is circular. In the invention according to claim 10,
Two substantially plate-shaped heat exchange substrates arranged so as to face each other, and a thermoelectric conversion element having at least one pair of a P-type semiconductor and an N-type semiconductor which are arranged in parallel between the heat exchange substrates; A thermoelectric conversion device comprising: a P-type semiconductor and an N-type semiconductor of the thermoelectric conversion element, which are connected so as to be alternately connected in series and have electrodes attached to a heat exchange substrate. A stress relaxation member is attached, the first thermal stress relaxation member is fixed to the heat exchange substrate, and the adjacent second thermal stress relaxation member slidably abuts on the heat exchange substrate,
The first thermal stress relaxing member and the second thermal stress relaxing member are connected by a bendable or extendable electrode.

【0018】[0018]

【発明の実施の形態】第1の実施の形態を図1及び図2
(及び図10,図11)に基づいて説明する。図1は熱
電気変換装置の要部の断面図、図2は熱電気変換装置の
要部の断面図である。
1 and 2 show a first embodiment.
(And FIGS. 10 and 11). FIG. 1 is a cross-sectional view of a main part of the thermoelectric converter, and FIG. 2 is a cross-sectional view of a main part of the thermoelectric converter.

【0019】尚、従来例で説明したものと基本的な機能
が同じ部材には、同一の符号が付してある。熱電気変換
装置は、2個の熱交換基板1,2と、複数個のP型半導
体4とN型半導体5を有する熱電変換素子3と、熱交換
基板1,2に取着される電極6,6とを有し、本実施の
形態では熱電変換素子3と電極6,6との間には熱応力
緩和部材10,10が摺動自在に介挿される。
Members having the same basic functions as those described in the conventional example are denoted by the same reference numerals. The thermoelectric conversion device includes two heat exchange substrates 1 and 2, a thermoelectric conversion element 3 having a plurality of P-type semiconductors 4 and N-type semiconductors 5, and electrodes 6 attached to the heat exchange substrates 1 and 2. In the present embodiment, thermal stress relaxation members 10, 10 are slidably inserted between the thermoelectric conversion element 3 and the electrodes 6, 6.

【0020】図1においては、熱電変換素子3の上側半
分部分を示しており、熱電変換素子3には熱応力緩和部
材10が接合してある。そして電極6と熱電変換素子3
間が摺動可能な状態に構成してある。前記熱応力緩和部
材10は円錐体、又は角錐体形状等に形成した錐体11
に形成してあり、電極6に近い部分が狭まっている。こ
の錐体11の先端に凸型の球状部12が形成してあり、
対応する上下の電極6には円錐状の座ぐり30が形成し
てあり、座ぐり30の中央には凹型球状の窪み31を形
成している。尚、座ぐり30の開放角は錐体11の錘角
より大きな角度としてあり、熱応力緩和部材10の回動
に支障がないようにしてある。
FIG. 1 shows an upper half portion of the thermoelectric conversion element 3, and a thermal stress relaxation member 10 is joined to the thermoelectric conversion element 3. And the electrode 6 and the thermoelectric conversion element 3
The space is slidable. The thermal stress relaxation member 10 is a cone 11 or a cone 11 formed in a pyramid shape or the like.
The portion near the electrode 6 is narrowed. A convex spherical portion 12 is formed at the tip of the cone 11,
A conical counterbore 30 is formed in the corresponding upper and lower electrodes 6, and a concave spherical recess 31 is formed in the center of the counterbore 30. The opening angle of the counterbore 30 is larger than the cone angle of the cone 11, so that the rotation of the thermal stress relaxation member 10 is not hindered.

【0021】上記のように構成された熱電気変換装置で
は、熱交換基板1,2の熱による変形により熱電変換素
子3の上下の相対的な中心位置が変化しても、熱応力緩
和部材10,10が上下の電極6,6の凹球状部12,
12を中心に回転可能なために、熱電変換素子3にスト
レスをかけることがなくなる。
In the thermoelectric conversion device configured as described above, even if the upper and lower relative center positions of the thermoelectric conversion element 3 change due to deformation of the heat exchange substrates 1 and 2 due to heat, the thermal stress relaxation member 10 can be used. , 10 are the concave spherical parts 12, of the upper and lower electrodes 6, 6.
Since the thermoelectric conversion element 3 can be rotated about the center 12, no stress is applied to the thermoelectric conversion element 3.

【0022】図2では、熱応力緩和部材10の形状とし
て球体の一部を使用している。上下の熱交換基板1,2
の変形に対して、熱電変換素子3と熱応力緩和部材10
の回転運動を可能とするができる。図2の構成では、熱
応力緩和部材10、10を介して、電極6,6と熱電変
換素子3との接触面積を大きくとることができ電気抵抗
を小さくすることができる。
In FIG. 2, a part of a sphere is used as the shape of the thermal stress relaxation member 10. Upper and lower heat exchange boards 1, 2
Thermoelectric conversion element 3 and thermal stress relaxation member 10
Can be rotated. In the configuration of FIG. 2, the contact area between the electrodes 6, 6 and the thermoelectric conversion element 3 can be increased via the thermal stress relaxation members 10, 10, and the electric resistance can be reduced.

【0023】上記の図1、図2に実施例ともに、熱電変
換素子3の両端に熱応力緩和部材10,10を設けてい
るので、相対する熱交換基板1,2の温度差によって生
じる変形に対して、熱電変換素子3の上下両端に一体に
設けた熱応力緩和部材10,10がそれぞれ電極6,6
に対して摺動するので、熱電変換素子3へのクラック発
生を抑制できる。
In both of the embodiments shown in FIGS. 1 and 2, the thermal stress relaxation members 10, 10 are provided at both ends of the thermoelectric conversion element 3, so that the deformation caused by the temperature difference between the opposed heat exchange substrates 1, 2 can be prevented. On the other hand, the thermal stress relaxation members 10, 10 provided integrally at the upper and lower ends of the thermoelectric conversion element 3 are electrodes 6, 6, respectively.
, The occurrence of cracks in the thermoelectric conversion element 3 can be suppressed.

【0024】次に、第2の実施の形態を図3乃至図6に
基づいて説明する。図3は熱電気変換装置の要部を示す
斜視図、図4は熱電気変換装置の要部を示す斜視図、図
5は熱電気変換装置の要部を示す斜視図、図6は電極の
斜視図である。
Next, a second embodiment will be described with reference to FIGS. 3 is a perspective view showing a main part of the thermoelectric converter, FIG. 4 is a perspective view showing a main part of the thermoelectric converter, FIG. 5 is a perspective view showing a main part of the thermoelectric converter, and FIG. It is a perspective view.

【0025】第2の実施の形態は、熱交換基板1,2の
熱膨張、熱収縮の方向、すなわち熱電変換素子3にかか
る熱ストレスの方向が予め想定できる場合において有効
である(図3乃至図6)。
The second embodiment is effective when the directions of thermal expansion and contraction of the heat exchange substrates 1 and 2, that is, the directions of thermal stress applied to the thermoelectric conversion elements 3 can be assumed in advance (FIGS. 3 to 3). (Fig. 6).

【0026】まず、図3に示すように、熱電変換素子3
の上下には熱応力緩和部材10,10が接合してあり、
熱応力緩和部材10,10は縦断面が矩形に形成してあ
る。これに対応する電極6,6には矩形の溝35,35
が形成してある。この溝35の長手方向は、熱交換基板
1,2の相対的な変位方向である。この構成により熱交
換基板1,2が相反する逆方向に変位しても、熱応力緩
和部材10,10が電極6,6の溝35,35内を摺動
するので、熱電変換素子3にはストレスがかからない。
First, as shown in FIG.
Thermal stress relaxation members 10, 10 are joined above and below,
The thermal stress relaxation members 10, 10 are formed in a rectangular cross section. The corresponding electrodes 6, 6 have rectangular grooves 35, 35, respectively.
Is formed. The longitudinal direction of the groove 35 is a relative displacement direction of the heat exchange substrates 1 and 2. With this configuration, even if the heat exchange boards 1 and 2 are displaced in opposite directions, the thermal stress relaxation members 10 and 10 slide in the grooves 35 and 35 of the electrodes 6 and 6, so that the thermoelectric conversion element 3 has No stress.

【0027】熱応力緩和部材10,10と電極6,6の
縦断面の形状は図3の矩形形状の他、図4に示す円形、
図5に示す三角形としても同様の摺動運動が可能であ
る。
The vertical cross-sectional shapes of the thermal stress relaxation members 10, 10 and the electrodes 6, 6 are not limited to the rectangular shape shown in FIG.
A similar sliding movement is possible with the triangle shown in FIG.

【0028】図4に示すように電極6,6が円形の断面
形状を有するものは、溝35の方向の運動に加えて、回
転運動も可能になり上下熱交換基板1,2の変形方向と
して2つの方向に対して摺動によるストレス吸収が可能
である。
As shown in FIG. 4, the electrode 6, 6 having a circular cross-sectional shape can be rotated in addition to the movement in the direction of the groove 35 so that the upper and lower heat exchange substrates 1, 2 can be deformed. Stress can be absorbed by sliding in two directions.

【0029】更に、図6に示す例では、電極6,6に形
成した溝35の端部36に電気絶縁層37を設けて、こ
の溝35内を熱応力緩和部材10(図示せず)が摺動す
るよう構成することにより、熱電気変換装置の過昇温を
防止する機能を付加している。熱電気変換装置の高温側
の温度が高くなり、熱膨張によりどちらかの熱交換基板
1,2において変形が大きくなると、これに対応して、
溝35に対して熱電変換素子3と熱応力緩和部材10が
移動し、熱電変換素子3と熱応力緩和部材10が電気絶
縁層37に達すると、電気接続が解除され、熱電変換素
子3本来の熱移動の効果が停止し、過剰な発熱を抑える
ことができる。
Further, in the example shown in FIG. 6, an electric insulating layer 37 is provided at the end 36 of the groove 35 formed in the electrodes 6 and 6, and the inside of the groove 35 is covered by the thermal stress relaxation member 10 (not shown). The function of sliding is added to the function of preventing the thermoelectric converter from overheating. When the temperature on the high temperature side of the thermoelectric converter increases and the deformation of either of the heat exchange substrates 1 and 2 increases due to thermal expansion,
When the thermoelectric conversion element 3 and the thermal stress relaxation member 10 move with respect to the groove 35 and the thermoelectric conversion element 3 and the thermal stress relaxation member 10 reach the electric insulating layer 37, the electrical connection is released, and the thermoelectric conversion element 3 has its original function. The effect of heat transfer stops, and excessive heat generation can be suppressed.

【0030】その後、熱交換基板1又は2からの放熱で
温度が低下すると、熱電変換素子3は昇温時とは逆の方
向へ移動し、再び電気的に接続され通常の熱電変換素子
3の機能が発揮される。
Thereafter, when the temperature decreases due to heat radiation from the heat exchange substrate 1 or 2, the thermoelectric conversion element 3 moves in the direction opposite to that at the time of temperature rise, and is electrically connected again to the normal thermoelectric conversion element 3. Function is exhibited.

【0031】これらの摺動運動を滑らかにするために、
熱応力緩和部材10,10には、面取り又は円弧状の導
入部を形成しておくことが望ましい。
In order to smooth these sliding movements,
It is desirable to form a chamfered or arc-shaped introduction part in the thermal stress relaxation members 10 and 10.

【0032】次に、第3の実施の形態を図7乃至図9に
基づいて説明する。図7は熱電気変換装置の要部を示す
正面図、図8は熱電気変換装置の要部を示す正面図、図
9は熱電気変換装置の要部を示す正面図である。
Next, a third embodiment will be described with reference to FIGS. 7 is a front view showing a main part of the thermoelectric converter, FIG. 8 is a front view showing a main part of the thermoelectric converter, and FIG. 9 is a front view showing a main part of the thermoelectric converter.

【0033】図7に示すものは、隣接する熱電変換素子
3,3を各々電気接続する際に、湾曲可能なワイヤ状の
電極6、又はコイルばね等のばね材で形成する電極6を
熱応力緩和部材10,10に取り付けたものである。隣
り合う上側の熱応力緩和部材10,10は熱交換基板1
に一方が固定され、他方下側で隣り合う熱応力緩和部材
10,10は熱交換基板2に上記と逆側の熱応力緩和部
材10が固定され、熱膨張、収縮の発生時に電極6は伸
縮する。
FIG. 7 shows that when the adjacent thermoelectric conversion elements 3 and 3 are electrically connected to each other, a bendable wire-shaped electrode 6 or an electrode 6 formed of a spring material such as a coil spring is subjected to thermal stress. It is attached to the relaxation members 10 and 10. Adjacent upper thermal stress relaxation members 10 and 10
One is fixed to the heat stress relaxation member 10, and the other is adjacent to the other under the heat stress relaxation member 10 is fixed to the heat exchange substrate 2, and the electrode 6 expands and contracts when thermal expansion and contraction occur. I do.

【0034】次に図8に示すものは、隣り合う熱応力緩
和部材10,10の片方に貫通孔13を設けてガイド部
14を形成し、他方の熱応力緩和部材10からは軸状の
電気導通部50を電極6として突出形成し、この電極6
を前記ガイド部14へ摺動自在に挿通する。ガイド部1
4と軸状の電気導通部50の断面形状は、円形、矩形等
とすることができる。円形の断面であればガイド部1
4、軸状の電極6ともに加工が容易である。
Next, the one shown in FIG. 8 is provided with a through-hole 13 in one of the adjacent thermal stress relaxation members 10, 10 to form a guide portion 14, and the other thermal stress relaxation member 10 forms a shaft-like electric power. The conductive portion 50 is formed to protrude as the electrode 6, and this electrode 6
Is slidably inserted into the guide portion 14. Guide part 1
The cross-sectional shape of the 4 and the shaft-shaped electric conduction portion 50 can be circular, rectangular, or the like. Guide section 1 for a circular cross section
4. Both the shaft-shaped electrodes 6 are easy to process.

【0035】また図9に示すように、電極6としての軸
状の電気導通部50の端部51と根元部52に、電気絶
縁部53,53を形成して、過昇温の防止の機能を付加
することもできる。
As shown in FIG. 9, electric insulating portions 53 and 53 are formed at the end portion 51 and the base portion 52 of the shaft-shaped electric conducting portion 50 as the electrode 6 to prevent excessive temperature rise. Can also be added.

【0036】ここに挙げた第3の実施の形態のものも、
上記第2の実施の形態と同様、熱電変換素子3と熱応力
緩和部材10,10の運動の方向が予め想定できるとき
に効果があり、電極6の接続方向を、熱交換基板1.2
の熱膨張、熱収縮による変位の方向に揃えておく。
The third embodiment described here also has
As in the second embodiment, it is effective when the direction of movement of the thermoelectric conversion element 3 and the thermal stress relaxation members 10, 10 can be assumed in advance, and the connection direction of the electrode 6 is changed to the heat exchange substrate 1.2.
In the direction of displacement due to thermal expansion and contraction.

【0037】[0037]

【発明の効果】請求項1記載の発明によれば、熱電変換
素子の両端に熱応力緩和部材を設けているので、相対す
る熱交換基板の温度差によって生じる変形に対して、熱
電変換素子と熱応力緩和部材が良好に追随するため、熱
電変換素子へのクラック発生を抑制できるという効果を
奏する。
According to the first aspect of the present invention, since the thermal stress relaxation members are provided at both ends of the thermoelectric conversion element, the thermoelectric conversion element and the thermoelectric conversion element are protected from deformation caused by a temperature difference between the opposing heat exchange substrates. Since the thermal stress relaxation member follows well, it is possible to suppress the occurrence of cracks in the thermoelectric conversion element.

【0038】請求項2記載の発明によれば、熱電変換素
子と熱応力緩和部材の移動方向によらず自由に熱電変換
素子を配置でき、熱応力緩和部材は、円錐部を有するの
で、可動範囲を大きくとることができる。また先端は微
小球状であるため加工が容易であり、熱電変換素子の回
動によって電気抵抗を大きく変化させることはないとい
う効果を奏する。
According to the second aspect of the present invention, the thermoelectric conversion element can be freely disposed regardless of the moving direction of the thermoelectric conversion element and the thermal stress relaxation member. Can be increased. In addition, since the tip is a microsphere, processing is easy, and there is an effect that the electric resistance does not largely change by the rotation of the thermoelectric conversion element.

【0039】請求項3記載の発明によれば、熱応力緩和
部材は大きな球状であるため請求項1記載の発明より接
触面積を大きくとることができ電気抵抗を低く抑えるこ
とができるという効果を奏する。
According to the third aspect of the present invention, since the thermal stress relaxation member has a large spherical shape, the contact area can be made larger and the electric resistance can be reduced as compared with the first aspect of the invention. .

【0040】請求項4記載の発明によれば、熱ストレス
のかかる方向を規定できる場合において、熱応力緩和部
材、電極ともに三角形の断面に形成しているので、加工
が容易であるという効果を奏する。
According to the fourth aspect of the invention, when the direction in which the thermal stress is applied can be specified, the thermal stress relaxation member and the electrode are both formed in a triangular cross section, so that there is an effect that processing is easy. .

【0041】請求項5記載の発明によれば、熱ストレス
のかかる方向を規定できる場合るおいて、熱応力緩和部
材、電極ともに加工面で有利であるとともに、四角形の
断面はより大きな接触面積を確保できるため電気的損失
を抑制できるという効果を奏する。
According to the fifth aspect of the present invention, when the direction in which the thermal stress is applied can be defined, the thermal stress relaxation member and the electrode are both advantageous in working surface, and the rectangular cross section has a larger contact area. Since it is possible to secure the electric loss, it is possible to suppress the electric loss.

【0042】請求項6記載の発明によれば、熱ストレス
のかかる方向を規定できる場合において、熱応力緩和部
材、電極ともに加工面で有利であるとともに、円形の断
面を有するので熱電変換素子と電極とは軸方向の回転が
可能となり、構造設計の自由度が増すという効果を奏す
る。
According to the sixth aspect of the present invention, when the direction in which the thermal stress is applied can be defined, the thermal stress relieving member and the electrode are both advantageous in working surface and have a circular cross section, so that the thermoelectric conversion element and the electrode This has the effect of enabling rotation in the axial direction and increasing the degree of freedom in structural design.

【0043】請求項7記載の発明によれば、過昇温の防
止及び自己復旧機能を有するので、電気回路的な保護機
能を別途付加する必要がないという効果を奏する。
According to the seventh aspect of the present invention, since an overheating prevention and self-recovery function are provided, it is not necessary to separately add an electric circuit protection function.

【0044】請求項8記載の発明によれば、熱応力緩和
部材にガイド部と軸状電極とを設けているので、熱スト
レスの作用する1方向の応力抑制が可能であるという効
果を奏する。
According to the eighth aspect of the present invention, since the guide portion and the axial electrode are provided on the thermal stress relaxation member, it is possible to suppress the stress in one direction in which the thermal stress acts.

【0045】請求項9記載の発明によれば、熱応力緩和
部材にガイド部と軸状電極とを設けているので、熱スト
レスの作用する1方向の応力抑制が可能である。またガ
イド部と軸状電極の断面形状を円形としているのでガイ
ド部及び電極ともに加工が容易であるという効果を奏す
る。
According to the ninth aspect of the present invention, since the guide portion and the axial electrode are provided on the thermal stress relaxation member, it is possible to suppress the stress in one direction in which the thermal stress acts. In addition, since the cross-sectional shapes of the guide portion and the shaft-like electrode are circular, there is an effect that both the guide portion and the electrode can be easily processed.

【0046】請求項10記載の発明によれば、熱交換基
板の熱膨張、熱収縮に対して、熱電変換素子がスライド
し、かつ電極は湾曲又は伸縮することができるので、熱
電変換素子に熱ストレスをかけることないという効果を
奏する。
According to the tenth aspect, the thermoelectric conversion element slides and the electrodes can bend or expand and contract in response to thermal expansion and thermal contraction of the heat exchange substrate. It has the effect of not applying stress.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の熱電気変換装置の
要部の断面図である。
FIG. 1 is a sectional view of a main part of a thermoelectric converter according to a first embodiment of the present invention.

【図2】同上の熱電気変換装置の要部の断面図である。FIG. 2 is a sectional view of a main part of the thermoelectric converter according to the first embodiment;

【図3】本発明の第2の実施の形態の熱電気変換装置の
要部の斜視図である。
FIG. 3 is a perspective view of a main part of a thermoelectric converter according to a second embodiment of the present invention.

【図4】同上の熱電気変換装置の要部の斜視図である。FIG. 4 is a perspective view of a main part of the thermoelectric conversion device.

【図5】同上の熱電気変換装置の要部の斜視図である。FIG. 5 is a perspective view of a main part of the thermoelectric converter of the above.

【図6】同上の熱電気変換装置の要部の斜視図であり、
(a)は斜視図、(b)は電気絶縁層を設けた例の斜視
図である。
FIG. 6 is a perspective view of a main part of the thermoelectric converter according to the first embodiment;
(A) is a perspective view, (b) is a perspective view of an example in which an electric insulating layer is provided.

【図7】第3の実施の形態の熱電気変換装置の正面図で
ある。
FIG. 7 is a front view of a thermoelectric converter according to a third embodiment.

【図8】同上の電気導通部を設けた例の熱電気変換装置
の正面図である。
FIG. 8 is a front view of the thermoelectric conversion device of the example provided with the above-described electric conduction portion.

【図9】同上の電気絶縁部を設けた例の熱電気変換装置
の正面図である。
FIG. 9 is a front view of the thermoelectric conversion device of the example provided with the above-described electric insulating portion.

【図10】従来例の熱電気変換装置の斜視図である。FIG. 10 is a perspective view of a conventional thermoelectric converter.

【図11】同上の熱電気変換装置の正面図である。FIG. 11 is a front view of the thermoelectric conversion device.

【図12】同上の要部の正面図である。FIG. 12 is a front view of a main part of the above.

【符号の説明】[Explanation of symbols]

1 熱交換基板 2 熱交換基板 3 熱電変換素子 4 P型半導体 5 N型半導体 6 電極 10 熱応力緩和部材 11 錐状形状部 12 球状部 13 貫通孔 14 ガイド部 30 座ぐり 31 窪み 35 溝 36 端部 37 電気絶縁層 50 電気導通部 51 端部 52 根元部 53 電気絶縁部 DESCRIPTION OF SYMBOLS 1 Heat exchange board 2 Heat exchange board 3 Thermoelectric conversion element 4 P-type semiconductor 5 N-type semiconductor 6 Electrode 10 Thermal stress relaxation member 11 Conical part 12 Spherical part 13 Through hole 14 Guide part 30 Counterbore 31 Depression 35 Groove 36 End Part 37 electrical insulation layer 50 electrical conduction part 51 end part 52 root part 53 electrical insulation part

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 相対向するように配設された略平板状の
熱交換基板と、前記熱交換基板の間にあって並設される
少なくとも1対のP型半導体とN型半導体とを有する熱
電変換素子と、前記熱電変換素子のP型半導体とN型半
導体とが交互に直列に接続されるよう連結するとともに
熱交換基板に取着される電極とを具備する熱電気変換装
置において、熱電変換素子の両側に取着されて電極と熱
電変換素子間に摺動可能な状態で介在する熱応力緩和部
材を設けたことを特徴とする熱電気変換装置。
1. A thermoelectric conversion device comprising: a substantially flat heat exchange substrate disposed so as to face each other; and at least one pair of a P-type semiconductor and an N-type semiconductor disposed between the heat exchange substrates and arranged in parallel. A thermoelectric conversion device comprising: an element; and an electrode attached to a heat exchange substrate while the P-type semiconductor and the N-type semiconductor of the thermoelectric conversion element are connected so as to be alternately connected in series. A thermoelectric conversion device characterized by providing a thermal stress relaxation member attached to both sides of the device and slidably interposed between the electrode and the thermoelectric conversion element.
【請求項2】 請求項1記載の熱電気変換装置におい
て、前記熱応力緩和部材は熱電変換素子の上下に取着し
かつ錐状形状の先端に凸型の球状部を形成し、対応する
上下電極には錐状の座ぐりを形成しかつ座ぐりの中央に
凹型球状の窪みを形成したことを特徴とする熱電気変換
装置。
2. The thermoelectric conversion device according to claim 1, wherein the thermal stress relaxation member is attached to the top and bottom of the thermoelectric conversion element and forms a convex spherical portion at the tip of a conical shape. A thermoelectric converter, wherein a conical counterbore is formed in an electrode and a concave spherical recess is formed in the center of the counterbore.
【請求項3】 請求項1記載の熱電気変換装置におい
て、前記熱応力緩和部材は電極側先端を凸型の球状に形
成し、対応する電極は凹型の球状に形成したことを特徴
とする熱電気変換装置。
3. The thermoelectric conversion device according to claim 1, wherein the thermal stress relaxation member has an electrode-side tip formed in a convex spherical shape, and the corresponding electrode formed in a concave spherical shape. Electric conversion device.
【請求項4】 請求項1記載の熱電気変換装置におい
て、少なくとも一方の熱応力緩和部材は断面が凸型三角
形で、対応する部分の電極は断面が凹型三角形に形成し
たことを特徴とする熱電気変換装置。
4. The thermoelectric conversion device according to claim 1, wherein at least one of the thermal stress relaxation members has a convex triangular cross section and a corresponding portion of the electrode has a concave triangular cross section. Electric conversion device.
【請求項5】 請求項1記載の熱電気変換装置におい
て、少なくとも一方の熱応力緩和部材は断面が凸型四角
形で、対応する部分の電極は断面が凹型四角形に形成し
たことを特徴とする熱電気変換装置。
5. The thermoelectric conversion device according to claim 1, wherein at least one of the thermal stress relieving members has a convex quadrangular cross section and a corresponding portion of the electrode has a concave quadrangular cross section. Electric conversion device.
【請求項6】 請求項1記載の熱電気変換装置におい
て、少なくとも一方の熱応力緩和部材は断面が凸型円形
で、対応する部分の電極は断面が凹型円形に形成したこ
とを特徴とする熱電気変換装置。
6. A thermoelectric conversion device according to claim 1, wherein at least one of the thermal stress relaxation members has a convex circular cross section and a corresponding portion of the electrode has a concave circular cross section. Electric conversion device.
【請求項7】 請求項4乃至6記載の熱電気変換装置に
おいて、電極がスライドする熱応力緩和部材の特定位置
に電気絶縁層を設けたことを特徴とする熱電気変換装
置。
7. The thermoelectric conversion device according to claim 4, wherein an electric insulating layer is provided at a specific position of the thermal stress relaxation member on which the electrode slides.
【請求項8】 請求項1記載の熱電気変換装置におい
て、熱電変換素子及び熱応力緩和部材の変位方向と同方
向の貫通孔を熱応力緩和部材に形成してガイド部とし、
隣接する熱応力緩和部材に前記ガイド部を貫通する軸状
の電気導通部を形成したことを特徴とする熱電気変換装
置。
8. The thermoelectric conversion device according to claim 1, wherein a through hole in the same direction as the displacement direction of the thermoelectric conversion element and the thermal stress relaxation member is formed in the thermal stress relaxation member as a guide portion,
A thermoelectric converter, wherein a shaft-shaped electric conduction portion penetrating the guide portion is formed on an adjacent thermal stress relaxation member.
【請求項9】 請求項8記載の熱電気変換装置におい
て、ガイド部と軸部の断面形状を円形としたことを特徴
とする熱電気変換装置。
9. The thermoelectric converter according to claim 8, wherein the guide and the shaft have a circular cross section.
【請求項10】 相対向するように配設された略平板状
の2個の熱交換基板と、前記熱交換基板の間にあって並
設される少なくとも1対のP型半導体とN型半導体とを
有する熱電変換素子と、前記熱電変換素子のP型半導体
とN型半導体とが交互に直列に接続されるよう連結する
とともに熱交換基板に取着される電極とを具備する熱電
気変換装置において、熱電変換素子に熱応力緩和部材を
取着し、第1の熱応力緩和部材は熱交換基板に固定し、
隣接する第2の熱応力緩和部材は熱交換基板に対して摺
動可能に当接し、第1の熱応力緩和部材と第2の熱応力
緩和部材は湾曲又は伸縮可能な電極により連結したこと
を特徴とする熱電気変換装置。
10. Two substantially flat heat exchange substrates disposed so as to face each other, and at least one pair of a P-type semiconductor and an N-type semiconductor provided between the heat exchange substrates and arranged in parallel. A thermoelectric conversion device comprising: a thermoelectric conversion device comprising: a thermoelectric conversion element, and a P-type semiconductor and an N-type semiconductor of the thermoelectric conversion element, which are connected so as to be alternately connected in series and an electrode attached to a heat exchange substrate. Attaching a thermal stress relaxation member to the thermoelectric conversion element, fixing the first thermal stress relaxation member to the heat exchange substrate,
The adjacent second thermal stress relaxation member is slidably abutted against the heat exchange substrate, and the first thermal stress relaxation member and the second thermal stress relaxation member are connected by a bendable or expandable electrode. Characteristic thermoelectric converter.
JP9169238A 1997-06-25 1997-06-25 Thermoelectric transducer Pending JPH1117234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9169238A JPH1117234A (en) 1997-06-25 1997-06-25 Thermoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9169238A JPH1117234A (en) 1997-06-25 1997-06-25 Thermoelectric transducer

Publications (1)

Publication Number Publication Date
JPH1117234A true JPH1117234A (en) 1999-01-22

Family

ID=15882808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9169238A Pending JPH1117234A (en) 1997-06-25 1997-06-25 Thermoelectric transducer

Country Status (1)

Country Link
JP (1) JPH1117234A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098980A1 (en) * 2004-04-08 2005-10-20 Tokyo Electron Limited Substrate loading table and heat treating apparatus
EP1615274A2 (en) * 2004-07-06 2006-01-11 Central Research Institute of Electric Power Industry Thermoelectric conversion module
JP2007294689A (en) * 2006-04-25 2007-11-08 Toyota Motor Corp Thermoelectric conversion element
JP2009111137A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Method of arranging electrothermal conversion member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098980A1 (en) * 2004-04-08 2005-10-20 Tokyo Electron Limited Substrate loading table and heat treating apparatus
EP1615274A2 (en) * 2004-07-06 2006-01-11 Central Research Institute of Electric Power Industry Thermoelectric conversion module
EP1615274A3 (en) * 2004-07-06 2008-02-20 Central Research Institute of Electric Power Industry Thermoelectric conversion module
JP2007294689A (en) * 2006-04-25 2007-11-08 Toyota Motor Corp Thermoelectric conversion element
JP2009111137A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Method of arranging electrothermal conversion member

Similar Documents

Publication Publication Date Title
JP4488778B2 (en) Thermoelectric converter
US6087682A (en) High power semiconductor module device
JP5522943B2 (en) Thermoelectric module
JP6607448B2 (en) Thermoelectric converter
JP2006237146A (en) Cascade module for thermoelectric conversion
JP2005277206A (en) Thermoelectric converter
JP2006073632A (en) Thermoelectric conversion device and method for manufacturing the same
JP5950684B2 (en) Semiconductor device
KR100990527B1 (en) Power semiconductor module with base plate resistant to bending
JP2002299495A (en) Semiconductor circuit board
JP2012119451A (en) Thermoelectric conversion module
JP2018032685A (en) Thermoelectric converter
JPH1117234A (en) Thermoelectric transducer
KR102510123B1 (en) Thermoelectric element
KR20090120437A (en) Thermal electric module having heat exchanging member
JP2000050661A (en) Power generator
JP3472593B2 (en) Thermoelectric device
JP2015069982A (en) Power module
WO2020071036A1 (en) Thermoelectric conversion module, and cooling device, temperature measurement device, heat flow sensor, or power generation device using same
JP3813180B2 (en) Current connections for power semiconductor devices
JPH0333082Y2 (en)
JPH0793459B2 (en) Thermoelectric device
JP3498223B2 (en) Thermopile
JPS6267842A (en) Semiconductor device
JP2020025047A (en) Thermoelectric conversion device