JPH08162680A - Thermo-electric converter - Google Patents

Thermo-electric converter

Info

Publication number
JPH08162680A
JPH08162680A JP6297049A JP29704994A JPH08162680A JP H08162680 A JPH08162680 A JP H08162680A JP 6297049 A JP6297049 A JP 6297049A JP 29704994 A JP29704994 A JP 29704994A JP H08162680 A JPH08162680 A JP H08162680A
Authority
JP
Japan
Prior art keywords
heat
conductive plate
conversion device
semiconductor element
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6297049A
Other languages
Japanese (ja)
Inventor
Takashi Yoshikawa
隆司 義川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6297049A priority Critical patent/JPH08162680A/en
Publication of JPH08162680A publication Critical patent/JPH08162680A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Abstract

PURPOSE: To improve the integration rate of a semiconductor element and the thermo-electric effect, to reduce the cost and to simplify the assembly steps in a thermo-electric converter which can be applied to a cooler, a heater or a temperature controller having both functions. CONSTITUTION: A thermo-electric converter comprises a conductive plate 6a connected to both end faces of at least a pair of N-type semiconductor element 5a and a P-type semiconductor element 5b in such a manner that both outer surfaces are sandwiched between insulating boards 8 each formed of electrically insulating and thermally conductive materials, the elements 5a, 5b are connected electrically in series to absorb heat at one side and to radiate heat at the other side, wherein the shape of the plate 6a is extended in a horizontal surface direction to increase its area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却装置、加熱装置、
あるいはその両者を兼ね備えた温度調節装置等に応用で
きる熱電変換装置に関し、特に新規な構造の部品の構成
等により、半導体素子集積率・熱電効果の向上、コスト
の低減や組立工程の簡素化が可能となる熱電変換装置に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a cooling device, a heating device,
Alternatively, regarding a thermoelectric conversion device that can be applied to a temperature control device that has both of them, it is possible to improve the semiconductor element integration rate and thermoelectric effect, reduce the cost, and simplify the assembly process, especially by configuring parts with a new structure. The present invention relates to a thermoelectric conversion device.

【0002】[0002]

【従来の技術】従来の熱電変換装置の基本構造につい
て、図13を参照しながら説明する。図13は熱電変換
装置を用いて冷却等を行う機器の要部を示しており、そ
の基本構成は熱電変換装置1、冷却板2、放熱板3及び
直流電源4から構成されている。熱電変換装置1は熱電
変換用の複数のN型半導体素子5a及びP型半導体素子
5bを交互に一定の間隔で配置する一方、N型及びP型
半導体素子5a,5bの一方側で隣り合う逆極性の半導
体素子の上面間、及び他方側で隣り合う逆極性の半導体
素子の下面間に導電板(電極板)6を設けると共に、上
下の導電板6と各半導体素子5a,5bとをそれぞれ半
田7等により接続し、N型半導体素子5aとP型半導体
素子5bとを交互に電気的に直列接続する。さらに、こ
のようにして接続された半導体素子列を電気的に絶縁性
で、かつ、熱的に伝導性の材料からなる絶縁基板8等に
より上下から挟み込んで支持、固定している。
2. Description of the Related Art The basic structure of a conventional thermoelectric conversion device will be described with reference to FIG. FIG. 13 shows a main part of a device that performs cooling and the like using a thermoelectric conversion device, and its basic configuration is composed of a thermoelectric conversion device 1, a cooling plate 2, a heat dissipation plate 3 and a DC power supply 4. In the thermoelectric conversion device 1, a plurality of N-type semiconductor elements 5a and P-type semiconductor elements 5b for thermoelectric conversion are alternately arranged at regular intervals, while the N-type and P-type semiconductor elements 5a and 5b are adjacent to each other on the opposite side. A conductive plate (electrode plate) 6 is provided between the upper surfaces of the polar semiconductor elements and between the lower surfaces of the opposite-polarity semiconductor elements adjacent to each other on the other side, and the upper and lower conductive plates 6 and the respective semiconductor elements 5a and 5b are soldered respectively. 7 and the like, and the N-type semiconductor element 5a and the P-type semiconductor element 5b are alternately electrically connected in series. Further, the semiconductor element rows thus connected are vertically sandwiched and supported and fixed by an insulating substrate 8 made of an electrically insulating and thermally conductive material.

【0003】このようにして直列接続された両端、即
ち、下側導電板6の両端に直流電源4により電圧を印加
すると、ペルチェ効果により熱電変換装置1の上面側で
吸熱作用が生じ、その熱は熱電変換装置1を通って下面
側の放熱板3へと運ばれる。このときの熱の移動は、N
型半導体素子5aでは直流電流Iの向きと逆方向に熱の
移動が起こる一方、P型半導体素子5bでは電流Iの向
きと同一方向に熱の移動が起こる。この吸熱分と電気入
力に相当する熱量が熱電変換装置1の下面側で放熱され
るように動作する。
When a voltage is applied from the DC power source 4 to both ends of the series connection in this way, that is, to both ends of the lower conductive plate 6, the Peltier effect causes an endothermic action on the upper surface side of the thermoelectric conversion device 1 to generate heat. Is conveyed to the heat dissipation plate 3 on the lower surface side through the thermoelectric conversion device 1. The heat transfer at this time is N
In the type semiconductor element 5a, heat is transferred in the direction opposite to the direction of the direct current I, while in the P-type semiconductor element 5b, heat is transferred in the same direction as the direction of the current I. The heat absorption and the amount of heat corresponding to the electric input are radiated on the lower surface side of the thermoelectric conversion device 1.

【0004】よって、放熱板3の熱を効率よく放熱させ
ると、熱は冷却板2から放熱板3へ連続的に移動するこ
とになる。従って、冷却板2及び放熱板3はいずれも熱
抵抗を抑制する必要があり、この必要性から両者は熱伝
導性グリス9を介して熱電変換装置1と接触している。
また、冷却板2及び放熱板3の材料としては、フィン付
きアルミニウム押出材等の金属材料が主として使用され
ている。
Therefore, when the heat of the heat dissipation plate 3 is efficiently dissipated, the heat is continuously transferred from the cooling plate 2 to the heat dissipation plate 3. Therefore, it is necessary to suppress the thermal resistance of both the cooling plate 2 and the heat dissipation plate 3, and because of this necessity, both are in contact with the thermoelectric conversion device 1 via the heat conductive grease 9.
Further, as the material of the cooling plate 2 and the heat dissipation plate 3, a metal material such as a finned aluminum extruded material is mainly used.

【0005】図12は従来の熱電変換装置の要部の構造
を示すもので、(a)はその正面断面図、(b)は上下
の絶縁基板8を除いた場合の平面図である。(a)にお
いて、銅製の導電板(電極板)6の形状は平板状で、そ
の幅は半導体素子5の幅(外径)より若干広いが、ほぼ
同等になっている。
FIG. 12 shows the structure of the main part of a conventional thermoelectric conversion device. FIG. 12 (a) is a front sectional view thereof, and FIG. 12 (b) is a plan view when the upper and lower insulating substrates 8 are removed. In (a), the shape of the copper conductive plate (electrode plate) 6 is a flat plate, and the width thereof is slightly wider than the width (outer diameter) of the semiconductor element 5, but they are almost the same.

【0006】また、従来、導電板の形状を一部変形させ
た例として特開平2−103349号公報等が開示され
ている。これはN型半導体素子とP型半導体素子との間
でその両端に接合された導電板の平面方向に変形可能な
変形部(くびれ部)を形成したもので、このくびれ部を
適宜曲げることにより、渦巻き配列やUターン並列配列
など熱電素子(熱電変換装置)を用途に応じて多様に配
列することができる。また、熱電変換装置の各半導体素
子間に断熱材を使用する例としては、特開昭62−28
7678号公報等が開示されている。これはN型半導体
素子とP型半導体素子と上下薄板(絶縁基板)との間の
空間に発泡性断熱材を充填して構成される熱電効果素子
(熱電変換装置)で、発熱作用のある薄板側(高温側)
から吸熱作用のある薄板側(低温側)への上下薄板間の
空間を介して空気の対流・放射による熱の移動量を低減
し、熱電効果素子の性能を向上させるものである。
Further, Japanese Patent Laid-Open No. 2-103349 has been disclosed as an example in which the shape of the conductive plate is partially deformed. This is formed by forming a deformable portion (constricted portion) between the N-type semiconductor element and the P-type semiconductor element, the deformable portion (constricted portion) being deformable in the plane direction of the conductive plate joined at both ends thereof. A thermoelectric element (thermoelectric conversion device) such as a spiral arrangement or a U-turn parallel arrangement can be arranged in various ways according to the application. Further, as an example of using a heat insulating material between each semiconductor element of a thermoelectric conversion device, Japanese Patent Laid-Open No. 62-28
Japanese Patent No. 7678 is disclosed. This is a thermoelectric effect element (thermoelectric conversion device) configured by filling a space between the N-type semiconductor element, the P-type semiconductor element, and the upper and lower thin plates (insulating substrate) with a foaming heat insulating material, and is a thin plate having a heat generating action. Side (high temperature side)
To reduce the amount of heat transfer due to convection and radiation of air through the space between the upper and lower thin plates to the thin plate side (low temperature side) having an endothermic effect, and improve the performance of the thermoelectric effect element.

【0007】ところで、図11は後述する本発明の導電
板上にN型及びP型半導体素子を載置して半田付けする
場合の各素子の位置ずれを示す例である。5のN型半導
体素子とP型半導体素子を半田ペースト10を塗布した
導電板6dの上に載置し、上方から加圧しながらリフロ
ー半田付けを行うのであるが、位置決め用の半導体素子
配列用治具を使用しないので、上方から押さえたときに
各半導体素子が所定位置から矢視で示す横方向に位置ず
れするおそれがある。
By the way, FIG. 11 shows an example of displacement of each element when N-type and P-type semiconductor elements are mounted and soldered on a conductive plate of the present invention described later. The N-type semiconductor element and the P-type semiconductor element 5 are placed on the conductive plate 6d coated with the solder paste 10 and reflow soldering is performed while applying pressure from above. Since the tool is not used, each semiconductor element may be displaced from the predetermined position in the lateral direction shown by the arrow when pressed from above.

【0008】導電板に対して各半導体素子の位置ずれを
防止する例としては、特開昭58−199578号公報
及び特開昭63−128681号公報等が開示されてい
る。前者は各半導体素子を導電板上に載置し、固定する
際、各素子の位置ずれを防止するために位置決め用の半
導体素子配列用治具を用い、その治具に各半導体素子を
一個ずつ入れていく。
Japanese Patent Laid-Open No. 58-199578 and Japanese Patent Laid-Open No. 63-128681 disclose examples of preventing the displacement of each semiconductor element with respect to the conductive plate. In the former, when mounting and fixing each semiconductor element on a conductive plate, a semiconductor element arranging jig for positioning is used to prevent displacement of each element, and each semiconductor element is placed in the jig. Put in.

【0009】このようにして半田ペーストを塗布した導
電板上にN型半導体素子とP型半導体素子を載置し、上
方から加圧しながらリフロー半田付けを行っている。一
方、後者は各熱電素子(半導体素子)の両端がそれぞれ
位置決めされるように所定の位置及び寸法で孔明けされ
た複数の熱電素子挿通孔を有する絶縁性保持体を用いて
N型熱電素子及びP型熱電素子を挿入し、各素子の両端
に導電層(導電板)が所定の対向位置に位置決めされて
固着させるようにしたものである。
The N-type semiconductor element and the P-type semiconductor element are placed on the conductive plate thus coated with the solder paste, and reflow soldering is performed while applying pressure from above. On the other hand, the latter is an N-type thermoelectric element using an insulating holder having a plurality of thermoelectric element insertion holes punched at predetermined positions and dimensions so that both ends of each thermoelectric element (semiconductor element) are respectively positioned. A P-type thermoelectric element is inserted, and a conductive layer (conductive plate) is positioned and fixed to both ends of each element at predetermined opposing positions.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記し
た従来の熱電変換装置においては以下のような問題点が
ある。
However, the above-mentioned conventional thermoelectric conversion device has the following problems.

【0011】 図12(a)に示す構造のものでは、
一対のN型及びP型半導体素子の両端面に接合された導
電板の幅は、前記した理由から各半導体素子の幅とほぼ
同等になっているため、絶縁基板と接する導電板の面積
が限られてしまい、従って、吸熱側から半導体素子等を
介して放熱側への熱の伝導効率が向上せず、結果として
熱電効果が良くない。また、熱電変換装置の組立工程に
おいて、各導電板を定位置に配置するためには導電板の
配列用治具が必要になる。
In the structure shown in FIG. 12A,
Since the width of the conductive plate joined to both end surfaces of the pair of N-type and P-type semiconductor elements is almost the same as the width of each semiconductor element for the above-mentioned reason, the area of the conductive plate in contact with the insulating substrate is limited. Therefore, the efficiency of heat conduction from the heat absorption side to the heat radiation side via the semiconductor element or the like is not improved, and as a result, the thermoelectric effect is not good. Further, in the process of assembling the thermoelectric conversion device, a conductive plate arranging jig is required in order to arrange the conductive plates at fixed positions.

【0012】 特開昭62−287678号公報に記
載された熱電変換装置では、N型半導体素子とP型半導
体素子と上下薄板(絶縁基板)との間の各空間に発泡性
断熱材が充填されるため、多くの充填量を必要とするこ
と、また、熱電効果素子(熱電変換装置)を組み立てた
後に発泡性断熱材を各空間に充填していくことから、充
填作業が複雑になり、コスト高で作業効率が悪い。
In the thermoelectric conversion device described in Japanese Patent Laid-Open No. 62-287678, a foam insulating material is filled in each space between the N-type semiconductor element, the P-type semiconductor element, and the upper and lower thin plates (insulating substrate). Therefore, a large amount of filling is required, and since the foam insulation material is filled into each space after the thermoelectric effect element (thermoelectric conversion device) is assembled, the filling work becomes complicated and the cost is reduced. High work efficiency.

【0013】 特開昭58−199578号公報に記
載された熱電変換装置では、N型半導体素子とP型半導
体素子を導電板上の所定の位置に載置し、位置ずれを起
こすことなく半田付けを行うために位置決め用の半導体
素子配列用治具を必要とする。 また、特開昭63−128681号公報に記載され
た熱電変換装置では、発砲スチロール、固形紙等の絶縁
性材料で形成した絶縁性保持体に複数の熱電素子(半導
体素子)挿通孔を形成するため、配列用治具に比べて製
造時の寸法誤差が大きく、挿通孔の数が多くなる程、誤
差が拡大し、熱電素子の定位置への配置がずれたり、ま
た、熱電素子の挿入時の遊びが大きすぎるといった品質
上及びそれに起因する組立工程上の問題があった。さら
にまた、絶縁性保持体を用いて各素子及び導電層(導電
板)を所定の位置に位置決めした後、固着するため、絶
縁性材料の種類によっては熱的影響の大きい半田付けに
よる固着手段は適さないという問題を有していた。
In the thermoelectric conversion device described in Japanese Patent Laid-Open No. 58-199578, an N-type semiconductor element and a P-type semiconductor element are placed at predetermined positions on a conductive plate and soldered without causing positional displacement. In order to perform the above, a positioning semiconductor element arranging jig is required. Further, in the thermoelectric conversion device described in Japanese Patent Laid-Open No. 63-128681, a plurality of thermoelectric element (semiconductor element) insertion holes are formed in an insulating holder formed of an insulating material such as foam polystyrene and solid paper. Therefore, the dimensional error during manufacturing is larger than that of the array jig, and the error increases as the number of insertion holes increases, and the placement of the thermoelectric element in the fixed position shifts, or when the thermoelectric element is inserted. There was a problem in terms of quality and the assembling process due to the play being too large. Furthermore, since each element and the conductive layer (conductive plate) are positioned at predetermined positions by using the insulating holder, they are fixed. Therefore, depending on the type of the insulating material, a fixing means by soldering that has a large thermal effect may be used. It had the problem of not being suitable.

【0014】本発明は上記のような種々の問題点に鑑み
てなされたもので、熱電変換装置の半導体素集積率や熱
伝導効率を良くすると共に、空気の対流・放射による熱
の移動を抑制して熱電効果を向上すること、さらには、
配列用治具を用いることなく半導体素子等の位置ずれを
防止して組立工程の簡素化、設備治具費用の削減を図る
ことを目的とする。
The present invention has been made in view of the above-mentioned various problems, and improves the semiconductor element integration rate and heat transfer efficiency of a thermoelectric conversion device and suppresses heat transfer due to convection and radiation of air. To improve the thermoelectric effect,
It is an object of the present invention to prevent positional displacement of semiconductor elements and the like without using an arranging jig, simplify the assembly process, and reduce equipment jig costs.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、少なくとも一対のN型半導体素子とP型
半導体素子との両端面に導電板を接合し、さらにその外
側両面を電気的に絶縁性で、かつ、熱的に伝導性の材料
からなる絶縁基板で挟装して構成し、前記各素子を交互
に電気的に直列接続して、一方の側で吸熱を行うと共
に、他方の側で放熱を行う熱電変換装置において、以下
の手段を講じている。
In order to achieve the above object, the present invention is to bond conductive plates to both end faces of at least a pair of an N-type semiconductor element and a P-type semiconductor element, and to electrically connect both outer surfaces thereof to each other. Electrically insulating, and sandwiched between insulating substrates made of a thermally conductive material, the elements are alternately electrically connected in series, while absorbing heat on one side, In the thermoelectric conversion device that radiates heat on the other side, the following measures are taken.

【0016】即ち、請求項1記載の発明は、前記導電板
の形状を水平面方向に延伸して、その面積を拡大したも
のである。また、請求項2記載の発明は、前記導電板の
形状をコ字状断面あるいはL字状断面に形成すると共
に、前記絶縁基板の該導電板と接する対向面に導電板の
形状に嵌合する凸部を形成したものである。
That is, according to the first aspect of the present invention, the shape of the conductive plate is stretched in the horizontal plane direction to enlarge the area thereof. In the invention according to claim 2, the shape of the conductive plate is formed in a U-shaped cross section or an L-shaped cross section, and the surface of the insulating substrate facing the conductive plate is fitted in the shape of the conductive plate. A convex portion is formed.

【0017】さらにまた、請求項3記載の発明は、前記
導電板の形状を中央に凹部を有する箱形に形成すると共
に、前記絶縁基板の該導電板と接する対向面に導電板の
凹部に嵌合する凸部を形成したものである。そして、請
求項4記載の発明は、請求項1、請求項2あるいは請求
項3記載の発明の構成に加えて、前記吸熱側の絶縁基板
と互いに隣接する導電板との間、及び前記放熱側の絶縁
基板と互いに隣接する導電板との間の空間に発泡性断熱
材等の断熱材を配設したものである。
Further, according to a third aspect of the present invention, the conductive plate is formed in a box shape having a recess at the center, and the recess of the conductive plate is fitted to the surface of the insulating substrate facing the conductive plate. The convex portions are formed so as to match each other. In addition to the configuration of the invention according to claim 1, claim 2 or claim 3, the invention according to claim 4 is between the insulating substrate on the heat absorption side and the conductive plates adjacent to each other, and on the heat dissipation side. A heat insulating material such as a foaming heat insulating material is disposed in the space between the insulating substrate and the conductive plates adjacent to each other.

【0018】そしてまた、請求項5記載の発明は、請求
項1、請求項2あるいは請求項3記載の発明の構成に加
えて、前記N型半導体素子及びP型半導体素子の両端面
が、前記導電板の所定の対向位置に位置決めされるよう
導電板の表面に複数の位置決め突起を設けたものであ
る。
According to the invention of claim 5, in addition to the structure of the invention of claim 1, claim 2 or claim 3, both end faces of the N-type semiconductor element and the P-type semiconductor element are A plurality of positioning protrusions are provided on the surface of the conductive plate so that the conductive plate is positioned at a predetermined opposing position.

【0019】[0019]

【作用】本発明に係る熱電変換装置は、上記構成にて、
請求項1記載の発明では、導電板の形状を水平面方向に
延伸して、絶縁基板と接する導電板の面積を拡大したこ
とにより、吸熱側から半導体素子を介して放熱側への熱
の伝導効率が向上し、結果として、熱電変換装置の熱電
効果が向上する。
The thermoelectric conversion device according to the present invention has the above-mentioned structure.
According to the first aspect of the invention, the shape of the conductive plate is stretched in the horizontal plane direction to enlarge the area of the conductive plate in contact with the insulating substrate, so that the heat conduction efficiency from the heat absorbing side to the heat radiating side via the semiconductor element is increased. Is improved, and as a result, the thermoelectric effect of the thermoelectric conversion device is improved.

【0020】請求項2記載の発明では、請求項1記載の
構成に比して、導電板の形状をコ字状断面あるいはL字
状断面に形成して、半導体素子間の間隙を小さくすると
共に、絶縁基板と接する導電板の面積を拡大したことに
より、単位面積当たりの半導体素子集積率が向上すると
共に、吸熱側から半導体素子を介して放熱側への熱の伝
導効率が向上し、結果として、熱電変換装置の熱電効果
が向上する。
According to the second aspect of the present invention, the conductive plate is formed in a U-shaped cross section or an L-shaped cross section as compared with the structure of the first aspect to reduce the gap between the semiconductor elements. By increasing the area of the conductive plate in contact with the insulating substrate, the semiconductor element integration rate per unit area is improved, and the heat transfer efficiency from the heat absorbing side to the heat radiating side via the semiconductor element is improved. The thermoelectric effect of the thermoelectric conversion device is improved.

【0021】請求項3記載の発明では、導電板の形状を
中央に凹部を有する箱形に形成して絶縁基板と接する導
電板の面積を、上記請求項2記載の二つの実施例の構成
に比して最大にしたことにより、吸熱側から半導体素子
等を介して放熱側への熱の伝導効率がさらに向上し、結
果として熱電変換装置の熱電効果が向上する。また、熱
電変換装置の組立工程において、箱形である導電板の凹
部を絶縁基板の凸部に嵌合するよう自動マウンター等で
容易に載置し、配列することができる。従って、上記構
成においては、導電板の配列用治具が不要となり、組立
作業性が向上する。
According to the third aspect of the present invention, the conductive plate is formed into a box shape having a recess in the center, and the area of the conductive plate contacting the insulating substrate is set to the two embodiments described above. In comparison with the above, the efficiency of heat transfer from the heat absorption side to the heat dissipation side via the semiconductor element or the like is further improved, and as a result, the thermoelectric effect of the thermoelectric conversion device is improved. Further, in the assembly process of the thermoelectric conversion device, the recesses of the box-shaped conductive plate can be easily placed and arranged by an automatic mounter or the like so as to fit into the protrusions of the insulating substrate. Therefore, in the above structure, a jig for arranging the conductive plates is not required, and the assembling workability is improved.

【0022】請求項4記載の発明では、発泡性断熱材等
の断熱材を吸熱側及び放熱側の絶縁基板と互いに隣接す
る導電板との間の各空間に配設したことにより、高温側
(放熱側)の絶縁基板から低温側(吸熱側)の絶縁基板
への空気の対流、放射による熱の移動を防ぐことができ
る。結果として、熱電変換装置の空間部を介しての熱損
失を低減することができるため、熱電効果が向上する。
According to the fourth aspect of the present invention, the heat insulating material such as the foaming heat insulating material is provided in each space between the heat absorbing side insulating board and the heat radiating side insulating substrate and the conductive plates adjacent to each other. It is possible to prevent heat transfer due to air convection and radiation from the insulating substrate on the heat radiating side to the insulating substrate on the low temperature side (heat absorbing side). As a result, the heat loss through the space of the thermoelectric conversion device can be reduced, and the thermoelectric effect is improved.

【0023】請求項5記載の発明では、熱電変換装置の
組立工程において、導電板の表面に複数の位置決め突起
を設けたことにより、各半導体素子を導電板上の所定の
位置に容易に載置することができ、また、位置ずれを起
こすことなく、上方から加圧しながら半田付けを行うこ
とができる。従って、上記構成においては、半導体素子
の配列用治具が不要となり、組立作業性が向上する。
According to the fifth aspect of the present invention, in the assembling process of the thermoelectric conversion device, the plurality of positioning protrusions are provided on the surface of the conductive plate, so that each semiconductor element can be easily placed at a predetermined position on the conductive plate. Further, it is possible to perform soldering while applying pressure from above without causing positional displacement. Therefore, in the above structure, the jig for arranging the semiconductor elements is not required, and the assembling workability is improved.

【0024】[0024]

【実施例】以下、本発明の実施例(第一〜第六実施例)
を図面を参照しながら説明する。尚、本実施例におい
て、前記従来例と共通する構成要素については共通の符
号を付すこととする。
EXAMPLES Examples of the present invention (first to sixth examples) are described below.
Will be described with reference to the drawings. In the present embodiment, constituent elements common to those of the conventional example will be designated by common reference numerals.

【0025】(第一実施例)図1は、本発明の第一実施
例に係る熱電変換装置の要部の構造を示すもので、
(a)は正面断面図、(b)は上下の絶縁基板を除いた
場合の平面図である。
(First Embodiment) FIG. 1 shows a structure of a main part of a thermoelectric conversion device according to a first embodiment of the present invention.
(A) is a front sectional view, and (b) is a plan view when upper and lower insulating substrates are removed.

【0026】図1(a)において、少なくとも一対のN
型及びP型の半導体素子5a,5bは、その両端面に銅
製等の金属電極からなる導電板6aが半田接合され、さ
らにその外側両面をセラミックやアルマイト等の電気的
に絶縁性で、かつ、熱的に伝導性の材料からなる絶縁基
板8で挟持して固定されている。
In FIG. 1A, at least a pair of N
-Type and P-type semiconductor elements 5a and 5b have conductive plates 6a made of metal electrodes made of copper or the like solder-bonded to both end faces thereof, and the outer both surfaces thereof are electrically insulating such as ceramic or alumite, and It is sandwiched and fixed by an insulating substrate 8 made of a thermally conductive material.

【0027】ここで、絶縁基板8と接する銅製の導電板
(電極板)6aの形状は、従来形状と同様に平板状であ
るが、その幅をN型及びP型半導体素子5a,5bの幅
(外径)より大きくなるよう水平面方向に延伸させてい
るので、図12に示した従来の導電板6の形状に比べ、
その面積が大幅に拡大している。
Here, the shape of the copper conductive plate (electrode plate) 6a in contact with the insulating substrate 8 is a flat plate shape like the conventional shape, but its width is the width of the N-type and P-type semiconductor elements 5a, 5b. Since it is stretched in the horizontal direction so as to be larger than the (outer diameter), compared to the shape of the conventional conductive plate 6 shown in FIG.
The area has expanded significantly.

【0028】本実施例では、このような平板状の導電板
6aを用いて、上下の絶縁基板8と接する導電板の面積
を拡大したことにより、吸熱側11から半導体素子5
a,5bを介して放熱側12への熱の伝導効率が向上す
る。従って、結果として熱電変換装置の熱電効果を向上
することができる。
In this embodiment, by using such a plate-shaped conductive plate 6a, the area of the conductive plate in contact with the upper and lower insulating substrates 8 is enlarged, so that the semiconductor element 5 from the heat absorption side 11 is increased.
The efficiency of heat conduction to the heat radiation side 12 via the a and 5b is improved. Therefore, as a result, the thermoelectric effect of the thermoelectric conversion device can be improved.

【0029】(第二実施例)図2は、本発明の第二実施
例に係る熱電変換装置の要部の構造を示すもので、
(a)は正面断面図、(b)は側面図、(c)は上下の
絶縁基板を除いた場合の平面図である。また、図3は、
図2(b)において矢視したA−A線での正面断面図で
ある。
(Second Embodiment) FIG. 2 shows a structure of a main part of a thermoelectric conversion device according to a second embodiment of the present invention.
(A) is a front sectional view, (b) is a side view, and (c) is a plan view when upper and lower insulating substrates are removed. In addition, FIG.
FIG. 3 is a front cross-sectional view taken along the line AA of FIG.

【0030】図2及び図3において、基本となる一対の
N型及びP型で構成される半導体素子5a,5bの上下
両面に半田接合された銅製等の金属電極からなる導電板
6bの形状はコ字状断面に形成されている。これら上下
の導電板6bの外側両面と接する絶縁基板8aの対向面
は、コ字状断面を有する導電板の形状に嵌合するよう凸
部8a′を形成しており、さらに、この基本となる上下
の導電板6bでPN接合して構成される一対の半導体素
子5a,5bを複数挟持して固定できるよう、凸部8
a′を複数形成した段形状をなしている。
2 and 3, the shape of the conductive plate 6b made of a metal electrode made of copper or the like solder-bonded to the upper and lower surfaces of the pair of basic semiconductor elements 5a and 5b of N-type and P-type is shown in FIG. It has a U-shaped cross section. The opposing surfaces of the insulating substrate 8a, which are in contact with the outer side surfaces of the upper and lower conductive plates 6b, are formed with projections 8a 'so as to fit the shape of the conductive plate having a U-shaped cross section. The convex portion 8 is provided so that a plurality of pairs of semiconductor elements 5a and 5b configured by PN junction with the upper and lower conductive plates 6b can be sandwiched and fixed.
A plurality of a'is formed to form a step shape.

【0031】ところで、前記第一実施例において、平板
状の導電板の形状を水平面方向に延伸させ、絶縁基板8
と接する導電板6aの面積を拡大させた場合、熱の伝導
効率が向上する反面、半導体素子間の間隙x(ピッチ)
が広くなるため、単位面積当たりの半導体素子集積率は
逆に悪くなるという新たな問題が生じていた。
In the meantime, in the first embodiment, the shape of the flat conductive plate is stretched in the horizontal direction to form the insulating substrate 8.
When the area of the conductive plate 6a in contact with is increased, the heat conduction efficiency is improved, but the gap x (pitch) between the semiconductor elements is increased.
As a result, the new problem arises that the semiconductor element integration rate per unit area becomes worse.

【0032】本実施例では、前記第一実施例(平板状導
電板6a)の構成に対し、導電板6bの面積を同一にし
たまま、その形状をコ字状断面とし、それに嵌合するよ
う絶縁基板の対向面に凸部8a′を形成したことによ
り、図2(C)に示すように、導電板の水平面方向での
縦横の寸法が小さくなると共に、隣り合う半導体素子間
の間隙xが小さくなるため、単位面積当たりの半導体素
子集積率が向上する。
In this embodiment, with respect to the structure of the first embodiment (the flat conductive plate 6a), the area of the conductive plate 6b is made the same and the shape is made to have a U-shaped cross section so that the conductive plate 6b can be fitted therein. By forming the convex portion 8a 'on the opposing surface of the insulating substrate, as shown in FIG. 2C, the vertical and horizontal dimensions of the conductive plate in the horizontal plane direction are reduced, and the gap x between the adjacent semiconductor elements is reduced. Since the size is reduced, the semiconductor element integration rate per unit area is improved.

【0033】加えて、前記第一実施例と同様、従来構成
に比して、絶縁基板と接する導電板の面積を拡大したこ
とにより、吸熱側11から半導体素子5a,5bを介し
て放熱側12への熱の伝導効率が向上する。従って、結
果として、熱電変換装置の熱電効果が向上することにな
る。
In addition, as in the first embodiment, the area of the conductive plate in contact with the insulating substrate is enlarged as compared with the conventional structure, so that the heat radiating side 12 from the heat absorbing side 11 via the semiconductor elements 5a and 5b. The efficiency of heat transfer to heat is improved. Therefore, as a result, the thermoelectric effect of the thermoelectric conversion device is improved.

【0034】(第三実施例)次に図4は、本発明の第三
実施例に係る熱電変換装置の要部の構造を示すもので、
(a)は 正面図、(b)は側面図、(c)は上下の絶
縁基板を除いた場合の平面図である。また、図5は、図
4(b)において矢視したA−A線での正面断面図であ
る。
(Third Embodiment) Next, FIG. 4 shows a structure of a main part of a thermoelectric conversion device according to a third embodiment of the present invention.
(A) is a front view, (b) is a side view, and (c) is a plan view when upper and lower insulating substrates are removed. Further, FIG. 5 is a front cross-sectional view taken along the line AA as viewed from the arrow in FIG.

【0035】第三実施例は、前記した第二実施例の変形
例として、導電板の断面形状をL字状に形成したもので
ある。即ち、図4及び図5において、基本となる一対の
N型及びP型で構成される半導体素子5a,5bの上下
両面に半田接合された銅製等の金属電極からなる導電板
6cの形状はL字状断面に形成されている。
The third embodiment is a modification of the second embodiment, in which the cross section of the conductive plate is formed in an L shape. That is, in FIG. 4 and FIG. 5, the shape of the conductive plate 6c made of a metal electrode made of copper or the like soldered to the upper and lower surfaces of the pair of basic semiconductor elements 5a and 5b composed of N-type and P-type is L. It has a V-shaped cross section.

【0036】これらの上下導電板6cの外側両面と接す
る絶縁基板8bの対向面は、特に図5で明らかなよう
に、L字状導電板6cと対向する隣の同一L字状導電板
6cとにまたがって嵌合するよう凸部8b′を形成して
おり、さらに前記第二実施例と同様に、これらの基本と
なる上下の導電板6cでPN接合して構成される一対の
半導体素子5a,5bを複数挟持して固定できるよう、
凸部8b′を複数形成した段形状をなしている。
The facing surface of the insulating substrate 8b, which is in contact with both outer side surfaces of the upper and lower conductive plates 6c, is the same as the adjacent L-shaped conductive plate 6c facing the L-shaped conductive plate 6c, as is particularly apparent in FIG. A convex portion 8b 'is formed so as to be fitted over the pair of semiconductor elements 5a, and a pair of semiconductor elements 5a configured by PN junction with the upper and lower conductive plates 6c, which are the bases thereof, are formed similarly to the second embodiment. , 5b can be clamped and fixed,
It has a stepped shape in which a plurality of convex portions 8b 'are formed.

【0037】本実施例では、前記第一実施例の構成に対
し、導電板6cをL字状断面に形成したことにより、図
4(c)に示すように、導電板の水平面方向での縦横の
寸法が小さくなると共に、隣り合う半導体素子間の間隙
xが前記第二実施例(コ字状導電板6bを有する構成)
に次いで小さくなるため、単位面積当たりの半導体素子
集積率が向上する。
In this embodiment, in contrast to the structure of the first embodiment, the conductive plate 6c is formed in an L-shaped cross section, so that as shown in FIG. 4C, the conductive plate 6c extends in the horizontal and vertical directions. And the gap x between the adjacent semiconductor elements is smaller than that of the second embodiment (having the U-shaped conductive plate 6b).
Since it is the second smallest, the semiconductor element integration rate per unit area is improved.

【0038】加えて、前記第一・第二実施例と同様、従
来構成に比して、絶縁基板と接する導電板の面積を拡大
したことにより、吸熱側11から半導体素子5a,5b
を介して放熱側12への熱の伝導効率が向上する。従っ
て、結果として、熱電変換装置の熱電効果が向上するこ
とになる。
In addition, as in the first and second embodiments, the area of the conductive plate in contact with the insulating substrate is increased as compared with the conventional structure, so that the semiconductor elements 5a, 5b from the heat absorbing side 11 are expanded.
The efficiency of heat conduction to the heat radiation side 12 via the heat conduction is improved. Therefore, as a result, the thermoelectric effect of the thermoelectric conversion device is improved.

【0039】(第四実施例)前記第二・第三実施例から
明らかなように、熱電変換装置の絶縁基板と接する導電
板の面積を大きくすると共に、半導体素子間の間隙を小
さくすることが、熱の伝導効率及び半導体素子集積率を
向上させ、結果として、熱電変換装置の熱電効果を向上
させ得ることから、第四実施例では、前記第二実施例の
導電板両側のコ字状断面を、さらに全周をコ字状断面と
する箱形にしたもので、中央に凹部を有する箱形の導電
板と、その凹部に嵌合するところの凸部を有する絶縁基
板で構成されている。
(Fourth Embodiment) As is clear from the second and third embodiments, it is possible to increase the area of the conductive plate in contact with the insulating substrate of the thermoelectric conversion device and reduce the gap between the semiconductor elements. The heat conduction efficiency and the semiconductor element integration rate can be improved, and as a result, the thermoelectric effect of the thermoelectric conversion device can be improved. Therefore, in the fourth embodiment, the U-shaped cross section on both sides of the conductive plate of the second embodiment is used. Is made into a box shape having a U-shaped cross section all around, and is composed of a box-shaped conductive plate having a concave portion at the center and an insulating substrate having a convex portion that fits into the concave portion. .

【0040】図6は、本発明の第四実施例に係る熱電変
換装置の要部の構造を示すもので、(a)は正面図、
(b)は側面図、(c)は上下の絶縁基板を除いた場合
の平面図である。又、図7は、図6(b)において矢視
したA−A線での正面断面図である。
FIG. 6 shows a structure of a main part of a thermoelectric conversion device according to a fourth embodiment of the present invention, in which (a) is a front view,
(B) is a side view and (c) is a plan view when upper and lower insulating substrates are removed. Further, FIG. 7 is a front sectional view taken along the line AA of FIG. 6B.

【0041】図6及び図7において、基本となる一対の
N型及びP型で構成される半導体素子5a,5bの上下
両面に半田接合された導電板6dの形状は中央に凹部6
d′を有する箱形に形成されている。これらの上下導電
板6dの外側両面と接する絶縁基板8cの対向面は、該
導電板の箱形の凹部6d′に嵌合するよう凸部8c′を
形成しており、さらに該凸部8c′は、この基本となる
上下の導電板6dでPN接合して構成される一対の半導
体素子5a,5bを複数挟持して固定できるよう、一定
間隔で複数形成されている。
In FIGS. 6 and 7, the conductive plate 6d solder-bonded to the upper and lower surfaces of the semiconductor elements 5a and 5b composed of a pair of basic N-type and P-type semiconductors has a concave portion 6 at the center.
It is formed in a box shape having d '. The opposing surfaces of the insulating substrate 8c, which are in contact with the outer side surfaces of the upper and lower conductive plates 6d, are formed with convex portions 8c 'so as to fit in the box-shaped concave portions 6d' of the conductive plates, and the convex portions 8c 'are further formed. Are formed at regular intervals so that a plurality of pairs of semiconductor elements 5a and 5b configured by PN junction with the upper and lower conductive plates 6d, which are the basis, can be sandwiched and fixed.

【0042】本実施例は前述したとおり、前記第二実施
例の導電板両側のコ字状断面を、さらに全周をコ字状断
面とする箱形にしたものであるから、図6(c)に示さ
れるように、隣り合う半導体素子間の間隙xを小さく抑
えると共に、絶縁基板と接する導電板の面積を前記第二
・第三実施例に比して最大にしたことにより、吸熱側1
1から半導体素子5a,5bを介して放熱側12への熱
の伝導効率がさらに向上し、結果として、熱電変換装置
の熱電効果が向上する。
As described above, in this embodiment, the U-shaped cross sections on both sides of the conductive plate of the second embodiment are box-shaped with the entire circumference being a U-shaped cross section. ), The gap x between adjacent semiconductor elements is kept small, and the area of the conductive plate in contact with the insulating substrate is maximized as compared with the second and third embodiments.
The efficiency of heat conduction from 1 to the heat radiation side 12 via the semiconductor elements 5a and 5b is further improved, and as a result, the thermoelectric effect of the thermoelectric conversion device is improved.

【0043】加えて、熱電変換装置の組立工程において
は、絶縁基板8cの凸部8c′に箱形導電板6dの凹部
6d′が嵌合するよう、自動マウンター等を使用して容
易に、かつ確実に載置し、配列することができるため、
従来使用していた導電板の配列用治具が不要になる。
In addition, in the process of assembling the thermoelectric converter, an automatic mounter or the like can be used easily so that the concave portion 6d 'of the box-shaped conductive plate 6d fits into the convex portion 8c' of the insulating substrate 8c. Since it can be placed and arranged securely,
The conductive plate arranging jig that has been used conventionally is no longer necessary.

【0044】(第五実施例)熱電変換装置におけるペル
チェ効果は、厚さ10mm以下の近接した片面で吸熱、
もう一方の片面で放熱作用が生じており、また、N型及
びP型半導体素子の間の空間は空気層であるため、放熱
作用のある高温側から吸熱作用のある低温側へ空気の対
流や放射による熱の移動(熱損失)が生じ、結果として
熱電変換装置の熱電効果に影響することから、本実施例
では、発泡性断熱材等の断熱材を、特に充填時の作業性
や経済性を考慮して、吸熱側及び放熱側の絶縁基板と互
いに隣接する導電板との間の各空間に配設し、熱損失の
低減を図っている。
(Fifth Embodiment) The Peltier effect in the thermoelectric conversion device is that heat is absorbed on one side which is 10 mm or less in thickness and is close to one side.
Heat radiation is generated on the other side, and since the space between the N-type and P-type semiconductor elements is an air layer, air convection from the high temperature side with heat radiation to the low temperature side with heat absorption Since heat transfer (heat loss) occurs due to radiation, and as a result, it affects the thermoelectric effect of the thermoelectric conversion device, in this embodiment, a heat insulating material such as a foaming heat insulating material is used, particularly workability and economical efficiency at the time of filling. In consideration of the above, the heat absorbing side insulating board and the heat radiating side insulating board are arranged in each space between the adjacent conductive plates to reduce heat loss.

【0045】即ち、図8は本発明の第二実施例に係る熱
電変換装置に断熱材を配設した一例を示すもので、
(a)は正面図、(b)は側面図、(c)は上下の絶縁
基板を除いた場合の平面図である。又、図9は、図8
(b)において矢視したA−A線での正面断面図であ
る。
That is, FIG. 8 shows an example of disposing a heat insulating material in the thermoelectric conversion device according to the second embodiment of the present invention.
(A) is a front view, (b) is a side view, and (c) is a plan view when upper and lower insulating substrates are removed. In addition, FIG.
It is a front sectional view taken along the line A-A of FIG.

【0046】図8及び図9に示すように、熱電変換装置
の吸熱側11及び放熱側12において、前記第二実施例
のコ字状断面を有する導電板6bと隣り合う同一形状の
導電板6b、さらに絶縁基板8aとの間の上下の各空間
に発泡性断熱材等の断熱材13がそれぞれ配設されてい
る。この断熱材は熱伝導率が0.017kcal/mh
℃以下の断熱性を有するもので、例えば、発泡ポリウレ
タン断熱材や、シリカ(SiO2)あるいは連通ウレタ
ンフォームを成分とする真空断熱材等である。
As shown in FIGS. 8 and 9, on the heat absorbing side 11 and the heat radiating side 12 of the thermoelectric converter, the conductive plate 6b having the same shape and adjacent to the conductive plate 6b having the U-shaped cross section of the second embodiment. Further, a heat insulating material 13 such as a foaming heat insulating material is arranged in each space above and below the insulating substrate 8a. This insulation has a thermal conductivity of 0.017 kcal / mh
It has a heat insulating property of not higher than 0 ° C., and is, for example, a foamed polyurethane heat insulating material, a vacuum heat insulating material containing silica (SiO 2 ) or a continuous urethane foam as a component.

【0047】従来、熱電変換装置内の空気層を介しての
熱損失を低減する方法として、上下絶縁基板と半導体素
子との間の各空間に発泡性断熱材が充填されることがあ
ったが、多くの充填量を必要とし、また、熱電変換装置
を組み立てた後に発泡性断熱材を各空間に充填していく
ことから、充填作業が複雑になり、コスト高で作業効率
が悪いものであった。
Conventionally, as a method for reducing the heat loss through the air layer in the thermoelectric converter, each space between the upper and lower insulating substrates and the semiconductor element has been filled with a foaming heat insulating material. However, it requires a large amount of filling, and since the foam insulation material is filled into each space after the thermoelectric conversion device is assembled, the filling work becomes complicated, and the cost is high and the work efficiency is poor. It was

【0048】本実施例では上記構成を採用することによ
り、熱電変換装置の組立工程において、まず、絶縁基板
8aの凸部8a′上にコ字状断面を有する導電板6bを
載置、配列して半田接合した後、絶縁基板8bと互いに
隣り合う導電板6aとの間の空間に断熱材13を配設す
ることができるため、従来行っていた熱電変換装置の組
み立て後、即ち、半導体素子を上下の絶縁基板等で挟
持、固定した後に断熱材を充填する方法に比べ、断熱材
の充填が容易かつ確実に行えると共に、充填量も少なく
てすむので、コストの低減と組立作業性が大幅に向上す
る。
By adopting the above configuration in this embodiment, in the assembly process of the thermoelectric converter, first, the conductive plate 6b having a U-shaped cross section is placed and arranged on the convex portion 8a 'of the insulating substrate 8a. Since the heat insulating material 13 can be disposed in the space between the insulating substrate 8b and the conductive plates 6a adjacent to each other after soldering by soldering, the semiconductor element is assembled after the conventional thermoelectric conversion device is assembled. Compared to the method of filling the heat insulating material after sandwiching and fixing it with the upper and lower insulating substrates, the heat insulating material can be filled more easily and surely, and the filling amount is smaller, so that the cost is reduced and the assembly workability is greatly improved. improves.

【0049】加えて、高温側(放熱側12)の絶縁基板
から低温側(吸熱側11)の絶縁基板への空気の対流、
放射による熱の移動を防ぐことができる。結果として、
熱電変換装置の空間部を介しての熱損失を低減すること
ができるため、熱電効果が向上することになる。
In addition, convection of air from the insulating substrate on the high temperature side (heat radiation side 12) to the insulating substrate on the low temperature side (heat absorption side 11),
The transfer of heat due to radiation can be prevented. as a result,
Since the heat loss through the space of the thermoelectric conversion device can be reduced, the thermoelectric effect is improved.

【0050】(第六実施例)最後に図10は、本発明の
第四実施例の導電板上に位置決め突起を設けた一例を示
すもので、(a)は正面図、(b)は側面図、(c)は
絶縁基板を除いた場合の平面図である。
(Sixth Embodiment) Finally, FIG. 10 shows an example in which a positioning projection is provided on a conductive plate according to a fourth embodiment of the present invention. (A) is a front view and (b) is a side view. FIG. 1C is a plan view when the insulating substrate is removed.

【0051】図10に示すように、前記第四実施例の箱
形の導電板6dはその凹部6d′が絶縁基板8cの凸部
8c′に嵌合するよう載置されている。この導電板6d
の表面には、N型及びP型で構成される一対の半導体素
子5が載置される所定の位置(周囲各4箇所)に位置決
め突起14が設けられている。
As shown in FIG. 10, the box-shaped conductive plate 6d of the fourth embodiment is mounted so that the concave portion 6d 'thereof fits into the convex portion 8c' of the insulating substrate 8c. This conductive plate 6d
Positioning protrusions 14 are provided on the surface of the device at predetermined positions (four peripheral positions) on which a pair of semiconductor elements 5 of N type and P type are mounted.

【0052】導電板上にこれら複数の位置決め突起14
を設けたことにより、従来、熱電変換装置の組立工程に
おいて必要とした半導体素子配列用治具を使用すること
なく、各半導体素子5を導電板上の所定の位置に容易に
載置することができる。さらに、各半導体素子5を上方
から加圧しながら半田付けを行う際にも、従来のような
半導体素子5の位置ずれを防ぐことが可能になるので組
立作業性が大幅に向上する。
A plurality of these positioning protrusions 14 are formed on the conductive plate.
By providing the semiconductor element 5, it is possible to easily mount each semiconductor element 5 at a predetermined position on the conductive plate without using a semiconductor element arranging jig which has been conventionally required in the assembly process of the thermoelectric conversion device. it can. Further, even when soldering is performed while pressing each semiconductor element 5 from above, it is possible to prevent the displacement of the semiconductor element 5 as in the conventional case, so that the assembling workability is greatly improved.

【0053】以上、本発明をそれぞれ第一〜第六実施例
について説明してきたが、本発明は上記実施例に限定さ
れるものではなく、本発明の範囲内で上記実施例に多く
の修正及び変更を加え得ることは勿論である。例えば、
第五実施例では、第二実施例の絶縁基板8aと互いに隣
り合うコ字状導電板6bとの間に断熱材を配設した場合
について説明したが、特にこれに限定されるものではな
く、他の第一,第三,第四実施例についても適宜適用可
能である。
Although the present invention has been described with respect to the first to sixth embodiments, the present invention is not limited to the above embodiments, and many modifications and alterations are made to the above embodiments within the scope of the present invention. Of course, changes can be made. For example,
In the fifth embodiment, the case where the heat insulating material is provided between the insulating substrate 8a of the second embodiment and the U-shaped conductive plates 6b adjacent to each other has been described, but the present invention is not particularly limited to this. It is also applicable as appropriate to the other first, third and fourth embodiments.

【0054】また、第六実施例では、導電板の配列用治
具が不要となる第四実施例の箱形導電板6dの表面に位
置決め突起14を設ける例を示したが、特にこれに限定
されるものではなく、他の第一〜第三実施例の各導電板
上に位置決め突起を設ける構成であってもよい。
Further, in the sixth embodiment, an example in which the positioning projections 14 are provided on the surface of the box-shaped conductive plate 6d of the fourth embodiment which does not require a jig for arranging the conductive plates has been shown, but it is particularly limited to this. Instead, the positioning protrusions may be provided on the conductive plates of the other first to third embodiments.

【0055】尚、本発明において、ペルチェ効果を利用
した熱電変換装置への直流電流の向きを図示しない切換
装置により切り換えることで冷却面と放熱面が逆転する
ため、本発明の熱電変換装置を冷却装置としても、ある
いは加熱装置としても利用することが可能になる。
In the present invention, the cooling surface and the heat radiating surface are reversed by switching the direction of the direct current to the thermoelectric conversion device utilizing the Peltier effect by a switching device (not shown), so that the thermoelectric conversion device of the present invention is cooled. It can be used as a device or a heating device.

【0056】[0056]

【発明の効果】以上説明したように、本発明に係る請求
項1記載の熱電変換装置では、平板状の導電板を用いて
上下の絶縁基板と接する導電板の面積を拡大したことに
より、吸熱側から半導体素子を介して放熱側への熱の伝
導効率が向上し、結果として、熱電変換装置の熱電効果
が向上するという効果を奉する。
As described above, in the thermoelectric conversion device according to the first aspect of the present invention, the area of the conductive plate in contact with the upper and lower insulating substrates is increased by using the flat conductive plate, so that the heat absorption The heat conduction efficiency from the side to the heat dissipation side via the semiconductor element is improved, and as a result, the thermoelectric effect of the thermoelectric conversion device is improved.

【0057】また、本発明に係る請求項2記載の熱電変
換装置では、請求項1記載の構成に比して、導電板の形
状をコ字状断面あるいはL字状断面に形成して、半導体
素子間の間隙を小さくすると共に、絶縁基板と接する導
電板の面積を拡大したことにより、単位面積当たりの半
導体素子集積率が向上すると共に、吸熱側から半導体素
子を介して放熱側への熱の伝導効率が向上し、結果とし
て、熱電変換装置の熱電効果が向上するという優れた効
果を奉する。
Further, in the thermoelectric conversion device according to claim 2 of the present invention, as compared with the structure according to claim 1, the shape of the conductive plate is formed in a U-shaped cross section or an L-shaped cross section to form a semiconductor. By reducing the gap between the elements and expanding the area of the conductive plate in contact with the insulating substrate, the semiconductor element integration rate per unit area is improved, and heat from the heat absorbing side to the heat radiating side via the semiconductor element is increased. It has an excellent effect that the conduction efficiency is improved, and as a result, the thermoelectric effect of the thermoelectric conversion device is improved.

【0058】さらにまた、本発明に係る請求項3記載の
熱電変換装置では、導電板の形状を中央に凹部を有する
箱形に形成等したことにより、上記請求項2記載の効果
に加えて、熱電変換装置の組立工程においても、従来必
要とした導電板の配列用治具を使用することなく、自動
マウンター等で箱形である導電板の凹部を絶縁基板の凸
部に容易に、かつ確実に載置し、配列することができ
る。従って、組立作業性が向上し、設備治具費用の削減
と組立工程の簡素化を図ることができるという優れた効
果を奉する。
Further, in the thermoelectric conversion device according to the third aspect of the present invention, in addition to the effect of the second aspect, the conductive plate is formed into a box shape having a recess in the center. Even in the process of assembling the thermoelectric conversion device, the concave part of the box-shaped conductive plate can be easily and securely attached to the convex part of the insulating substrate with an automatic mounter, etc. without using the jigs for arranging the conductive plates that were required in the past. Can be placed on and arrayed. Therefore, the assembly workability is improved, and the excellent effects that the equipment jig cost can be reduced and the assembly process can be simplified are provided.

【0059】そして、本発明に係る請求項4記載の熱電
変換装置では、発泡性断熱材等の断熱材を吸熱側及び放
熱側の絶縁基板と、互いに隣接する導電板との間の各空
間に配設したことにより、熱電変換装置の組み立て後、
即ち、半導体素子を上下の絶縁基板等で挟持して固定し
た後に断熱材を充填する従来の方法に比べ、断熱材の充
填が容易に、かつ確実に行えると共に、充填量も少なく
てすむので、コストの低減と組立作業性が大幅に向上す
る。加えて、放熱側の絶縁基板から、吸熱側の絶縁基板
への空気の対流、放射による熱の移動を防ぐことができ
る。結果として、熱電変換装置の空間部を介しての熱損
失を低減することができるため、熱電効果が向上すると
いう優れた効果を奉する。
In the thermoelectric conversion device according to the fourth aspect of the present invention, a heat insulating material such as a foaming heat insulating material is provided in each space between the heat absorbing side insulating substrate and the heat radiating side insulating substrate and the conductive plates adjacent to each other. By arranging, after assembling the thermoelectric conversion device,
That is, as compared with the conventional method of filling the heat insulating material after sandwiching and fixing the semiconductor element with the upper and lower insulating substrates and the like, the heat insulating material can be easily and reliably filled, and the filling amount can be small, Cost reduction and assembly workability are greatly improved. In addition, convection of air from the insulating substrate on the heat radiation side to the insulating substrate on the heat absorption side and heat transfer due to radiation can be prevented. As a result, the heat loss through the space of the thermoelectric conversion device can be reduced, so that the thermoelectric effect is improved.

【0060】そしてまた、本発明に係る請求項5記載の
熱電変換装置では、その組立工程において、導電板の表
面に複数の位置決め突起を設けたことにより、従来必要
とした半導体素子の配列用治具を使用することなく、各
半導体素子を導電板上の所定の位置に容易に載置するこ
とができ、また、位置ずれを起こすことなく、上方から
加圧しながら半田付けを行うことができる。従って、組
立作業性が向上し、設備治具費用の削減と組立工程の簡
素化を図ることができるという優れた効果を奉する。
Further, in the thermoelectric conversion device according to claim 5 of the present invention, a plurality of positioning projections are provided on the surface of the conductive plate in the assembling step, so that the semiconductor element arranging jig which has been conventionally required is arranged. Each semiconductor element can be easily placed at a predetermined position on the conductive plate without using a tool, and soldering can be performed while applying pressure from above without displacement. Therefore, the assembly workability is improved, and the excellent effects that the equipment jig cost can be reduced and the assembly process can be simplified are provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例に係る熱電変換装置の要部
の構造を示すもので、(a)は正面断面図、(b)は絶
縁基板を除いた場合の平面図である。
FIG. 1 shows a structure of a main part of a thermoelectric conversion device according to a first embodiment of the present invention, (a) is a front sectional view, and (b) is a plan view when an insulating substrate is removed.

【図2】本発明の第二実施例に係る熱電変換装置の要部
の構造を示すもので、(a)は正面図、(b)は側面
図、(c)は絶縁基板を除いた場合の平面図である。
2A and 2B show a structure of a main part of a thermoelectric conversion device according to a second embodiment of the present invention, where FIG. 2A is a front view, FIG. 2B is a side view, and FIG. FIG.

【図3】図2(b)のA−A矢視正面断面図である。FIG. 3 is a front sectional view taken along the line AA of FIG.

【図4】本発明の第三実施例に係る熱電変換装置の要部
の構造を示すもので、(a)は正面図、(b)は側面
図、(c)は絶縁基板を除いた場合の平面図である。
FIG. 4 shows a structure of a main part of a thermoelectric conversion device according to a third embodiment of the present invention, where (a) is a front view, (b) is a side view, and (c) is a case where an insulating substrate is removed. FIG.

【図5】図4(b)のA−A矢視正面断面図である。5 is a front sectional view taken along the line AA of FIG. 4 (b).

【図6】本発明の第四実施例に係る熱電変換装置の要部
の構造を示すもので、(a)は正面図、(b)は側面
図、(c)は絶縁基板を除いた場合の平面図である。
6A and 6B show a structure of a main part of a thermoelectric conversion device according to a fourth embodiment of the present invention, where FIG. 6A is a front view, FIG. 6B is a side view, and FIG. FIG.

【図7】図6(b)のA−A矢視正面断面図である。7 is a front sectional view taken along the line AA of FIG. 6 (b).

【図8】本発明の第二実施例に係る熱電変換装置に断熱
材を配設した一例を示すもので、(a)は正面図、
(b)は側面図、(c)は絶縁基板を除いた場合の平面
図である。
FIG. 8 shows an example in which a heat insulating material is arranged in a thermoelectric conversion device according to a second embodiment of the present invention, (a) is a front view,
(B) is a side view and (c) is a plan view without an insulating substrate.

【図9】図8(b)のA−A矢視正面断面図である。9 is a front sectional view taken along the line AA of FIG. 8 (b).

【図10】本発明の第四実施例の導電板上に位置決め突
起を設けた一例を示すもので、(a)は正面図、(b)
は側面図、(c)は絶縁基板を除いた場合の平面図であ
る。
FIG. 10 shows an example in which a positioning protrusion is provided on a conductive plate of a fourth embodiment of the present invention, (a) is a front view and (b) is a view.
Is a side view, and (c) is a plan view without an insulating substrate.

【図11】図10に関連して、導電板上に位置決め突起
を設けないで半田付けした場合の一例を示す側面図であ
る。
FIG. 11 is a side view showing an example in the case of soldering without providing a positioning protrusion on the conductive plate in relation to FIG.

【図12】従来の熱電変換装置の要部の構造を示すもの
で、(a)は正面断面図、(b)は絶縁基板を除いた場
合の平面図である。
12A and 12B show a structure of a main part of a conventional thermoelectric conversion device, FIG. 12A is a front sectional view, and FIG. 12B is a plan view when an insulating substrate is removed.

【図13】従来の熱電変換装置の基本構造を示す概略断
面図である。
FIG. 13 is a schematic cross-sectional view showing the basic structure of a conventional thermoelectric conversion device.

【符号の説明】[Explanation of symbols]

1 熱電変換装置 5a N型半導体素子 5b P型半導体素子 6,6a,6b,6c,6d 導電板 6d′ 凹部(導電板) 8,8a,8b,8c 絶縁基板 8a′,8b′,8c′ 凸部(絶縁基板) 11 吸熱側 12 放熱側 13 断熱材 14 位置決め突起 1 Thermoelectric Converter 5a N-type Semiconductor Element 5b P-type Semiconductor Element 6, 6a, 6b, 6c, 6d Conductive Plate 6d 'Recess (Conductive Plate) 8, 8a, 8b, 8c Insulating Substrate 8a', 8b ', 8c' Convex Part (insulating substrate) 11 Heat absorption side 12 Heat dissipation side 13 Heat insulating material 14 Positioning protrusion

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一対のN型半導体素子とP型
半導体素子との両端面に導電板を接合し、さらにその外
側両面を電気的に絶縁性で、かつ、熱的に伝導性の材料
からなる絶縁基板で挟装して構成し、前記各素子を交互
に電気的に直列接続して、一方の側で吸熱を行うと共
に、他方の側で放熱を行う熱電変換装置において、前記
導電板の形状を水平面方向に延伸して、その面積を拡大
したことを特徴とする熱電変換装置。
1. A conductive plate is bonded to both end surfaces of at least a pair of an N-type semiconductor element and a P-type semiconductor element, and both outer surfaces thereof are made of an electrically insulating and thermally conductive material. In the thermoelectric conversion device configured to be sandwiched between insulating substrates, the elements are alternately electrically connected in series, and heat is absorbed on one side and heat is radiated on the other side. A thermoelectric conversion device, wherein the shape is expanded in the horizontal direction to expand the area.
【請求項2】 少なくとも一対のN型半導体素子とP型
半導体素子との両端面に導電板を接合し、さらにその外
側両面を電気的に絶縁性で、かつ、熱的に伝導性の材料
からなる絶縁基板で挟装して構成し、前記各素子を交互
に電気的に直列接続して、一方の側で吸熱を行うと共
に、他方の側で放熱を行う熱電変換装置において、前記
導電板の形状をコ字状断面あるいはL字状断面に形成す
ると共に、前記絶縁基板の該導電板と接する対向面に導
電板の形状に嵌合する凸部を形成したことを特徴とする
熱電変換装置。
2. A conductive plate is bonded to both end surfaces of at least a pair of an N-type semiconductor element and a P-type semiconductor element, and both outer surfaces thereof are made of an electrically insulating and thermally conductive material. In the thermoelectric conversion device configured to be sandwiched between insulating substrates, the elements are alternately electrically connected in series, and heat is absorbed on one side and heat is radiated on the other side. A thermoelectric conversion device, characterized in that the shape is formed in a U-shaped cross section or an L-shaped cross section, and a convex portion that fits in the shape of a conductive plate is formed on a surface of the insulating substrate facing the conductive plate.
【請求項3】 少なくとも一対のN型半導体素子とP型
半導体素子との両端面に導電板を接合し、さらにその外
側両面を電気的に絶縁性で、かつ、熱的に伝導性の材料
からなる絶縁基板で挟装して構成し、前記各素子を交互
に電気的に直列接続して、一方の側で吸熱を行うと共
に、他方の側で放熱を行う熱電変換装置において、前記
導電板の形状を中央に凹部を有する箱形に形成すると共
に、前記絶縁基板の該導電板と接する対向面に導電板の
凹部に嵌合する凸部を形成したことを特徴とする熱電変
換装置。
3. A conductive plate is bonded to both end surfaces of at least a pair of an N-type semiconductor element and a P-type semiconductor element, and both outer surfaces thereof are made of an electrically insulating and thermally conductive material. In the thermoelectric conversion device configured to be sandwiched between insulating substrates, the elements are alternately electrically connected in series, and heat is absorbed on one side and heat is radiated on the other side. A thermoelectric conversion device, characterized in that the thermoelectric conversion device is formed in a box shape having a concave portion in the center, and a convex portion that fits into the concave portion of the conductive plate is formed on a surface of the insulating substrate facing the conductive plate.
【請求項4】 前記吸熱側の絶縁基板と互いに隣接する
導電板との間、及び前記放熱側の絶縁基板と互いに隣接
する導電板との間の空間に発泡性断熱材等の断熱材を配
設したことを特徴とする請求項1、請求項2あるいは請
求項3記載の熱電変換装置。
4. A heat insulating material such as a foaming heat insulating material is arranged in the space between the heat absorbing side insulating substrate and the conductive plates adjacent to each other, and the space between the heat radiating side insulating substrate and the conductive plates adjacent to each other. The thermoelectric conversion device according to claim 1, 2 or 3, wherein the thermoelectric conversion device is provided.
【請求項5】 前記N型半導体素子及びP型半導体素子
の両端面が、前記導電板の所定の対向位置に位置決めさ
れるよう導電板の表面に複数の位置決め突起を設けたこ
とを特徴とする請求項1、請求項2あるいは請求項3記
載の熱電変換装置。
5. A plurality of positioning protrusions are provided on a surface of the conductive plate so that both end surfaces of the N-type semiconductor element and the P-type semiconductor element are positioned at predetermined facing positions of the conductive plate. The thermoelectric conversion device according to claim 1, claim 2, or claim 3.
JP6297049A 1994-11-30 1994-11-30 Thermo-electric converter Pending JPH08162680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6297049A JPH08162680A (en) 1994-11-30 1994-11-30 Thermo-electric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6297049A JPH08162680A (en) 1994-11-30 1994-11-30 Thermo-electric converter

Publications (1)

Publication Number Publication Date
JPH08162680A true JPH08162680A (en) 1996-06-21

Family

ID=17841557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6297049A Pending JPH08162680A (en) 1994-11-30 1994-11-30 Thermo-electric converter

Country Status (1)

Country Link
JP (1) JPH08162680A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781605A1 (en) * 1998-07-24 2000-01-28 Aerospatiale Peltier effect thermoelectric converter is used as a heat pump, especially in a thermostat for studying critical fluid behavior under micro gravity, and comprises alternating p-type and n-type semiconductor material elements
KR100445317B1 (en) * 1999-02-24 2004-08-18 조창제 Thermal motion electron rectfier and method for converting thermal energy into electric energy by using the same
JP5956608B2 (en) * 2012-11-29 2016-07-27 京セラ株式会社 Thermoelectric module
JP2017085179A (en) * 2012-05-30 2017-05-18 株式会社デンソー Method for manufacturing thermoelectric converter, and thermoelectric converter
CN109841725A (en) * 2017-11-29 2019-06-04 现代自动车株式会社 Electrothermal module plate and thermoelectric module assemblies including it
CN111615754A (en) * 2018-01-19 2020-09-01 Lg 伊诺特有限公司 Thermoelectric element
EP3866212A4 (en) * 2018-10-10 2022-07-06 Humott Co., Ltd. Bulk thermoelectric device preparation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781605A1 (en) * 1998-07-24 2000-01-28 Aerospatiale Peltier effect thermoelectric converter is used as a heat pump, especially in a thermostat for studying critical fluid behavior under micro gravity, and comprises alternating p-type and n-type semiconductor material elements
KR100445317B1 (en) * 1999-02-24 2004-08-18 조창제 Thermal motion electron rectfier and method for converting thermal energy into electric energy by using the same
JP2017085179A (en) * 2012-05-30 2017-05-18 株式会社デンソー Method for manufacturing thermoelectric converter, and thermoelectric converter
JP5956608B2 (en) * 2012-11-29 2016-07-27 京セラ株式会社 Thermoelectric module
JPWO2014084363A1 (en) * 2012-11-29 2017-01-05 京セラ株式会社 Thermoelectric module
CN109841725A (en) * 2017-11-29 2019-06-04 现代自动车株式会社 Electrothermal module plate and thermoelectric module assemblies including it
CN109841725B (en) * 2017-11-29 2023-11-10 现代自动车株式会社 Thermoelectric module board and thermoelectric module assembly comprising same
CN111615754A (en) * 2018-01-19 2020-09-01 Lg 伊诺特有限公司 Thermoelectric element
CN111615754B (en) * 2018-01-19 2024-04-16 Lg伊诺特有限公司 Thermoelectric element
EP3866212A4 (en) * 2018-10-10 2022-07-06 Humott Co., Ltd. Bulk thermoelectric device preparation method

Similar Documents

Publication Publication Date Title
EP2306512B1 (en) Heat radiator and power module
JP3166228B2 (en) Thermoelectric converter
WO2005117153A1 (en) Thermoelectric converter and its manufacturing method
US7732916B2 (en) Semiconductor package
WO2009084172A1 (en) Thermoelectric device
JP2004104041A (en) Thermoelectric converting device and method for manufacturing the same
JP2006269721A (en) Thermoelectric module and its manufacturing method
US20070051400A1 (en) Thermoelectric converter
JPH08162680A (en) Thermo-electric converter
JPH1187786A (en) Electron cooling/heating apparatus
JP2000349353A (en) Peltier module and module for optical communication equipped with the same
JP2006319262A (en) Thermoelectric conversion module
JP2010021410A (en) Thermo-module
JP4535004B2 (en) Double-sided cooling type semiconductor device
JP2006287066A (en) Thermoelectric conversion apparatus and method of manufacturing the apparatus
JP2009124054A (en) Joint structure of heating element and radiating element
JP4795103B2 (en) Thermo module and manufacturing method thereof
JP4682756B2 (en) Thermoelectric conversion device and method of manufacturing the same
JP3651333B2 (en) Semiconductor element mounting structure
JP2004153267A (en) Thermal interface pad having sufficient mechanical flexibility
JPH08236819A (en) Thermal electronic element
JPH06169108A (en) Thermoelectric element
CN214705908U (en) Power module, motor controller, power electronic device and new energy automobile
CN117352473A (en) Semiconductor refrigeration assembly, manufacturing method and optical device
JP2006108253A (en) Thermoelectric conversion apparatus