JPH0864876A - Thermomodule - Google Patents

Thermomodule

Info

Publication number
JPH0864876A
JPH0864876A JP6224071A JP22407194A JPH0864876A JP H0864876 A JPH0864876 A JP H0864876A JP 6224071 A JP6224071 A JP 6224071A JP 22407194 A JP22407194 A JP 22407194A JP H0864876 A JPH0864876 A JP H0864876A
Authority
JP
Japan
Prior art keywords
electrode
heat
heat exchange
solder
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6224071A
Other languages
Japanese (ja)
Inventor
Masahiro Tochio
征広 栃尾
Tsutomu Sato
勉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP6224071A priority Critical patent/JPH0864876A/en
Publication of JPH0864876A publication Critical patent/JPH0864876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE: To prevent the damage to a thermoelectric semiconductor element and to improve the durability by connecting either the heat absorbing side electrode or the heat radiating side of a heat exchange board to the heat exchange board by an adhesive material having excellent heat conductivity and elasticity, and connecting the other electrode to the board by solder. CONSTITUTION: Either the heat absorbing side electrode or the heat radiating side of the heat exchange board of a thermomodule in which one pair or more of thermoelectric semiconductor element pair are disposed via an electrode on the board is connected to the board by an adhesive material having excellent heat conductivity and elasticity, and the other electrode is connected to the board by solder. For example, an electrode B is connected on the metal film C of the upper surface of a ceramic board A by solder D. N-type and P-type thermoelectric semiconductor elements E are connected to the electrode B via solder F. An electrode G is connected to the ceramic board H via an adhesive material having excellent heat conductivity and elasticity. The electrode G is connected to the element E by the solder F.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱交換基板の吸熱側又は
放熱側のいずれか一方の電極は熱交換基板と電極との接
合を熱伝導性が良くかつ弾性のある接着性材料で接合す
ることにより、耐久性を向上させたサーモモジュールに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode on either the heat absorbing side or the heat radiating side of a heat exchange substrate, which is joined to the heat exchange substrate by an adhesive material having good thermal conductivity and elasticity. The present invention relates to a thermo module having improved durability.

【0002】[0002]

【従来の技術およびその問題点】サーモモジュールは主
な用途として精密な温度調節器、携帯用の保冷庫、小型
の除湿器等に使用されている。これらサーモモジュール
は図1に示すように、N型熱電半導体素子1とP型熱電
半導体素子2とを交互に配列し、隣接する2つの熱電半
導体素子の上面及び下面を金属等の電極3で接続させる
ことで、N型熱電半導体素子1とP型熱電半導体素子2
とを直列に接続し、各熱電半導体素子の上面と下面の電
極3をそれぞれ熱交換基板4に固定した構造をなす。両
端子5,5に直流電流を通じるとペルチェ効果により片
側の熱交換基板は吸熱面(低温)となり、他方の熱交換
基板は放熱面(高温)となる。最も一般的に用いられる
サーモモジュールは、最大電流が10A以下で、大きさ
は15〜40mm角程度である。
2. Description of the Related Art Thermomodules are mainly used for precision temperature controllers, portable cool boxes, small dehumidifiers, etc. As shown in FIG. 1, in these thermomodules, N-type thermoelectric semiconductor elements 1 and P-type thermoelectric semiconductor elements 2 are alternately arranged, and the upper and lower surfaces of two adjacent thermoelectric semiconductor elements are connected by electrodes 3 made of metal or the like. As a result, the N-type thermoelectric semiconductor element 1 and the P-type thermoelectric semiconductor element 2
Are connected in series, and the electrodes 3 on the upper surface and the lower surface of each thermoelectric semiconductor element are fixed to the heat exchange substrate 4, respectively. When a direct current is applied to both terminals 5 and 5, the heat exchange substrate on one side becomes a heat absorption surface (low temperature) and the heat exchange substrate on the other side becomes a heat dissipation surface (high temperature) due to the Peltier effect. The most commonly used thermomodule has a maximum current of 10 A or less and a size of about 15 to 40 mm square.

【0003】このようなサーモモジュールは、熱交換基
板上に固定した電極上に半田等の接合材を介して熱電半
導体素子を固定して製造される。従って、サーモモジュ
ールに通電し、片側の熱交換基板が低温となり、他方の
熱交換基板が高温となると、この温度差により熱応力が
発生し、熱電半導体素子の接合部付近での破損を生じ、
最終的にはサーモモジュールに通電できなくなり、故障
するに至る。熱応力は特に熱交換基板の端部に近ずく程
大きくなり、角部が最も大きくなる。そのため、大型の
サーモモジュールは小型のものに比べて大きな熱応力が
発生しやすい。これらの点を考慮し、大型のサーモモジ
ュールを使わずに小型のサーモモジュールを複数個使う
ことになる。しかし、単純に考えてみても大型のサーモ
モジュール1個使う場合と、小型のサーモモジュール2
個使う場合とでは、後者は例えば検査費用が2倍かかる
等コスト面で不利とならざるを得ず、可能な限り使用個
数は少数にすることが望まれる。
Such a thermo module is manufactured by fixing a thermoelectric semiconductor element on an electrode fixed on a heat exchange substrate via a bonding material such as solder. Therefore, when the thermo module is energized, the heat exchange substrate on one side becomes low temperature, and the heat exchange substrate on the other side becomes high temperature, thermal stress is generated due to this temperature difference, and damage occurs near the junction of the thermoelectric semiconductor element,
Eventually, the thermomodule cannot be energized and it will fail. The thermal stress becomes larger especially as it approaches the end of the heat exchange substrate, and the corner becomes the largest. Therefore, a large thermomodule is more likely to generate large thermal stress than a small thermomodule. Considering these points, a plurality of small thermomodules will be used instead of a large thermomodule. However, even if you simply think about it, the case of using one large thermo module and the case of a small thermo module 2
In the case of using the individual pieces, the latter is unavoidable in terms of cost, for example, the inspection cost is doubled, and it is desirable that the number of pieces used is as small as possible.

【0004】本発明は、熱電半導体素子の破損を防止
し、耐久性を向上させたサーモモジュールを提供するこ
とを目的とする。
It is an object of the present invention to provide a thermo module in which damage to a thermoelectric semiconductor element is prevented and durability is improved.

【0005】[0005]

【問題点を解決するための手段】このような課題は、熱
交換基板上に電極を介して1対以上の熱電半導体素子対
を配置したサーモモジュールにおける熱交換基板の吸熱
側又は放熱側のいずれか一方の電極と熱交換基板との接
合を熱伝導性が良くかつ弾性のある接着性材料で接合
し、他方の電極と熱交換基板との接合は半田とすること
により達成される。
This problem is solved by either the heat absorption side or the heat dissipation side of the heat exchange substrate in the thermomodule in which one or more pairs of thermoelectric semiconductor elements are arranged on the heat exchange substrate via electrodes. The one electrode and the heat exchange substrate are joined by an adhesive material having good thermal conductivity and elasticity, and the other electrode and the heat exchange substrate are joined by soldering.

【0006】このような本発明では、吸熱側又は放熱側
のいずれか一方の電極と熱交換基板との接合が熱伝導性
が良くかつ弾性のある接着性材料で行われているため、
この接着性材料によりサーモモジュールに通電すること
によって発生する熱応力が吸収され、熱電半導体素子
(特に角部)のクラック等の発生が防止される。
In the present invention as described above, since either the heat absorbing side electrode or the heat radiating side electrode is joined to the heat exchange substrate by an adhesive material having good thermal conductivity and elasticity,
The adhesive material absorbs the thermal stress generated by energizing the thermomodule, and prevents the thermoelectric semiconductor element (particularly the corner) from being cracked.

【0007】図2に本発明に係るサーモモジュールの構
造を示す。このようなサーモモジュールを作成する場合
を工程順に以下に説明する。 、上面に金属膜Cを形成したセラミック基板Aを用意
する。 、この基板の金属膜C上に電極Bを半田Dを介して接
合させる。 、この電極Bの上にN型とP型の熱電半導体素子Eを
半田Fを介して接合させる。 、セラミック基板Hを用意する。 、この基板Hの上に電極Gを熱伝導性が良くかつ弾性
のある接着性材料Iを介して接合させる。 、さらに、この電極Gと熱電半導体素子Eは、半田F
を介して接合させる。
FIG. 2 shows the structure of the thermo module according to the present invention. A case of producing such a thermo module will be described below in the order of steps. A ceramic substrate A having a metal film C formed on its upper surface is prepared. Then, the electrode B is bonded onto the metal film C of this substrate through the solder D. Then, the N-type and P-type thermoelectric semiconductor elements E are bonded onto the electrodes B via the solder F. A ceramic substrate H is prepared. Then, the electrode G is bonded onto the substrate H via the adhesive material I having good thermal conductivity and elasticity. Further, the electrode G and the thermoelectric semiconductor element E are solder F
To join through.

【0008】ここで、電極と吸熱側及び放熱側の両方の
熱交換基板の接合を熱伝導性が良くかつ弾性のある接着
性材料を用いて行うことが考えられる。しかし、このよ
うにすると、ペルチェ効果による熱の移動が低下するた
め、上述したように熱交換基板の吸熱側又は放熱側のい
ずれか一方の電極の接合にだけ限定するようにする。
Here, it is conceivable that the electrodes and the heat exchange substrates on both the heat absorbing side and the heat radiating side are joined using an adhesive material having good thermal conductivity and elasticity. However, in this case, the heat transfer due to the Peltier effect is reduced, so that it is limited to only the one of the electrodes on the heat absorption side or the heat dissipation side of the heat exchange substrate as described above.

【0009】本発明で使用される熱伝導性が良くかつ弾
性のある接着性材料としては、この接着性材料を用いた
と反対側の熱交換基板の接合に半田を用いるため、クリ
ーム半田の溶解(リフロー等)でも変質することがない
ように半田の溶解温度に耐えられ、熱サイクルの伴う熱
応力を吸収できる熱伝導性の良い材料であれば、ゴム
系、樹脂系の材料、あるいはこれらの材料に熱伝導性改
良のために各種フィラーを添加したもの、さらには金属
や種々の化合物、混合物であってもよい。より具体的に
は、シリコーンゴム、ブタジエンゴム、アクリル樹脂等
が例示することができる。
As the adhesive material having good thermal conductivity and elasticity used in the present invention, since solder is used for joining the heat exchange substrate on the side opposite to the side where this adhesive material is used, melting of cream solder ( Rubber-based or resin-based materials, or these materials, as long as they have good thermal conductivity and can withstand the melting temperature of the solder so that they do not deteriorate even when subjected to reflow, etc., and can absorb the thermal stress associated with thermal cycles. What added various fillers for thermal conductivity improvement, and also a metal, various compounds, and a mixture may be used. More specifically, silicone rubber, butadiene rubber, acrylic resin and the like can be exemplified.

【0010】本発明において、熱交換基板上に形成する
金属膜は通常セラミック製である熱交換基板と電極とを
半田を用いて接合し易くするためのものであり、タング
ステン、モリブデン−マンガン、銅等の被膜が適用され
る。
In the present invention, the metal film formed on the heat exchanging substrate is for facilitating the joining of the heat exchanging substrate, which is usually made of ceramic, and the electrodes by using solder, such as tungsten, molybdenum-manganese, and copper. Etc. a coating is applied.

【0011】[0011]

【実施例1】 熱電半導体素子対 127 熱交換基板 40×40mm,板厚0.8mm、
(モリブデン−マンガン合金被膜付アルミナ基板) 片側の熱交換基板に熱伝導性が良くかつ弾性のある接着
性材料として液状Siゴム(東レダウシリコーン製SE
1815CV)を塗布し、電極を接合した。これを100〜
120℃程度で加熱後、Siゴムを硬化させた。この基
板(電極付)と半田で電極を接合した他の基板とでサー
モモジュールを作製した。
Example 1 Thermoelectric semiconductor element pair 127 heat exchange substrate 40 × 40 mm, plate thickness 0.8 mm,
(Alumina substrate with molybdenum-manganese alloy coating) Liquid Si rubber (SE made by Toray Dow Silicone as an adhesive material with good thermal conductivity and elasticity for the heat exchange substrate on one side.
1815 CV) was applied and the electrodes were joined. This is 100 ~
After heating at about 120 ° C., the Si rubber was cured. A thermomodule was produced from this substrate (with electrodes) and another substrate to which electrodes were joined by solder.

【0012】[0012]

【実施例2】熱伝導性が良くかつ弾性のある接着性材料
としてアルリル系樹脂(日本スリーボンド製3381)を用
い、その他は実施例1と同様にしてサーモモジュールを
作製した。
Example 2 A thermomodule was produced in the same manner as in Example 1 except that an allyl resin (3381 manufactured by Nippon ThreeBond) was used as an adhesive material having good thermal conductivity and elasticity.

【0013】[0013]

【実施例3】熱伝導性が良くかつ弾性のある接着性材料
として液状Siゴム(信越シリコーン製 1862)を用
い、その他は実施例1と同様にしてサーモモジュールを
作製した。
Example 3 A thermomodule was manufactured in the same manner as in Example 1 except that liquid Si rubber (1862 made by Shin-Etsu Silicone) was used as an adhesive material having good thermal conductivity and elasticity.

【0014】[0014]

【比較例1】比較のため、放熱面及び吸熱面の両面を半
田接合したサーモモジュールを作製した。
[Comparative Example 1] For comparison, a thermo module was produced in which both the heat radiation surface and the heat absorption surface were soldered together.

【0015】[0015]

【比較例2】放熱面及び吸熱面の両面を熱伝導性が良く
かつ弾性のある接着性材料である液状Siゴム(信越シ
リコーン製1862)を用い、サーモモジュールを作製し
た。
[Comparative Example 2] A thermo module was prepared by using liquid Si rubber (1862 made by Shin-Etsu Silicone), which is an adhesive material having good thermal conductivity and elasticity on both the heat radiating surface and the heat absorbing surface.

【0016】これらにつき耐久性を試験した。耐久性の
試験方法としては、2個のサーモモジュールを張り合わ
せ、合わせ面が吸熱面となるようにして各々のサーモモ
ジュールに最大電流を通電する。本試験では4.3アン
ペアであった。発熱側は一定温度となるように放熱し
た。この状態で55秒間通電後、すぐさま吸熱面が熱く
なるように通電電流を6秒間反転させ、これを1サイク
ルとした。以後、このサイクルを繰返し、耐久性を試験
した。熱応力によりサーモモジュールの熱電半導体素子
の接合部付近に破損を生じると、サーモモジュールの抵
抗値が上昇するので、この値を調べれば故障の度合いが
分かることになる。ここでは抵抗値が初期の1.1倍に
なるまでの期間とした。その結果を表1に示す。表1で
は、半田接合の比較例1の値(耐久性400サイクル、
吸熱量19ワット)を1としたときのものを示す。な
お、最大電流とは、サーモモジュールの吸熱側を断熱状
態にして得られる吸熱側と放熱側の温度差が最大となる
ときの電流値をいう。一般的に用いられるサーモモジュ
ールの最大温度差は60℃以上といわれている。最大電
流を越える電流をサーモモジュールに加えても最大温度
差を越える温度差を得られない。また、前述の吸熱量と
は放熱面温度30℃、吸熱面温度5℃、温度差25℃に
設定し、通電した時の吸熱面における吸熱量をワット数
で測定したものである。
These were tested for durability. As a test method of durability, two thermomodules are attached to each other, and a maximum current is applied to each thermomodule so that the mating surface becomes a heat absorbing surface. In this test, it was 4.3 amps. The heat generation side radiated heat so that the temperature became constant. After energizing for 55 seconds in this state, the energizing current was reversed for 6 seconds so that the heat absorbing surface became hot immediately, and this was set as one cycle. Thereafter, this cycle was repeated to test the durability. If damage occurs in the vicinity of the junction of the thermoelectric semiconductor element of the thermomodule due to thermal stress, the resistance value of the thermomodule increases, so if this value is examined, the degree of failure will be known. Here, the period was taken until the resistance value became 1.1 times the initial value. The results are shown in Table 1. In Table 1, the values of Comparative Example 1 of solder joining (durability 400 cycles,
The endothermic amount of 19 watts is shown as 1. The maximum current means a current value when the temperature difference between the heat absorbing side and the heat radiating side obtained when the heat absorbing side of the thermomodule is adiabatic is maximized. It is said that the maximum temperature difference of the thermo module generally used is 60 ° C or more. Even if a current exceeding the maximum current is applied to the thermo module, a temperature difference exceeding the maximum temperature difference cannot be obtained. Further, the above-mentioned heat absorption amount is a value obtained by measuring the heat absorption amount on the heat absorption surface when the power is supplied and the wattage, when the heat radiation surface temperature is 30 ° C., the heat absorption surface temperature is 5 ° C., and the temperature difference is 25 ° C.

【0017】[0017]

【表1】 [Table 1]

【0018】表1より、実施例のものでは、熱伝導性が
良くかつ弾性のある材料でも半田と比較すると熱抵抗の
増大で吸熱特性は最大9%程低下するが、耐久性は70
倍以上も向上した。
As shown in Table 1, in the examples, even the material having good thermal conductivity and elasticity, the endothermic property is reduced by up to 9% due to the increase of thermal resistance as compared with the solder, but the durability is 70%.
More than doubled.

【0019】[0019]

【発明の効果】以上のような本発明によれば、吸熱側又
は放熱側のいずれか一方の電極と熱交換基板との接合を
熱伝導性が良くかつ弾性のある接着性材料で行っている
のでサーモモジュールに通電することによって発生する
熱応力がこの接着性材料で吸収され、熱応力に起因する
サーモモジュールの破損が減少し、耐久性が著しく向上
する。従って特に大型のサーモモジュールにおいてもそ
の特に角部が破損し易いという問題も解消される。
According to the present invention as described above, the bonding between the heat exchange substrate and the electrode on either the heat absorbing side or the heat radiating side is made of an adhesive material having good thermal conductivity and elasticity. Therefore, the thermal stress generated by energizing the thermomodule is absorbed by this adhesive material, the damage of the thermomodule due to the thermal stress is reduced, and the durability is remarkably improved. Therefore, even in the case of a particularly large thermomodule, the problem that the corners are easily damaged is solved.

【図面の簡単な説明】[Brief description of drawings]

【図1】最も一般的なサーモモジュールの斜視概略説明
図である。
FIG. 1 is a schematic perspective view of a most common thermo module.

【図2】本発明に係るサーモモジュールの断面構造を示
す説明図である。
FIG. 2 is an explanatory view showing a cross-sectional structure of a thermo module according to the present invention.

【符号の説明】[Explanation of symbols]

1 N型熱電半導体素子 2 P型熱電半導体素子 3 電極 4 熱交換基板 5 端子 A セラミック基板 B 電極 C 金属膜 D 半田 E 熱電半導体素子 F 半田 G 電極 H セラミック基板 I 熱伝導性が良くかつ弾性のある材料 1 N-type thermoelectric semiconductor element 2 P-type thermoelectric semiconductor element 3 Electrode 4 Heat exchange substrate 5 Terminal A Ceramic substrate B Electrode C Metal film D Solder E Thermoelectric semiconductor element F Solder G Electrode H Ceramic substrate I High thermal conductivity and elasticity A material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱交換基板上に電極を介して1対以上の
熱電半導体素子対を配置したサーモモジュールにおい
て、熱交換基板の吸熱側又は放熱側のいずれか一方の電
極と熱交換基板との接合は熱伝導性が良くかつ弾性のあ
る接着性材料で接合し、他方の電極と熱交換基板との接
合は半田としたことを特徴とするサーモモジュール。
1. A thermomodule in which one or more pairs of thermoelectric semiconductor elements are arranged on a heat exchange substrate via electrodes, wherein the heat exchange substrate has either one of the heat absorption side or the heat radiation side and the heat exchange substrate. The thermomodule, characterized in that the bonding is performed with an adhesive material having good thermal conductivity and elasticity, and the other electrode is bonded to the heat exchange substrate by soldering.
JP6224071A 1994-08-25 1994-08-25 Thermomodule Pending JPH0864876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6224071A JPH0864876A (en) 1994-08-25 1994-08-25 Thermomodule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6224071A JPH0864876A (en) 1994-08-25 1994-08-25 Thermomodule

Publications (1)

Publication Number Publication Date
JPH0864876A true JPH0864876A (en) 1996-03-08

Family

ID=16808113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6224071A Pending JPH0864876A (en) 1994-08-25 1994-08-25 Thermomodule

Country Status (1)

Country Link
JP (1) JPH0864876A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321354A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Metal pattern plate
JPH09321356A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Thermoelectric module and its manufacture
KR100668610B1 (en) * 2004-09-09 2007-01-16 엘지전자 주식회사 Thin-layer thermoelectric module
JPWO2015046254A1 (en) * 2013-09-25 2017-03-09 リンテック株式会社 Thermally conductive adhesive sheet, method for producing the same, and electronic device using the same
EP3544068A1 (en) * 2018-03-21 2019-09-25 RMT Limited Method of production of thermoelectric micro-coolers
CN112599653A (en) * 2020-12-04 2021-04-02 杭州大和热磁电子有限公司 Thermoelectric module suitable for cold-hot alternation and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321354A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Metal pattern plate
JPH09321356A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Thermoelectric module and its manufacture
KR100668610B1 (en) * 2004-09-09 2007-01-16 엘지전자 주식회사 Thin-layer thermoelectric module
JPWO2015046254A1 (en) * 2013-09-25 2017-03-09 リンテック株式会社 Thermally conductive adhesive sheet, method for producing the same, and electronic device using the same
EP3544068A1 (en) * 2018-03-21 2019-09-25 RMT Limited Method of production of thermoelectric micro-coolers
JP2019169702A (en) * 2018-03-21 2019-10-03 アールエムティー リミテッド Method for manufacturing thermoelectric microcooler (variant)
CN112599653A (en) * 2020-12-04 2021-04-02 杭州大和热磁电子有限公司 Thermoelectric module suitable for cold-hot alternation and manufacturing method thereof
CN112599653B (en) * 2020-12-04 2023-03-10 杭州大和热磁电子有限公司 Thermoelectric module suitable for cold-hot alternation and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
JP2005507157A (en) Thermoelectric module having thin film substrate
JP2009188088A (en) Thermoelectric apparatus
JP2008034792A (en) Thermoelectric converter and its manufacturing process
JP2007035907A (en) Thermoelectric module
JPH0864876A (en) Thermomodule
JPH11265976A (en) Power-semiconductor module and its manufacture
JPH08316532A (en) Cooling unit structure
US7692299B2 (en) Semiconductor apparatus having improved thermal fatigue life
JP2003318455A (en) Peltier element and its manufacturing method
JP2000164941A (en) Thermoelectric conversion module
JP3813180B2 (en) Current connections for power semiconductor devices
JPH05275754A (en) Thermomodule
JPH04249385A (en) Thermoelectric device
JP2020150139A (en) Thermoelectric conversion module
JPH06169109A (en) Thermoelectric element
JP2000091650A (en) High temperature thermoelectric transducer
JPH11307825A (en) Thermoelectric module and its manufacture
JPH06169108A (en) Thermoelectric element
JPH07335945A (en) Thermocouple array
Sakamoto et al. Development of high-power large-sized peltier module
JP2001308397A (en) Peltier module
JP3007904U (en) Thermal battery
JPH08186296A (en) Peltier element
JP2006041192A (en) Thermoelement