JPH05275754A - Thermomodule - Google Patents

Thermomodule

Info

Publication number
JPH05275754A
JPH05275754A JP4100387A JP10038792A JPH05275754A JP H05275754 A JPH05275754 A JP H05275754A JP 4100387 A JP4100387 A JP 4100387A JP 10038792 A JP10038792 A JP 10038792A JP H05275754 A JPH05275754 A JP H05275754A
Authority
JP
Japan
Prior art keywords
electrode
heat exchange
solder
thermoelectric semiconductor
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100387A
Other languages
Japanese (ja)
Inventor
Masayoshi Mihara
正義 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP4100387A priority Critical patent/JPH05275754A/en
Publication of JPH05275754A publication Critical patent/JPH05275754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To prevent a damage in an angle part of a thermoelectric semiconductor element and improve durability by a method wherein a pair or more of thermoelectric semiconductor elements are arranged through an electrode on a heat exchange substrate and thermosetting resin is used as a connection material between the heat exchange substrate and the electrode in the electrodes of the angle part of the heat exchange substrate and solder is used as the connection material in the remaining electrodes. CONSTITUTION:On a metallic film K of a ceramic substrate A on the upper surface of which the metallic film K is formed, an electrode B is connected with a terminal C through solder D. N type and P type thermoelectric semiconductor elements E are connected through solder F on the electrode B and the terminal C, and the thermo-electric semiconductor element E is connected with an electrode G through the solder F in the same manner. The lower surface of the electrode G is connected with a ceramic substrate H formed with the metallic film K through solder I. At this time, an electrode in an angle part of the ceramic substrate H is connected with the ceramic substrate H with thermosetting resin J. Thus, a thermal stress caused by making contact with a thermomodule is absorbed by thermosetting resin J of the angle part, whereby a damage can be reduced and durability can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱交換基板の角部の電極
は熱交換基板と電極との接合を熱硬化性樹脂で行うこと
により、耐久性を向上させたサーモモジュールに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermomodule in which the corner electrodes of a heat exchange substrate have improved durability by joining the heat exchange substrate and the electrodes with a thermosetting resin.

【0002】[0002]

【従来の技術およびその問題点】サーモモジュールは主
な用途として精密な温度調節器、携帯用の保冷庫、小型
の除湿器等に使用されている。これらサーモモジュール
は図1に示すように、N型熱電半導体素子1とP型熱電
半導体素子2とを交互に配列し、隣接する2つの熱電半
導体素子の上面及び/又は下面を金属等の電極3で接続
させることで、N型熱電半導体素子1とP型熱電半導体
素子2とを直列に接続し、各熱電半導体素子の上面と下
面の電極3をそれぞれ熱交換基板4に固定した構造をな
す。両端子5,5に直流電流を通じるとペルチェ効果に
より片側の熱交換基板は吸熱面(低温)となり、他方の
熱交換基板は放熱面(高温)となる。最も一般的に用い
られるサーモモジュールは、最大電流が10A以下で、
大きさは15〜40mm角程度である。
2. Description of the Related Art Thermomodules are mainly used for precision temperature controllers, portable cool boxes, small dehumidifiers, etc. As shown in FIG. 1, in these thermomodules, N-type thermoelectric semiconductor elements 1 and P-type thermoelectric semiconductor elements 2 are alternately arranged, and the upper surface and / or the lower surface of two adjacent thermoelectric semiconductor elements are provided with electrodes 3 made of metal or the like. By connecting the N-type thermoelectric semiconductor element 1 and the P-type thermoelectric semiconductor element 2 in series, the electrodes 3 on the upper surface and the lower surface of each thermoelectric semiconductor element are fixed to the heat exchange substrate 4, respectively. When a direct current is applied to both terminals 5 and 5, the heat exchange substrate on one side becomes a heat absorption surface (low temperature) and the heat exchange substrate on the other side becomes a heat dissipation surface (high temperature) due to the Peltier effect. The most commonly used thermo module has a maximum current of 10A or less,
The size is about 15 to 40 mm square.

【0003】このようなサーモモジュールは、熱交換基
板上に固定した電極上に半田等の接合材を介して熱電半
導体素子を固定して製造される。従って、サーモモジュ
ールに通電し、片側の熱交換基板が低温となり、他方の
熱交換基板が高温となると、この温度差により熱応力が
発生し、熱電半導体素子の接合部付近での破損を生じ、
最終的にはサーモモジュールに通電できなくなり、故障
するに至る。熱応力は特に熱交換基板の端部に近ずく程
大きくなり、角部が最も大きくなる。そのため、大型の
サーモモジュールは小型のものに比べて大きな熱応力が
発生しやすい。これらの点を考慮し、大型のサーモモジ
ュールを使わずに小型のサーモモジュールを複数個使う
ことになる。しかし、単純に考えてみても大型のサーモ
モジュール1個使う場合と、小型のサーモモジュール2
個使う場合とでは、後者は例えば検査費用が2倍かかる
等コスト面で不利とならざるを得ず、可能な限り使用個
数は少数にすることが望まれる。
Such a thermomodule is manufactured by fixing a thermoelectric semiconductor element on an electrode fixed on a heat exchange substrate via a bonding material such as solder. Therefore, when the thermomodule is energized, the heat exchange substrate on one side becomes low temperature, and the heat exchange substrate on the other side becomes high temperature, thermal stress occurs due to this temperature difference, and damage occurs near the junction of the thermoelectric semiconductor element,
Eventually, the thermomodule cannot be energized, resulting in failure. The thermal stress becomes larger especially as it approaches the end of the heat exchange substrate, and the corner becomes the largest. Therefore, a large thermomodule is more likely to generate large thermal stress than a small thermomodule. In consideration of these points, a plurality of small thermomodules will be used instead of a large thermomodule. However, even if you simply think about it, the case of using one large thermo module and the case of a small thermo module 2
In the case of using the individual pieces, the latter is unavoidable in terms of cost, for example, the inspection cost is doubled, and it is desirable that the number of pieces used is as small as possible.

【0004】本発明は、熱電半導体素子の角部での破損
を防止し、耐久性を向上させたサーモモジュールを提供
することを目的とする。
It is an object of the present invention to provide a thermo module in which damage at the corners of a thermoelectric semiconductor element is prevented and durability is improved.

【0005】[0005]

【問題点を解決するための手段】このような課題は、熱
交換基板上に電極を介して1対以上の熱電半導体素子対
を配置したサーモモジュールにおける熱交換基板の角部
の電極は熱交換基板と電極との接合材を熱硬化性樹脂と
し、残りの電極の接合材を半田とすることにより達成さ
れる。
[Problems to be Solved by the Invention] Such a problem is that the electrodes at the corners of the heat exchange substrate in the thermomodule in which one or more pairs of thermoelectric semiconductor elements are arranged via electrodes on the heat exchange substrate are heat exchanged. This is achieved by using a thermosetting resin as the bonding material between the substrate and the electrodes and using solder as the bonding material for the remaining electrodes.

【0006】このような本発明では、サーモモジュール
に通電することによって発生する熱応力により、角部の
接合材である熱硬化性樹脂が容易に破断し、それにより
熱応力が吸収されるために、熱電半導体素子の接合部付
近での破損がなくなり、サーモモジュールの耐久性が向
上する。
In the present invention as described above, the thermosetting resin, which is the joining material at the corners, is easily broken by the thermal stress generated by energizing the thermomodule, and the thermal stress is absorbed thereby. The damage in the vicinity of the joint of the thermoelectric semiconductor element is eliminated, and the durability of the thermo module is improved.

【0007】図2に本発明に係るサーモモジュールの構
造を示す。このようなサーモモジュールを作成する場合
を工程順に以下に説明する。 、上面に金属膜Kを形成したセラミック基板Aを用意
する。 、この基板の金属膜上に電極Bと端子Cを半田Dを介
して接合させる。 、この電極Bと端子Cの上にN型とP型の熱電半導体
素子Eを半田Fを介して接合させる。 、〜と同じように、熱電半導体素子に電極Gを半
田Fを介して接合し、この電極Gは下面に金属膜を形成
したセラミック基板Hに半田Iを介して接合させる。 、この時、セラミック基板Hの角部の電極は熱硬化性
樹脂Jでセラミック基板Hと接合させる。
FIG. 2 shows the structure of the thermo module according to the present invention. A case of producing such a thermo module will be described below in the order of steps. A ceramic substrate A having a metal film K formed on its upper surface is prepared. Then, the electrode B and the terminal C are bonded to each other on the metal film of this substrate through the solder D. Then, the N-type and P-type thermoelectric semiconductor elements E are bonded onto the electrodes B and the terminals C via the solder F. , To, the electrode G is bonded to the thermoelectric semiconductor element via the solder F, and the electrode G is bonded to the ceramic substrate H having the metal film formed on the lower surface via the solder I. At this time, the electrodes at the corners of the ceramic substrate H are bonded to the ceramic substrate H with the thermosetting resin J.

【0008】ここで、電極と熱交換基板の接合のすべて
を熱硬化性樹脂で行うことが考えられる。しかし、この
ようにすると、ペルチェ効果による熱の移動が熱硬化性
樹脂により低下するため、上で述べたように熱交換基板
の角部の電極に限定することが望ましい。なお、本発明
で使用される熱硬化性樹脂としては、ポリイミド樹脂や
エポキシ樹脂等が好ましく適用でき、残りの接合材は常
法に従い半田を用いる。
Here, it is conceivable that all the joining of the electrode and the heat exchange substrate is performed with a thermosetting resin. However, in this case, the heat transfer due to the Peltier effect is reduced by the thermosetting resin, so that it is desirable to limit to the electrodes at the corners of the heat exchange substrate as described above. As the thermosetting resin used in the present invention, a polyimide resin, an epoxy resin, or the like can be preferably applied, and solder is used as the remaining bonding material according to a conventional method.

【0009】[0009]

【実施例1】 熱電半導体素子対 127 熱交換基板 40×40mm,板厚0.8mm 予め金属膜のパターンを形成した片側の熱交換基板と電
極の接合箇所127のうち、図3に示すように、熱交換
基板の四角に位置する32箇所(図3のB)に液状ポリ
イミド(日立化成社製PIX−3400)を塗布し、そ
の他の接合箇所(図3のA)はクリーム半田を塗布し、
組立た。これを2〜300℃程度で加熱後、ポリイミド
を硬化させ、さらに冷却して半田を硬化させて、サーモ
モジュールを作製した。なお、比較のため、図3の接合
箇所のすべてを半田で行ったサーモモジュールを別に作
製し、比較例とした。これらにつき耐久性を試験した。
Example 1 Thermoelectric Semiconductor Element Pair 127 Heat Exchange Substrate 40 × 40 mm, Plate Thickness 0.8 mm Among the joint portions 127 of the heat exchange substrate on one side where a metal film pattern is formed in advance and the electrode, as shown in FIG. , Liquid polyimide (PIX-3400 manufactured by Hitachi Chemical Co., Ltd.) is applied to 32 places (B in FIG. 3) located in a square of the heat exchange substrate, and cream solder is applied to other bonding places (A in FIG. 3),
Assembled After heating this at about 2 to 300 ° C., the polyimide was cured, and further cooled to cure the solder to prepare a thermo module. For comparison, a thermo module in which all of the joints in FIG. 3 were soldered was separately prepared and used as a comparative example. These were tested for durability.

【0010】耐久性の試験方法としては、冷却側を断熱
材で囲み、熱の流入のないようにして最大電流を通電す
る。発熱側は一定温度となるように放熱する。熱応力に
よりサーモモジュールの熱電半導体素子の接合部付近に
破損を生じると、サーモモジュールの抵抗値が上昇する
ので、この値を調べれば故障の度合いがわかる。ここで
は抵抗値が初期の1.1倍になるまでの期間とする。そ
の結果を表1に示す。表1では、比較例の値を1とした
ときのものを示す。なお、最大電流とは、サーモモジュ
ールの吸熱側を断熱状態にして得られる吸熱側と放熱側
の温度差が最大となるときの電流値をいう。一般的に用
いられるサーモモジュールの最大温度差は60℃以上と
いわれている。最大電流を越える電流をサーモモジュー
ルに加えても最大温度差を越える温度差を得られない。
As a method of testing durability, the cooling side is surrounded by a heat insulating material, and a maximum current is applied so that heat does not flow. The heat generation side radiates heat so that the temperature becomes constant. If damage occurs in the vicinity of the junction of the thermoelectric semiconductor element of the thermomodule due to thermal stress, the resistance value of the thermomodule increases, so the degree of failure can be known by examining this value. Here, it is a period until the resistance value becomes 1.1 times the initial value. The results are shown in Table 1. Table 1 shows the case where the value of the comparative example is 1. The maximum current means a current value when the temperature difference between the heat absorbing side and the heat radiating side obtained when the heat absorbing side of the thermo module is adiabatic is maximized. It is said that the maximum temperature difference of a thermo module generally used is 60 ° C or more. Even if a current exceeding the maximum current is applied to the thermo module, a temperature difference exceeding the maximum temperature difference cannot be obtained.

【0011】[0011]

【表1】 [Table 1]

【0012】表1より、実施例のものでは、ポリイミド
による熱抵抗の増大で吸熱特性は2%程低下するが、耐
久性は5倍も向上した。
From Table 1, in the examples, the endothermic property is reduced by about 2% due to the increase in the thermal resistance due to the polyimide, but the durability is improved five times.

【0013】このような本発明で熱硬化性樹脂を使用す
るのは、クリーム半田の溶解(リフロー等)と同一の工
程で樹脂を硬化させることができるためである。しか
し、熱応力により容易に破損し易い熱可塑性樹脂、金属
や種々の化合物、混合物でもかまわない。
The reason why the thermosetting resin is used in the present invention is that the resin can be cured in the same step as the melting (reflow etc.) of the cream solder. However, a thermoplastic resin, a metal, various compounds, or a mixture which is easily damaged by thermal stress may be used.

【0014】[0014]

【発明の効果】以上のような本発明によれば、サーモモ
ジュールにおける熱交換基板と電極との接合材として角
部を熱硬化性樹脂で接合しているため、サーモモジュー
ルへの通電により生じる熱応力が角部の熱硬化性樹脂で
吸収されるため、熱応力に起因するサーモモジュールの
破損が減少し、耐久性が著しく向上する。
As described above, according to the present invention, since the corner portions are bonded by the thermosetting resin as the bonding material between the heat exchange substrate and the electrodes in the thermo module, heat generated by energizing the thermo module Since the stress is absorbed by the thermosetting resin at the corners, damage to the thermomodule due to thermal stress is reduced, and durability is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】最も一般的なサーモモジュールの説明図であ
る。
FIG. 1 is an explanatory diagram of a most general thermo module.

【図2】本発明に係るサーモモジュールの構造を示す説
明図である。
FIG. 2 is an explanatory view showing a structure of a thermo module according to the present invention.

【図3】実施例における熱交換基板と電極との接合箇所
を示す説明図である。
FIG. 3 is an explanatory diagram showing a joint portion between a heat exchange substrate and an electrode in the example.

【符号の説明】[Explanation of symbols]

1 N型熱電半導体素子 2 P型熱電半導体素子 3 電極 4 熱交換基板 5 端子 1 N-type thermoelectric semiconductor element 2 P-type thermoelectric semiconductor element 3 Electrode 4 Heat exchange board 5 Terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱交換基板上に電極を介して1対以上の
熱電半導体素子対を配置したサーモモジュールにおい
て、熱交換基板の角部の電極は熱交換基板と電極との接
合材を熱硬化性樹脂とし、残りの電極の接合材は半田と
したサーモモジュール。
1. In a thermomodule in which one or more pairs of thermoelectric semiconductor elements are arranged on a heat exchange substrate via electrodes, the electrodes at the corners of the heat exchange substrate are heat-cured with a bonding material between the heat exchange substrate and the electrodes. Thermoplastic module with a conductive resin and solder for the remaining electrodes.
JP4100387A 1992-03-26 1992-03-26 Thermomodule Pending JPH05275754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100387A JPH05275754A (en) 1992-03-26 1992-03-26 Thermomodule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100387A JPH05275754A (en) 1992-03-26 1992-03-26 Thermomodule

Publications (1)

Publication Number Publication Date
JPH05275754A true JPH05275754A (en) 1993-10-22

Family

ID=14272598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100387A Pending JPH05275754A (en) 1992-03-26 1992-03-26 Thermomodule

Country Status (1)

Country Link
JP (1) JPH05275754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266138A (en) * 2006-03-27 2007-10-11 Yamaha Corp Thermoelectric module
JP2016058414A (en) * 2014-09-05 2016-04-21 京セラ株式会社 Thermoelectric module and thermoelectric device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266138A (en) * 2006-03-27 2007-10-11 Yamaha Corp Thermoelectric module
JP2016058414A (en) * 2014-09-05 2016-04-21 京セラ株式会社 Thermoelectric module and thermoelectric device

Similar Documents

Publication Publication Date Title
US5724818A (en) Thermoelectric cooling module and method for manufacturing the same
RU2173007C2 (en) Thermoelectric device
JP4768961B2 (en) Thermoelectric module having thin film substrate
EP0718934B1 (en) Thermoelectric cooler assembly
US5966939A (en) Multistage thermoelectric cooling device
US4687879A (en) Tiered thermoelectric unit and method of fabricating same
JPH08316532A (en) Cooling unit structure
JPH0818109A (en) Thermoionic element and manufacture thereof
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
KR102170891B1 (en) Method of production of thermoelectric micro-coolers(variants)
JP4003254B2 (en) Thermoelectric conversion element and manufacturing method thereof
US3449173A (en) Thermoelectric couple with soft solder electrically connecting semi-conductors and method of making same
JPH05275754A (en) Thermomodule
JP3569836B2 (en) Thermoelectric device
JPH0864876A (en) Thermomodule
JP3813180B2 (en) Current connections for power semiconductor devices
US20060219286A1 (en) Thermoelectric transducer and manufacturing method for the same
JPH06169108A (en) Thermoelectric element
JPH11307825A (en) Thermoelectric module and its manufacture
JP2006114622A (en) Thermoelectric conversion module
JP4288927B2 (en) Multistage thermoelectric module
JPH033262A (en) Semiconductor device
JPH0337246Y2 (en)
JP4177790B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP3536759B2 (en) Thermoelectric module